• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>Exception Handling in LLVM</title>
6  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7  <meta name="description"
8        content="Exception Handling in LLVM.">
9  <link rel="stylesheet" href="llvm.css" type="text/css">
10</head>
11
12<body>
13
14<h1>Exception Handling in LLVM</h1>
15
16<table class="layout" style="width:100%">
17  <tr class="layout">
18    <td class="left">
19<ul>
20  <li><a href="#introduction">Introduction</a>
21  <ol>
22    <li><a href="#itanium">Itanium ABI Zero-cost Exception Handling</a></li>
23    <li><a href="#sjlj">Setjmp/Longjmp Exception Handling</a></li>
24    <li><a href="#overview">Overview</a></li>
25  </ol></li>
26  <li><a href="#codegen">LLVM Code Generation</a>
27  <ol>
28    <li><a href="#throw">Throw</a></li>
29    <li><a href="#try_catch">Try/Catch</a></li>
30    <li><a href="#cleanups">Cleanups</a></li>
31    <li><a href="#throw_filters">Throw Filters</a></li>
32    <li><a href="#restrictions">Restrictions</a></li>
33  </ol></li>
34  <li><a href="#format_common_intrinsics">Exception Handling Intrinsics</a>
35  <ol>
36  	<li><a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a></li>
37  	<li><a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a></li>
38  	<li><a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a></li>
39  	<li><a href="#llvm_eh_sjlj_lsda"><tt>llvm.eh.sjlj.lsda</tt></a></li>
40  	<li><a href="#llvm_eh_sjlj_callsite"><tt>llvm.eh.sjlj.callsite</tt></a></li>
41  </ol></li>
42  <li><a href="#asm">Asm Table Formats</a>
43  <ol>
44    <li><a href="#unwind_tables">Exception Handling Frame</a></li>
45    <li><a href="#exception_tables">Exception Tables</a></li>
46  </ol></li>
47</ul>
48</td>
49</tr></table>
50
51<div class="doc_author">
52  <p>Written by the <a href="http://llvm.org/">LLVM Team</a></p>
53</div>
54
55
56<!-- *********************************************************************** -->
57<h2><a name="introduction">Introduction</a></h2>
58<!-- *********************************************************************** -->
59
60<div>
61
62<p>This document is the central repository for all information pertaining to
63   exception handling in LLVM.  It describes the format that LLVM exception
64   handling information takes, which is useful for those interested in creating
65   front-ends or dealing directly with the information.  Further, this document
66   provides specific examples of what exception handling information is used for
67   in C and C++.</p>
68
69<!-- ======================================================================= -->
70<h3>
71  <a name="itanium">Itanium ABI Zero-cost Exception Handling</a>
72</h3>
73
74<div>
75
76<p>Exception handling for most programming languages is designed to recover from
77   conditions that rarely occur during general use of an application.  To that
78   end, exception handling should not interfere with the main flow of an
79   application's algorithm by performing checkpointing tasks, such as saving the
80   current pc or register state.</p>
81
82<p>The Itanium ABI Exception Handling Specification defines a methodology for
83   providing outlying data in the form of exception tables without inlining
84   speculative exception handling code in the flow of an application's main
85   algorithm.  Thus, the specification is said to add "zero-cost" to the normal
86   execution of an application.</p>
87
88<p>A more complete description of the Itanium ABI exception handling runtime
89   support of can be found at
90   <a href="http://www.codesourcery.com/cxx-abi/abi-eh.html">Itanium C++ ABI:
91   Exception Handling</a>. A description of the exception frame format can be
92   found at
93   <a href="http://refspecs.freestandards.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html">Exception
94   Frames</a>, with details of the DWARF 4 specification at
95   <a href="http://dwarfstd.org/Dwarf4Std.php">DWARF 4 Standard</a>.
96   A description for the C++ exception table formats can be found at
97   <a href="http://www.codesourcery.com/cxx-abi/exceptions.pdf">Exception Handling
98   Tables</a>.</p>
99
100</div>
101
102<!-- ======================================================================= -->
103<h3>
104  <a name="sjlj">Setjmp/Longjmp Exception Handling</a>
105</h3>
106
107<div>
108
109<p>Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics
110   <a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a> and
111   <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a> to
112   handle control flow for exception handling.</p>
113
114<p>For each function which does exception processing &mdash; be
115   it <tt>try</tt>/<tt>catch</tt> blocks or cleanups &mdash; that function
116   registers itself on a global frame list. When exceptions are unwinding, the
117   runtime uses this list to identify which functions need processing.<p>
118
119<p>Landing pad selection is encoded in the call site entry of the function
120   context. The runtime returns to the function via
121   <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a>, where
122   a switch table transfers control to the appropriate landing pad based on
123   the index stored in the function context.</p>
124
125<p>In contrast to DWARF exception handling, which encodes exception regions
126   and frame information in out-of-line tables, SJLJ exception handling
127   builds and removes the unwind frame context at runtime. This results in
128   faster exception handling at the expense of slower execution when no
129   exceptions are thrown. As exceptions are, by their nature, intended for
130   uncommon code paths, DWARF exception handling is generally preferred to
131   SJLJ.</p>
132
133</div>
134
135<!-- ======================================================================= -->
136<h3>
137  <a name="overview">Overview</a>
138</h3>
139
140<div>
141
142<p>When an exception is thrown in LLVM code, the runtime does its best to find a
143   handler suited to processing the circumstance.</p>
144
145<p>The runtime first attempts to find an <i>exception frame</i> corresponding to
146   the function where the exception was thrown.  If the programming language
147   supports exception handling (e.g. C++), the exception frame contains a
148   reference to an exception table describing how to process the exception.  If
149   the language does not support exception handling (e.g. C), or if the
150   exception needs to be forwarded to a prior activation, the exception frame
151   contains information about how to unwind the current activation and restore
152   the state of the prior activation.  This process is repeated until the
153   exception is handled. If the exception is not handled and no activations
154   remain, then the application is terminated with an appropriate error
155   message.</p>
156
157<p>Because different programming languages have different behaviors when
158   handling exceptions, the exception handling ABI provides a mechanism for
159   supplying <i>personalities</i>. An exception handling personality is defined
160   by way of a <i>personality function</i> (e.g. <tt>__gxx_personality_v0</tt>
161   in C++), which receives the context of the exception, an <i>exception
162   structure</i> containing the exception object type and value, and a reference
163   to the exception table for the current function.  The personality function
164   for the current compile unit is specified in a <i>common exception
165   frame</i>.</p>
166
167<p>The organization of an exception table is language dependent. For C++, an
168   exception table is organized as a series of code ranges defining what to do
169   if an exception occurs in that range. Typically, the information associated
170   with a range defines which types of exception objects (using C++ <i>type
171   info</i>) that are handled in that range, and an associated action that
172   should take place. Actions typically pass control to a <i>landing
173   pad</i>.</p>
174
175<p>A landing pad corresponds roughly to the code found in the <tt>catch</tt>
176   portion of a <tt>try</tt>/<tt>catch</tt> sequence. When execution resumes at
177   a landing pad, it receives an <i>exception structure</i> and a
178   <i>selector value</i> corresponding to the <i>type</i> of exception
179   thrown. The selector is then used to determine which <i>catch</i> should
180   actually process the exception.</p>
181
182</div>
183
184</div>
185
186<!-- ======================================================================= -->
187<h2>
188  <a name="codegen">LLVM Code Generation</a>
189</h2>
190
191<div>
192
193<p>From a C++ developer's perspective, exceptions are defined in terms of the
194   <tt>throw</tt> and <tt>try</tt>/<tt>catch</tt> statements. In this section
195   we will describe the implementation of LLVM exception handling in terms of
196   C++ examples.</p>
197
198<!-- ======================================================================= -->
199<h3>
200  <a name="throw">Throw</a>
201</h3>
202
203<div>
204
205<p>Languages that support exception handling typically provide a <tt>throw</tt>
206   operation to initiate the exception process. Internally, a <tt>throw</tt>
207   operation breaks down into two steps.</p>
208
209<ol>
210  <li>A request is made to allocate exception space for an exception structure.
211      This structure needs to survive beyond the current activation. This
212      structure will contain the type and value of the object being thrown.</li>
213
214  <li>A call is made to the runtime to raise the exception, passing the
215      exception structure as an argument.</li>
216</ol>
217
218<p>In C++, the allocation of the exception structure is done by the
219   <tt>__cxa_allocate_exception</tt> runtime function. The exception raising is
220   handled by <tt>__cxa_throw</tt>. The type of the exception is represented
221   using a C++ RTTI structure.</p>
222
223</div>
224
225<!-- ======================================================================= -->
226<h3>
227  <a name="try_catch">Try/Catch</a>
228</h3>
229
230<div>
231
232<p>A call within the scope of a <i>try</i> statement can potentially raise an
233   exception. In those circumstances, the LLVM C++ front-end replaces the call
234   with an <tt>invoke</tt> instruction. Unlike a call, the <tt>invoke</tt> has
235   two potential continuation points:</p>
236
237<ol>
238  <li>where to continue when the call succeeds as per normal, and</li>
239
240  <li>where to continue if the call raises an exception, either by a throw or
241      the unwinding of a throw</li>
242</ol>
243
244<p>The term used to define a the place where an <tt>invoke</tt> continues after
245   an exception is called a <i>landing pad</i>. LLVM landing pads are
246   conceptually alternative function entry points where an exception structure
247   reference and a type info index are passed in as arguments. The landing pad
248   saves the exception structure reference and then proceeds to select the catch
249   block that corresponds to the type info of the exception object.</p>
250
251<p>The LLVM <a href="LangRef.html#i_landingpad"><tt>landingpad</tt>
252   instruction</a> is used to convey information about the landing pad to the
253   back end. For C++, the <tt>landingpad</tt> instruction returns a pointer and
254   integer pair corresponding to the pointer to the <i>exception structure</i>
255   and the <i>selector value</i> respectively.</p>
256
257<p>The <tt>landingpad</tt> instruction takes a reference to the personality
258   function to be used for this <tt>try</tt>/<tt>catch</tt> sequence. The
259   remainder of the instruction is a list of <i>cleanup</i>, <i>catch</i>,
260   and <i>filter</i> clauses. The exception is tested against the clauses
261   sequentially from first to last. The selector value is a positive number if
262   the exception matched a type info, a negative number if it matched a filter,
263   and zero if it matched a cleanup. If nothing is matched, the behavior of
264   the program is <a href="#restrictions">undefined</a>. If a type info matched,
265   then the selector value is the index of the type info in the exception table,
266   which can be obtained using the
267   <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a> intrinsic.</p>
268
269<p>Once the landing pad has the type info selector, the code branches to the
270   code for the first catch. The catch then checks the value of the type info
271   selector against the index of type info for that catch.  Since the type info
272   index is not known until all the type infos have been gathered in the
273   backend, the catch code must call the
274   <a href="#llvm_eh_typeid_for"><tt>llvm.eh.typeid.for</tt></a> intrinsic to
275   determine the index for a given type info. If the catch fails to match the
276   selector then control is passed on to the next catch.</p>
277
278<p>Finally, the entry and exit of catch code is bracketed with calls to
279   <tt>__cxa_begin_catch</tt> and <tt>__cxa_end_catch</tt>.</p>
280
281<ul>
282  <li><tt>__cxa_begin_catch</tt> takes an exception structure reference as an
283      argument and returns the value of the exception object.</li>
284
285  <li><tt>__cxa_end_catch</tt> takes no arguments. This function:<br><br>
286    <ol>
287      <li>Locates the most recently caught exception and decrements its handler
288          count,</li>
289      <li>Removes the exception from the <i>caught</i> stack if the handler
290          count goes to zero, and</li>
291      <li>Destroys the exception if the handler count goes to zero and the
292          exception was not re-thrown by throw.</li>
293    </ol>
294    <p><b>Note:</b> a rethrow from within the catch may replace this call with
295       a <tt>__cxa_rethrow</tt>.</p></li>
296</ul>
297
298</div>
299
300<!-- ======================================================================= -->
301<h3>
302  <a name="cleanups">Cleanups</a>
303</h3>
304
305<div>
306
307<p>A cleanup is extra code which needs to be run as part of unwinding a scope.
308   C++ destructors are a typical example, but other languages and language
309   extensions provide a variety of different kinds of cleanups. In general, a
310   landing pad may need to run arbitrary amounts of cleanup code before actually
311   entering a catch block. To indicate the presence of cleanups, a
312   <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instruction</a>
313   should have a <i>cleanup</i> clause. Otherwise, the unwinder will not stop at
314   the landing pad if there are no catches or filters that require it to.</p>
315
316<p><b>Note:</b> Do not allow a new exception to propagate out of the execution
317   of a cleanup. This can corrupt the internal state of the unwinder.
318   Different languages describe different high-level semantics for these
319   situations: for example, C++ requires that the process be terminated, whereas
320   Ada cancels both exceptions and throws a third.</p>
321
322<p>When all cleanups are finished, if the exception is not handled by the
323   current function, resume unwinding by calling the
324   <a href="LangRef.html#i_resume"><tt>resume</tt> instruction</a>, passing in
325   the result of the <tt>landingpad</tt> instruction for the original landing
326   pad.</p>
327
328</div>
329
330<!-- ======================================================================= -->
331<h3>
332  <a name="throw_filters">Throw Filters</a>
333</h3>
334
335<div>
336
337<p>C++ allows the specification of which exception types may be thrown from a
338   function. To represent this, a top level landing pad may exist to filter out
339   invalid types. To express this in LLVM code the
340   <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instruction</a> will
341   have a filter clause. The clause consists of an array of type infos.
342   <tt>landingpad</tt> will return a negative value if the exception does not
343   match any of the type infos. If no match is found then a call
344   to <tt>__cxa_call_unexpected</tt> should be made, otherwise
345   <tt>_Unwind_Resume</tt>.  Each of these functions requires a reference to the
346   exception structure.  Note that the most general form of a
347   <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instruction</a> can
348   have any number of catch, cleanup, and filter clauses (though having more
349   than one cleanup is pointless). The LLVM C++ front-end can generate such
350   <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instructions</a> due
351   to inlining creating nested exception handling scopes.</p>
352
353</div>
354
355<!-- ======================================================================= -->
356<h3>
357  <a name="restrictions">Restrictions</a>
358</h3>
359
360<div>
361
362<p>The unwinder delegates the decision of whether to stop in a call frame to
363   that call frame's language-specific personality function. Not all unwinders
364   guarantee that they will stop to perform cleanups. For example, the GNU C++
365   unwinder doesn't do so unless the exception is actually caught somewhere
366   further up the stack.</p>
367
368<p>In order for inlining to behave correctly, landing pads must be prepared to
369   handle selector results that they did not originally advertise. Suppose that
370   a function catches exceptions of type <tt>A</tt>, and it's inlined into a
371   function that catches exceptions of type <tt>B</tt>. The inliner will update
372   the <tt>landingpad</tt> instruction for the inlined landing pad to include
373   the fact that <tt>B</tt> is also caught. If that landing pad assumes that it
374   will only be entered to catch an <tt>A</tt>, it's in for a rude awakening.
375   Consequently, landing pads must test for the selector results they understand
376   and then resume exception propagation with the
377   <a href="LangRef.html#i_resume"><tt>resume</tt> instruction</a> if none of
378   the conditions match.</p>
379
380</div>
381
382</div>
383
384<!-- ======================================================================= -->
385<h2>
386  <a name="format_common_intrinsics">Exception Handling Intrinsics</a>
387</h2>
388
389<div>
390
391<p>In addition to the
392   <a href="LangRef.html#i_landingpad"><tt>landingpad</tt></a> and
393   <a href="LangRef.html#i_resume"><tt>resume</tt></a> instructions, LLVM uses
394   several intrinsic functions (name prefixed with <i><tt>llvm.eh</tt></i>) to
395   provide exception handling information at various points in generated
396   code.</p>
397
398<!-- ======================================================================= -->
399<h4>
400  <a name="llvm_eh_typeid_for">llvm.eh.typeid.for</a>
401</h4>
402
403<div>
404
405<pre>
406  i32 @llvm.eh.typeid.for(i8* %type_info)
407</pre>
408
409<p>This intrinsic returns the type info index in the exception table of the
410   current function.  This value can be used to compare against the result
411   of <a href="LangRef.html#i_landingpad"><tt>landingpad</tt> instruction</a>.
412   The single argument is a reference to a type info.</p>
413
414</div>
415
416<!-- ======================================================================= -->
417<h4>
418  <a name="llvm_eh_sjlj_setjmp">llvm.eh.sjlj.setjmp</a>
419</h4>
420
421<div>
422
423<pre>
424  i32 @llvm.eh.sjlj.setjmp(i8* %setjmp_buf)
425</pre>
426
427<p>For SJLJ based exception handling, this intrinsic forces register saving for
428   the current function and stores the address of the following instruction for
429   use as a destination address
430   by <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a>. The
431   buffer format and the overall functioning of this intrinsic is compatible
432   with the GCC <tt>__builtin_setjmp</tt> implementation allowing code built
433   with the clang and GCC to interoperate.</p>
434
435<p>The single parameter is a pointer to a five word buffer in which the calling
436   context is saved. The front end places the frame pointer in the first word,
437   and the target implementation of this intrinsic should place the destination
438   address for a
439   <a href="#llvm_eh_sjlj_longjmp"><tt>llvm.eh.sjlj.longjmp</tt></a> in the
440   second word. The following three words are available for use in a
441   target-specific manner.</p>
442
443</div>
444
445<!-- ======================================================================= -->
446<h4>
447  <a name="llvm_eh_sjlj_longjmp">llvm.eh.sjlj.longjmp</a>
448</h4>
449
450<div>
451
452<pre>
453  void @llvm.eh.sjlj.longjmp(i8* %setjmp_buf)
454</pre>
455
456<p>For SJLJ based exception handling, the <tt>llvm.eh.sjlj.longjmp</tt>
457   intrinsic is used to implement <tt>__builtin_longjmp()</tt>. The single
458   parameter is a pointer to a buffer populated
459   by <a href="#llvm_eh_sjlj_setjmp"><tt>llvm.eh.sjlj.setjmp</tt></a>. The frame
460   pointer and stack pointer are restored from the buffer, then control is
461   transferred to the destination address.</p>
462
463</div>
464<!-- ======================================================================= -->
465<h4>
466  <a name="llvm_eh_sjlj_lsda">llvm.eh.sjlj.lsda</a>
467</h4>
468
469<div>
470
471<pre>
472  i8* @llvm.eh.sjlj.lsda()
473</pre>
474
475<p>For SJLJ based exception handling, the <tt>llvm.eh.sjlj.lsda</tt> intrinsic
476   returns the address of the Language Specific Data Area (LSDA) for the current
477   function. The SJLJ front-end code stores this address in the exception
478   handling function context for use by the runtime.</p>
479
480</div>
481
482<!-- ======================================================================= -->
483<h4>
484  <a name="llvm_eh_sjlj_callsite">llvm.eh.sjlj.callsite</a>
485</h4>
486
487<div>
488
489<pre>
490  void @llvm.eh.sjlj.callsite(i32 %call_site_num)
491</pre>
492
493<p>For SJLJ based exception handling, the <tt>llvm.eh.sjlj.callsite</tt>
494   intrinsic identifies the callsite value associated with the
495   following <tt>invoke</tt> instruction. This is used to ensure that landing
496   pad entries in the LSDA are generated in matching order.</p>
497
498</div>
499
500</div>
501
502<!-- ======================================================================= -->
503<h2>
504  <a name="asm">Asm Table Formats</a>
505</h2>
506
507<div>
508
509<p>There are two tables that are used by the exception handling runtime to
510   determine which actions should be taken when an exception is thrown.</p>
511
512<!-- ======================================================================= -->
513<h3>
514  <a name="unwind_tables">Exception Handling Frame</a>
515</h3>
516
517<div>
518
519<p>An exception handling frame <tt>eh_frame</tt> is very similar to the unwind
520   frame used by DWARF debug info. The frame contains all the information
521   necessary to tear down the current frame and restore the state of the prior
522   frame. There is an exception handling frame for each function in a compile
523   unit, plus a common exception handling frame that defines information common
524   to all functions in the unit.</p>
525
526<!-- Todo - Table details here. -->
527
528</div>
529
530<!-- ======================================================================= -->
531<h3>
532  <a name="exception_tables">Exception Tables</a>
533</h3>
534
535<div>
536
537<p>An exception table contains information about what actions to take when an
538   exception is thrown in a particular part of a function's code. There is one
539   exception table per function, except leaf functions and functions that have
540   calls only to non-throwing functions. They do not need an exception
541   table.</p>
542
543<!-- Todo - Table details here. -->
544
545</div>
546
547</div>
548
549<!-- *********************************************************************** -->
550
551<hr>
552<address>
553  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
554  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
555  <a href="http://validator.w3.org/check/referer"><img
556  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
557
558  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
559  Last modified: $Date$
560</address>
561
562</body>
563</html>
564