1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains small standalone helper functions and enum definitions for 11 // the X86 target useful for the compiler back-end and the MC libraries. 12 // As such, it deliberately does not include references to LLVM core 13 // code gen types, passes, etc.. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef X86BASEINFO_H 18 #define X86BASEINFO_H 19 20 #include "X86MCTargetDesc.h" 21 #include "llvm/Support/DataTypes.h" 22 #include "llvm/Support/ErrorHandling.h" 23 24 namespace llvm { 25 26 namespace X86 { 27 // Enums for memory operand decoding. Each memory operand is represented with 28 // a 5 operand sequence in the form: 29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment] 30 // These enums help decode this. 31 enum { 32 AddrBaseReg = 0, 33 AddrScaleAmt = 1, 34 AddrIndexReg = 2, 35 AddrDisp = 3, 36 37 /// AddrSegmentReg - The operand # of the segment in the memory operand. 38 AddrSegmentReg = 4, 39 40 /// AddrNumOperands - Total number of operands in a memory reference. 41 AddrNumOperands = 5 42 }; 43 } // end namespace X86; 44 45 46 /// X86II - This namespace holds all of the target specific flags that 47 /// instruction info tracks. 48 /// 49 namespace X86II { 50 /// Target Operand Flag enum. 51 enum TOF { 52 //===------------------------------------------------------------------===// 53 // X86 Specific MachineOperand flags. 54 55 MO_NO_FLAG, 56 57 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a 58 /// relocation of: 59 /// SYMBOL_LABEL + [. - PICBASELABEL] 60 MO_GOT_ABSOLUTE_ADDRESS, 61 62 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the 63 /// immediate should get the value of the symbol minus the PIC base label: 64 /// SYMBOL_LABEL - PICBASELABEL 65 MO_PIC_BASE_OFFSET, 66 67 /// MO_GOT - On a symbol operand this indicates that the immediate is the 68 /// offset to the GOT entry for the symbol name from the base of the GOT. 69 /// 70 /// See the X86-64 ELF ABI supplement for more details. 71 /// SYMBOL_LABEL @GOT 72 MO_GOT, 73 74 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is 75 /// the offset to the location of the symbol name from the base of the GOT. 76 /// 77 /// See the X86-64 ELF ABI supplement for more details. 78 /// SYMBOL_LABEL @GOTOFF 79 MO_GOTOFF, 80 81 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is 82 /// offset to the GOT entry for the symbol name from the current code 83 /// location. 84 /// 85 /// See the X86-64 ELF ABI supplement for more details. 86 /// SYMBOL_LABEL @GOTPCREL 87 MO_GOTPCREL, 88 89 /// MO_PLT - On a symbol operand this indicates that the immediate is 90 /// offset to the PLT entry of symbol name from the current code location. 91 /// 92 /// See the X86-64 ELF ABI supplement for more details. 93 /// SYMBOL_LABEL @PLT 94 MO_PLT, 95 96 /// MO_TLSGD - On a symbol operand this indicates that the immediate is 97 /// some TLS offset. 98 /// 99 /// See 'ELF Handling for Thread-Local Storage' for more details. 100 /// SYMBOL_LABEL @TLSGD 101 MO_TLSGD, 102 103 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is 104 /// some TLS offset. 105 /// 106 /// See 'ELF Handling for Thread-Local Storage' for more details. 107 /// SYMBOL_LABEL @GOTTPOFF 108 MO_GOTTPOFF, 109 110 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is 111 /// some TLS offset. 112 /// 113 /// See 'ELF Handling for Thread-Local Storage' for more details. 114 /// SYMBOL_LABEL @INDNTPOFF 115 MO_INDNTPOFF, 116 117 /// MO_TPOFF - On a symbol operand this indicates that the immediate is 118 /// some TLS offset. 119 /// 120 /// See 'ELF Handling for Thread-Local Storage' for more details. 121 /// SYMBOL_LABEL @TPOFF 122 MO_TPOFF, 123 124 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is 125 /// some TLS offset. 126 /// 127 /// See 'ELF Handling for Thread-Local Storage' for more details. 128 /// SYMBOL_LABEL @NTPOFF 129 MO_NTPOFF, 130 131 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the 132 /// reference is actually to the "__imp_FOO" symbol. This is used for 133 /// dllimport linkage on windows. 134 MO_DLLIMPORT, 135 136 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the 137 /// reference is actually to the "FOO$stub" symbol. This is used for calls 138 /// and jumps to external functions on Tiger and earlier. 139 MO_DARWIN_STUB, 140 141 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the 142 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a 143 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 144 MO_DARWIN_NONLAZY, 145 146 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates 147 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is 148 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. 149 MO_DARWIN_NONLAZY_PIC_BASE, 150 151 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this 152 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE", 153 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer 154 /// stub. 155 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE, 156 157 /// MO_TLVP - On a symbol operand this indicates that the immediate is 158 /// some TLS offset. 159 /// 160 /// This is the TLS offset for the Darwin TLS mechanism. 161 MO_TLVP, 162 163 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate 164 /// is some TLS offset from the picbase. 165 /// 166 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode. 167 MO_TLVP_PIC_BASE, 168 169 /// MO_SECREL - On a symbol operand this indicates that the immediate is 170 /// the offset from beginning of section. 171 /// 172 /// This is the TLS offset for the COFF/Windows TLS mechanism. 173 MO_SECREL 174 }; 175 176 enum { 177 //===------------------------------------------------------------------===// 178 // Instruction encodings. These are the standard/most common forms for X86 179 // instructions. 180 // 181 182 // PseudoFrm - This represents an instruction that is a pseudo instruction 183 // or one that has not been implemented yet. It is illegal to code generate 184 // it, but tolerated for intermediate implementation stages. 185 Pseudo = 0, 186 187 /// Raw - This form is for instructions that don't have any operands, so 188 /// they are just a fixed opcode value, like 'leave'. 189 RawFrm = 1, 190 191 /// AddRegFrm - This form is used for instructions like 'push r32' that have 192 /// their one register operand added to their opcode. 193 AddRegFrm = 2, 194 195 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte 196 /// to specify a destination, which in this case is a register. 197 /// 198 MRMDestReg = 3, 199 200 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte 201 /// to specify a destination, which in this case is memory. 202 /// 203 MRMDestMem = 4, 204 205 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte 206 /// to specify a source, which in this case is a register. 207 /// 208 MRMSrcReg = 5, 209 210 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte 211 /// to specify a source, which in this case is memory. 212 /// 213 MRMSrcMem = 6, 214 215 /// MRM[0-7][rm] - These forms are used to represent instructions that use 216 /// a Mod/RM byte, and use the middle field to hold extended opcode 217 /// information. In the intel manual these are represented as /0, /1, ... 218 /// 219 220 // First, instructions that operate on a register r/m operand... 221 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3 222 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7 223 224 // Next, instructions that operate on a memory r/m operand... 225 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3 226 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7 227 228 // MRMInitReg - This form is used for instructions whose source and 229 // destinations are the same register. 230 MRMInitReg = 32, 231 232 //// MRM_XX - A mod/rm byte of exactly 0xXX. 233 MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36, 234 MRM_C8 = 37, MRM_C9 = 38, MRM_E8 = 39, MRM_F0 = 40, 235 MRM_F8 = 41, MRM_F9 = 42, MRM_D0 = 45, MRM_D1 = 46, 236 MRM_D4 = 47, MRM_D8 = 48, MRM_D9 = 49, MRM_DA = 50, 237 MRM_DB = 51, MRM_DC = 52, MRM_DD = 53, MRM_DE = 54, 238 MRM_DF = 55, 239 240 /// RawFrmImm8 - This is used for the ENTER instruction, which has two 241 /// immediates, the first of which is a 16-bit immediate (specified by 242 /// the imm encoding) and the second is a 8-bit fixed value. 243 RawFrmImm8 = 43, 244 245 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two 246 /// immediates, the first of which is a 16 or 32-bit immediate (specified by 247 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD 248 /// manual, this operand is described as pntr16:32 and pntr16:16 249 RawFrmImm16 = 44, 250 251 FormMask = 63, 252 253 //===------------------------------------------------------------------===// 254 // Actual flags... 255 256 // OpSize - Set if this instruction requires an operand size prefix (0x66), 257 // which most often indicates that the instruction operates on 16 bit data 258 // instead of 32 bit data. 259 OpSize = 1 << 6, 260 261 // AsSize - Set if this instruction requires an operand size prefix (0x67), 262 // which most often indicates that the instruction address 16 bit address 263 // instead of 32 bit address (or 32 bit address in 64 bit mode). 264 AdSize = 1 << 7, 265 266 //===------------------------------------------------------------------===// 267 // Op0Mask - There are several prefix bytes that are used to form two byte 268 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is 269 // used to obtain the setting of this field. If no bits in this field is 270 // set, there is no prefix byte for obtaining a multibyte opcode. 271 // 272 Op0Shift = 8, 273 Op0Mask = 0x1F << Op0Shift, 274 275 // TB - TwoByte - Set if this instruction has a two byte opcode, which 276 // starts with a 0x0F byte before the real opcode. 277 TB = 1 << Op0Shift, 278 279 // REP - The 0xF3 prefix byte indicating repetition of the following 280 // instruction. 281 REP = 2 << Op0Shift, 282 283 // D8-DF - These escape opcodes are used by the floating point unit. These 284 // values must remain sequential. 285 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift, 286 DA = 5 << Op0Shift, DB = 6 << Op0Shift, 287 DC = 7 << Op0Shift, DD = 8 << Op0Shift, 288 DE = 9 << Op0Shift, DF = 10 << Op0Shift, 289 290 // XS, XD - These prefix codes are for single and double precision scalar 291 // floating point operations performed in the SSE registers. 292 XD = 11 << Op0Shift, XS = 12 << Op0Shift, 293 294 // T8, TA, A6, A7 - Prefix after the 0x0F prefix. 295 T8 = 13 << Op0Shift, TA = 14 << Op0Shift, 296 A6 = 15 << Op0Shift, A7 = 16 << Op0Shift, 297 298 // T8XD - Prefix before and after 0x0F. Combination of T8 and XD. 299 T8XD = 17 << Op0Shift, 300 301 // T8XS - Prefix before and after 0x0F. Combination of T8 and XS. 302 T8XS = 18 << Op0Shift, 303 304 // TAXD - Prefix before and after 0x0F. Combination of TA and XD. 305 TAXD = 19 << Op0Shift, 306 307 // XOP8 - Prefix to include use of imm byte. 308 XOP8 = 20 << Op0Shift, 309 310 // XOP9 - Prefix to exclude use of imm byte. 311 XOP9 = 21 << Op0Shift, 312 313 //===------------------------------------------------------------------===// 314 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. 315 // They are used to specify GPRs and SSE registers, 64-bit operand size, 316 // etc. We only cares about REX.W and REX.R bits and only the former is 317 // statically determined. 318 // 319 REXShift = Op0Shift + 5, 320 REX_W = 1 << REXShift, 321 322 //===------------------------------------------------------------------===// 323 // This three-bit field describes the size of an immediate operand. Zero is 324 // unused so that we can tell if we forgot to set a value. 325 ImmShift = REXShift + 1, 326 ImmMask = 7 << ImmShift, 327 Imm8 = 1 << ImmShift, 328 Imm8PCRel = 2 << ImmShift, 329 Imm16 = 3 << ImmShift, 330 Imm16PCRel = 4 << ImmShift, 331 Imm32 = 5 << ImmShift, 332 Imm32PCRel = 6 << ImmShift, 333 Imm64 = 7 << ImmShift, 334 335 //===------------------------------------------------------------------===// 336 // FP Instruction Classification... Zero is non-fp instruction. 337 338 // FPTypeMask - Mask for all of the FP types... 339 FPTypeShift = ImmShift + 3, 340 FPTypeMask = 7 << FPTypeShift, 341 342 // NotFP - The default, set for instructions that do not use FP registers. 343 NotFP = 0 << FPTypeShift, 344 345 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 346 ZeroArgFP = 1 << FPTypeShift, 347 348 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst 349 OneArgFP = 2 << FPTypeShift, 350 351 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a 352 // result back to ST(0). For example, fcos, fsqrt, etc. 353 // 354 OneArgFPRW = 3 << FPTypeShift, 355 356 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an 357 // explicit argument, storing the result to either ST(0) or the implicit 358 // argument. For example: fadd, fsub, fmul, etc... 359 TwoArgFP = 4 << FPTypeShift, 360 361 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an 362 // explicit argument, but have no destination. Example: fucom, fucomi, ... 363 CompareFP = 5 << FPTypeShift, 364 365 // CondMovFP - "2 operand" floating point conditional move instructions. 366 CondMovFP = 6 << FPTypeShift, 367 368 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly. 369 SpecialFP = 7 << FPTypeShift, 370 371 // Lock prefix 372 LOCKShift = FPTypeShift + 3, 373 LOCK = 1 << LOCKShift, 374 375 // Segment override prefixes. Currently we just need ability to address 376 // stuff in gs and fs segments. 377 SegOvrShift = LOCKShift + 1, 378 SegOvrMask = 3 << SegOvrShift, 379 FS = 1 << SegOvrShift, 380 GS = 2 << SegOvrShift, 381 382 // Execution domain for SSE instructions in bits 23, 24. 383 // 0 in bits 23-24 means normal, non-SSE instruction. 384 SSEDomainShift = SegOvrShift + 2, 385 386 OpcodeShift = SSEDomainShift + 2, 387 388 //===------------------------------------------------------------------===// 389 /// VEX - The opcode prefix used by AVX instructions 390 VEXShift = OpcodeShift + 8, 391 VEX = 1U << 0, 392 393 /// VEX_W - Has a opcode specific functionality, but is used in the same 394 /// way as REX_W is for regular SSE instructions. 395 VEX_W = 1U << 1, 396 397 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2 398 /// address instructions in SSE are represented as 3 address ones in AVX 399 /// and the additional register is encoded in VEX_VVVV prefix. 400 VEX_4V = 1U << 2, 401 402 /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode 403 /// operand 3 with VEX.vvvv. 404 VEX_4VOp3 = 1U << 3, 405 406 /// VEX_I8IMM - Specifies that the last register used in a AVX instruction, 407 /// must be encoded in the i8 immediate field. This usually happens in 408 /// instructions with 4 operands. 409 VEX_I8IMM = 1U << 4, 410 411 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current 412 /// instruction uses 256-bit wide registers. This is usually auto detected 413 /// if a VR256 register is used, but some AVX instructions also have this 414 /// field marked when using a f256 memory references. 415 VEX_L = 1U << 5, 416 417 // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX 418 // prefix. Usually used for scalar instructions. Needed by disassembler. 419 VEX_LIG = 1U << 6, 420 421 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the 422 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents 423 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction 424 /// storing a classifier in the imm8 field. To simplify our implementation, 425 /// we handle this by storeing the classifier in the opcode field and using 426 /// this flag to indicate that the encoder should do the wacky 3DNow! thing. 427 Has3DNow0F0FOpcode = 1U << 7, 428 429 /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in 430 /// ModRM or I8IMM. This is used for FMA4 and XOP instructions. 431 MemOp4 = 1U << 8, 432 433 /// XOP - Opcode prefix used by XOP instructions. 434 XOP = 1U << 9 435 436 }; 437 438 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the 439 // specified machine instruction. 440 // getBaseOpcodeFor(uint64_t TSFlags)441 static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) { 442 return TSFlags >> X86II::OpcodeShift; 443 } 444 hasImm(uint64_t TSFlags)445 static inline bool hasImm(uint64_t TSFlags) { 446 return (TSFlags & X86II::ImmMask) != 0; 447 } 448 449 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field 450 /// of the specified instruction. getSizeOfImm(uint64_t TSFlags)451 static inline unsigned getSizeOfImm(uint64_t TSFlags) { 452 switch (TSFlags & X86II::ImmMask) { 453 default: llvm_unreachable("Unknown immediate size"); 454 case X86II::Imm8: 455 case X86II::Imm8PCRel: return 1; 456 case X86II::Imm16: 457 case X86II::Imm16PCRel: return 2; 458 case X86II::Imm32: 459 case X86II::Imm32PCRel: return 4; 460 case X86II::Imm64: return 8; 461 } 462 } 463 464 /// isImmPCRel - Return true if the immediate of the specified instruction's 465 /// TSFlags indicates that it is pc relative. isImmPCRel(uint64_t TSFlags)466 static inline unsigned isImmPCRel(uint64_t TSFlags) { 467 switch (TSFlags & X86II::ImmMask) { 468 default: llvm_unreachable("Unknown immediate size"); 469 case X86II::Imm8PCRel: 470 case X86II::Imm16PCRel: 471 case X86II::Imm32PCRel: 472 return true; 473 case X86II::Imm8: 474 case X86II::Imm16: 475 case X86II::Imm32: 476 case X86II::Imm64: 477 return false; 478 } 479 } 480 481 /// getMemoryOperandNo - The function returns the MCInst operand # for the 482 /// first field of the memory operand. If the instruction doesn't have a 483 /// memory operand, this returns -1. 484 /// 485 /// Note that this ignores tied operands. If there is a tied register which 486 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only 487 /// counted as one operand. 488 /// getMemoryOperandNo(uint64_t TSFlags,unsigned Opcode)489 static inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) { 490 switch (TSFlags & X86II::FormMask) { 491 case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this form"); 492 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!"); 493 case X86II::Pseudo: 494 case X86II::RawFrm: 495 case X86II::AddRegFrm: 496 case X86II::MRMDestReg: 497 case X86II::MRMSrcReg: 498 case X86II::RawFrmImm8: 499 case X86II::RawFrmImm16: 500 return -1; 501 case X86II::MRMDestMem: 502 return 0; 503 case X86II::MRMSrcMem: { 504 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; 505 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; 506 unsigned FirstMemOp = 1; 507 if (HasVEX_4V) 508 ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV). 509 if (HasMemOp4) 510 ++FirstMemOp;// Skip the register source (which is encoded in I8IMM). 511 512 // FIXME: Maybe lea should have its own form? This is a horrible hack. 513 //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || 514 // Opcode == X86::LEA16r || Opcode == X86::LEA32r) 515 return FirstMemOp; 516 } 517 case X86II::MRM0r: case X86II::MRM1r: 518 case X86II::MRM2r: case X86II::MRM3r: 519 case X86II::MRM4r: case X86II::MRM5r: 520 case X86II::MRM6r: case X86II::MRM7r: 521 return -1; 522 case X86II::MRM0m: case X86II::MRM1m: 523 case X86II::MRM2m: case X86II::MRM3m: 524 case X86II::MRM4m: case X86II::MRM5m: 525 case X86II::MRM6m: case X86II::MRM7m: { 526 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; 527 unsigned FirstMemOp = 0; 528 if (HasVEX_4V) 529 ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV). 530 return FirstMemOp; 531 } 532 case X86II::MRM_C1: case X86II::MRM_C2: 533 case X86II::MRM_C3: case X86II::MRM_C4: 534 case X86II::MRM_C8: case X86II::MRM_C9: 535 case X86II::MRM_E8: case X86II::MRM_F0: 536 case X86II::MRM_F8: case X86II::MRM_F9: 537 case X86II::MRM_D0: case X86II::MRM_D1: 538 case X86II::MRM_D4: case X86II::MRM_D8: 539 case X86II::MRM_D9: case X86II::MRM_DA: 540 case X86II::MRM_DB: case X86II::MRM_DC: 541 case X86II::MRM_DD: case X86II::MRM_DE: 542 case X86II::MRM_DF: 543 return -1; 544 } 545 } 546 547 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or 548 /// higher) register? e.g. r8, xmm8, xmm13, etc. isX86_64ExtendedReg(unsigned RegNo)549 static inline bool isX86_64ExtendedReg(unsigned RegNo) { 550 switch (RegNo) { 551 default: break; 552 case X86::R8: case X86::R9: case X86::R10: case X86::R11: 553 case X86::R12: case X86::R13: case X86::R14: case X86::R15: 554 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: 555 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: 556 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: 557 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: 558 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: 559 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: 560 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: 561 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: 562 case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11: 563 case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15: 564 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11: 565 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15: 566 return true; 567 } 568 return false; 569 } 570 isX86_64NonExtLowByteReg(unsigned reg)571 static inline bool isX86_64NonExtLowByteReg(unsigned reg) { 572 return (reg == X86::SPL || reg == X86::BPL || 573 reg == X86::SIL || reg == X86::DIL); 574 } 575 } 576 577 } // end namespace llvm; 578 579 #endif 580