1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Linker.h"
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Module.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Path.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/Cloning.h"
27 #include "llvm/Transforms/Utils/ValueMapper.h"
28 #include <cctype>
29 using namespace llvm;
30
31 //===----------------------------------------------------------------------===//
32 // TypeMap implementation.
33 //===----------------------------------------------------------------------===//
34
35 namespace {
36 class TypeMapTy : public ValueMapTypeRemapper {
37 /// MappedTypes - This is a mapping from a source type to a destination type
38 /// to use.
39 DenseMap<Type*, Type*> MappedTypes;
40
41 /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
42 /// we speculatively add types to MappedTypes, but keep track of them here in
43 /// case we need to roll back.
44 SmallVector<Type*, 16> SpeculativeTypes;
45
46 /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
47 /// source module that are mapped to an opaque struct in the destination
48 /// module.
49 SmallVector<StructType*, 16> SrcDefinitionsToResolve;
50
51 /// DstResolvedOpaqueTypes - This is the set of opaque types in the
52 /// destination modules who are getting a body from the source module.
53 SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
54
55 public:
56 /// addTypeMapping - Indicate that the specified type in the destination
57 /// module is conceptually equivalent to the specified type in the source
58 /// module.
59 void addTypeMapping(Type *DstTy, Type *SrcTy);
60
61 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
62 /// module from a type definition in the source module.
63 void linkDefinedTypeBodies();
64
65 /// get - Return the mapped type to use for the specified input type from the
66 /// source module.
67 Type *get(Type *SrcTy);
68
get(FunctionType * T)69 FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
70
71 /// dump - Dump out the type map for debugging purposes.
dump() const72 void dump() const {
73 for (DenseMap<Type*, Type*>::const_iterator
74 I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
75 dbgs() << "TypeMap: ";
76 I->first->dump();
77 dbgs() << " => ";
78 I->second->dump();
79 dbgs() << '\n';
80 }
81 }
82
83 private:
84 Type *getImpl(Type *T);
85 /// remapType - Implement the ValueMapTypeRemapper interface.
remapType(Type * SrcTy)86 Type *remapType(Type *SrcTy) {
87 return get(SrcTy);
88 }
89
90 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
91 };
92 }
93
addTypeMapping(Type * DstTy,Type * SrcTy)94 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
95 Type *&Entry = MappedTypes[SrcTy];
96 if (Entry) return;
97
98 if (DstTy == SrcTy) {
99 Entry = DstTy;
100 return;
101 }
102
103 // Check to see if these types are recursively isomorphic and establish a
104 // mapping between them if so.
105 if (!areTypesIsomorphic(DstTy, SrcTy)) {
106 // Oops, they aren't isomorphic. Just discard this request by rolling out
107 // any speculative mappings we've established.
108 for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
109 MappedTypes.erase(SpeculativeTypes[i]);
110 }
111 SpeculativeTypes.clear();
112 }
113
114 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
115 /// if they are isomorphic, false if they are not.
areTypesIsomorphic(Type * DstTy,Type * SrcTy)116 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
117 // Two types with differing kinds are clearly not isomorphic.
118 if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
119
120 // If we have an entry in the MappedTypes table, then we have our answer.
121 Type *&Entry = MappedTypes[SrcTy];
122 if (Entry)
123 return Entry == DstTy;
124
125 // Two identical types are clearly isomorphic. Remember this
126 // non-speculatively.
127 if (DstTy == SrcTy) {
128 Entry = DstTy;
129 return true;
130 }
131
132 // Okay, we have two types with identical kinds that we haven't seen before.
133
134 // If this is an opaque struct type, special case it.
135 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
136 // Mapping an opaque type to any struct, just keep the dest struct.
137 if (SSTy->isOpaque()) {
138 Entry = DstTy;
139 SpeculativeTypes.push_back(SrcTy);
140 return true;
141 }
142
143 // Mapping a non-opaque source type to an opaque dest. If this is the first
144 // type that we're mapping onto this destination type then we succeed. Keep
145 // the dest, but fill it in later. This doesn't need to be speculative. If
146 // this is the second (different) type that we're trying to map onto the
147 // same opaque type then we fail.
148 if (cast<StructType>(DstTy)->isOpaque()) {
149 // We can only map one source type onto the opaque destination type.
150 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
151 return false;
152 SrcDefinitionsToResolve.push_back(SSTy);
153 Entry = DstTy;
154 return true;
155 }
156 }
157
158 // If the number of subtypes disagree between the two types, then we fail.
159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
160 return false;
161
162 // Fail if any of the extra properties (e.g. array size) of the type disagree.
163 if (isa<IntegerType>(DstTy))
164 return false; // bitwidth disagrees.
165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
167 return false;
168
169 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
170 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
171 return false;
172 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
173 StructType *SSTy = cast<StructType>(SrcTy);
174 if (DSTy->isLiteral() != SSTy->isLiteral() ||
175 DSTy->isPacked() != SSTy->isPacked())
176 return false;
177 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
178 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
179 return false;
180 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
181 if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
182 return false;
183 }
184
185 // Otherwise, we speculate that these two types will line up and recursively
186 // check the subelements.
187 Entry = DstTy;
188 SpeculativeTypes.push_back(SrcTy);
189
190 for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
191 if (!areTypesIsomorphic(DstTy->getContainedType(i),
192 SrcTy->getContainedType(i)))
193 return false;
194
195 // If everything seems to have lined up, then everything is great.
196 return true;
197 }
198
199 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
200 /// module from a type definition in the source module.
linkDefinedTypeBodies()201 void TypeMapTy::linkDefinedTypeBodies() {
202 SmallVector<Type*, 16> Elements;
203 SmallString<16> TmpName;
204
205 // Note that processing entries in this loop (calling 'get') can add new
206 // entries to the SrcDefinitionsToResolve vector.
207 while (!SrcDefinitionsToResolve.empty()) {
208 StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
209 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
210
211 // TypeMap is a many-to-one mapping, if there were multiple types that
212 // provide a body for DstSTy then previous iterations of this loop may have
213 // already handled it. Just ignore this case.
214 if (!DstSTy->isOpaque()) continue;
215 assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
216
217 // Map the body of the source type over to a new body for the dest type.
218 Elements.resize(SrcSTy->getNumElements());
219 for (unsigned i = 0, e = Elements.size(); i != e; ++i)
220 Elements[i] = getImpl(SrcSTy->getElementType(i));
221
222 DstSTy->setBody(Elements, SrcSTy->isPacked());
223
224 // If DstSTy has no name or has a longer name than STy, then viciously steal
225 // STy's name.
226 if (!SrcSTy->hasName()) continue;
227 StringRef SrcName = SrcSTy->getName();
228
229 if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
230 TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
231 SrcSTy->setName("");
232 DstSTy->setName(TmpName.str());
233 TmpName.clear();
234 }
235 }
236
237 DstResolvedOpaqueTypes.clear();
238 }
239
240 /// get - Return the mapped type to use for the specified input type from the
241 /// source module.
get(Type * Ty)242 Type *TypeMapTy::get(Type *Ty) {
243 Type *Result = getImpl(Ty);
244
245 // If this caused a reference to any struct type, resolve it before returning.
246 if (!SrcDefinitionsToResolve.empty())
247 linkDefinedTypeBodies();
248 return Result;
249 }
250
251 /// getImpl - This is the recursive version of get().
getImpl(Type * Ty)252 Type *TypeMapTy::getImpl(Type *Ty) {
253 // If we already have an entry for this type, return it.
254 Type **Entry = &MappedTypes[Ty];
255 if (*Entry) return *Entry;
256
257 // If this is not a named struct type, then just map all of the elements and
258 // then rebuild the type from inside out.
259 if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
260 // If there are no element types to map, then the type is itself. This is
261 // true for the anonymous {} struct, things like 'float', integers, etc.
262 if (Ty->getNumContainedTypes() == 0)
263 return *Entry = Ty;
264
265 // Remap all of the elements, keeping track of whether any of them change.
266 bool AnyChange = false;
267 SmallVector<Type*, 4> ElementTypes;
268 ElementTypes.resize(Ty->getNumContainedTypes());
269 for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
270 ElementTypes[i] = getImpl(Ty->getContainedType(i));
271 AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
272 }
273
274 // If we found our type while recursively processing stuff, just use it.
275 Entry = &MappedTypes[Ty];
276 if (*Entry) return *Entry;
277
278 // If all of the element types mapped directly over, then the type is usable
279 // as-is.
280 if (!AnyChange)
281 return *Entry = Ty;
282
283 // Otherwise, rebuild a modified type.
284 switch (Ty->getTypeID()) {
285 default: llvm_unreachable("unknown derived type to remap");
286 case Type::ArrayTyID:
287 return *Entry = ArrayType::get(ElementTypes[0],
288 cast<ArrayType>(Ty)->getNumElements());
289 case Type::VectorTyID:
290 return *Entry = VectorType::get(ElementTypes[0],
291 cast<VectorType>(Ty)->getNumElements());
292 case Type::PointerTyID:
293 return *Entry = PointerType::get(ElementTypes[0],
294 cast<PointerType>(Ty)->getAddressSpace());
295 case Type::FunctionTyID:
296 return *Entry = FunctionType::get(ElementTypes[0],
297 makeArrayRef(ElementTypes).slice(1),
298 cast<FunctionType>(Ty)->isVarArg());
299 case Type::StructTyID:
300 // Note that this is only reached for anonymous structs.
301 return *Entry = StructType::get(Ty->getContext(), ElementTypes,
302 cast<StructType>(Ty)->isPacked());
303 }
304 }
305
306 // Otherwise, this is an unmapped named struct. If the struct can be directly
307 // mapped over, just use it as-is. This happens in a case when the linked-in
308 // module has something like:
309 // %T = type {%T*, i32}
310 // @GV = global %T* null
311 // where T does not exist at all in the destination module.
312 //
313 // The other case we watch for is when the type is not in the destination
314 // module, but that it has to be rebuilt because it refers to something that
315 // is already mapped. For example, if the destination module has:
316 // %A = type { i32 }
317 // and the source module has something like
318 // %A' = type { i32 }
319 // %B = type { %A'* }
320 // @GV = global %B* null
321 // then we want to create a new type: "%B = type { %A*}" and have it take the
322 // pristine "%B" name from the source module.
323 //
324 // To determine which case this is, we have to recursively walk the type graph
325 // speculating that we'll be able to reuse it unmodified. Only if this is
326 // safe would we map the entire thing over. Because this is an optimization,
327 // and is not required for the prettiness of the linked module, we just skip
328 // it and always rebuild a type here.
329 StructType *STy = cast<StructType>(Ty);
330
331 // If the type is opaque, we can just use it directly.
332 if (STy->isOpaque())
333 return *Entry = STy;
334
335 // Otherwise we create a new type and resolve its body later. This will be
336 // resolved by the top level of get().
337 SrcDefinitionsToResolve.push_back(STy);
338 StructType *DTy = StructType::create(STy->getContext());
339 DstResolvedOpaqueTypes.insert(DTy);
340 return *Entry = DTy;
341 }
342
343 //===----------------------------------------------------------------------===//
344 // ModuleLinker implementation.
345 //===----------------------------------------------------------------------===//
346
347 namespace {
348 /// ModuleLinker - This is an implementation class for the LinkModules
349 /// function, which is the entrypoint for this file.
350 class ModuleLinker {
351 Module *DstM, *SrcM;
352
353 TypeMapTy TypeMap;
354
355 /// ValueMap - Mapping of values from what they used to be in Src, to what
356 /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves
357 /// some overhead due to the use of Value handles which the Linker doesn't
358 /// actually need, but this allows us to reuse the ValueMapper code.
359 ValueToValueMapTy ValueMap;
360
361 struct AppendingVarInfo {
362 GlobalVariable *NewGV; // New aggregate global in dest module.
363 Constant *DstInit; // Old initializer from dest module.
364 Constant *SrcInit; // Old initializer from src module.
365 };
366
367 std::vector<AppendingVarInfo> AppendingVars;
368
369 unsigned Mode; // Mode to treat source module.
370
371 // Set of items not to link in from source.
372 SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
373
374 // Vector of functions to lazily link in.
375 std::vector<Function*> LazilyLinkFunctions;
376
377 public:
378 std::string ErrorMsg;
379
ModuleLinker(Module * dstM,Module * srcM,unsigned mode)380 ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
381 : DstM(dstM), SrcM(srcM), Mode(mode) { }
382
383 bool run();
384
385 private:
386 /// emitError - Helper method for setting a message and returning an error
387 /// code.
emitError(const Twine & Message)388 bool emitError(const Twine &Message) {
389 ErrorMsg = Message.str();
390 return true;
391 }
392
393 /// getLinkageResult - This analyzes the two global values and determines
394 /// what the result will look like in the destination module.
395 bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
396 GlobalValue::LinkageTypes <,
397 GlobalValue::VisibilityTypes &Vis,
398 bool &LinkFromSrc);
399
400 /// getLinkedToGlobal - Given a global in the source module, return the
401 /// global in the destination module that is being linked to, if any.
getLinkedToGlobal(GlobalValue * SrcGV)402 GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
403 // If the source has no name it can't link. If it has local linkage,
404 // there is no name match-up going on.
405 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
406 return 0;
407
408 // Otherwise see if we have a match in the destination module's symtab.
409 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
410 if (DGV == 0) return 0;
411
412 // If we found a global with the same name in the dest module, but it has
413 // internal linkage, we are really not doing any linkage here.
414 if (DGV->hasLocalLinkage())
415 return 0;
416
417 // Otherwise, we do in fact link to the destination global.
418 return DGV;
419 }
420
421 void computeTypeMapping();
422 bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
423 DenseMap<MDString*, MDNode*> &ErrorNode,
424 DenseMap<MDString*, MDNode*> &WarningNode,
425 DenseMap<MDString*, MDNode*> &OverrideNode,
426 DenseMap<MDString*,
427 SmallSetVector<MDNode*, 8> > &RequireNodes,
428 SmallSetVector<MDString*, 16> &SeenIDs);
429
430 bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
431 bool linkGlobalProto(GlobalVariable *SrcGV);
432 bool linkFunctionProto(Function *SrcF);
433 bool linkAliasProto(GlobalAlias *SrcA);
434 bool linkModuleFlagsMetadata();
435
436 void linkAppendingVarInit(const AppendingVarInfo &AVI);
437 void linkGlobalInits();
438 void linkFunctionBody(Function *Dst, Function *Src);
439 void linkAliasBodies();
440 void linkNamedMDNodes();
441 };
442 }
443
444 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
445 /// in the symbol table. This is good for all clients except for us. Go
446 /// through the trouble to force this back.
forceRenaming(GlobalValue * GV,StringRef Name)447 static void forceRenaming(GlobalValue *GV, StringRef Name) {
448 // If the global doesn't force its name or if it already has the right name,
449 // there is nothing for us to do.
450 if (GV->hasLocalLinkage() || GV->getName() == Name)
451 return;
452
453 Module *M = GV->getParent();
454
455 // If there is a conflict, rename the conflict.
456 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
457 GV->takeName(ConflictGV);
458 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
459 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
460 } else {
461 GV->setName(Name); // Force the name back
462 }
463 }
464
465 /// copyGVAttributes - copy additional attributes (those not needed to construct
466 /// a GlobalValue) from the SrcGV to the DestGV.
copyGVAttributes(GlobalValue * DestGV,const GlobalValue * SrcGV)467 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
468 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
469 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
470 DestGV->copyAttributesFrom(SrcGV);
471 DestGV->setAlignment(Alignment);
472
473 forceRenaming(DestGV, SrcGV->getName());
474 }
475
isLessConstraining(GlobalValue::VisibilityTypes a,GlobalValue::VisibilityTypes b)476 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
477 GlobalValue::VisibilityTypes b) {
478 if (a == GlobalValue::HiddenVisibility)
479 return false;
480 if (b == GlobalValue::HiddenVisibility)
481 return true;
482 if (a == GlobalValue::ProtectedVisibility)
483 return false;
484 if (b == GlobalValue::ProtectedVisibility)
485 return true;
486 return false;
487 }
488
489 /// getLinkageResult - This analyzes the two global values and determines what
490 /// the result will look like in the destination module. In particular, it
491 /// computes the resultant linkage type and visibility, computes whether the
492 /// global in the source should be copied over to the destination (replacing
493 /// the existing one), and computes whether this linkage is an error or not.
getLinkageResult(GlobalValue * Dest,const GlobalValue * Src,GlobalValue::LinkageTypes & LT,GlobalValue::VisibilityTypes & Vis,bool & LinkFromSrc)494 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
495 GlobalValue::LinkageTypes <,
496 GlobalValue::VisibilityTypes &Vis,
497 bool &LinkFromSrc) {
498 assert(Dest && "Must have two globals being queried");
499 assert(!Src->hasLocalLinkage() &&
500 "If Src has internal linkage, Dest shouldn't be set!");
501
502 bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
503 bool DestIsDeclaration = Dest->isDeclaration();
504
505 if (SrcIsDeclaration) {
506 // If Src is external or if both Src & Dest are external.. Just link the
507 // external globals, we aren't adding anything.
508 if (Src->hasDLLImportLinkage()) {
509 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
510 if (DestIsDeclaration) {
511 LinkFromSrc = true;
512 LT = Src->getLinkage();
513 }
514 } else if (Dest->hasExternalWeakLinkage()) {
515 // If the Dest is weak, use the source linkage.
516 LinkFromSrc = true;
517 LT = Src->getLinkage();
518 } else {
519 LinkFromSrc = false;
520 LT = Dest->getLinkage();
521 }
522 } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
523 // If Dest is external but Src is not:
524 LinkFromSrc = true;
525 LT = Src->getLinkage();
526 } else if (Src->isWeakForLinker()) {
527 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
528 // or DLL* linkage.
529 if (Dest->hasExternalWeakLinkage() ||
530 Dest->hasAvailableExternallyLinkage() ||
531 (Dest->hasLinkOnceLinkage() &&
532 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
533 LinkFromSrc = true;
534 LT = Src->getLinkage();
535 } else {
536 LinkFromSrc = false;
537 LT = Dest->getLinkage();
538 }
539 } else if (Dest->isWeakForLinker()) {
540 // At this point we know that Src has External* or DLL* linkage.
541 if (Src->hasExternalWeakLinkage()) {
542 LinkFromSrc = false;
543 LT = Dest->getLinkage();
544 } else {
545 LinkFromSrc = true;
546 LT = GlobalValue::ExternalLinkage;
547 }
548 } else {
549 assert((Dest->hasExternalLinkage() || Dest->hasDLLImportLinkage() ||
550 Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
551 (Src->hasExternalLinkage() || Src->hasDLLImportLinkage() ||
552 Src->hasDLLExportLinkage() || Src->hasExternalWeakLinkage()) &&
553 "Unexpected linkage type!");
554 return emitError("Linking globals named '" + Src->getName() +
555 "': symbol multiply defined!");
556 }
557
558 // Compute the visibility. We follow the rules in the System V Application
559 // Binary Interface.
560 Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
561 Dest->getVisibility() : Src->getVisibility();
562 return false;
563 }
564
565 /// computeTypeMapping - Loop over all of the linked values to compute type
566 /// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then
567 /// we have two struct types 'Foo' but one got renamed when the module was
568 /// loaded into the same LLVMContext.
computeTypeMapping()569 void ModuleLinker::computeTypeMapping() {
570 // Incorporate globals.
571 for (Module::global_iterator I = SrcM->global_begin(),
572 E = SrcM->global_end(); I != E; ++I) {
573 GlobalValue *DGV = getLinkedToGlobal(I);
574 if (DGV == 0) continue;
575
576 if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
577 TypeMap.addTypeMapping(DGV->getType(), I->getType());
578 continue;
579 }
580
581 // Unify the element type of appending arrays.
582 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
583 ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
584 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
585 }
586
587 // Incorporate functions.
588 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
589 if (GlobalValue *DGV = getLinkedToGlobal(I))
590 TypeMap.addTypeMapping(DGV->getType(), I->getType());
591 }
592
593 // Incorporate types by name, scanning all the types in the source module.
594 // At this point, the destination module may have a type "%foo = { i32 }" for
595 // example. When the source module got loaded into the same LLVMContext, if
596 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
597 std::vector<StructType*> SrcStructTypes;
598 SrcM->findUsedStructTypes(SrcStructTypes);
599 SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
600 SrcStructTypes.end());
601
602 std::vector<StructType*> DstStructTypes;
603 DstM->findUsedStructTypes(DstStructTypes);
604 SmallPtrSet<StructType*, 32> DstStructTypesSet(DstStructTypes.begin(),
605 DstStructTypes.end());
606
607 for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
608 StructType *ST = SrcStructTypes[i];
609 if (!ST->hasName()) continue;
610
611 // Check to see if there is a dot in the name followed by a digit.
612 size_t DotPos = ST->getName().rfind('.');
613 if (DotPos == 0 || DotPos == StringRef::npos ||
614 ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
615 continue;
616
617 // Check to see if the destination module has a struct with the prefix name.
618 if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
619 // Don't use it if this actually came from the source module. They're in
620 // the same LLVMContext after all. Also don't use it unless the type is
621 // actually used in the destination module. This can happen in situations
622 // like this:
623 //
624 // Module A Module B
625 // -------- --------
626 // %Z = type { %A } %B = type { %C.1 }
627 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
628 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
629 // %C = type { i8* } %B.3 = type { %C.1 }
630 //
631 // When we link Module B with Module A, the '%B' in Module B is
632 // used. However, that would then use '%C.1'. But when we process '%C.1',
633 // we prefer to take the '%C' version. So we are then left with both
634 // '%C.1' and '%C' being used for the same types. This leads to some
635 // variables using one type and some using the other.
636 if (!SrcStructTypesSet.count(DST) && DstStructTypesSet.count(DST))
637 TypeMap.addTypeMapping(DST, ST);
638 }
639
640 // Don't bother incorporating aliases, they aren't generally typed well.
641
642 // Now that we have discovered all of the type equivalences, get a body for
643 // any 'opaque' types in the dest module that are now resolved.
644 TypeMap.linkDefinedTypeBodies();
645 }
646
647 /// linkAppendingVarProto - If there were any appending global variables, link
648 /// them together now. Return true on error.
linkAppendingVarProto(GlobalVariable * DstGV,GlobalVariable * SrcGV)649 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
650 GlobalVariable *SrcGV) {
651
652 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
653 return emitError("Linking globals named '" + SrcGV->getName() +
654 "': can only link appending global with another appending global!");
655
656 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
657 ArrayType *SrcTy =
658 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
659 Type *EltTy = DstTy->getElementType();
660
661 // Check to see that they two arrays agree on type.
662 if (EltTy != SrcTy->getElementType())
663 return emitError("Appending variables with different element types!");
664 if (DstGV->isConstant() != SrcGV->isConstant())
665 return emitError("Appending variables linked with different const'ness!");
666
667 if (DstGV->getAlignment() != SrcGV->getAlignment())
668 return emitError(
669 "Appending variables with different alignment need to be linked!");
670
671 if (DstGV->getVisibility() != SrcGV->getVisibility())
672 return emitError(
673 "Appending variables with different visibility need to be linked!");
674
675 if (DstGV->getSection() != SrcGV->getSection())
676 return emitError(
677 "Appending variables with different section name need to be linked!");
678
679 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
680 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
681
682 // Create the new global variable.
683 GlobalVariable *NG =
684 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
685 DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
686 DstGV->isThreadLocal(),
687 DstGV->getType()->getAddressSpace());
688
689 // Propagate alignment, visibility and section info.
690 copyGVAttributes(NG, DstGV);
691
692 AppendingVarInfo AVI;
693 AVI.NewGV = NG;
694 AVI.DstInit = DstGV->getInitializer();
695 AVI.SrcInit = SrcGV->getInitializer();
696 AppendingVars.push_back(AVI);
697
698 // Replace any uses of the two global variables with uses of the new
699 // global.
700 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
701
702 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
703 DstGV->eraseFromParent();
704
705 // Track the source variable so we don't try to link it.
706 DoNotLinkFromSource.insert(SrcGV);
707
708 return false;
709 }
710
711 /// linkGlobalProto - Loop through the global variables in the src module and
712 /// merge them into the dest module.
linkGlobalProto(GlobalVariable * SGV)713 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
714 GlobalValue *DGV = getLinkedToGlobal(SGV);
715 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
716
717 if (DGV) {
718 // Concatenation of appending linkage variables is magic and handled later.
719 if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
720 return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
721
722 // Determine whether linkage of these two globals follows the source
723 // module's definition or the destination module's definition.
724 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
725 GlobalValue::VisibilityTypes NV;
726 bool LinkFromSrc = false;
727 if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
728 return true;
729 NewVisibility = NV;
730
731 // If we're not linking from the source, then keep the definition that we
732 // have.
733 if (!LinkFromSrc) {
734 // Special case for const propagation.
735 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
736 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
737 DGVar->setConstant(true);
738
739 // Set calculated linkage and visibility.
740 DGV->setLinkage(NewLinkage);
741 DGV->setVisibility(*NewVisibility);
742
743 // Make sure to remember this mapping.
744 ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
745
746 // Track the source global so that we don't attempt to copy it over when
747 // processing global initializers.
748 DoNotLinkFromSource.insert(SGV);
749
750 return false;
751 }
752 }
753
754 // No linking to be performed or linking from the source: simply create an
755 // identical version of the symbol over in the dest module... the
756 // initializer will be filled in later by LinkGlobalInits.
757 GlobalVariable *NewDGV =
758 new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
759 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
760 SGV->getName(), /*insertbefore*/0,
761 SGV->isThreadLocal(),
762 SGV->getType()->getAddressSpace());
763 // Propagate alignment, visibility and section info.
764 copyGVAttributes(NewDGV, SGV);
765 if (NewVisibility)
766 NewDGV->setVisibility(*NewVisibility);
767
768 if (DGV) {
769 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
770 DGV->eraseFromParent();
771 }
772
773 // Make sure to remember this mapping.
774 ValueMap[SGV] = NewDGV;
775 return false;
776 }
777
778 /// linkFunctionProto - Link the function in the source module into the
779 /// destination module if needed, setting up mapping information.
linkFunctionProto(Function * SF)780 bool ModuleLinker::linkFunctionProto(Function *SF) {
781 GlobalValue *DGV = getLinkedToGlobal(SF);
782 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
783
784 if (DGV) {
785 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
786 bool LinkFromSrc = false;
787 GlobalValue::VisibilityTypes NV;
788 if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
789 return true;
790 NewVisibility = NV;
791
792 if (!LinkFromSrc) {
793 // Set calculated linkage
794 DGV->setLinkage(NewLinkage);
795 DGV->setVisibility(*NewVisibility);
796
797 // Make sure to remember this mapping.
798 ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
799
800 // Track the function from the source module so we don't attempt to remap
801 // it.
802 DoNotLinkFromSource.insert(SF);
803
804 return false;
805 }
806 }
807
808 // If there is no linkage to be performed or we are linking from the source,
809 // bring SF over.
810 Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
811 SF->getLinkage(), SF->getName(), DstM);
812 copyGVAttributes(NewDF, SF);
813 if (NewVisibility)
814 NewDF->setVisibility(*NewVisibility);
815
816 if (DGV) {
817 // Any uses of DF need to change to NewDF, with cast.
818 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
819 DGV->eraseFromParent();
820 } else {
821 // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
822 if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
823 SF->hasAvailableExternallyLinkage()) {
824 DoNotLinkFromSource.insert(SF);
825 LazilyLinkFunctions.push_back(SF);
826 }
827 }
828
829 ValueMap[SF] = NewDF;
830 return false;
831 }
832
833 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
834 /// source module.
linkAliasProto(GlobalAlias * SGA)835 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
836 GlobalValue *DGV = getLinkedToGlobal(SGA);
837 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
838
839 if (DGV) {
840 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
841 GlobalValue::VisibilityTypes NV;
842 bool LinkFromSrc = false;
843 if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
844 return true;
845 NewVisibility = NV;
846
847 if (!LinkFromSrc) {
848 // Set calculated linkage.
849 DGV->setLinkage(NewLinkage);
850 DGV->setVisibility(*NewVisibility);
851
852 // Make sure to remember this mapping.
853 ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
854
855 // Track the alias from the source module so we don't attempt to remap it.
856 DoNotLinkFromSource.insert(SGA);
857
858 return false;
859 }
860 }
861
862 // If there is no linkage to be performed or we're linking from the source,
863 // bring over SGA.
864 GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
865 SGA->getLinkage(), SGA->getName(),
866 /*aliasee*/0, DstM);
867 copyGVAttributes(NewDA, SGA);
868 if (NewVisibility)
869 NewDA->setVisibility(*NewVisibility);
870
871 if (DGV) {
872 // Any uses of DGV need to change to NewDA, with cast.
873 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
874 DGV->eraseFromParent();
875 }
876
877 ValueMap[SGA] = NewDA;
878 return false;
879 }
880
getArrayElements(Constant * C,SmallVectorImpl<Constant * > & Dest)881 static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
882 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
883
884 for (unsigned i = 0; i != NumElements; ++i)
885 Dest.push_back(C->getAggregateElement(i));
886 }
887
linkAppendingVarInit(const AppendingVarInfo & AVI)888 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
889 // Merge the initializer.
890 SmallVector<Constant*, 16> Elements;
891 getArrayElements(AVI.DstInit, Elements);
892
893 Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
894 getArrayElements(SrcInit, Elements);
895
896 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
897 AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
898 }
899
900 /// linkGlobalInits - Update the initializers in the Dest module now that all
901 /// globals that may be referenced are in Dest.
linkGlobalInits()902 void ModuleLinker::linkGlobalInits() {
903 // Loop over all of the globals in the src module, mapping them over as we go
904 for (Module::const_global_iterator I = SrcM->global_begin(),
905 E = SrcM->global_end(); I != E; ++I) {
906
907 // Only process initialized GV's or ones not already in dest.
908 if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
909
910 // Grab destination global variable.
911 GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
912 // Figure out what the initializer looks like in the dest module.
913 DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
914 RF_None, &TypeMap));
915 }
916 }
917
918 /// linkFunctionBody - Copy the source function over into the dest function and
919 /// fix up references to values. At this point we know that Dest is an external
920 /// function, and that Src is not.
linkFunctionBody(Function * Dst,Function * Src)921 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
922 assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
923
924 // Go through and convert function arguments over, remembering the mapping.
925 Function::arg_iterator DI = Dst->arg_begin();
926 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
927 I != E; ++I, ++DI) {
928 DI->setName(I->getName()); // Copy the name over.
929
930 // Add a mapping to our mapping.
931 ValueMap[I] = DI;
932 }
933
934 if (Mode == Linker::DestroySource) {
935 // Splice the body of the source function into the dest function.
936 Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
937
938 // At this point, all of the instructions and values of the function are now
939 // copied over. The only problem is that they are still referencing values in
940 // the Source function as operands. Loop through all of the operands of the
941 // functions and patch them up to point to the local versions.
942 for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
943 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
944 RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
945
946 } else {
947 // Clone the body of the function into the dest function.
948 SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
949 CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
950 }
951
952 // There is no need to map the arguments anymore.
953 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
954 I != E; ++I)
955 ValueMap.erase(I);
956
957 }
958
959 /// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
linkAliasBodies()960 void ModuleLinker::linkAliasBodies() {
961 for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
962 I != E; ++I) {
963 if (DoNotLinkFromSource.count(I))
964 continue;
965 if (Constant *Aliasee = I->getAliasee()) {
966 GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
967 DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
968 }
969 }
970 }
971
972 /// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
973 /// module.
linkNamedMDNodes()974 void ModuleLinker::linkNamedMDNodes() {
975 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
976 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
977 E = SrcM->named_metadata_end(); I != E; ++I) {
978 // Don't link module flags here. Do them separately.
979 if (&*I == SrcModFlags) continue;
980 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
981 // Add Src elements into Dest node.
982 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
983 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
984 RF_None, &TypeMap));
985 }
986 }
987
988 /// categorizeModuleFlagNodes - Categorize the module flags according to their
989 /// type: Error, Warning, Override, and Require.
990 bool ModuleLinker::
categorizeModuleFlagNodes(const NamedMDNode * ModFlags,DenseMap<MDString *,MDNode * > & ErrorNode,DenseMap<MDString *,MDNode * > & WarningNode,DenseMap<MDString *,MDNode * > & OverrideNode,DenseMap<MDString *,SmallSetVector<MDNode *,8>> & RequireNodes,SmallSetVector<MDString *,16> & SeenIDs)991 categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
992 DenseMap<MDString*, MDNode*> &ErrorNode,
993 DenseMap<MDString*, MDNode*> &WarningNode,
994 DenseMap<MDString*, MDNode*> &OverrideNode,
995 DenseMap<MDString*,
996 SmallSetVector<MDNode*, 8> > &RequireNodes,
997 SmallSetVector<MDString*, 16> &SeenIDs) {
998 bool HasErr = false;
999
1000 for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
1001 MDNode *Op = ModFlags->getOperand(I);
1002 assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
1003 assert(isa<ConstantInt>(Op->getOperand(0)) &&
1004 "Module flag's first operand must be an integer!");
1005 assert(isa<MDString>(Op->getOperand(1)) &&
1006 "Module flag's second operand must be an MDString!");
1007
1008 ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1009 MDString *ID = cast<MDString>(Op->getOperand(1));
1010 Value *Val = Op->getOperand(2);
1011 switch (Behavior->getZExtValue()) {
1012 default:
1013 assert(false && "Invalid behavior in module flag metadata!");
1014 break;
1015 case Module::Error: {
1016 MDNode *&ErrNode = ErrorNode[ID];
1017 if (!ErrNode) ErrNode = Op;
1018 if (ErrNode->getOperand(2) != Val)
1019 HasErr = emitError("linking module flags '" + ID->getString() +
1020 "': IDs have conflicting values");
1021 break;
1022 }
1023 case Module::Warning: {
1024 MDNode *&WarnNode = WarningNode[ID];
1025 if (!WarnNode) WarnNode = Op;
1026 if (WarnNode->getOperand(2) != Val)
1027 errs() << "WARNING: linking module flags '" << ID->getString()
1028 << "': IDs have conflicting values";
1029 break;
1030 }
1031 case Module::Require: RequireNodes[ID].insert(Op); break;
1032 case Module::Override: {
1033 MDNode *&OvrNode = OverrideNode[ID];
1034 if (!OvrNode) OvrNode = Op;
1035 if (OvrNode->getOperand(2) != Val)
1036 HasErr = emitError("linking module flags '" + ID->getString() +
1037 "': IDs have conflicting override values");
1038 break;
1039 }
1040 }
1041
1042 SeenIDs.insert(ID);
1043 }
1044
1045 return HasErr;
1046 }
1047
1048 /// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1049 /// module.
linkModuleFlagsMetadata()1050 bool ModuleLinker::linkModuleFlagsMetadata() {
1051 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1052 if (!SrcModFlags) return false;
1053
1054 NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1055
1056 // If the destination module doesn't have module flags yet, then just copy
1057 // over the source module's flags.
1058 if (DstModFlags->getNumOperands() == 0) {
1059 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1060 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1061
1062 return false;
1063 }
1064
1065 bool HasErr = false;
1066
1067 // Otherwise, we have to merge them based on their behaviors. First,
1068 // categorize all of the nodes in the modules' module flags. If an error or
1069 // warning occurs, then emit the appropriate message(s).
1070 DenseMap<MDString*, MDNode*> ErrorNode;
1071 DenseMap<MDString*, MDNode*> WarningNode;
1072 DenseMap<MDString*, MDNode*> OverrideNode;
1073 DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
1074 SmallSetVector<MDString*, 16> SeenIDs;
1075
1076 HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
1077 OverrideNode, RequireNodes, SeenIDs);
1078 HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
1079 OverrideNode, RequireNodes, SeenIDs);
1080
1081 // Check that there isn't both an error and warning node for a flag.
1082 for (SmallSetVector<MDString*, 16>::iterator
1083 I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1084 MDString *ID = *I;
1085 if (ErrorNode[ID] && WarningNode[ID])
1086 HasErr = emitError("linking module flags '" + ID->getString() +
1087 "': IDs have conflicting behaviors");
1088 }
1089
1090 // Early exit if we had an error.
1091 if (HasErr) return true;
1092
1093 // Get the destination's module flags ready for new operands.
1094 DstModFlags->dropAllReferences();
1095
1096 // Add all of the module flags to the destination module.
1097 DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
1098 for (SmallSetVector<MDString*, 16>::iterator
1099 I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1100 MDString *ID = *I;
1101 if (OverrideNode[ID]) {
1102 DstModFlags->addOperand(OverrideNode[ID]);
1103 AddedNodes[ID].push_back(OverrideNode[ID]);
1104 } else if (ErrorNode[ID]) {
1105 DstModFlags->addOperand(ErrorNode[ID]);
1106 AddedNodes[ID].push_back(ErrorNode[ID]);
1107 } else if (WarningNode[ID]) {
1108 DstModFlags->addOperand(WarningNode[ID]);
1109 AddedNodes[ID].push_back(WarningNode[ID]);
1110 }
1111
1112 for (SmallSetVector<MDNode*, 8>::iterator
1113 II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
1114 II != IE; ++II)
1115 DstModFlags->addOperand(*II);
1116 }
1117
1118 // Now check that all of the requirements have been satisfied.
1119 for (SmallSetVector<MDString*, 16>::iterator
1120 I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
1121 MDString *ID = *I;
1122 SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
1123
1124 for (SmallSetVector<MDNode*, 8>::iterator
1125 II = Set.begin(), IE = Set.end(); II != IE; ++II) {
1126 MDNode *Node = *II;
1127 assert(isa<MDNode>(Node->getOperand(2)) &&
1128 "Module flag's third operand must be an MDNode!");
1129 MDNode *Val = cast<MDNode>(Node->getOperand(2));
1130
1131 MDString *ReqID = cast<MDString>(Val->getOperand(0));
1132 Value *ReqVal = Val->getOperand(1);
1133
1134 bool HasValue = false;
1135 for (SmallVectorImpl<MDNode*>::iterator
1136 RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
1137 RI != RE; ++RI) {
1138 MDNode *ReqNode = *RI;
1139 if (ReqNode->getOperand(2) == ReqVal) {
1140 HasValue = true;
1141 break;
1142 }
1143 }
1144
1145 if (!HasValue)
1146 HasErr = emitError("linking module flags '" + ReqID->getString() +
1147 "': does not have the required value");
1148 }
1149 }
1150
1151 return HasErr;
1152 }
1153
run()1154 bool ModuleLinker::run() {
1155 assert(DstM && "Null destination module");
1156 assert(SrcM && "Null source module");
1157
1158 // Inherit the target data from the source module if the destination module
1159 // doesn't have one already.
1160 if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1161 DstM->setDataLayout(SrcM->getDataLayout());
1162
1163 // Copy the target triple from the source to dest if the dest's is empty.
1164 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1165 DstM->setTargetTriple(SrcM->getTargetTriple());
1166
1167 if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1168 SrcM->getDataLayout() != DstM->getDataLayout())
1169 errs() << "WARNING: Linking two modules of different data layouts!\n";
1170 if (!SrcM->getTargetTriple().empty() &&
1171 DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1172 errs() << "WARNING: Linking two modules of different target triples: ";
1173 if (!SrcM->getModuleIdentifier().empty())
1174 errs() << SrcM->getModuleIdentifier() << ": ";
1175 errs() << "'" << SrcM->getTargetTriple() << "' and '"
1176 << DstM->getTargetTriple() << "'\n";
1177 }
1178
1179 // Append the module inline asm string.
1180 if (!SrcM->getModuleInlineAsm().empty()) {
1181 if (DstM->getModuleInlineAsm().empty())
1182 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1183 else
1184 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1185 SrcM->getModuleInlineAsm());
1186 }
1187
1188 // Update the destination module's dependent libraries list with the libraries
1189 // from the source module. There's no opportunity for duplicates here as the
1190 // Module ensures that duplicate insertions are discarded.
1191 for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
1192 SI != SE; ++SI)
1193 DstM->addLibrary(*SI);
1194
1195 // If the source library's module id is in the dependent library list of the
1196 // destination library, remove it since that module is now linked in.
1197 StringRef ModuleId = SrcM->getModuleIdentifier();
1198 if (!ModuleId.empty())
1199 DstM->removeLibrary(sys::path::stem(ModuleId));
1200
1201 // Loop over all of the linked values to compute type mappings.
1202 computeTypeMapping();
1203
1204 // Insert all of the globals in src into the DstM module... without linking
1205 // initializers (which could refer to functions not yet mapped over).
1206 for (Module::global_iterator I = SrcM->global_begin(),
1207 E = SrcM->global_end(); I != E; ++I)
1208 if (linkGlobalProto(I))
1209 return true;
1210
1211 // Link the functions together between the two modules, without doing function
1212 // bodies... this just adds external function prototypes to the DstM
1213 // function... We do this so that when we begin processing function bodies,
1214 // all of the global values that may be referenced are available in our
1215 // ValueMap.
1216 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1217 if (linkFunctionProto(I))
1218 return true;
1219
1220 // If there were any aliases, link them now.
1221 for (Module::alias_iterator I = SrcM->alias_begin(),
1222 E = SrcM->alias_end(); I != E; ++I)
1223 if (linkAliasProto(I))
1224 return true;
1225
1226 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1227 linkAppendingVarInit(AppendingVars[i]);
1228
1229 // Update the initializers in the DstM module now that all globals that may
1230 // be referenced are in DstM.
1231 linkGlobalInits();
1232
1233 // Link in the function bodies that are defined in the source module into
1234 // DstM.
1235 for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1236 // Skip if not linking from source.
1237 if (DoNotLinkFromSource.count(SF)) continue;
1238
1239 // Skip if no body (function is external) or materialize.
1240 if (SF->isDeclaration()) {
1241 if (!SF->isMaterializable())
1242 continue;
1243 if (SF->Materialize(&ErrorMsg))
1244 return true;
1245 }
1246
1247 linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1248 SF->Dematerialize();
1249 }
1250
1251 // Resolve all uses of aliases with aliasees.
1252 linkAliasBodies();
1253
1254 // Remap all of the named MDNodes in Src into the DstM module. We do this
1255 // after linking GlobalValues so that MDNodes that reference GlobalValues
1256 // are properly remapped.
1257 linkNamedMDNodes();
1258
1259 // Merge the module flags into the DstM module.
1260 if (linkModuleFlagsMetadata())
1261 return true;
1262
1263 // Process vector of lazily linked in functions.
1264 bool LinkedInAnyFunctions;
1265 do {
1266 LinkedInAnyFunctions = false;
1267
1268 for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1269 E = LazilyLinkFunctions.end(); I != E; ++I) {
1270 if (!*I)
1271 continue;
1272
1273 Function *SF = *I;
1274 Function *DF = cast<Function>(ValueMap[SF]);
1275
1276 if (!DF->use_empty()) {
1277
1278 // Materialize if necessary.
1279 if (SF->isDeclaration()) {
1280 if (!SF->isMaterializable())
1281 continue;
1282 if (SF->Materialize(&ErrorMsg))
1283 return true;
1284 }
1285
1286 // Link in function body.
1287 linkFunctionBody(DF, SF);
1288 SF->Dematerialize();
1289
1290 // "Remove" from vector by setting the element to 0.
1291 *I = 0;
1292
1293 // Set flag to indicate we may have more functions to lazily link in
1294 // since we linked in a function.
1295 LinkedInAnyFunctions = true;
1296 }
1297 }
1298 } while (LinkedInAnyFunctions);
1299
1300 // Remove any prototypes of functions that were not actually linked in.
1301 for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1302 E = LazilyLinkFunctions.end(); I != E; ++I) {
1303 if (!*I)
1304 continue;
1305
1306 Function *SF = *I;
1307 Function *DF = cast<Function>(ValueMap[SF]);
1308 if (DF->use_empty())
1309 DF->eraseFromParent();
1310 }
1311
1312 // Now that all of the types from the source are used, resolve any structs
1313 // copied over to the dest that didn't exist there.
1314 TypeMap.linkDefinedTypeBodies();
1315
1316 return false;
1317 }
1318
1319 //===----------------------------------------------------------------------===//
1320 // LinkModules entrypoint.
1321 //===----------------------------------------------------------------------===//
1322
1323 /// LinkModules - This function links two modules together, with the resulting
1324 /// left module modified to be the composite of the two input modules. If an
1325 /// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1326 /// the problem. Upon failure, the Dest module could be in a modified state,
1327 /// and shouldn't be relied on to be consistent.
LinkModules(Module * Dest,Module * Src,unsigned Mode,std::string * ErrorMsg)1328 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1329 std::string *ErrorMsg) {
1330 ModuleLinker TheLinker(Dest, Src, Mode);
1331 if (TheLinker.run()) {
1332 if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
1333 return true;
1334 }
1335
1336 return false;
1337 }
1338