• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // http://code.google.com/p/protobuf/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects.  Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 //   message Foo {
45 //     optional string text = 1;
46 //     repeated int32 numbers = 2;
47 //   }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 //   string data;  // Will store a serialized version of the message.
53 //
54 //   {
55 //     // Create a message and serialize it.
56 //     Foo foo;
57 //     foo.set_text("Hello World!");
58 //     foo.add_numbers(1);
59 //     foo.add_numbers(5);
60 //     foo.add_numbers(42);
61 //
62 //     foo.SerializeToString(&data);
63 //   }
64 //
65 //   {
66 //     // Parse the serialized message and check that it contains the
67 //     // correct data.
68 //     Foo foo;
69 //     foo.ParseFromString(data);
70 //
71 //     assert(foo.text() == "Hello World!");
72 //     assert(foo.numbers_size() == 3);
73 //     assert(foo.numbers(0) == 1);
74 //     assert(foo.numbers(1) == 5);
75 //     assert(foo.numbers(2) == 42);
76 //   }
77 //
78 //   {
79 //     // Same as the last block, but do it dynamically via the Message
80 //     // reflection interface.
81 //     Message* foo = new Foo;
82 //     Descriptor* descriptor = foo->GetDescriptor();
83 //
84 //     // Get the descriptors for the fields we're interested in and verify
85 //     // their types.
86 //     FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 //     assert(text_field != NULL);
88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 //     assert(text_field->label() == FieldDescriptor::TYPE_OPTIONAL);
90 //     FieldDescriptor* numbers_field = descriptor->FindFieldByName("numbers");
91 //     assert(numbers_field != NULL);
92 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
93 //     assert(numbers_field->label() == FieldDescriptor::TYPE_REPEATED);
94 //
95 //     // Parse the message.
96 //     foo->ParseFromString(data);
97 //
98 //     // Use the reflection interface to examine the contents.
99 //     const Reflection* reflection = foo->GetReflection();
100 //     assert(reflection->GetString(foo, text_field) == "Hello World!");
101 //     assert(reflection->FieldSize(foo, numbers_field) == 3);
102 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
103 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
104 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
105 //
106 //     delete foo;
107 //   }
108 
109 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
110 #define GOOGLE_PROTOBUF_MESSAGE_H__
111 
112 #include <vector>
113 #include <string>
114 
115 #ifdef __DECCXX
116 // HP C++'s iosfwd doesn't work.
117 #include <iostream>
118 #else
119 #include <iosfwd>
120 #endif
121 
122 #include <google/protobuf/message_lite.h>
123 
124 #include <google/protobuf/stubs/common.h>
125 
126 #if defined(_WIN32) && defined(GetMessage)
127 // windows.h defines GetMessage() as a macro.  Let's re-define it as an inline
128 // function.  This is necessary because Reflection has a method called
129 // GetMessage() which we don't want overridden.  The inline function should be
130 // equivalent for C++ users.
GetMessage_Win32(LPMSG lpMsg,HWND hWnd,UINT wMsgFilterMin,UINT wMsgFilterMax)131 inline BOOL GetMessage_Win32(
132     LPMSG lpMsg, HWND hWnd,
133     UINT wMsgFilterMin, UINT wMsgFilterMax) {
134   return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
135 }
136 #undef GetMessage
GetMessage(LPMSG lpMsg,HWND hWnd,UINT wMsgFilterMin,UINT wMsgFilterMax)137 inline BOOL GetMessage(
138     LPMSG lpMsg, HWND hWnd,
139     UINT wMsgFilterMin, UINT wMsgFilterMax) {
140   return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
141 }
142 #endif
143 
144 
145 namespace google {
146 namespace protobuf {
147 
148 // Defined in this file.
149 class Message;
150 class Reflection;
151 class MessageFactory;
152 
153 // Defined in other files.
154 class Descriptor;            // descriptor.h
155 class FieldDescriptor;       // descriptor.h
156 class EnumDescriptor;        // descriptor.h
157 class EnumValueDescriptor;   // descriptor.h
158 namespace io {
159   class ZeroCopyInputStream;   // zero_copy_stream.h
160   class ZeroCopyOutputStream;  // zero_copy_stream.h
161   class CodedInputStream;      // coded_stream.h
162   class CodedOutputStream;     // coded_stream.h
163 }
164 class UnknownFieldSet;       // unknown_field_set.h
165 
166 // A container to hold message metadata.
167 struct Metadata {
168   const Descriptor* descriptor;
169   const Reflection* reflection;
170 };
171 
172 // Returns the EnumDescriptor for enum type E, which must be a
173 // proto-declared enum type.  Code generated by the protocol compiler
174 // will include specializations of this template for each enum type declared.
175 template <typename E>
176 const EnumDescriptor* GetEnumDescriptor();
177 
178 // Abstract interface for protocol messages.
179 //
180 // See also MessageLite, which contains most every-day operations.  Message
181 // adds descriptors and reflection on top of that.
182 //
183 // The methods of this class that are virtual but not pure-virtual have
184 // default implementations based on reflection.  Message classes which are
185 // optimized for speed will want to override these with faster implementations,
186 // but classes optimized for code size may be happy with keeping them.  See
187 // the optimize_for option in descriptor.proto.
188 class LIBPROTOBUF_EXPORT Message : public MessageLite {
189  public:
Message()190   inline Message() {}
191   virtual ~Message();
192 
193   // Basic Operations ------------------------------------------------
194 
195   // Construct a new instance of the same type.  Ownership is passed to the
196   // caller.  (This is also defined in MessageLite, but is defined again here
197   // for return-type covariance.)
198   virtual Message* New() const = 0;
199 
200   // Make this message into a copy of the given message.  The given message
201   // must have the same descriptor, but need not necessarily be the same class.
202   // By default this is just implemented as "Clear(); MergeFrom(from);".
203   virtual void CopyFrom(const Message& from);
204 
205   // Merge the fields from the given message into this message.  Singular
206   // fields will be overwritten, except for embedded messages which will
207   // be merged.  Repeated fields will be concatenated.  The given message
208   // must be of the same type as this message (i.e. the exact same class).
209   virtual void MergeFrom(const Message& from);
210 
211   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
212   // a nice error message.
213   void CheckInitialized() const;
214 
215   // Slowly build a list of all required fields that are not set.
216   // This is much, much slower than IsInitialized() as it is implemented
217   // purely via reflection.  Generally, you should not call this unless you
218   // have already determined that an error exists by calling IsInitialized().
219   void FindInitializationErrors(vector<string>* errors) const;
220 
221   // Like FindInitializationErrors, but joins all the strings, delimited by
222   // commas, and returns them.
223   string InitializationErrorString() const;
224 
225   // Clears all unknown fields from this message and all embedded messages.
226   // Normally, if unknown tag numbers are encountered when parsing a message,
227   // the tag and value are stored in the message's UnknownFieldSet and
228   // then written back out when the message is serialized.  This allows servers
229   // which simply route messages to other servers to pass through messages
230   // that have new field definitions which they don't yet know about.  However,
231   // this behavior can have security implications.  To avoid it, call this
232   // method after parsing.
233   //
234   // See Reflection::GetUnknownFields() for more on unknown fields.
235   virtual void DiscardUnknownFields();
236 
237   // Computes (an estimate of) the total number of bytes currently used for
238   // storing the message in memory.  The default implementation calls the
239   // Reflection object's SpaceUsed() method.
240   virtual int SpaceUsed() const;
241 
242   // Debugging & Testing----------------------------------------------
243 
244   // Generates a human readable form of this message, useful for debugging
245   // and other purposes.
246   string DebugString() const;
247   // Like DebugString(), but with less whitespace.
248   string ShortDebugString() const;
249   // Like DebugString(), but do not escape UTF-8 byte sequences.
250   string Utf8DebugString() const;
251   // Convenience function useful in GDB.  Prints DebugString() to stdout.
252   void PrintDebugString() const;
253 
254   // Heavy I/O -------------------------------------------------------
255   // Additional parsing and serialization methods not implemented by
256   // MessageLite because they are not supported by the lite library.
257 
258   // Parse a protocol buffer from a file descriptor.  If successful, the entire
259   // input will be consumed.
260   bool ParseFromFileDescriptor(int file_descriptor);
261   // Like ParseFromFileDescriptor(), but accepts messages that are missing
262   // required fields.
263   bool ParsePartialFromFileDescriptor(int file_descriptor);
264   // Parse a protocol buffer from a C++ istream.  If successful, the entire
265   // input will be consumed.
266   bool ParseFromIstream(istream* input);
267   // Like ParseFromIstream(), but accepts messages that are missing
268   // required fields.
269   bool ParsePartialFromIstream(istream* input);
270 
271   // Serialize the message and write it to the given file descriptor.  All
272   // required fields must be set.
273   bool SerializeToFileDescriptor(int file_descriptor) const;
274   // Like SerializeToFileDescriptor(), but allows missing required fields.
275   bool SerializePartialToFileDescriptor(int file_descriptor) const;
276   // Serialize the message and write it to the given C++ ostream.  All
277   // required fields must be set.
278   bool SerializeToOstream(ostream* output) const;
279   // Like SerializeToOstream(), but allows missing required fields.
280   bool SerializePartialToOstream(ostream* output) const;
281 
282 
283   // Reflection-based methods ----------------------------------------
284   // These methods are pure-virtual in MessageLite, but Message provides
285   // reflection-based default implementations.
286 
287   virtual string GetTypeName() const;
288   virtual void Clear();
289   virtual bool IsInitialized() const;
290   virtual void CheckTypeAndMergeFrom(const MessageLite& other);
291   virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
292   virtual int ByteSize() const;
293   virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
294 
295  private:
296   // This is called only by the default implementation of ByteSize(), to
297   // update the cached size.  If you override ByteSize(), you do not need
298   // to override this.  If you do not override ByteSize(), you MUST override
299   // this; the default implementation will crash.
300   //
301   // The method is private because subclasses should never call it; only
302   // override it.  Yes, C++ lets you do that.  Crazy, huh?
303   virtual void SetCachedSize(int size) const;
304 
305  public:
306 
307   // Introspection ---------------------------------------------------
308 
309   // Typedef for backwards-compatibility.
310   typedef google::protobuf::Reflection Reflection;
311 
312   // Get a Descriptor for this message's type.  This describes what
313   // fields the message contains, the types of those fields, etc.
GetDescriptor()314   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
315 
316   // Get the Reflection interface for this Message, which can be used to
317   // read and modify the fields of the Message dynamically (in other words,
318   // without knowing the message type at compile time).  This object remains
319   // property of the Message.
320   //
321   // This method remains virtual in case a subclass does not implement
322   // reflection and wants to override the default behavior.
GetReflection()323   virtual const Reflection* GetReflection() const {
324     return GetMetadata().reflection;
325   }
326 
327  protected:
328   // Get a struct containing the metadata for the Message. Most subclasses only
329   // need to implement this method, rather than the GetDescriptor() and
330   // GetReflection() wrappers.
331   virtual Metadata GetMetadata() const  = 0;
332 
333 
334  private:
335   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
336 };
337 
338 // This interface contains methods that can be used to dynamically access
339 // and modify the fields of a protocol message.  Their semantics are
340 // similar to the accessors the protocol compiler generates.
341 //
342 // To get the Reflection for a given Message, call Message::GetReflection().
343 //
344 // This interface is separate from Message only for efficiency reasons;
345 // the vast majority of implementations of Message will share the same
346 // implementation of Reflection (GeneratedMessageReflection,
347 // defined in generated_message.h), and all Messages of a particular class
348 // should share the same Reflection object (though you should not rely on
349 // the latter fact).
350 //
351 // There are several ways that these methods can be used incorrectly.  For
352 // example, any of the following conditions will lead to undefined
353 // results (probably assertion failures):
354 // - The FieldDescriptor is not a field of this message type.
355 // - The method called is not appropriate for the field's type.  For
356 //   each field type in FieldDescriptor::TYPE_*, there is only one
357 //   Get*() method, one Set*() method, and one Add*() method that is
358 //   valid for that type.  It should be obvious which (except maybe
359 //   for TYPE_BYTES, which are represented using strings in C++).
360 // - A Get*() or Set*() method for singular fields is called on a repeated
361 //   field.
362 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
363 //   field.
364 // - The Message object passed to any method is not of the right type for
365 //   this Reflection object (i.e. message.GetReflection() != reflection).
366 //
367 // You might wonder why there is not any abstract representation for a field
368 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
369 // returns "const Field&", where "Field" is some class with accessors like
370 // "GetInt32Value()".  The problem is that someone would have to deal with
371 // allocating these Field objects.  For generated message classes, having to
372 // allocate space for an additional object to wrap every field would at least
373 // double the message's memory footprint, probably worse.  Allocating the
374 // objects on-demand, on the other hand, would be expensive and prone to
375 // memory leaks.  So, instead we ended up with this flat interface.
376 //
377 // TODO(kenton):  Create a utility class which callers can use to read and
378 //   write fields from a Reflection without paying attention to the type.
379 class LIBPROTOBUF_EXPORT Reflection {
380  public:
381   // TODO(kenton):  Remove parameter.
Reflection()382   inline Reflection() {}
383   virtual ~Reflection();
384 
385   // Get the UnknownFieldSet for the message.  This contains fields which
386   // were seen when the Message was parsed but were not recognized according
387   // to the Message's definition.
388   virtual const UnknownFieldSet& GetUnknownFields(
389       const Message& message) const = 0;
390   // Get a mutable pointer to the UnknownFieldSet for the message.  This
391   // contains fields which were seen when the Message was parsed but were not
392   // recognized according to the Message's definition.
393   virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
394 
395   // Estimate the amount of memory used by the message object.
396   virtual int SpaceUsed(const Message& message) const = 0;
397 
398   // Check if the given non-repeated field is set.
399   virtual bool HasField(const Message& message,
400                         const FieldDescriptor* field) const = 0;
401 
402   // Get the number of elements of a repeated field.
403   virtual int FieldSize(const Message& message,
404                         const FieldDescriptor* field) const = 0;
405 
406   // Clear the value of a field, so that HasField() returns false or
407   // FieldSize() returns zero.
408   virtual void ClearField(Message* message,
409                           const FieldDescriptor* field) const = 0;
410 
411   // Remove the last element of a repeated field.
412   // We don't provide a way to remove any element other than the last
413   // because it invites inefficient use, such as O(n^2) filtering loops
414   // that should have been O(n).  If you want to remove an element other
415   // than the last, the best way to do it is to re-arrange the elements
416   // (using Swap()) so that the one you want removed is at the end, then
417   // call RemoveLast().
418   virtual void RemoveLast(Message* message,
419                           const FieldDescriptor* field) const = 0;
420 
421   // Swap the complete contents of two messages.
422   virtual void Swap(Message* message1, Message* message2) const = 0;
423 
424   // Swap two elements of a repeated field.
425   virtual void SwapElements(Message* message,
426                     const FieldDescriptor* field,
427                     int index1,
428                     int index2) const = 0;
429 
430   // List all fields of the message which are currently set.  This includes
431   // extensions.  Singular fields will only be listed if HasField(field) would
432   // return true and repeated fields will only be listed if FieldSize(field)
433   // would return non-zero.  Fields (both normal fields and extension fields)
434   // will be listed ordered by field number.
435   virtual void ListFields(const Message& message,
436                           vector<const FieldDescriptor*>* output) const = 0;
437 
438   // Singular field getters ------------------------------------------
439   // These get the value of a non-repeated field.  They return the default
440   // value for fields that aren't set.
441 
442   virtual int32  GetInt32 (const Message& message,
443                            const FieldDescriptor* field) const = 0;
444   virtual int64  GetInt64 (const Message& message,
445                            const FieldDescriptor* field) const = 0;
446   virtual uint32 GetUInt32(const Message& message,
447                            const FieldDescriptor* field) const = 0;
448   virtual uint64 GetUInt64(const Message& message,
449                            const FieldDescriptor* field) const = 0;
450   virtual float  GetFloat (const Message& message,
451                            const FieldDescriptor* field) const = 0;
452   virtual double GetDouble(const Message& message,
453                            const FieldDescriptor* field) const = 0;
454   virtual bool   GetBool  (const Message& message,
455                            const FieldDescriptor* field) const = 0;
456   virtual string GetString(const Message& message,
457                            const FieldDescriptor* field) const = 0;
458   virtual const EnumValueDescriptor* GetEnum(
459       const Message& message, const FieldDescriptor* field) const = 0;
460   // See MutableMessage() for the meaning of the "factory" parameter.
461   virtual const Message& GetMessage(const Message& message,
462                                     const FieldDescriptor* field,
463                                     MessageFactory* factory = NULL) const = 0;
464 
465   // Get a string value without copying, if possible.
466   //
467   // GetString() necessarily returns a copy of the string.  This can be
468   // inefficient when the string is already stored in a string object in the
469   // underlying message.  GetStringReference() will return a reference to the
470   // underlying string in this case.  Otherwise, it will copy the string into
471   // *scratch and return that.
472   //
473   // Note:  It is perfectly reasonable and useful to write code like:
474   //     str = reflection->GetStringReference(field, &str);
475   //   This line would ensure that only one copy of the string is made
476   //   regardless of the field's underlying representation.  When initializing
477   //   a newly-constructed string, though, it's just as fast and more readable
478   //   to use code like:
479   //     string str = reflection->GetString(field);
480   virtual const string& GetStringReference(const Message& message,
481                                            const FieldDescriptor* field,
482                                            string* scratch) const = 0;
483 
484 
485   // Singular field mutators -----------------------------------------
486   // These mutate the value of a non-repeated field.
487 
488   virtual void SetInt32 (Message* message,
489                          const FieldDescriptor* field, int32  value) const = 0;
490   virtual void SetInt64 (Message* message,
491                          const FieldDescriptor* field, int64  value) const = 0;
492   virtual void SetUInt32(Message* message,
493                          const FieldDescriptor* field, uint32 value) const = 0;
494   virtual void SetUInt64(Message* message,
495                          const FieldDescriptor* field, uint64 value) const = 0;
496   virtual void SetFloat (Message* message,
497                          const FieldDescriptor* field, float  value) const = 0;
498   virtual void SetDouble(Message* message,
499                          const FieldDescriptor* field, double value) const = 0;
500   virtual void SetBool  (Message* message,
501                          const FieldDescriptor* field, bool   value) const = 0;
502   virtual void SetString(Message* message,
503                          const FieldDescriptor* field,
504                          const string& value) const = 0;
505   virtual void SetEnum  (Message* message,
506                          const FieldDescriptor* field,
507                          const EnumValueDescriptor* value) const = 0;
508   // Get a mutable pointer to a field with a message type.  If a MessageFactory
509   // is provided, it will be used to construct instances of the sub-message;
510   // otherwise, the default factory is used.  If the field is an extension that
511   // does not live in the same pool as the containing message's descriptor (e.g.
512   // it lives in an overlay pool), then a MessageFactory must be provided.
513   // If you have no idea what that meant, then you probably don't need to worry
514   // about it (don't provide a MessageFactory).  WARNING:  If the
515   // FieldDescriptor is for a compiled-in extension, then
516   // factory->GetPrototype(field->message_type() MUST return an instance of the
517   // compiled-in class for this type, NOT DynamicMessage.
518   virtual Message* MutableMessage(Message* message,
519                                   const FieldDescriptor* field,
520                                   MessageFactory* factory = NULL) const = 0;
521 
522 
523   // Repeated field getters ------------------------------------------
524   // These get the value of one element of a repeated field.
525 
526   virtual int32  GetRepeatedInt32 (const Message& message,
527                                    const FieldDescriptor* field,
528                                    int index) const = 0;
529   virtual int64  GetRepeatedInt64 (const Message& message,
530                                    const FieldDescriptor* field,
531                                    int index) const = 0;
532   virtual uint32 GetRepeatedUInt32(const Message& message,
533                                    const FieldDescriptor* field,
534                                    int index) const = 0;
535   virtual uint64 GetRepeatedUInt64(const Message& message,
536                                    const FieldDescriptor* field,
537                                    int index) const = 0;
538   virtual float  GetRepeatedFloat (const Message& message,
539                                    const FieldDescriptor* field,
540                                    int index) const = 0;
541   virtual double GetRepeatedDouble(const Message& message,
542                                    const FieldDescriptor* field,
543                                    int index) const = 0;
544   virtual bool   GetRepeatedBool  (const Message& message,
545                                    const FieldDescriptor* field,
546                                    int index) const = 0;
547   virtual string GetRepeatedString(const Message& message,
548                                    const FieldDescriptor* field,
549                                    int index) const = 0;
550   virtual const EnumValueDescriptor* GetRepeatedEnum(
551       const Message& message,
552       const FieldDescriptor* field, int index) const = 0;
553   virtual const Message& GetRepeatedMessage(
554       const Message& message,
555       const FieldDescriptor* field, int index) const = 0;
556 
557   // See GetStringReference(), above.
558   virtual const string& GetRepeatedStringReference(
559       const Message& message, const FieldDescriptor* field,
560       int index, string* scratch) const = 0;
561 
562 
563   // Repeated field mutators -----------------------------------------
564   // These mutate the value of one element of a repeated field.
565 
566   virtual void SetRepeatedInt32 (Message* message,
567                                  const FieldDescriptor* field,
568                                  int index, int32  value) const = 0;
569   virtual void SetRepeatedInt64 (Message* message,
570                                  const FieldDescriptor* field,
571                                  int index, int64  value) const = 0;
572   virtual void SetRepeatedUInt32(Message* message,
573                                  const FieldDescriptor* field,
574                                  int index, uint32 value) const = 0;
575   virtual void SetRepeatedUInt64(Message* message,
576                                  const FieldDescriptor* field,
577                                  int index, uint64 value) const = 0;
578   virtual void SetRepeatedFloat (Message* message,
579                                  const FieldDescriptor* field,
580                                  int index, float  value) const = 0;
581   virtual void SetRepeatedDouble(Message* message,
582                                  const FieldDescriptor* field,
583                                  int index, double value) const = 0;
584   virtual void SetRepeatedBool  (Message* message,
585                                  const FieldDescriptor* field,
586                                  int index, bool   value) const = 0;
587   virtual void SetRepeatedString(Message* message,
588                                  const FieldDescriptor* field,
589                                  int index, const string& value) const = 0;
590   virtual void SetRepeatedEnum(Message* message,
591                                const FieldDescriptor* field, int index,
592                                const EnumValueDescriptor* value) const = 0;
593   // Get a mutable pointer to an element of a repeated field with a message
594   // type.
595   virtual Message* MutableRepeatedMessage(
596       Message* message, const FieldDescriptor* field, int index) const = 0;
597 
598 
599   // Repeated field adders -------------------------------------------
600   // These add an element to a repeated field.
601 
602   virtual void AddInt32 (Message* message,
603                          const FieldDescriptor* field, int32  value) const = 0;
604   virtual void AddInt64 (Message* message,
605                          const FieldDescriptor* field, int64  value) const = 0;
606   virtual void AddUInt32(Message* message,
607                          const FieldDescriptor* field, uint32 value) const = 0;
608   virtual void AddUInt64(Message* message,
609                          const FieldDescriptor* field, uint64 value) const = 0;
610   virtual void AddFloat (Message* message,
611                          const FieldDescriptor* field, float  value) const = 0;
612   virtual void AddDouble(Message* message,
613                          const FieldDescriptor* field, double value) const = 0;
614   virtual void AddBool  (Message* message,
615                          const FieldDescriptor* field, bool   value) const = 0;
616   virtual void AddString(Message* message,
617                          const FieldDescriptor* field,
618                          const string& value) const = 0;
619   virtual void AddEnum  (Message* message,
620                          const FieldDescriptor* field,
621                          const EnumValueDescriptor* value) const = 0;
622   // See MutableMessage() for comments on the "factory" parameter.
623   virtual Message* AddMessage(Message* message,
624                               const FieldDescriptor* field,
625                               MessageFactory* factory = NULL) const = 0;
626 
627 
628   // Extensions ------------------------------------------------------
629 
630   // Try to find an extension of this message type by fully-qualified field
631   // name.  Returns NULL if no extension is known for this name or number.
632   virtual const FieldDescriptor* FindKnownExtensionByName(
633       const string& name) const = 0;
634 
635   // Try to find an extension of this message type by field number.
636   // Returns NULL if no extension is known for this name or number.
637   virtual const FieldDescriptor* FindKnownExtensionByNumber(
638       int number) const = 0;
639 
640  private:
641   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
642 };
643 
644 // Abstract interface for a factory for message objects.
645 class LIBPROTOBUF_EXPORT MessageFactory {
646  public:
MessageFactory()647   inline MessageFactory() {}
648   virtual ~MessageFactory();
649 
650   // Given a Descriptor, gets or constructs the default (prototype) Message
651   // of that type.  You can then call that message's New() method to construct
652   // a mutable message of that type.
653   //
654   // Calling this method twice with the same Descriptor returns the same
655   // object.  The returned object remains property of the factory.  Also, any
656   // objects created by calling the prototype's New() method share some data
657   // with the prototype, so these must be destoyed before the MessageFactory
658   // is destroyed.
659   //
660   // The given descriptor must outlive the returned message, and hence must
661   // outlive the MessageFactory.
662   //
663   // Some implementations do not support all types.  GetPrototype() will
664   // return NULL if the descriptor passed in is not supported.
665   //
666   // This method may or may not be thread-safe depending on the implementation.
667   // Each implementation should document its own degree thread-safety.
668   virtual const Message* GetPrototype(const Descriptor* type) = 0;
669 
670   // Gets a MessageFactory which supports all generated, compiled-in messages.
671   // In other words, for any compiled-in type FooMessage, the following is true:
672   //   MessageFactory::generated_factory()->GetPrototype(
673   //     FooMessage::descriptor()) == FooMessage::default_instance()
674   // This factory supports all types which are found in
675   // DescriptorPool::generated_pool().  If given a descriptor from any other
676   // pool, GetPrototype() will return NULL.  (You can also check if a
677   // descriptor is for a generated message by checking if
678   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
679   //
680   // This factory is 100% thread-safe; calling GetPrototype() does not modify
681   // any shared data.
682   //
683   // This factory is a singleton.  The caller must not delete the object.
684   static MessageFactory* generated_factory();
685 
686   // For internal use only:  Registers a .proto file at static initialization
687   // time, to be placed in generated_factory.  The first time GetPrototype()
688   // is called with a descriptor from this file, |register_messages| will be
689   // called, with the file name as the parameter.  It must call
690   // InternalRegisterGeneratedMessage() (below) to register each message type
691   // in the file.  This strange mechanism is necessary because descriptors are
692   // built lazily, so we can't register types by their descriptor until we
693   // know that the descriptor exists.  |filename| must be a permanent string.
694   static void InternalRegisterGeneratedFile(
695       const char* filename, void (*register_messages)(const string&));
696 
697   // For internal use only:  Registers a message type.  Called only by the
698   // functions which are registered with InternalRegisterGeneratedFile(),
699   // above.
700   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
701                                                const Message* prototype);
702 
703  private:
704   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
705 };
706 
707 }  // namespace protobuf
708 
709 }  // namespace google
710 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
711