• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  *
4  * (C) Copyright IBM Corp. 1998-2007 - All Rights Reserved
5  *
6  */
7 
8 #ifndef __LEFONTINSTANCE_H
9 #define __LEFONTINSTANCE_H
10 
11 #include "LETypes.h"
12 /**
13  * \file
14  * \brief C++ API: Layout Engine Font Instance object
15  */
16 
17 U_NAMESPACE_BEGIN
18 
19 /**
20  * Instances of this class are used by <code>LEFontInstance::mapCharsToGlyphs</code> and
21  * <code>LEFontInstance::mapCharToGlyph</code> to adjust character codes before the character
22  * to glyph mapping process. Examples of this are filtering out control characters
23  * and character mirroring - replacing a character which has both a left and a right
24  * hand form with the opposite form.
25  *
26  * @stable ICU 3.2
27  */
28 class LECharMapper /* not : public UObject because this is an interface/mixin class */
29 {
30 public:
31     /**
32      * Destructor.
33      * @stable ICU 3.2
34      */
35     virtual ~LECharMapper();
36 
37     /**
38      * This method does the adjustments.
39      *
40      * @param ch - the input character
41      *
42      * @return the adjusted character
43      *
44      * @stable ICU 2.8
45      */
46     virtual LEUnicode32 mapChar(LEUnicode32 ch) const = 0;
47 };
48 
49 /**
50  * This is a forward reference to the class which holds the per-glyph
51  * storage.
52  *
53  * @stable ICU 3.0
54  */
55 class LEGlyphStorage;
56 
57 /**
58  * This is a virtual base class that serves as the interface between a LayoutEngine
59  * and the platform font environment. It allows a LayoutEngine to access font tables, do
60  * character to glyph mapping, and obtain metrics information without knowing any platform
61  * specific details. There are also a few utility methods for converting between points,
62  * pixels and funits. (font design units)
63  *
64  * An instance of an <code>LEFontInstance</code> represents a font at a particular point
65  * size. Each instance can represent either a single physical font, or a composite font.
66  * A composite font is a collection of physical fonts, each of which contains a subset of
67  * the characters contained in the composite font.
68  *
69  * Note: with the exception of <code>getSubFont</code>, the methods in this class only
70  * make sense for a physical font. If you have an <code>LEFontInstance</code> which
71  * represents a composite font you should only call the methods below which have
72  * an <code>LEGlyphID</code>, an <code>LEUnicode</code> or an <code>LEUnicode32</code>
73  * as one of the arguments because these can be used to select a particular subfont.
74  *
75  * Subclasses which implement composite fonts should supply an implementation of these
76  * methods with some default behavior such as returning constant values, or using the
77  * values from the first subfont.
78  *
79  * @stable ICU 3.0
80  */
81 class U_LAYOUT_API LEFontInstance : public UObject
82 {
83 public:
84 
85     /**
86      * This virtual destructor is here so that the subclass
87      * destructors can be invoked through the base class.
88      *
89      * @stable ICU 2.8
90      */
91     virtual ~LEFontInstance();
92 
93     /**
94      * Get a physical font which can render the given text. For composite fonts,
95      * if there is no single physical font which can render all of the text,
96      * return a physical font which can render an initial substring of the text,
97      * and set the <code>offset</code> parameter to the end of that substring.
98      *
99      * Internally, the LayoutEngine works with runs of text all in the same
100      * font and script, so it is best to call this method with text which is
101      * in a single script, passing the script code in as a hint. If you don't
102      * know the script of the text, you can use zero, which is the script code
103      * for characters used in more than one script.
104      *
105      * The default implementation of this method is intended for instances of
106      * <code>LEFontInstance</code> which represent a physical font. It returns
107      * <code>this</code> and indicates that the entire string can be rendered.
108      *
109      * This method will return a valid <code>LEFontInstance</code> unless you
110      * have passed illegal parameters, or an internal error has been encountered.
111      * For composite fonts, it may return the warning <code>LE_NO_SUBFONT_WARNING</code>
112      * to indicate that the returned font may not be able to render all of
113      * the text. Whenever a valid font is returned, the <code>offset</code> parameter
114      * will be advanced by at least one.
115      *
116      * Subclasses which implement composite fonts must override this method.
117      * Where it makes sense, they should use the script code as a hint to render
118      * characters from the COMMON script in the font which is used for the given
119      * script. For example, if the input text is a series of Arabic words separated
120      * by spaces, and the script code passed in is <code>arabScriptCode</code> you
121      * should return the font used for Arabic characters for all of the input text,
122      * including the spaces. If, on the other hand, the input text contains characters
123      * which cannot be rendered by the font used for Arabic characters, but which can
124      * be rendered by another font, you should return that font for those characters.
125      *
126      * @param chars   - the array of Unicode characters.
127      * @param offset  - a pointer to the starting offset in the text. On exit this
128      *                  will be set the the limit offset of the text which can be
129      *                  rendered using the returned font.
130      * @param limit   - the limit offset for the input text.
131      * @param script  - the script hint.
132      * @param success - set to an error code if the arguments are illegal, or no font
133      *                  can be returned for some reason. May also be set to
134      *                  <code>LE_NO_SUBFONT_WARNING</code> if the subfont which
135      *                  was returned cannot render all of the text.
136      *
137      * @return an <code>LEFontInstance</code> for the sub font which can render the characters, or
138      *         <code>NULL</code> if there is an error.
139      *
140      * @see LEScripts.h
141      *
142      * @stable ICU 3.2
143      */
144     virtual const LEFontInstance *getSubFont(const LEUnicode chars[], le_int32 *offset, le_int32 limit, le_int32 script, LEErrorCode &success) const;
145 
146     //
147     // Font file access
148     //
149 
150     /**
151      * This method reads a table from the font. Note that in general,
152      * it only makes sense to call this method on an <code>LEFontInstance</code>
153      * which represents a physical font - i.e. one which has been returned by
154      * <code>getSubFont()</code>. This is because each subfont in a composite font
155      * will have different tables, and there's no way to know which subfont to access.
156      *
157      * Subclasses which represent composite fonts should always return <code>NULL</code>.
158      *
159      * @param tableTag - the four byte table tag. (e.g. 'cmap')
160      *
161      * @return the address of the table in memory, or <code>NULL</code>
162      *         if the table doesn't exist.
163      *
164      * @stable ICU 2.8
165      */
166     virtual const void *getFontTable(LETag tableTag) const = 0;
167 
168     /**
169      * This method is used to determine if the font can
170      * render the given character. This can usually be done
171      * by looking the character up in the font's character
172      * to glyph mapping.
173      *
174      * The default implementation of this method will return
175      * <code>TRUE</code> if <code>mapCharToGlyph(ch)</code>
176      * returns a non-zero value.
177      *
178      * @param ch - the character to be tested
179      *
180      * @return <code>TRUE</code> if the font can render ch.
181      *
182      * @stable ICU 3.2
183      */
184     virtual le_bool canDisplay(LEUnicode32 ch) const;
185 
186     /**
187      * This method returns the number of design units in
188      * the font's EM square.
189      *
190      * @return the number of design units pre EM.
191      *
192      * @stable ICU 2.8
193      */
194     virtual le_int32 getUnitsPerEM() const = 0;
195 
196     /**
197      * This method maps an array of character codes to an array of glyph
198      * indices, using the font's character to glyph map.
199      *
200      * The default implementation iterates over all of the characters and calls
201      * <code>mapCharToGlyph(ch, mapper)</code> on each one. It also handles surrogate
202      * characters, storing the glyph ID for the high surrogate, and a deleted glyph (0xFFFF)
203      * for the low surrogate.
204      *
205      * Most sublcasses will not need to implement this method.
206      *
207      * @param chars - the character array
208      * @param offset - the index of the first character
209      * @param count - the number of characters
210      * @param reverse - if <code>TRUE</code>, store the glyph indices in reverse order.
211      * @param mapper - the character mapper.
212      * @param filterZeroWidth - <code>TRUE</code> if ZWJ / ZWNJ characters should map to a glyph w/ no contours.
213      * @param glyphStorage - the object which contains the output glyph array
214      *
215      * @see LECharMapper
216      *
217      * @stable ICU 3.6
218      */
219     virtual void mapCharsToGlyphs(const LEUnicode chars[], le_int32 offset, le_int32 count, le_bool reverse, const LECharMapper *mapper, le_bool filterZeroWidth, LEGlyphStorage &glyphStorage) const;
220 
221     /**
222      * This method maps a single character to a glyph index, using the
223      * font's character to glyph map. The default implementation of this
224      * method calls the mapper, and then calls <code>mapCharToGlyph(mappedCh)</code>.
225      *
226      * @param ch - the character
227      * @param mapper - the character mapper
228      * @param filterZeroWidth - <code>TRUE</code> if ZWJ / ZWNJ characters should map to a glyph w/ no contours.
229      *
230      * @return the glyph index
231      *
232      * @see LECharMapper
233      *
234      * @stable ICU 3.6
235      */
236     virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch, const LECharMapper *mapper, le_bool filterZeroWidth) const;
237 
238     /**
239      * This method maps a single character to a glyph index, using the
240      * font's character to glyph map. The default implementation of this
241      * method calls the mapper, and then calls <code>mapCharToGlyph(mappedCh)</code>.
242      *
243      * @param ch - the character
244      * @param mapper - the character mapper
245      *
246      * @return the glyph index
247      *
248      * @see LECharMapper
249      *
250      * @stable ICU 3.2
251      */
252     virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch, const LECharMapper *mapper) const;
253 
254     /**
255      * This method maps a single character to a glyph index, using the
256      * font's character to glyph map. There is no default implementation
257      * of this method because it requires information about the platform
258      * font implementation.
259      *
260      * @param ch - the character
261      *
262      * @return the glyph index
263      *
264      * @stable ICU 3.2
265      */
266     virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch) const = 0;
267 
268     //
269     // Metrics
270     //
271 
272     /**
273      * This method gets the X and Y advance of a particular glyph, in pixels.
274      *
275      * @param glyph - the glyph index
276      * @param advance - the X and Y pixel values will be stored here
277      *
278      * @stable ICU 3.2
279      */
280     virtual void getGlyphAdvance(LEGlyphID glyph, LEPoint &advance) const = 0;
281 
282     /**
283      * This method gets the hinted X and Y pixel coordinates of a particular
284      * point in the outline of the given glyph.
285      *
286      * @param glyph - the glyph index
287      * @param pointNumber - the number of the point
288      * @param point - the point's X and Y pixel values will be stored here
289      *
290      * @return <code>TRUE</code> if the point coordinates could be stored.
291      *
292      * @stable ICU 2.8
293      */
294     virtual le_bool getGlyphPoint(LEGlyphID glyph, le_int32 pointNumber, LEPoint &point) const = 0;
295 
296     /**
297      * This method returns the width of the font's EM square
298      * in pixels.
299      *
300      * @return the pixel width of the EM square
301      *
302      * @stable ICU 2.8
303      */
304     virtual float getXPixelsPerEm() const = 0;
305 
306     /**
307      * This method returns the height of the font's EM square
308      * in pixels.
309      *
310      * @return the pixel height of the EM square
311      *
312      * @stable ICU 2.8
313      */
314     virtual float getYPixelsPerEm() const = 0;
315 
316     /**
317      * This method converts font design units in the
318      * X direction to points.
319      *
320      * @param xUnits - design units in the X direction
321      *
322      * @return points in the X direction
323      *
324      * @stable ICU 3.2
325      */
326     virtual float xUnitsToPoints(float xUnits) const;
327 
328     /**
329      * This method converts font design units in the
330      * Y direction to points.
331      *
332      * @param yUnits - design units in the Y direction
333      *
334      * @return points in the Y direction
335      *
336      * @stable ICU 3.2
337      */
338     virtual float yUnitsToPoints(float yUnits) const;
339 
340     /**
341      * This method converts font design units to points.
342      *
343      * @param units - X and Y design units
344      * @param points - set to X and Y points
345      *
346      * @stable ICU 3.2
347      */
348     virtual void unitsToPoints(LEPoint &units, LEPoint &points) const;
349 
350     /**
351      * This method converts pixels in the
352      * X direction to font design units.
353      *
354      * @param xPixels - pixels in the X direction
355      *
356      * @return font design units in the X direction
357      *
358      * @stable ICU 3.2
359      */
360     virtual float xPixelsToUnits(float xPixels) const;
361 
362     /**
363      * This method converts pixels in the
364      * Y direction to font design units.
365      *
366      * @param yPixels - pixels in the Y direction
367      *
368      * @return font design units in the Y direction
369      *
370      * @stable ICU 3.2
371      */
372     virtual float yPixelsToUnits(float yPixels) const;
373 
374     /**
375      * This method converts pixels to font design units.
376      *
377      * @param pixels - X and Y pixel
378      * @param units - set to X and Y font design units
379      *
380      * @stable ICU 3.2
381      */
382     virtual void pixelsToUnits(LEPoint &pixels, LEPoint &units) const;
383 
384     /**
385      * Get the X scale factor from the font's transform. The default
386      * implementation of <code>transformFunits()</code> will call this method.
387      *
388      * @return the X scale factor.
389      *
390      *
391      * @see transformFunits
392      *
393      * @stable ICU 3.2
394      */
395     virtual float getScaleFactorX() const = 0;
396 
397     /**
398      * Get the Y scale factor from the font's transform. The default
399      * implementation of <code>transformFunits()</code> will call this method.
400      *
401      * @return the Yscale factor.
402      *
403      * @see transformFunits
404      *
405      * @stable ICU 3.2
406      */
407     virtual float getScaleFactorY() const = 0;
408 
409     /**
410      * This method transforms an X, Y point in font design units to a
411      * pixel coordinate, applying the font's transform. The default
412      * implementation of this method calls <code>getScaleFactorX()</code>
413      * and <code>getScaleFactorY()</code>.
414      *
415      * @param xFunits - the X coordinate in font design units
416      * @param yFunits - the Y coordinate in font design units
417      * @param pixels - the tranformed co-ordinate in pixels
418      *
419      * @see getScaleFactorX
420      * @see getScaleFactorY
421      *
422      * @stable ICU 3.2
423      */
424     virtual void transformFunits(float xFunits, float yFunits, LEPoint &pixels) const;
425 
426     /**
427      * This is a convenience method used to convert
428      * values in a 16.16 fixed point format to floating point.
429      *
430      * @param fixed - the fixed point value
431      *
432      * @return the floating point value
433      *
434      * @stable ICU 2.8
435      */
436     static inline float fixedToFloat(le_int32 fixed);
437 
438     /**
439      * This is a convenience method used to convert
440      * floating point values to 16.16 fixed point format.
441      *
442      * @param theFloat - the floating point value
443      *
444      * @return the fixed point value
445      *
446      * @stable ICU 2.8
447      */
448     static inline le_int32 floatToFixed(float theFloat);
449 
450     //
451     // These methods won't ever be called by the LayoutEngine,
452     // but are useful for clients of <code>LEFontInstance</code> who
453     // need to render text.
454     //
455 
456     /**
457      * Get the font's ascent.
458      *
459      * @return the font's ascent, in points. This value
460      * will always be positive.
461      *
462      * @stable ICU 3.2
463      */
464     virtual le_int32 getAscent() const = 0;
465 
466     /**
467      * Get the font's descent.
468      *
469      * @return the font's descent, in points. This value
470      * will always be positive.
471      *
472      * @stable ICU 3.2
473      */
474     virtual le_int32 getDescent() const = 0;
475 
476     /**
477      * Get the font's leading.
478      *
479      * @return the font's leading, in points. This value
480      * will always be positive.
481      *
482      * @stable ICU 3.2
483      */
484     virtual le_int32 getLeading() const = 0;
485 
486     /**
487      * Get the line height required to display text in
488      * this font. The default implementation of this method
489      * returns the sum of the ascent, descent, and leading.
490      *
491      * @return the line height, in points. This vaule will
492      * always be positive.
493      *
494      * @stable ICU 3.2
495      */
496     virtual le_int32 getLineHeight() const;
497 
498     /**
499      * ICU "poor man's RTTI", returns a UClassID for the actual class.
500      *
501      * @stable ICU 3.2
502      */
503     virtual UClassID getDynamicClassID() const;
504 
505     /**
506      * ICU "poor man's RTTI", returns a UClassID for this class.
507      *
508      * @stable ICU 3.2
509      */
510     static UClassID getStaticClassID();
511 
512 };
513 
fixedToFloat(le_int32 fixed)514 inline float LEFontInstance::fixedToFloat(le_int32 fixed)
515 {
516     return (float) (fixed / 65536.0);
517 }
518 
floatToFixed(float theFloat)519 inline le_int32 LEFontInstance::floatToFixed(float theFloat)
520 {
521     return (le_int32) (theFloat * 65536.0);
522 }
523 
524 U_NAMESPACE_END
525 #endif
526 
527 
528