1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // http://code.google.com/p/protobuf/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects. Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 // message Foo {
45 // optional string text = 1;
46 // repeated int32 numbers = 2;
47 // }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 // string data; // Will store a serialized version of the message.
53 //
54 // {
55 // // Create a message and serialize it.
56 // Foo foo;
57 // foo.set_text("Hello World!");
58 // foo.add_numbers(1);
59 // foo.add_numbers(5);
60 // foo.add_numbers(42);
61 //
62 // foo.SerializeToString(&data);
63 // }
64 //
65 // {
66 // // Parse the serialized message and check that it contains the
67 // // correct data.
68 // Foo foo;
69 // foo.ParseFromString(data);
70 //
71 // assert(foo.text() == "Hello World!");
72 // assert(foo.numbers_size() == 3);
73 // assert(foo.numbers(0) == 1);
74 // assert(foo.numbers(1) == 5);
75 // assert(foo.numbers(2) == 42);
76 // }
77 //
78 // {
79 // // Same as the last block, but do it dynamically via the Message
80 // // reflection interface.
81 // Message* foo = new Foo;
82 // Descriptor* descriptor = foo->GetDescriptor();
83 //
84 // // Get the descriptors for the fields we're interested in and verify
85 // // their types.
86 // FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 // assert(text_field != NULL);
88 // assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 // assert(text_field->label() == FieldDescriptor::TYPE_OPTIONAL);
90 // FieldDescriptor* numbers_field = descriptor->FindFieldByName("numbers");
91 // assert(numbers_field != NULL);
92 // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
93 // assert(numbers_field->label() == FieldDescriptor::TYPE_REPEATED);
94 //
95 // // Parse the message.
96 // foo->ParseFromString(data);
97 //
98 // // Use the reflection interface to examine the contents.
99 // const Reflection* reflection = foo->GetReflection();
100 // assert(reflection->GetString(foo, text_field) == "Hello World!");
101 // assert(reflection->FieldSize(foo, numbers_field) == 3);
102 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
103 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
104 // assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
105 //
106 // delete foo;
107 // }
108
109 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
110 #define GOOGLE_PROTOBUF_MESSAGE_H__
111
112 #include <vector>
113 #include <string>
114
115 #ifdef __DECCXX
116 // HP C++'s iosfwd doesn't work.
117 #include <iostream>
118 #else
119 #include <iosfwd>
120 #endif
121
122 #include <google/protobuf/message_lite.h>
123
124 #include <google/protobuf/stubs/common.h>
125
126 #if defined(_WIN32) && defined(GetMessage)
127 // windows.h defines GetMessage() as a macro. Let's re-define it as an inline
128 // function. This is necessary because Reflection has a method called
129 // GetMessage() which we don't want overridden. The inline function should be
130 // equivalent for C++ users.
GetMessage_Win32(LPMSG lpMsg,HWND hWnd,UINT wMsgFilterMin,UINT wMsgFilterMax)131 inline BOOL GetMessage_Win32(
132 LPMSG lpMsg, HWND hWnd,
133 UINT wMsgFilterMin, UINT wMsgFilterMax) {
134 return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
135 }
136 #undef GetMessage
GetMessage(LPMSG lpMsg,HWND hWnd,UINT wMsgFilterMin,UINT wMsgFilterMax)137 inline BOOL GetMessage(
138 LPMSG lpMsg, HWND hWnd,
139 UINT wMsgFilterMin, UINT wMsgFilterMax) {
140 return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
141 }
142 #endif
143
144
145 namespace google {
146 namespace protobuf {
147
148 // Defined in this file.
149 class Message;
150 class Reflection;
151 class MessageFactory;
152
153 // Defined in other files.
154 class Descriptor; // descriptor.h
155 class FieldDescriptor; // descriptor.h
156 class EnumDescriptor; // descriptor.h
157 class EnumValueDescriptor; // descriptor.h
158 namespace io {
159 class ZeroCopyInputStream; // zero_copy_stream.h
160 class ZeroCopyOutputStream; // zero_copy_stream.h
161 class CodedInputStream; // coded_stream.h
162 class CodedOutputStream; // coded_stream.h
163 }
164 class UnknownFieldSet; // unknown_field_set.h
165
166 // A container to hold message metadata.
167 struct Metadata {
168 const Descriptor* descriptor;
169 const Reflection* reflection;
170 };
171
172 // Returns the EnumDescriptor for enum type E, which must be a
173 // proto-declared enum type. Code generated by the protocol compiler
174 // will include specializations of this template for each enum type declared.
175 template <typename E>
176 const EnumDescriptor* GetEnumDescriptor();
177
178 // Abstract interface for protocol messages.
179 //
180 // See also MessageLite, which contains most every-day operations. Message
181 // adds descriptors and reflection on top of that.
182 //
183 // The methods of this class that are virtual but not pure-virtual have
184 // default implementations based on reflection. Message classes which are
185 // optimized for speed will want to override these with faster implementations,
186 // but classes optimized for code size may be happy with keeping them. See
187 // the optimize_for option in descriptor.proto.
188 class LIBPROTOBUF_EXPORT Message : public MessageLite {
189 public:
Message()190 inline Message() {}
191 virtual ~Message();
192
193 // Basic Operations ------------------------------------------------
194
195 // Construct a new instance of the same type. Ownership is passed to the
196 // caller. (This is also defined in MessageLite, but is defined again here
197 // for return-type covariance.)
198 virtual Message* New() const = 0;
199
200 // Make this message into a copy of the given message. The given message
201 // must have the same descriptor, but need not necessarily be the same class.
202 // By default this is just implemented as "Clear(); MergeFrom(from);".
203 virtual void CopyFrom(const Message& from);
204
205 // Merge the fields from the given message into this message. Singular
206 // fields will be overwritten, except for embedded messages which will
207 // be merged. Repeated fields will be concatenated. The given message
208 // must be of the same type as this message (i.e. the exact same class).
209 virtual void MergeFrom(const Message& from);
210
211 // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
212 // a nice error message.
213 void CheckInitialized() const;
214
215 // Slowly build a list of all required fields that are not set.
216 // This is much, much slower than IsInitialized() as it is implemented
217 // purely via reflection. Generally, you should not call this unless you
218 // have already determined that an error exists by calling IsInitialized().
219 void FindInitializationErrors(vector<string>* errors) const;
220
221 // Like FindInitializationErrors, but joins all the strings, delimited by
222 // commas, and returns them.
223 string InitializationErrorString() const;
224
225 // Clears all unknown fields from this message and all embedded messages.
226 // Normally, if unknown tag numbers are encountered when parsing a message,
227 // the tag and value are stored in the message's UnknownFieldSet and
228 // then written back out when the message is serialized. This allows servers
229 // which simply route messages to other servers to pass through messages
230 // that have new field definitions which they don't yet know about. However,
231 // this behavior can have security implications. To avoid it, call this
232 // method after parsing.
233 //
234 // See Reflection::GetUnknownFields() for more on unknown fields.
235 virtual void DiscardUnknownFields();
236
237 // Computes (an estimate of) the total number of bytes currently used for
238 // storing the message in memory. The default implementation calls the
239 // Reflection object's SpaceUsed() method.
240 virtual int SpaceUsed() const;
241
242 // Debugging & Testing----------------------------------------------
243
244 // Generates a human readable form of this message, useful for debugging
245 // and other purposes.
246 string DebugString() const;
247 // Like DebugString(), but with less whitespace.
248 string ShortDebugString() const;
249 // Like DebugString(), but do not escape UTF-8 byte sequences.
250 string Utf8DebugString() const;
251 // Convenience function useful in GDB. Prints DebugString() to stdout.
252 void PrintDebugString() const;
253
254 // Heavy I/O -------------------------------------------------------
255 // Additional parsing and serialization methods not implemented by
256 // MessageLite because they are not supported by the lite library.
257
258 // Parse a protocol buffer from a file descriptor. If successful, the entire
259 // input will be consumed.
260 bool ParseFromFileDescriptor(int file_descriptor);
261 // Like ParseFromFileDescriptor(), but accepts messages that are missing
262 // required fields.
263 bool ParsePartialFromFileDescriptor(int file_descriptor);
264 // Parse a protocol buffer from a C++ istream. If successful, the entire
265 // input will be consumed.
266 bool ParseFromIstream(istream* input);
267 // Like ParseFromIstream(), but accepts messages that are missing
268 // required fields.
269 bool ParsePartialFromIstream(istream* input);
270
271 // Serialize the message and write it to the given file descriptor. All
272 // required fields must be set.
273 bool SerializeToFileDescriptor(int file_descriptor) const;
274 // Like SerializeToFileDescriptor(), but allows missing required fields.
275 bool SerializePartialToFileDescriptor(int file_descriptor) const;
276 // Serialize the message and write it to the given C++ ostream. All
277 // required fields must be set.
278 bool SerializeToOstream(ostream* output) const;
279 // Like SerializeToOstream(), but allows missing required fields.
280 bool SerializePartialToOstream(ostream* output) const;
281
282
283 // Reflection-based methods ----------------------------------------
284 // These methods are pure-virtual in MessageLite, but Message provides
285 // reflection-based default implementations.
286
287 virtual string GetTypeName() const;
288 virtual void Clear();
289 virtual bool IsInitialized() const;
290 virtual void CheckTypeAndMergeFrom(const MessageLite& other);
291 virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
292 virtual int ByteSize() const;
293 virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
294
295 private:
296 // This is called only by the default implementation of ByteSize(), to
297 // update the cached size. If you override ByteSize(), you do not need
298 // to override this. If you do not override ByteSize(), you MUST override
299 // this; the default implementation will crash.
300 //
301 // The method is private because subclasses should never call it; only
302 // override it. Yes, C++ lets you do that. Crazy, huh?
303 virtual void SetCachedSize(int size) const;
304
305 public:
306
307 // Introspection ---------------------------------------------------
308
309 // Typedef for backwards-compatibility.
310 typedef google::protobuf::Reflection Reflection;
311
312 // Get a Descriptor for this message's type. This describes what
313 // fields the message contains, the types of those fields, etc.
GetDescriptor()314 const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
315
316 // Get the Reflection interface for this Message, which can be used to
317 // read and modify the fields of the Message dynamically (in other words,
318 // without knowing the message type at compile time). This object remains
319 // property of the Message.
320 //
321 // This method remains virtual in case a subclass does not implement
322 // reflection and wants to override the default behavior.
GetReflection()323 virtual const Reflection* GetReflection() const {
324 return GetMetadata().reflection;
325 }
326
327 protected:
328 // Get a struct containing the metadata for the Message. Most subclasses only
329 // need to implement this method, rather than the GetDescriptor() and
330 // GetReflection() wrappers.
331 virtual Metadata GetMetadata() const = 0;
332
333
334 private:
335 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
336 };
337
338 // This interface contains methods that can be used to dynamically access
339 // and modify the fields of a protocol message. Their semantics are
340 // similar to the accessors the protocol compiler generates.
341 //
342 // To get the Reflection for a given Message, call Message::GetReflection().
343 //
344 // This interface is separate from Message only for efficiency reasons;
345 // the vast majority of implementations of Message will share the same
346 // implementation of Reflection (GeneratedMessageReflection,
347 // defined in generated_message.h), and all Messages of a particular class
348 // should share the same Reflection object (though you should not rely on
349 // the latter fact).
350 //
351 // There are several ways that these methods can be used incorrectly. For
352 // example, any of the following conditions will lead to undefined
353 // results (probably assertion failures):
354 // - The FieldDescriptor is not a field of this message type.
355 // - The method called is not appropriate for the field's type. For
356 // each field type in FieldDescriptor::TYPE_*, there is only one
357 // Get*() method, one Set*() method, and one Add*() method that is
358 // valid for that type. It should be obvious which (except maybe
359 // for TYPE_BYTES, which are represented using strings in C++).
360 // - A Get*() or Set*() method for singular fields is called on a repeated
361 // field.
362 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
363 // field.
364 // - The Message object passed to any method is not of the right type for
365 // this Reflection object (i.e. message.GetReflection() != reflection).
366 //
367 // You might wonder why there is not any abstract representation for a field
368 // of arbitrary type. E.g., why isn't there just a "GetField()" method that
369 // returns "const Field&", where "Field" is some class with accessors like
370 // "GetInt32Value()". The problem is that someone would have to deal with
371 // allocating these Field objects. For generated message classes, having to
372 // allocate space for an additional object to wrap every field would at least
373 // double the message's memory footprint, probably worse. Allocating the
374 // objects on-demand, on the other hand, would be expensive and prone to
375 // memory leaks. So, instead we ended up with this flat interface.
376 //
377 // TODO(kenton): Create a utility class which callers can use to read and
378 // write fields from a Reflection without paying attention to the type.
379 class LIBPROTOBUF_EXPORT Reflection {
380 public:
381 // TODO(kenton): Remove parameter.
Reflection()382 inline Reflection() {}
383 virtual ~Reflection();
384
385 // Get the UnknownFieldSet for the message. This contains fields which
386 // were seen when the Message was parsed but were not recognized according
387 // to the Message's definition.
388 virtual const UnknownFieldSet& GetUnknownFields(
389 const Message& message) const = 0;
390 // Get a mutable pointer to the UnknownFieldSet for the message. This
391 // contains fields which were seen when the Message was parsed but were not
392 // recognized according to the Message's definition.
393 virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
394
395 // Estimate the amount of memory used by the message object.
396 virtual int SpaceUsed(const Message& message) const = 0;
397
398 // Check if the given non-repeated field is set.
399 virtual bool HasField(const Message& message,
400 const FieldDescriptor* field) const = 0;
401
402 // Get the number of elements of a repeated field.
403 virtual int FieldSize(const Message& message,
404 const FieldDescriptor* field) const = 0;
405
406 // Clear the value of a field, so that HasField() returns false or
407 // FieldSize() returns zero.
408 virtual void ClearField(Message* message,
409 const FieldDescriptor* field) const = 0;
410
411 // Remove the last element of a repeated field.
412 // We don't provide a way to remove any element other than the last
413 // because it invites inefficient use, such as O(n^2) filtering loops
414 // that should have been O(n). If you want to remove an element other
415 // than the last, the best way to do it is to re-arrange the elements
416 // (using Swap()) so that the one you want removed is at the end, then
417 // call RemoveLast().
418 virtual void RemoveLast(Message* message,
419 const FieldDescriptor* field) const = 0;
420
421 // Swap the complete contents of two messages.
422 virtual void Swap(Message* message1, Message* message2) const = 0;
423
424 // Swap two elements of a repeated field.
425 virtual void SwapElements(Message* message,
426 const FieldDescriptor* field,
427 int index1,
428 int index2) const = 0;
429
430 // List all fields of the message which are currently set. This includes
431 // extensions. Singular fields will only be listed if HasField(field) would
432 // return true and repeated fields will only be listed if FieldSize(field)
433 // would return non-zero. Fields (both normal fields and extension fields)
434 // will be listed ordered by field number.
435 virtual void ListFields(const Message& message,
436 vector<const FieldDescriptor*>* output) const = 0;
437
438 // Singular field getters ------------------------------------------
439 // These get the value of a non-repeated field. They return the default
440 // value for fields that aren't set.
441
442 virtual int32 GetInt32 (const Message& message,
443 const FieldDescriptor* field) const = 0;
444 virtual int64 GetInt64 (const Message& message,
445 const FieldDescriptor* field) const = 0;
446 virtual uint32 GetUInt32(const Message& message,
447 const FieldDescriptor* field) const = 0;
448 virtual uint64 GetUInt64(const Message& message,
449 const FieldDescriptor* field) const = 0;
450 virtual float GetFloat (const Message& message,
451 const FieldDescriptor* field) const = 0;
452 virtual double GetDouble(const Message& message,
453 const FieldDescriptor* field) const = 0;
454 virtual bool GetBool (const Message& message,
455 const FieldDescriptor* field) const = 0;
456 virtual string GetString(const Message& message,
457 const FieldDescriptor* field) const = 0;
458 virtual const EnumValueDescriptor* GetEnum(
459 const Message& message, const FieldDescriptor* field) const = 0;
460 // See MutableMessage() for the meaning of the "factory" parameter.
461 virtual const Message& GetMessage(const Message& message,
462 const FieldDescriptor* field,
463 MessageFactory* factory = NULL) const = 0;
464
465 // Get a string value without copying, if possible.
466 //
467 // GetString() necessarily returns a copy of the string. This can be
468 // inefficient when the string is already stored in a string object in the
469 // underlying message. GetStringReference() will return a reference to the
470 // underlying string in this case. Otherwise, it will copy the string into
471 // *scratch and return that.
472 //
473 // Note: It is perfectly reasonable and useful to write code like:
474 // str = reflection->GetStringReference(field, &str);
475 // This line would ensure that only one copy of the string is made
476 // regardless of the field's underlying representation. When initializing
477 // a newly-constructed string, though, it's just as fast and more readable
478 // to use code like:
479 // string str = reflection->GetString(field);
480 virtual const string& GetStringReference(const Message& message,
481 const FieldDescriptor* field,
482 string* scratch) const = 0;
483
484
485 // Singular field mutators -----------------------------------------
486 // These mutate the value of a non-repeated field.
487
488 virtual void SetInt32 (Message* message,
489 const FieldDescriptor* field, int32 value) const = 0;
490 virtual void SetInt64 (Message* message,
491 const FieldDescriptor* field, int64 value) const = 0;
492 virtual void SetUInt32(Message* message,
493 const FieldDescriptor* field, uint32 value) const = 0;
494 virtual void SetUInt64(Message* message,
495 const FieldDescriptor* field, uint64 value) const = 0;
496 virtual void SetFloat (Message* message,
497 const FieldDescriptor* field, float value) const = 0;
498 virtual void SetDouble(Message* message,
499 const FieldDescriptor* field, double value) const = 0;
500 virtual void SetBool (Message* message,
501 const FieldDescriptor* field, bool value) const = 0;
502 virtual void SetString(Message* message,
503 const FieldDescriptor* field,
504 const string& value) const = 0;
505 virtual void SetEnum (Message* message,
506 const FieldDescriptor* field,
507 const EnumValueDescriptor* value) const = 0;
508 // Get a mutable pointer to a field with a message type. If a MessageFactory
509 // is provided, it will be used to construct instances of the sub-message;
510 // otherwise, the default factory is used. If the field is an extension that
511 // does not live in the same pool as the containing message's descriptor (e.g.
512 // it lives in an overlay pool), then a MessageFactory must be provided.
513 // If you have no idea what that meant, then you probably don't need to worry
514 // about it (don't provide a MessageFactory). WARNING: If the
515 // FieldDescriptor is for a compiled-in extension, then
516 // factory->GetPrototype(field->message_type() MUST return an instance of the
517 // compiled-in class for this type, NOT DynamicMessage.
518 virtual Message* MutableMessage(Message* message,
519 const FieldDescriptor* field,
520 MessageFactory* factory = NULL) const = 0;
521
522
523 // Repeated field getters ------------------------------------------
524 // These get the value of one element of a repeated field.
525
526 virtual int32 GetRepeatedInt32 (const Message& message,
527 const FieldDescriptor* field,
528 int index) const = 0;
529 virtual int64 GetRepeatedInt64 (const Message& message,
530 const FieldDescriptor* field,
531 int index) const = 0;
532 virtual uint32 GetRepeatedUInt32(const Message& message,
533 const FieldDescriptor* field,
534 int index) const = 0;
535 virtual uint64 GetRepeatedUInt64(const Message& message,
536 const FieldDescriptor* field,
537 int index) const = 0;
538 virtual float GetRepeatedFloat (const Message& message,
539 const FieldDescriptor* field,
540 int index) const = 0;
541 virtual double GetRepeatedDouble(const Message& message,
542 const FieldDescriptor* field,
543 int index) const = 0;
544 virtual bool GetRepeatedBool (const Message& message,
545 const FieldDescriptor* field,
546 int index) const = 0;
547 virtual string GetRepeatedString(const Message& message,
548 const FieldDescriptor* field,
549 int index) const = 0;
550 virtual const EnumValueDescriptor* GetRepeatedEnum(
551 const Message& message,
552 const FieldDescriptor* field, int index) const = 0;
553 virtual const Message& GetRepeatedMessage(
554 const Message& message,
555 const FieldDescriptor* field, int index) const = 0;
556
557 // See GetStringReference(), above.
558 virtual const string& GetRepeatedStringReference(
559 const Message& message, const FieldDescriptor* field,
560 int index, string* scratch) const = 0;
561
562
563 // Repeated field mutators -----------------------------------------
564 // These mutate the value of one element of a repeated field.
565
566 virtual void SetRepeatedInt32 (Message* message,
567 const FieldDescriptor* field,
568 int index, int32 value) const = 0;
569 virtual void SetRepeatedInt64 (Message* message,
570 const FieldDescriptor* field,
571 int index, int64 value) const = 0;
572 virtual void SetRepeatedUInt32(Message* message,
573 const FieldDescriptor* field,
574 int index, uint32 value) const = 0;
575 virtual void SetRepeatedUInt64(Message* message,
576 const FieldDescriptor* field,
577 int index, uint64 value) const = 0;
578 virtual void SetRepeatedFloat (Message* message,
579 const FieldDescriptor* field,
580 int index, float value) const = 0;
581 virtual void SetRepeatedDouble(Message* message,
582 const FieldDescriptor* field,
583 int index, double value) const = 0;
584 virtual void SetRepeatedBool (Message* message,
585 const FieldDescriptor* field,
586 int index, bool value) const = 0;
587 virtual void SetRepeatedString(Message* message,
588 const FieldDescriptor* field,
589 int index, const string& value) const = 0;
590 virtual void SetRepeatedEnum(Message* message,
591 const FieldDescriptor* field, int index,
592 const EnumValueDescriptor* value) const = 0;
593 // Get a mutable pointer to an element of a repeated field with a message
594 // type.
595 virtual Message* MutableRepeatedMessage(
596 Message* message, const FieldDescriptor* field, int index) const = 0;
597
598
599 // Repeated field adders -------------------------------------------
600 // These add an element to a repeated field.
601
602 virtual void AddInt32 (Message* message,
603 const FieldDescriptor* field, int32 value) const = 0;
604 virtual void AddInt64 (Message* message,
605 const FieldDescriptor* field, int64 value) const = 0;
606 virtual void AddUInt32(Message* message,
607 const FieldDescriptor* field, uint32 value) const = 0;
608 virtual void AddUInt64(Message* message,
609 const FieldDescriptor* field, uint64 value) const = 0;
610 virtual void AddFloat (Message* message,
611 const FieldDescriptor* field, float value) const = 0;
612 virtual void AddDouble(Message* message,
613 const FieldDescriptor* field, double value) const = 0;
614 virtual void AddBool (Message* message,
615 const FieldDescriptor* field, bool value) const = 0;
616 virtual void AddString(Message* message,
617 const FieldDescriptor* field,
618 const string& value) const = 0;
619 virtual void AddEnum (Message* message,
620 const FieldDescriptor* field,
621 const EnumValueDescriptor* value) const = 0;
622 // See MutableMessage() for comments on the "factory" parameter.
623 virtual Message* AddMessage(Message* message,
624 const FieldDescriptor* field,
625 MessageFactory* factory = NULL) const = 0;
626
627
628 // Extensions ------------------------------------------------------
629
630 // Try to find an extension of this message type by fully-qualified field
631 // name. Returns NULL if no extension is known for this name or number.
632 virtual const FieldDescriptor* FindKnownExtensionByName(
633 const string& name) const = 0;
634
635 // Try to find an extension of this message type by field number.
636 // Returns NULL if no extension is known for this name or number.
637 virtual const FieldDescriptor* FindKnownExtensionByNumber(
638 int number) const = 0;
639
640 private:
641 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
642 };
643
644 // Abstract interface for a factory for message objects.
645 class LIBPROTOBUF_EXPORT MessageFactory {
646 public:
MessageFactory()647 inline MessageFactory() {}
648 virtual ~MessageFactory();
649
650 // Given a Descriptor, gets or constructs the default (prototype) Message
651 // of that type. You can then call that message's New() method to construct
652 // a mutable message of that type.
653 //
654 // Calling this method twice with the same Descriptor returns the same
655 // object. The returned object remains property of the factory. Also, any
656 // objects created by calling the prototype's New() method share some data
657 // with the prototype, so these must be destoyed before the MessageFactory
658 // is destroyed.
659 //
660 // The given descriptor must outlive the returned message, and hence must
661 // outlive the MessageFactory.
662 //
663 // Some implementations do not support all types. GetPrototype() will
664 // return NULL if the descriptor passed in is not supported.
665 //
666 // This method may or may not be thread-safe depending on the implementation.
667 // Each implementation should document its own degree thread-safety.
668 virtual const Message* GetPrototype(const Descriptor* type) = 0;
669
670 // Gets a MessageFactory which supports all generated, compiled-in messages.
671 // In other words, for any compiled-in type FooMessage, the following is true:
672 // MessageFactory::generated_factory()->GetPrototype(
673 // FooMessage::descriptor()) == FooMessage::default_instance()
674 // This factory supports all types which are found in
675 // DescriptorPool::generated_pool(). If given a descriptor from any other
676 // pool, GetPrototype() will return NULL. (You can also check if a
677 // descriptor is for a generated message by checking if
678 // descriptor->file()->pool() == DescriptorPool::generated_pool().)
679 //
680 // This factory is 100% thread-safe; calling GetPrototype() does not modify
681 // any shared data.
682 //
683 // This factory is a singleton. The caller must not delete the object.
684 static MessageFactory* generated_factory();
685
686 // For internal use only: Registers a .proto file at static initialization
687 // time, to be placed in generated_factory. The first time GetPrototype()
688 // is called with a descriptor from this file, |register_messages| will be
689 // called, with the file name as the parameter. It must call
690 // InternalRegisterGeneratedMessage() (below) to register each message type
691 // in the file. This strange mechanism is necessary because descriptors are
692 // built lazily, so we can't register types by their descriptor until we
693 // know that the descriptor exists. |filename| must be a permanent string.
694 static void InternalRegisterGeneratedFile(
695 const char* filename, void (*register_messages)(const string&));
696
697 // For internal use only: Registers a message type. Called only by the
698 // functions which are registered with InternalRegisterGeneratedFile(),
699 // above.
700 static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
701 const Message* prototype);
702
703 private:
704 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
705 };
706
707 } // namespace protobuf
708
709 } // namespace google
710 #endif // GOOGLE_PROTOBUF_MESSAGE_H__
711