1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a generic engine for intraprocedural, path-sensitive,
11 // dataflow analysis via graph reachability engine.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "CoreEngine"
16
17 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/Statistic.h"
25
26 using namespace clang;
27 using namespace ento;
28
29 STATISTIC(NumReachedMaxSteps,
30 "The # of times we reached the max number of steps.");
31 STATISTIC(NumPathsExplored,
32 "The # of paths explored by the analyzer.");
33
34 //===----------------------------------------------------------------------===//
35 // Worklist classes for exploration of reachable states.
36 //===----------------------------------------------------------------------===//
37
~Visitor()38 WorkList::Visitor::~Visitor() {}
39
40 namespace {
41 class DFS : public WorkList {
42 SmallVector<WorkListUnit,20> Stack;
43 public:
hasWork() const44 virtual bool hasWork() const {
45 return !Stack.empty();
46 }
47
enqueue(const WorkListUnit & U)48 virtual void enqueue(const WorkListUnit& U) {
49 Stack.push_back(U);
50 }
51
dequeue()52 virtual WorkListUnit dequeue() {
53 assert (!Stack.empty());
54 const WorkListUnit& U = Stack.back();
55 Stack.pop_back(); // This technically "invalidates" U, but we are fine.
56 return U;
57 }
58
visitItemsInWorkList(Visitor & V)59 virtual bool visitItemsInWorkList(Visitor &V) {
60 for (SmallVectorImpl<WorkListUnit>::iterator
61 I = Stack.begin(), E = Stack.end(); I != E; ++I) {
62 if (V.visit(*I))
63 return true;
64 }
65 return false;
66 }
67 };
68
69 class BFS : public WorkList {
70 std::deque<WorkListUnit> Queue;
71 public:
hasWork() const72 virtual bool hasWork() const {
73 return !Queue.empty();
74 }
75
enqueue(const WorkListUnit & U)76 virtual void enqueue(const WorkListUnit& U) {
77 Queue.push_front(U);
78 }
79
dequeue()80 virtual WorkListUnit dequeue() {
81 WorkListUnit U = Queue.front();
82 Queue.pop_front();
83 return U;
84 }
85
visitItemsInWorkList(Visitor & V)86 virtual bool visitItemsInWorkList(Visitor &V) {
87 for (std::deque<WorkListUnit>::iterator
88 I = Queue.begin(), E = Queue.end(); I != E; ++I) {
89 if (V.visit(*I))
90 return true;
91 }
92 return false;
93 }
94 };
95
96 } // end anonymous namespace
97
98 // Place the dstor for WorkList here because it contains virtual member
99 // functions, and we the code for the dstor generated in one compilation unit.
~WorkList()100 WorkList::~WorkList() {}
101
makeDFS()102 WorkList *WorkList::makeDFS() { return new DFS(); }
makeBFS()103 WorkList *WorkList::makeBFS() { return new BFS(); }
104
105 namespace {
106 class BFSBlockDFSContents : public WorkList {
107 std::deque<WorkListUnit> Queue;
108 SmallVector<WorkListUnit,20> Stack;
109 public:
hasWork() const110 virtual bool hasWork() const {
111 return !Queue.empty() || !Stack.empty();
112 }
113
enqueue(const WorkListUnit & U)114 virtual void enqueue(const WorkListUnit& U) {
115 if (isa<BlockEntrance>(U.getNode()->getLocation()))
116 Queue.push_front(U);
117 else
118 Stack.push_back(U);
119 }
120
dequeue()121 virtual WorkListUnit dequeue() {
122 // Process all basic blocks to completion.
123 if (!Stack.empty()) {
124 const WorkListUnit& U = Stack.back();
125 Stack.pop_back(); // This technically "invalidates" U, but we are fine.
126 return U;
127 }
128
129 assert(!Queue.empty());
130 // Don't use const reference. The subsequent pop_back() might make it
131 // unsafe.
132 WorkListUnit U = Queue.front();
133 Queue.pop_front();
134 return U;
135 }
visitItemsInWorkList(Visitor & V)136 virtual bool visitItemsInWorkList(Visitor &V) {
137 for (SmallVectorImpl<WorkListUnit>::iterator
138 I = Stack.begin(), E = Stack.end(); I != E; ++I) {
139 if (V.visit(*I))
140 return true;
141 }
142 for (std::deque<WorkListUnit>::iterator
143 I = Queue.begin(), E = Queue.end(); I != E; ++I) {
144 if (V.visit(*I))
145 return true;
146 }
147 return false;
148 }
149
150 };
151 } // end anonymous namespace
152
makeBFSBlockDFSContents()153 WorkList* WorkList::makeBFSBlockDFSContents() {
154 return new BFSBlockDFSContents();
155 }
156
157 //===----------------------------------------------------------------------===//
158 // Core analysis engine.
159 //===----------------------------------------------------------------------===//
160
161 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
ExecuteWorkList(const LocationContext * L,unsigned Steps,ProgramStateRef InitState)162 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
163 ProgramStateRef InitState) {
164
165 if (G->num_roots() == 0) { // Initialize the analysis by constructing
166 // the root if none exists.
167
168 const CFGBlock *Entry = &(L->getCFG()->getEntry());
169
170 assert (Entry->empty() &&
171 "Entry block must be empty.");
172
173 assert (Entry->succ_size() == 1 &&
174 "Entry block must have 1 successor.");
175
176 // Mark the entry block as visited.
177 FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
178 L->getDecl(),
179 L->getCFG()->getNumBlockIDs());
180
181 // Get the solitary successor.
182 const CFGBlock *Succ = *(Entry->succ_begin());
183
184 // Construct an edge representing the
185 // starting location in the function.
186 BlockEdge StartLoc(Entry, Succ, L);
187
188 // Set the current block counter to being empty.
189 WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
190
191 if (!InitState)
192 // Generate the root.
193 generateNode(StartLoc, SubEng.getInitialState(L), 0);
194 else
195 generateNode(StartLoc, InitState, 0);
196 }
197
198 // Check if we have a steps limit
199 bool UnlimitedSteps = Steps == 0;
200
201 while (WList->hasWork()) {
202 if (!UnlimitedSteps) {
203 if (Steps == 0) {
204 NumReachedMaxSteps++;
205 break;
206 }
207 --Steps;
208 }
209
210 const WorkListUnit& WU = WList->dequeue();
211
212 // Set the current block counter.
213 WList->setBlockCounter(WU.getBlockCounter());
214
215 // Retrieve the node.
216 ExplodedNode *Node = WU.getNode();
217
218 dispatchWorkItem(Node, Node->getLocation(), WU);
219 }
220 SubEng.processEndWorklist(hasWorkRemaining());
221 return WList->hasWork();
222 }
223
dispatchWorkItem(ExplodedNode * Pred,ProgramPoint Loc,const WorkListUnit & WU)224 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
225 const WorkListUnit& WU) {
226 // Dispatch on the location type.
227 switch (Loc.getKind()) {
228 case ProgramPoint::BlockEdgeKind:
229 HandleBlockEdge(cast<BlockEdge>(Loc), Pred);
230 break;
231
232 case ProgramPoint::BlockEntranceKind:
233 HandleBlockEntrance(cast<BlockEntrance>(Loc), Pred);
234 break;
235
236 case ProgramPoint::BlockExitKind:
237 assert (false && "BlockExit location never occur in forward analysis.");
238 break;
239
240 case ProgramPoint::CallEnterKind: {
241 CallEnter CEnter = cast<CallEnter>(Loc);
242 if (AnalyzedCallees)
243 if (const CallExpr* CE =
244 dyn_cast_or_null<CallExpr>(CEnter.getCallExpr()))
245 if (const Decl *CD = CE->getCalleeDecl())
246 AnalyzedCallees->insert(CD);
247 SubEng.processCallEnter(CEnter, Pred);
248 break;
249 }
250
251 case ProgramPoint::CallExitKind:
252 SubEng.processCallExit(Pred);
253 break;
254
255 case ProgramPoint::EpsilonKind: {
256 assert(Pred->hasSinglePred() &&
257 "Assume epsilon has exactly one predecessor by construction");
258 ExplodedNode *PNode = Pred->getFirstPred();
259 dispatchWorkItem(Pred, PNode->getLocation(), WU);
260 break;
261 }
262 default:
263 assert(isa<PostStmt>(Loc) ||
264 isa<PostInitializer>(Loc));
265 HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
266 break;
267 }
268 }
269
ExecuteWorkListWithInitialState(const LocationContext * L,unsigned Steps,ProgramStateRef InitState,ExplodedNodeSet & Dst)270 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
271 unsigned Steps,
272 ProgramStateRef InitState,
273 ExplodedNodeSet &Dst) {
274 bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
275 for (ExplodedGraph::eop_iterator I = G->eop_begin(),
276 E = G->eop_end(); I != E; ++I) {
277 Dst.Add(*I);
278 }
279 return DidNotFinish;
280 }
281
HandleBlockEdge(const BlockEdge & L,ExplodedNode * Pred)282 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
283
284 const CFGBlock *Blk = L.getDst();
285 NodeBuilderContext BuilderCtx(*this, Blk, Pred);
286
287 // Mark this block as visited.
288 const LocationContext *LC = Pred->getLocationContext();
289 FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
290 LC->getDecl(),
291 LC->getCFG()->getNumBlockIDs());
292
293 // Check if we are entering the EXIT block.
294 if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
295
296 assert (L.getLocationContext()->getCFG()->getExit().size() == 0
297 && "EXIT block cannot contain Stmts.");
298
299 // Process the final state transition.
300 SubEng.processEndOfFunction(BuilderCtx);
301
302 // This path is done. Don't enqueue any more nodes.
303 return;
304 }
305
306 // Call into the SubEngine to process entering the CFGBlock.
307 ExplodedNodeSet dstNodes;
308 BlockEntrance BE(Blk, Pred->getLocationContext());
309 NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
310 SubEng.processCFGBlockEntrance(L, nodeBuilder);
311
312 // Auto-generate a node.
313 if (!nodeBuilder.hasGeneratedNodes()) {
314 nodeBuilder.generateNode(Pred->State, Pred);
315 }
316
317 // Enqueue nodes onto the worklist.
318 enqueue(dstNodes);
319 }
320
HandleBlockEntrance(const BlockEntrance & L,ExplodedNode * Pred)321 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
322 ExplodedNode *Pred) {
323
324 // Increment the block counter.
325 const LocationContext *LC = Pred->getLocationContext();
326 unsigned BlockId = L.getBlock()->getBlockID();
327 BlockCounter Counter = WList->getBlockCounter();
328 Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
329 BlockId);
330 WList->setBlockCounter(Counter);
331
332 // Process the entrance of the block.
333 if (CFGElement E = L.getFirstElement()) {
334 NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
335 SubEng.processCFGElement(E, Pred, 0, &Ctx);
336 }
337 else
338 HandleBlockExit(L.getBlock(), Pred);
339 }
340
HandleBlockExit(const CFGBlock * B,ExplodedNode * Pred)341 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
342
343 if (const Stmt *Term = B->getTerminator()) {
344 switch (Term->getStmtClass()) {
345 default:
346 llvm_unreachable("Analysis for this terminator not implemented.");
347
348 case Stmt::BinaryOperatorClass: // '&&' and '||'
349 HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
350 return;
351
352 case Stmt::BinaryConditionalOperatorClass:
353 case Stmt::ConditionalOperatorClass:
354 HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
355 Term, B, Pred);
356 return;
357
358 // FIXME: Use constant-folding in CFG construction to simplify this
359 // case.
360
361 case Stmt::ChooseExprClass:
362 HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
363 return;
364
365 case Stmt::CXXTryStmtClass: {
366 // Generate a node for each of the successors.
367 // Our logic for EH analysis can certainly be improved.
368 for (CFGBlock::const_succ_iterator it = B->succ_begin(),
369 et = B->succ_end(); it != et; ++it) {
370 if (const CFGBlock *succ = *it) {
371 generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
372 Pred->State, Pred);
373 }
374 }
375 return;
376 }
377
378 case Stmt::DoStmtClass:
379 HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
380 return;
381
382 case Stmt::CXXForRangeStmtClass:
383 HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
384 return;
385
386 case Stmt::ForStmtClass:
387 HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
388 return;
389
390 case Stmt::ContinueStmtClass:
391 case Stmt::BreakStmtClass:
392 case Stmt::GotoStmtClass:
393 break;
394
395 case Stmt::IfStmtClass:
396 HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
397 return;
398
399 case Stmt::IndirectGotoStmtClass: {
400 // Only 1 successor: the indirect goto dispatch block.
401 assert (B->succ_size() == 1);
402
403 IndirectGotoNodeBuilder
404 builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
405 *(B->succ_begin()), this);
406
407 SubEng.processIndirectGoto(builder);
408 return;
409 }
410
411 case Stmt::ObjCForCollectionStmtClass: {
412 // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
413 //
414 // (1) inside a basic block, which represents the binding of the
415 // 'element' variable to a value.
416 // (2) in a terminator, which represents the branch.
417 //
418 // For (1), subengines will bind a value (i.e., 0 or 1) indicating
419 // whether or not collection contains any more elements. We cannot
420 // just test to see if the element is nil because a container can
421 // contain nil elements.
422 HandleBranch(Term, Term, B, Pred);
423 return;
424 }
425
426 case Stmt::SwitchStmtClass: {
427 SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
428 this);
429
430 SubEng.processSwitch(builder);
431 return;
432 }
433
434 case Stmt::WhileStmtClass:
435 HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
436 return;
437 }
438 }
439
440 assert (B->succ_size() == 1 &&
441 "Blocks with no terminator should have at most 1 successor.");
442
443 generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
444 Pred->State, Pred);
445 }
446
HandleBranch(const Stmt * Cond,const Stmt * Term,const CFGBlock * B,ExplodedNode * Pred)447 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
448 const CFGBlock * B, ExplodedNode *Pred) {
449 assert(B->succ_size() == 2);
450 NodeBuilderContext Ctx(*this, B, Pred);
451 ExplodedNodeSet Dst;
452 SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
453 *(B->succ_begin()), *(B->succ_begin()+1));
454 // Enqueue the new frontier onto the worklist.
455 enqueue(Dst);
456 }
457
HandlePostStmt(const CFGBlock * B,unsigned StmtIdx,ExplodedNode * Pred)458 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
459 ExplodedNode *Pred) {
460 assert(B);
461 assert(!B->empty());
462
463 if (StmtIdx == B->size())
464 HandleBlockExit(B, Pred);
465 else {
466 NodeBuilderContext Ctx(*this, B, Pred);
467 SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
468 }
469 }
470
471 /// generateNode - Utility method to generate nodes, hook up successors,
472 /// and add nodes to the worklist.
generateNode(const ProgramPoint & Loc,ProgramStateRef State,ExplodedNode * Pred)473 void CoreEngine::generateNode(const ProgramPoint &Loc,
474 ProgramStateRef State,
475 ExplodedNode *Pred) {
476
477 bool IsNew;
478 ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew);
479
480 if (Pred)
481 Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor.
482 else {
483 assert (IsNew);
484 G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
485 }
486
487 // Only add 'Node' to the worklist if it was freshly generated.
488 if (IsNew) WList->enqueue(Node);
489 }
490
enqueueStmtNode(ExplodedNode * N,const CFGBlock * Block,unsigned Idx)491 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
492 const CFGBlock *Block, unsigned Idx) {
493 assert(Block);
494 assert (!N->isSink());
495
496 // Check if this node entered a callee.
497 if (isa<CallEnter>(N->getLocation())) {
498 // Still use the index of the CallExpr. It's needed to create the callee
499 // StackFrameContext.
500 WList->enqueue(N, Block, Idx);
501 return;
502 }
503
504 // Do not create extra nodes. Move to the next CFG element.
505 if (isa<PostInitializer>(N->getLocation())) {
506 WList->enqueue(N, Block, Idx+1);
507 return;
508 }
509
510 if (isa<EpsilonPoint>(N->getLocation())) {
511 WList->enqueue(N, Block, Idx);
512 return;
513 }
514
515 const CFGStmt *CS = (*Block)[Idx].getAs<CFGStmt>();
516 const Stmt *St = CS ? CS->getStmt() : 0;
517 PostStmt Loc(St, N->getLocationContext());
518
519 if (Loc == N->getLocation()) {
520 // Note: 'N' should be a fresh node because otherwise it shouldn't be
521 // a member of Deferred.
522 WList->enqueue(N, Block, Idx+1);
523 return;
524 }
525
526 bool IsNew;
527 ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew);
528 Succ->addPredecessor(N, *G);
529
530 if (IsNew)
531 WList->enqueue(Succ, Block, Idx+1);
532 }
533
generateCallExitNode(ExplodedNode * N)534 ExplodedNode *CoreEngine::generateCallExitNode(ExplodedNode *N) {
535 // Create a CallExit node and enqueue it.
536 const StackFrameContext *LocCtx
537 = cast<StackFrameContext>(N->getLocationContext());
538 const Stmt *CE = LocCtx->getCallSite();
539
540 // Use the the callee location context.
541 CallExit Loc(CE, LocCtx);
542
543 bool isNew;
544 ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew);
545 Node->addPredecessor(N, *G);
546 return isNew ? Node : 0;
547 }
548
549
enqueue(ExplodedNodeSet & Set)550 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
551 for (ExplodedNodeSet::iterator I = Set.begin(),
552 E = Set.end(); I != E; ++I) {
553 WList->enqueue(*I);
554 }
555 }
556
enqueue(ExplodedNodeSet & Set,const CFGBlock * Block,unsigned Idx)557 void CoreEngine::enqueue(ExplodedNodeSet &Set,
558 const CFGBlock *Block, unsigned Idx) {
559 for (ExplodedNodeSet::iterator I = Set.begin(),
560 E = Set.end(); I != E; ++I) {
561 enqueueStmtNode(*I, Block, Idx);
562 }
563 }
564
enqueueEndOfFunction(ExplodedNodeSet & Set)565 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
566 for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
567 ExplodedNode *N = *I;
568 // If we are in an inlined call, generate CallExit node.
569 if (N->getLocationContext()->getParent()) {
570 N = generateCallExitNode(N);
571 if (N)
572 WList->enqueue(N);
573 } else {
574 G->addEndOfPath(N);
575 NumPathsExplored++;
576 }
577 }
578 }
579
580
anchor()581 void NodeBuilder::anchor() { }
582
generateNodeImpl(const ProgramPoint & Loc,ProgramStateRef State,ExplodedNode * FromN,bool MarkAsSink)583 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
584 ProgramStateRef State,
585 ExplodedNode *FromN,
586 bool MarkAsSink) {
587 HasGeneratedNodes = true;
588 bool IsNew;
589 ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew);
590 N->addPredecessor(FromN, *C.Eng.G);
591 Frontier.erase(FromN);
592
593 if (!IsNew)
594 return 0;
595
596 if (!MarkAsSink)
597 Frontier.Add(N);
598
599 return N;
600 }
601
anchor()602 void NodeBuilderWithSinks::anchor() { }
603
~StmtNodeBuilder()604 StmtNodeBuilder::~StmtNodeBuilder() {
605 if (EnclosingBldr)
606 for (ExplodedNodeSet::iterator I = Frontier.begin(),
607 E = Frontier.end(); I != E; ++I )
608 EnclosingBldr->addNodes(*I);
609 }
610
anchor()611 void BranchNodeBuilder::anchor() { }
612
generateNode(ProgramStateRef State,bool branch,ExplodedNode * NodePred)613 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
614 bool branch,
615 ExplodedNode *NodePred) {
616 // If the branch has been marked infeasible we should not generate a node.
617 if (!isFeasible(branch))
618 return NULL;
619
620 ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
621 NodePred->getLocationContext());
622 ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
623 return Succ;
624 }
625
626 ExplodedNode*
generateNode(const iterator & I,ProgramStateRef St,bool IsSink)627 IndirectGotoNodeBuilder::generateNode(const iterator &I,
628 ProgramStateRef St,
629 bool IsSink) {
630 bool IsNew;
631 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
632 Pred->getLocationContext()), St,
633 IsSink, &IsNew);
634 Succ->addPredecessor(Pred, *Eng.G);
635
636 if (!IsNew)
637 return 0;
638
639 if (!IsSink)
640 Eng.WList->enqueue(Succ);
641
642 return Succ;
643 }
644
645
646 ExplodedNode*
generateCaseStmtNode(const iterator & I,ProgramStateRef St)647 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
648 ProgramStateRef St) {
649
650 bool IsNew;
651 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
652 Pred->getLocationContext()), St,
653 false, &IsNew);
654 Succ->addPredecessor(Pred, *Eng.G);
655 if (!IsNew)
656 return 0;
657
658 Eng.WList->enqueue(Succ);
659 return Succ;
660 }
661
662
663 ExplodedNode*
generateDefaultCaseNode(ProgramStateRef St,bool IsSink)664 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
665 bool IsSink) {
666 // Get the block for the default case.
667 assert(Src->succ_rbegin() != Src->succ_rend());
668 CFGBlock *DefaultBlock = *Src->succ_rbegin();
669
670 // Sanity check for default blocks that are unreachable and not caught
671 // by earlier stages.
672 if (!DefaultBlock)
673 return NULL;
674
675 bool IsNew;
676 ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
677 Pred->getLocationContext()), St,
678 IsSink, &IsNew);
679 Succ->addPredecessor(Pred, *Eng.G);
680
681 if (!IsNew)
682 return 0;
683
684 if (!IsSink)
685 Eng.WList->enqueue(Succ);
686
687 return Succ;
688 }
689