1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/AST/Attr.h"
11 #include "clang/AST/CXXInheritance.h"
12 #include "clang/AST/Decl.h"
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/RecordLayout.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/SemaDiagnostic.h"
19 #include "llvm/Support/Format.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/CrashRecoveryContext.h"
23
24 using namespace clang;
25
26 namespace {
27
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
42
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
45
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
55 };
56
57 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
58 /// offsets while laying out a C++ class.
59 class EmptySubobjectMap {
60 const ASTContext &Context;
61 uint64_t CharWidth;
62
63 /// Class - The class whose empty entries we're keeping track of.
64 const CXXRecordDecl *Class;
65
66 /// EmptyClassOffsets - A map from offsets to empty record decls.
67 typedef SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
68 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
69 EmptyClassOffsetsMapTy EmptyClassOffsets;
70
71 /// MaxEmptyClassOffset - The highest offset known to contain an empty
72 /// base subobject.
73 CharUnits MaxEmptyClassOffset;
74
75 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
76 /// member subobject that is empty.
77 void ComputeEmptySubobjectSizes();
78
79 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
80
81 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
82 CharUnits Offset, bool PlacingEmptyBase);
83
84 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
85 const CXXRecordDecl *Class,
86 CharUnits Offset);
87 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
88
89 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
90 /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const91 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
92 return Offset <= MaxEmptyClassOffset;
93 }
94
95 CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const96 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
97 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
98 assert(FieldOffset % CharWidth == 0 &&
99 "Field offset not at char boundary!");
100
101 return Context.toCharUnitsFromBits(FieldOffset);
102 }
103
104 protected:
105 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
106 CharUnits Offset) const;
107
108 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
109 CharUnits Offset);
110
111 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
112 const CXXRecordDecl *Class,
113 CharUnits Offset) const;
114 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
115 CharUnits Offset) const;
116
117 public:
118 /// This holds the size of the largest empty subobject (either a base
119 /// or a member). Will be zero if the record being built doesn't contain
120 /// any empty classes.
121 CharUnits SizeOfLargestEmptySubobject;
122
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)123 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
124 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
125 ComputeEmptySubobjectSizes();
126 }
127
128 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
129 /// at the given offset.
130 /// Returns false if placing the record will result in two components
131 /// (direct or indirect) of the same type having the same offset.
132 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
133 CharUnits Offset);
134
135 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
136 /// offset.
137 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
138 };
139
ComputeEmptySubobjectSizes()140 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
141 // Check the bases.
142 for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
143 E = Class->bases_end(); I != E; ++I) {
144 const CXXRecordDecl *BaseDecl =
145 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
146
147 CharUnits EmptySize;
148 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
149 if (BaseDecl->isEmpty()) {
150 // If the class decl is empty, get its size.
151 EmptySize = Layout.getSize();
152 } else {
153 // Otherwise, we get the largest empty subobject for the decl.
154 EmptySize = Layout.getSizeOfLargestEmptySubobject();
155 }
156
157 if (EmptySize > SizeOfLargestEmptySubobject)
158 SizeOfLargestEmptySubobject = EmptySize;
159 }
160
161 // Check the fields.
162 for (CXXRecordDecl::field_iterator I = Class->field_begin(),
163 E = Class->field_end(); I != E; ++I) {
164 const FieldDecl *FD = *I;
165
166 const RecordType *RT =
167 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
168
169 // We only care about record types.
170 if (!RT)
171 continue;
172
173 CharUnits EmptySize;
174 const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
175 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
176 if (MemberDecl->isEmpty()) {
177 // If the class decl is empty, get its size.
178 EmptySize = Layout.getSize();
179 } else {
180 // Otherwise, we get the largest empty subobject for the decl.
181 EmptySize = Layout.getSizeOfLargestEmptySubobject();
182 }
183
184 if (EmptySize > SizeOfLargestEmptySubobject)
185 SizeOfLargestEmptySubobject = EmptySize;
186 }
187 }
188
189 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const190 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
191 CharUnits Offset) const {
192 // We only need to check empty bases.
193 if (!RD->isEmpty())
194 return true;
195
196 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
197 if (I == EmptyClassOffsets.end())
198 return true;
199
200 const ClassVectorTy& Classes = I->second;
201 if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
202 return true;
203
204 // There is already an empty class of the same type at this offset.
205 return false;
206 }
207
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)208 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
209 CharUnits Offset) {
210 // We only care about empty bases.
211 if (!RD->isEmpty())
212 return;
213
214 // If we have empty structures inside an union, we can assign both
215 // the same offset. Just avoid pushing them twice in the list.
216 ClassVectorTy& Classes = EmptyClassOffsets[Offset];
217 if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
218 return;
219
220 Classes.push_back(RD);
221
222 // Update the empty class offset.
223 if (Offset > MaxEmptyClassOffset)
224 MaxEmptyClassOffset = Offset;
225 }
226
227 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)228 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
229 CharUnits Offset) {
230 // We don't have to keep looking past the maximum offset that's known to
231 // contain an empty class.
232 if (!AnyEmptySubobjectsBeyondOffset(Offset))
233 return true;
234
235 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
236 return false;
237
238 // Traverse all non-virtual bases.
239 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
240 for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
241 BaseSubobjectInfo* Base = Info->Bases[I];
242 if (Base->IsVirtual)
243 continue;
244
245 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
246
247 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
248 return false;
249 }
250
251 if (Info->PrimaryVirtualBaseInfo) {
252 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
253
254 if (Info == PrimaryVirtualBaseInfo->Derived) {
255 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
256 return false;
257 }
258 }
259
260 // Traverse all member variables.
261 unsigned FieldNo = 0;
262 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
263 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
264 const FieldDecl *FD = *I;
265 if (FD->isBitField())
266 continue;
267
268 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
269 if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
270 return false;
271 }
272
273 return true;
274 }
275
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)276 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
277 CharUnits Offset,
278 bool PlacingEmptyBase) {
279 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
280 // We know that the only empty subobjects that can conflict with empty
281 // subobject of non-empty bases, are empty bases that can be placed at
282 // offset zero. Because of this, we only need to keep track of empty base
283 // subobjects with offsets less than the size of the largest empty
284 // subobject for our class.
285 return;
286 }
287
288 AddSubobjectAtOffset(Info->Class, Offset);
289
290 // Traverse all non-virtual bases.
291 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
292 for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
293 BaseSubobjectInfo* Base = Info->Bases[I];
294 if (Base->IsVirtual)
295 continue;
296
297 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
298 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
299 }
300
301 if (Info->PrimaryVirtualBaseInfo) {
302 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
303
304 if (Info == PrimaryVirtualBaseInfo->Derived)
305 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
306 PlacingEmptyBase);
307 }
308
309 // Traverse all member variables.
310 unsigned FieldNo = 0;
311 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
312 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
313 const FieldDecl *FD = *I;
314 if (FD->isBitField())
315 continue;
316
317 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
318 UpdateEmptyFieldSubobjects(FD, FieldOffset);
319 }
320 }
321
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)322 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
323 CharUnits Offset) {
324 // If we know this class doesn't have any empty subobjects we don't need to
325 // bother checking.
326 if (SizeOfLargestEmptySubobject.isZero())
327 return true;
328
329 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
330 return false;
331
332 // We are able to place the base at this offset. Make sure to update the
333 // empty base subobject map.
334 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
335 return true;
336 }
337
338 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const339 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
340 const CXXRecordDecl *Class,
341 CharUnits Offset) const {
342 // We don't have to keep looking past the maximum offset that's known to
343 // contain an empty class.
344 if (!AnyEmptySubobjectsBeyondOffset(Offset))
345 return true;
346
347 if (!CanPlaceSubobjectAtOffset(RD, Offset))
348 return false;
349
350 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
351
352 // Traverse all non-virtual bases.
353 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
354 E = RD->bases_end(); I != E; ++I) {
355 if (I->isVirtual())
356 continue;
357
358 const CXXRecordDecl *BaseDecl =
359 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
360
361 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
362 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
363 return false;
364 }
365
366 if (RD == Class) {
367 // This is the most derived class, traverse virtual bases as well.
368 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
369 E = RD->vbases_end(); I != E; ++I) {
370 const CXXRecordDecl *VBaseDecl =
371 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
372
373 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
374 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
375 return false;
376 }
377 }
378
379 // Traverse all member variables.
380 unsigned FieldNo = 0;
381 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
382 I != E; ++I, ++FieldNo) {
383 const FieldDecl *FD = *I;
384 if (FD->isBitField())
385 continue;
386
387 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
388
389 if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
390 return false;
391 }
392
393 return true;
394 }
395
396 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const397 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
398 CharUnits Offset) const {
399 // We don't have to keep looking past the maximum offset that's known to
400 // contain an empty class.
401 if (!AnyEmptySubobjectsBeyondOffset(Offset))
402 return true;
403
404 QualType T = FD->getType();
405 if (const RecordType *RT = T->getAs<RecordType>()) {
406 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
407 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
408 }
409
410 // If we have an array type we need to look at every element.
411 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
412 QualType ElemTy = Context.getBaseElementType(AT);
413 const RecordType *RT = ElemTy->getAs<RecordType>();
414 if (!RT)
415 return true;
416
417 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
418 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
419
420 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
421 CharUnits ElementOffset = Offset;
422 for (uint64_t I = 0; I != NumElements; ++I) {
423 // We don't have to keep looking past the maximum offset that's known to
424 // contain an empty class.
425 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
426 return true;
427
428 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
429 return false;
430
431 ElementOffset += Layout.getSize();
432 }
433 }
434
435 return true;
436 }
437
438 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)439 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
440 CharUnits Offset) {
441 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
442 return false;
443
444 // We are able to place the member variable at this offset.
445 // Make sure to update the empty base subobject map.
446 UpdateEmptyFieldSubobjects(FD, Offset);
447 return true;
448 }
449
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset)450 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
451 const CXXRecordDecl *Class,
452 CharUnits Offset) {
453 // We know that the only empty subobjects that can conflict with empty
454 // field subobjects are subobjects of empty bases that can be placed at offset
455 // zero. Because of this, we only need to keep track of empty field
456 // subobjects with offsets less than the size of the largest empty
457 // subobject for our class.
458 if (Offset >= SizeOfLargestEmptySubobject)
459 return;
460
461 AddSubobjectAtOffset(RD, Offset);
462
463 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
464
465 // Traverse all non-virtual bases.
466 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
467 E = RD->bases_end(); I != E; ++I) {
468 if (I->isVirtual())
469 continue;
470
471 const CXXRecordDecl *BaseDecl =
472 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
473
474 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
475 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
476 }
477
478 if (RD == Class) {
479 // This is the most derived class, traverse virtual bases as well.
480 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
481 E = RD->vbases_end(); I != E; ++I) {
482 const CXXRecordDecl *VBaseDecl =
483 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
484
485 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
486 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
487 }
488 }
489
490 // Traverse all member variables.
491 unsigned FieldNo = 0;
492 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
493 I != E; ++I, ++FieldNo) {
494 const FieldDecl *FD = *I;
495 if (FD->isBitField())
496 continue;
497
498 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
499
500 UpdateEmptyFieldSubobjects(FD, FieldOffset);
501 }
502 }
503
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset)504 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
505 CharUnits Offset) {
506 QualType T = FD->getType();
507 if (const RecordType *RT = T->getAs<RecordType>()) {
508 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
509 UpdateEmptyFieldSubobjects(RD, RD, Offset);
510 return;
511 }
512
513 // If we have an array type we need to update every element.
514 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
515 QualType ElemTy = Context.getBaseElementType(AT);
516 const RecordType *RT = ElemTy->getAs<RecordType>();
517 if (!RT)
518 return;
519
520 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
521 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
522
523 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
524 CharUnits ElementOffset = Offset;
525
526 for (uint64_t I = 0; I != NumElements; ++I) {
527 // We know that the only empty subobjects that can conflict with empty
528 // field subobjects are subobjects of empty bases that can be placed at
529 // offset zero. Because of this, we only need to keep track of empty field
530 // subobjects with offsets less than the size of the largest empty
531 // subobject for our class.
532 if (ElementOffset >= SizeOfLargestEmptySubobject)
533 return;
534
535 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
536 ElementOffset += Layout.getSize();
537 }
538 }
539 }
540
541 class RecordLayoutBuilder {
542 protected:
543 // FIXME: Remove this and make the appropriate fields public.
544 friend class clang::ASTContext;
545
546 const ASTContext &Context;
547
548 EmptySubobjectMap *EmptySubobjects;
549
550 /// Size - The current size of the record layout.
551 uint64_t Size;
552
553 /// Alignment - The current alignment of the record layout.
554 CharUnits Alignment;
555
556 /// \brief The alignment if attribute packed is not used.
557 CharUnits UnpackedAlignment;
558
559 SmallVector<uint64_t, 16> FieldOffsets;
560
561 /// \brief Whether the external AST source has provided a layout for this
562 /// record.
563 unsigned ExternalLayout : 1;
564
565 /// \brief Whether we need to infer alignment, even when we have an
566 /// externally-provided layout.
567 unsigned InferAlignment : 1;
568
569 /// Packed - Whether the record is packed or not.
570 unsigned Packed : 1;
571
572 unsigned IsUnion : 1;
573
574 unsigned IsMac68kAlign : 1;
575
576 unsigned IsMsStruct : 1;
577
578 /// UnfilledBitsInLastByte - If the last field laid out was a bitfield,
579 /// this contains the number of bits in the last byte that can be used for
580 /// an adjacent bitfield if necessary.
581 unsigned char UnfilledBitsInLastByte;
582
583 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
584 /// #pragma pack.
585 CharUnits MaxFieldAlignment;
586
587 /// DataSize - The data size of the record being laid out.
588 uint64_t DataSize;
589
590 CharUnits NonVirtualSize;
591 CharUnits NonVirtualAlignment;
592
593 FieldDecl *ZeroLengthBitfield;
594
595 /// PrimaryBase - the primary base class (if one exists) of the class
596 /// we're laying out.
597 const CXXRecordDecl *PrimaryBase;
598
599 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
600 /// out is virtual.
601 bool PrimaryBaseIsVirtual;
602
603 /// VFPtrOffset - Virtual function table offset. Only for MS layout.
604 CharUnits VFPtrOffset;
605
606 /// VBPtrOffset - Virtual base table offset. Only for MS layout.
607 CharUnits VBPtrOffset;
608
609 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
610
611 /// Bases - base classes and their offsets in the record.
612 BaseOffsetsMapTy Bases;
613
614 // VBases - virtual base classes and their offsets in the record.
615 BaseOffsetsMapTy VBases;
616
617 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
618 /// primary base classes for some other direct or indirect base class.
619 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
620
621 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
622 /// inheritance graph order. Used for determining the primary base class.
623 const CXXRecordDecl *FirstNearlyEmptyVBase;
624
625 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
626 /// avoid visiting virtual bases more than once.
627 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
628
629 /// \brief Externally-provided size.
630 uint64_t ExternalSize;
631
632 /// \brief Externally-provided alignment.
633 uint64_t ExternalAlign;
634
635 /// \brief Externally-provided field offsets.
636 llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
637
638 /// \brief Externally-provided direct, non-virtual base offsets.
639 llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
640
641 /// \brief Externally-provided virtual base offsets.
642 llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
643
RecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)644 RecordLayoutBuilder(const ASTContext &Context,
645 EmptySubobjectMap *EmptySubobjects)
646 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
647 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
648 ExternalLayout(false), InferAlignment(false),
649 Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
650 UnfilledBitsInLastByte(0), MaxFieldAlignment(CharUnits::Zero()),
651 DataSize(0), NonVirtualSize(CharUnits::Zero()),
652 NonVirtualAlignment(CharUnits::One()),
653 ZeroLengthBitfield(0), PrimaryBase(0),
654 PrimaryBaseIsVirtual(false),
655 VFPtrOffset(CharUnits::fromQuantity(-1)),
656 VBPtrOffset(CharUnits::fromQuantity(-1)),
657 FirstNearlyEmptyVBase(0) { }
658
659 /// Reset this RecordLayoutBuilder to a fresh state, using the given
660 /// alignment as the initial alignment. This is used for the
661 /// correct layout of vb-table pointers in MSVC.
resetWithTargetAlignment(CharUnits TargetAlignment)662 void resetWithTargetAlignment(CharUnits TargetAlignment) {
663 const ASTContext &Context = this->Context;
664 EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
665 this->~RecordLayoutBuilder();
666 new (this) RecordLayoutBuilder(Context, EmptySubobjects);
667 Alignment = UnpackedAlignment = TargetAlignment;
668 }
669
670 void Layout(const RecordDecl *D);
671 void Layout(const CXXRecordDecl *D);
672 void Layout(const ObjCInterfaceDecl *D);
673
674 void LayoutFields(const RecordDecl *D);
675 void LayoutField(const FieldDecl *D);
676 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
677 bool FieldPacked, const FieldDecl *D);
678 void LayoutBitField(const FieldDecl *D);
679
isMicrosoftCXXABI() const680 bool isMicrosoftCXXABI() const {
681 return Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft;
682 }
683
684 void MSLayoutVirtualBases(const CXXRecordDecl *RD);
685
686 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
687 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
688
689 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
690 BaseSubobjectInfoMapTy;
691
692 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
693 /// of the class we're laying out to their base subobject info.
694 BaseSubobjectInfoMapTy VirtualBaseInfo;
695
696 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
697 /// class we're laying out to their base subobject info.
698 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
699
700 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
701 /// bases of the given class.
702 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
703
704 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
705 /// single class and all of its base classes.
706 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
707 bool IsVirtual,
708 BaseSubobjectInfo *Derived);
709
710 /// DeterminePrimaryBase - Determine the primary base of the given class.
711 void DeterminePrimaryBase(const CXXRecordDecl *RD);
712
713 void SelectPrimaryVBase(const CXXRecordDecl *RD);
714
715 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
716
717 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
718 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
719 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
720
721 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
722 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
723
724 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
725 CharUnits Offset);
726
727 bool needsVFTable(const CXXRecordDecl *RD) const;
728 bool hasNewVirtualFunction(const CXXRecordDecl *RD) const;
729 bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const;
730
731 /// LayoutVirtualBases - Lays out all the virtual bases.
732 void LayoutVirtualBases(const CXXRecordDecl *RD,
733 const CXXRecordDecl *MostDerivedClass);
734
735 /// LayoutVirtualBase - Lays out a single virtual base.
736 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
737
738 /// LayoutBase - Will lay out a base and return the offset where it was
739 /// placed, in chars.
740 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
741
742 /// InitializeLayout - Initialize record layout for the given record decl.
743 void InitializeLayout(const Decl *D);
744
745 /// FinishLayout - Finalize record layout. Adjust record size based on the
746 /// alignment.
747 void FinishLayout(const NamedDecl *D);
748
749 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
UpdateAlignment(CharUnits NewAlignment)750 void UpdateAlignment(CharUnits NewAlignment) {
751 UpdateAlignment(NewAlignment, NewAlignment);
752 }
753
754 /// \brief Retrieve the externally-supplied field offset for the given
755 /// field.
756 ///
757 /// \param Field The field whose offset is being queried.
758 /// \param ComputedOffset The offset that we've computed for this field.
759 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
760 uint64_t ComputedOffset);
761
762 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
763 uint64_t UnpackedOffset, unsigned UnpackedAlign,
764 bool isPacked, const FieldDecl *D);
765
766 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
767
getSize() const768 CharUnits getSize() const {
769 assert(Size % Context.getCharWidth() == 0);
770 return Context.toCharUnitsFromBits(Size);
771 }
getSizeInBits() const772 uint64_t getSizeInBits() const { return Size; }
773
setSize(CharUnits NewSize)774 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)775 void setSize(uint64_t NewSize) { Size = NewSize; }
776
getAligment() const777 CharUnits getAligment() const { return Alignment; }
778
getDataSize() const779 CharUnits getDataSize() const {
780 assert(DataSize % Context.getCharWidth() == 0);
781 return Context.toCharUnitsFromBits(DataSize);
782 }
getDataSizeInBits() const783 uint64_t getDataSizeInBits() const { return DataSize; }
784
setDataSize(CharUnits NewSize)785 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)786 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
787
788 RecordLayoutBuilder(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
789 void operator=(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
790 public:
791 static const CXXMethodDecl *ComputeKeyFunction(const CXXRecordDecl *RD);
792 };
793 } // end anonymous namespace
794
795 void
SelectPrimaryVBase(const CXXRecordDecl * RD)796 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
797 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
798 E = RD->bases_end(); I != E; ++I) {
799 assert(!I->getType()->isDependentType() &&
800 "Cannot layout class with dependent bases.");
801
802 const CXXRecordDecl *Base =
803 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
804
805 // Check if this is a nearly empty virtual base.
806 if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
807 // If it's not an indirect primary base, then we've found our primary
808 // base.
809 if (!IndirectPrimaryBases.count(Base)) {
810 PrimaryBase = Base;
811 PrimaryBaseIsVirtual = true;
812 return;
813 }
814
815 // Is this the first nearly empty virtual base?
816 if (!FirstNearlyEmptyVBase)
817 FirstNearlyEmptyVBase = Base;
818 }
819
820 SelectPrimaryVBase(Base);
821 if (PrimaryBase)
822 return;
823 }
824 }
825
826 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)827 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
828 // If the class isn't dynamic, it won't have a primary base.
829 if (!RD->isDynamicClass())
830 return;
831
832 // Compute all the primary virtual bases for all of our direct and
833 // indirect bases, and record all their primary virtual base classes.
834 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
835
836 // If the record has a dynamic base class, attempt to choose a primary base
837 // class. It is the first (in direct base class order) non-virtual dynamic
838 // base class, if one exists.
839 for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
840 e = RD->bases_end(); i != e; ++i) {
841 // Ignore virtual bases.
842 if (i->isVirtual())
843 continue;
844
845 const CXXRecordDecl *Base =
846 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
847
848 if (isPossiblePrimaryBase(Base)) {
849 // We found it.
850 PrimaryBase = Base;
851 PrimaryBaseIsVirtual = false;
852 return;
853 }
854 }
855
856 // The Microsoft ABI doesn't have primary virtual bases.
857 if (isMicrosoftCXXABI()) {
858 assert(!PrimaryBase && "Should not get here with a primary base!");
859 return;
860 }
861
862 // Under the Itanium ABI, if there is no non-virtual primary base class,
863 // try to compute the primary virtual base. The primary virtual base is
864 // the first nearly empty virtual base that is not an indirect primary
865 // virtual base class, if one exists.
866 if (RD->getNumVBases() != 0) {
867 SelectPrimaryVBase(RD);
868 if (PrimaryBase)
869 return;
870 }
871
872 // Otherwise, it is the first indirect primary base class, if one exists.
873 if (FirstNearlyEmptyVBase) {
874 PrimaryBase = FirstNearlyEmptyVBase;
875 PrimaryBaseIsVirtual = true;
876 return;
877 }
878
879 assert(!PrimaryBase && "Should not get here with a primary base!");
880 }
881
882 BaseSubobjectInfo *
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)883 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
884 bool IsVirtual,
885 BaseSubobjectInfo *Derived) {
886 BaseSubobjectInfo *Info;
887
888 if (IsVirtual) {
889 // Check if we already have info about this virtual base.
890 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
891 if (InfoSlot) {
892 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
893 return InfoSlot;
894 }
895
896 // We don't, create it.
897 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
898 Info = InfoSlot;
899 } else {
900 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
901 }
902
903 Info->Class = RD;
904 Info->IsVirtual = IsVirtual;
905 Info->Derived = 0;
906 Info->PrimaryVirtualBaseInfo = 0;
907
908 const CXXRecordDecl *PrimaryVirtualBase = 0;
909 BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
910
911 // Check if this base has a primary virtual base.
912 if (RD->getNumVBases()) {
913 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
914 if (Layout.isPrimaryBaseVirtual()) {
915 // This base does have a primary virtual base.
916 PrimaryVirtualBase = Layout.getPrimaryBase();
917 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
918
919 // Now check if we have base subobject info about this primary base.
920 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
921
922 if (PrimaryVirtualBaseInfo) {
923 if (PrimaryVirtualBaseInfo->Derived) {
924 // We did have info about this primary base, and it turns out that it
925 // has already been claimed as a primary virtual base for another
926 // base.
927 PrimaryVirtualBase = 0;
928 } else {
929 // We can claim this base as our primary base.
930 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
931 PrimaryVirtualBaseInfo->Derived = Info;
932 }
933 }
934 }
935 }
936
937 // Now go through all direct bases.
938 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
939 E = RD->bases_end(); I != E; ++I) {
940 bool IsVirtual = I->isVirtual();
941
942 const CXXRecordDecl *BaseDecl =
943 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
944
945 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
946 }
947
948 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
949 // Traversing the bases must have created the base info for our primary
950 // virtual base.
951 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
952 assert(PrimaryVirtualBaseInfo &&
953 "Did not create a primary virtual base!");
954
955 // Claim the primary virtual base as our primary virtual base.
956 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
957 PrimaryVirtualBaseInfo->Derived = Info;
958 }
959
960 return Info;
961 }
962
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)963 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
964 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
965 E = RD->bases_end(); I != E; ++I) {
966 bool IsVirtual = I->isVirtual();
967
968 const CXXRecordDecl *BaseDecl =
969 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
970
971 // Compute the base subobject info for this base.
972 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
973
974 if (IsVirtual) {
975 // ComputeBaseInfo has already added this base for us.
976 assert(VirtualBaseInfo.count(BaseDecl) &&
977 "Did not add virtual base!");
978 } else {
979 // Add the base info to the map of non-virtual bases.
980 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
981 "Non-virtual base already exists!");
982 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
983 }
984 }
985 }
986
987 void
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)988 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
989 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
990
991 // The maximum field alignment overrides base align.
992 if (!MaxFieldAlignment.isZero()) {
993 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
994 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
995 }
996
997 // Round up the current record size to pointer alignment.
998 setSize(getSize().RoundUpToAlignment(BaseAlign));
999 setDataSize(getSize());
1000
1001 // Update the alignment.
1002 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1003 }
1004
1005 void
LayoutNonVirtualBases(const CXXRecordDecl * RD)1006 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
1007 // Then, determine the primary base class.
1008 DeterminePrimaryBase(RD);
1009
1010 // Compute base subobject info.
1011 ComputeBaseSubobjectInfo(RD);
1012
1013 // If we have a primary base class, lay it out.
1014 if (PrimaryBase) {
1015 if (PrimaryBaseIsVirtual) {
1016 // If the primary virtual base was a primary virtual base of some other
1017 // base class we'll have to steal it.
1018 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1019 PrimaryBaseInfo->Derived = 0;
1020
1021 // We have a virtual primary base, insert it as an indirect primary base.
1022 IndirectPrimaryBases.insert(PrimaryBase);
1023
1024 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1025 "vbase already visited!");
1026 VisitedVirtualBases.insert(PrimaryBase);
1027
1028 LayoutVirtualBase(PrimaryBaseInfo);
1029 } else {
1030 BaseSubobjectInfo *PrimaryBaseInfo =
1031 NonVirtualBaseInfo.lookup(PrimaryBase);
1032 assert(PrimaryBaseInfo &&
1033 "Did not find base info for non-virtual primary base!");
1034
1035 LayoutNonVirtualBase(PrimaryBaseInfo);
1036 }
1037
1038 // If this class needs a vtable/vf-table and didn't get one from a
1039 // primary base, add it in now.
1040 } else if (needsVFTable(RD)) {
1041 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1042 CharUnits PtrWidth =
1043 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1044 CharUnits PtrAlign =
1045 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1046 EnsureVTablePointerAlignment(PtrAlign);
1047 if (isMicrosoftCXXABI())
1048 VFPtrOffset = getSize();
1049 setSize(getSize() + PtrWidth);
1050 setDataSize(getSize());
1051 }
1052
1053 bool HasDirectVirtualBases = false;
1054 bool HasNonVirtualBaseWithVBTable = false;
1055
1056 // Now lay out the non-virtual bases.
1057 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1058 E = RD->bases_end(); I != E; ++I) {
1059
1060 // Ignore virtual bases, but remember that we saw one.
1061 if (I->isVirtual()) {
1062 HasDirectVirtualBases = true;
1063 continue;
1064 }
1065
1066 const CXXRecordDecl *BaseDecl =
1067 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1068
1069 // Remember if this base has virtual bases itself.
1070 if (BaseDecl->getNumVBases())
1071 HasNonVirtualBaseWithVBTable = true;
1072
1073 // Skip the primary base, because we've already laid it out. The
1074 // !PrimaryBaseIsVirtual check is required because we might have a
1075 // non-virtual base of the same type as a primary virtual base.
1076 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1077 continue;
1078
1079 // Lay out the base.
1080 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1081 assert(BaseInfo && "Did not find base info for non-virtual base!");
1082
1083 LayoutNonVirtualBase(BaseInfo);
1084 }
1085
1086 // In the MS ABI, add the vb-table pointer if we need one, which is
1087 // whenever we have a virtual base and we can't re-use a vb-table
1088 // pointer from a non-virtual base.
1089 if (isMicrosoftCXXABI() &&
1090 HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) {
1091 CharUnits PtrWidth =
1092 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1093 CharUnits PtrAlign =
1094 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1095
1096 // MSVC potentially over-aligns the vb-table pointer by giving it
1097 // the max alignment of all the non-virtual objects in the class.
1098 // This is completely unnecessary, but we're not here to pass
1099 // judgment.
1100 //
1101 // Note that we've only laid out the non-virtual bases, so on the
1102 // first pass Alignment won't be set correctly here, but if the
1103 // vb-table doesn't end up aligned correctly we'll come through
1104 // and redo the layout from scratch with the right alignment.
1105 //
1106 // TODO: Instead of doing this, just lay out the fields as if the
1107 // vb-table were at offset zero, then retroactively bump the field
1108 // offsets up.
1109 PtrAlign = std::max(PtrAlign, Alignment);
1110
1111 EnsureVTablePointerAlignment(PtrAlign);
1112 VBPtrOffset = getSize();
1113 setSize(getSize() + PtrWidth);
1114 setDataSize(getSize());
1115 }
1116 }
1117
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1118 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
1119 // Layout the base.
1120 CharUnits Offset = LayoutBase(Base);
1121
1122 // Add its base class offset.
1123 assert(!Bases.count(Base->Class) && "base offset already exists!");
1124 Bases.insert(std::make_pair(Base->Class, Offset));
1125
1126 AddPrimaryVirtualBaseOffsets(Base, Offset);
1127 }
1128
1129 void
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1130 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
1131 CharUnits Offset) {
1132 // This base isn't interesting, it has no virtual bases.
1133 if (!Info->Class->getNumVBases())
1134 return;
1135
1136 // First, check if we have a virtual primary base to add offsets for.
1137 if (Info->PrimaryVirtualBaseInfo) {
1138 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1139 "Primary virtual base is not virtual!");
1140 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1141 // Add the offset.
1142 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1143 "primary vbase offset already exists!");
1144 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1145 Offset));
1146
1147 // Traverse the primary virtual base.
1148 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1149 }
1150 }
1151
1152 // Now go through all direct non-virtual bases.
1153 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1154 for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
1155 const BaseSubobjectInfo *Base = Info->Bases[I];
1156 if (Base->IsVirtual)
1157 continue;
1158
1159 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1160 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1161 }
1162 }
1163
1164 /// needsVFTable - Return true if this class needs a vtable or vf-table
1165 /// when laid out as a base class. These are treated the same because
1166 /// they're both always laid out at offset zero.
1167 ///
1168 /// This function assumes that the class has no primary base.
needsVFTable(const CXXRecordDecl * RD) const1169 bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const {
1170 assert(!PrimaryBase);
1171
1172 // In the Itanium ABI, every dynamic class needs a vtable: even if
1173 // this class has no virtual functions as a base class (i.e. it's
1174 // non-polymorphic or only has virtual functions from virtual
1175 // bases),x it still needs a vtable to locate its virtual bases.
1176 if (!isMicrosoftCXXABI())
1177 return RD->isDynamicClass();
1178
1179 // In the MS ABI, we need a vfptr if the class has virtual functions
1180 // other than those declared by its virtual bases. The AST doesn't
1181 // tell us that directly, and checking manually for virtual
1182 // functions that aren't overrides is expensive, but there are
1183 // some important shortcuts:
1184
1185 // - Non-polymorphic classes have no virtual functions at all.
1186 if (!RD->isPolymorphic()) return false;
1187
1188 // - Polymorphic classes with no virtual bases must either declare
1189 // virtual functions directly or inherit them, but in the latter
1190 // case we would have a primary base.
1191 if (RD->getNumVBases() == 0) return true;
1192
1193 return hasNewVirtualFunction(RD);
1194 }
1195
1196 /// hasNewVirtualFunction - Does the given polymorphic class declare a
1197 /// virtual function that does not override a method from any of its
1198 /// base classes?
1199 bool
hasNewVirtualFunction(const CXXRecordDecl * RD) const1200 RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD) const {
1201 assert(RD->isPolymorphic());
1202 if (!RD->getNumBases())
1203 return true;
1204
1205 for (CXXRecordDecl::method_iterator method = RD->method_begin();
1206 method != RD->method_end();
1207 ++method) {
1208 if (method->isVirtual() && !method->size_overridden_methods()) {
1209 return true;
1210 }
1211 }
1212 return false;
1213 }
1214
1215 /// isPossiblePrimaryBase - Is the given base class an acceptable
1216 /// primary base class?
1217 bool
isPossiblePrimaryBase(const CXXRecordDecl * Base) const1218 RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *Base) const {
1219 // In the Itanium ABI, a class can be a primary base class if it has
1220 // a vtable for any reason.
1221 if (!isMicrosoftCXXABI())
1222 return Base->isDynamicClass();
1223
1224 // In the MS ABI, a class can only be a primary base class if it
1225 // provides a vf-table at a static offset. That means it has to be
1226 // non-virtual base. The existence of a separate vb-table means
1227 // that it's possible to get virtual functions only from a virtual
1228 // base, which we have to guard against.
1229
1230 // First off, it has to have virtual functions.
1231 if (!Base->isPolymorphic()) return false;
1232
1233 // If it has no virtual bases, then everything is at a static offset.
1234 if (!Base->getNumVBases()) return true;
1235
1236 // Okay, just ask the base class's layout.
1237 return (Context.getASTRecordLayout(Base).getVFPtrOffset()
1238 != CharUnits::fromQuantity(-1));
1239 }
1240
1241 void
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1242 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
1243 const CXXRecordDecl *MostDerivedClass) {
1244 const CXXRecordDecl *PrimaryBase;
1245 bool PrimaryBaseIsVirtual;
1246
1247 if (MostDerivedClass == RD) {
1248 PrimaryBase = this->PrimaryBase;
1249 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1250 } else {
1251 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1252 PrimaryBase = Layout.getPrimaryBase();
1253 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1254 }
1255
1256 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1257 E = RD->bases_end(); I != E; ++I) {
1258 assert(!I->getType()->isDependentType() &&
1259 "Cannot layout class with dependent bases.");
1260
1261 const CXXRecordDecl *BaseDecl =
1262 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1263
1264 if (I->isVirtual()) {
1265 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1266 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1267
1268 // Only lay out the virtual base if it's not an indirect primary base.
1269 if (!IndirectPrimaryBase) {
1270 // Only visit virtual bases once.
1271 if (!VisitedVirtualBases.insert(BaseDecl))
1272 continue;
1273
1274 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1275 assert(BaseInfo && "Did not find virtual base info!");
1276 LayoutVirtualBase(BaseInfo);
1277 }
1278 }
1279 }
1280
1281 if (!BaseDecl->getNumVBases()) {
1282 // This base isn't interesting since it doesn't have any virtual bases.
1283 continue;
1284 }
1285
1286 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1287 }
1288 }
1289
MSLayoutVirtualBases(const CXXRecordDecl * RD)1290 void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) {
1291
1292 if (!RD->getNumVBases())
1293 return;
1294
1295 // This is substantially simplified because there are no virtual
1296 // primary bases.
1297 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
1298 E = RD->vbases_end(); I != E; ++I) {
1299 const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
1300 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1301 assert(BaseInfo && "Did not find virtual base info!");
1302
1303 LayoutVirtualBase(BaseInfo);
1304 }
1305 }
1306
LayoutVirtualBase(const BaseSubobjectInfo * Base)1307 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
1308 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1309
1310 // Layout the base.
1311 CharUnits Offset = LayoutBase(Base);
1312
1313 // Add its base class offset.
1314 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1315 VBases.insert(std::make_pair(Base->Class, Offset));
1316
1317 AddPrimaryVirtualBaseOffsets(Base, Offset);
1318 }
1319
LayoutBase(const BaseSubobjectInfo * Base)1320 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1321 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1322
1323
1324 CharUnits Offset;
1325
1326 // Query the external layout to see if it provides an offset.
1327 bool HasExternalLayout = false;
1328 if (ExternalLayout) {
1329 llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1330 if (Base->IsVirtual) {
1331 Known = ExternalVirtualBaseOffsets.find(Base->Class);
1332 if (Known != ExternalVirtualBaseOffsets.end()) {
1333 Offset = Known->second;
1334 HasExternalLayout = true;
1335 }
1336 } else {
1337 Known = ExternalBaseOffsets.find(Base->Class);
1338 if (Known != ExternalBaseOffsets.end()) {
1339 Offset = Known->second;
1340 HasExternalLayout = true;
1341 }
1342 }
1343 }
1344
1345 // If we have an empty base class, try to place it at offset 0.
1346 if (Base->Class->isEmpty() &&
1347 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1348 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1349 setSize(std::max(getSize(), Layout.getSize()));
1350
1351 return CharUnits::Zero();
1352 }
1353
1354 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
1355 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1356
1357 // The maximum field alignment overrides base align.
1358 if (!MaxFieldAlignment.isZero()) {
1359 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1360 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1361 }
1362
1363 if (!HasExternalLayout) {
1364 // Round up the current record size to the base's alignment boundary.
1365 Offset = getDataSize().RoundUpToAlignment(BaseAlign);
1366
1367 // Try to place the base.
1368 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1369 Offset += BaseAlign;
1370 } else {
1371 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1372 (void)Allowed;
1373 assert(Allowed && "Base subobject externally placed at overlapping offset");
1374 }
1375
1376 if (!Base->Class->isEmpty()) {
1377 // Update the data size.
1378 setDataSize(Offset + Layout.getNonVirtualSize());
1379
1380 setSize(std::max(getSize(), getDataSize()));
1381 } else
1382 setSize(std::max(getSize(), Offset + Layout.getSize()));
1383
1384 // Remember max struct/class alignment.
1385 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1386
1387 return Offset;
1388 }
1389
InitializeLayout(const Decl * D)1390 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
1391 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1392 IsUnion = RD->isUnion();
1393
1394 Packed = D->hasAttr<PackedAttr>();
1395
1396 IsMsStruct = D->hasAttr<MsStructAttr>();
1397
1398 // Honor the default struct packing maximum alignment flag.
1399 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1400 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1401 }
1402
1403 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1404 // and forces all structures to have 2-byte alignment. The IBM docs on it
1405 // allude to additional (more complicated) semantics, especially with regard
1406 // to bit-fields, but gcc appears not to follow that.
1407 if (D->hasAttr<AlignMac68kAttr>()) {
1408 IsMac68kAlign = true;
1409 MaxFieldAlignment = CharUnits::fromQuantity(2);
1410 Alignment = CharUnits::fromQuantity(2);
1411 } else {
1412 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1413 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1414
1415 if (unsigned MaxAlign = D->getMaxAlignment())
1416 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1417 }
1418
1419 // If there is an external AST source, ask it for the various offsets.
1420 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1421 if (ExternalASTSource *External = Context.getExternalSource()) {
1422 ExternalLayout = External->layoutRecordType(RD,
1423 ExternalSize,
1424 ExternalAlign,
1425 ExternalFieldOffsets,
1426 ExternalBaseOffsets,
1427 ExternalVirtualBaseOffsets);
1428
1429 // Update based on external alignment.
1430 if (ExternalLayout) {
1431 if (ExternalAlign > 0) {
1432 Alignment = Context.toCharUnitsFromBits(ExternalAlign);
1433 UnpackedAlignment = Alignment;
1434 } else {
1435 // The external source didn't have alignment information; infer it.
1436 InferAlignment = true;
1437 }
1438 }
1439 }
1440 }
1441
Layout(const RecordDecl * D)1442 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
1443 InitializeLayout(D);
1444 LayoutFields(D);
1445
1446 // Finally, round the size of the total struct up to the alignment of the
1447 // struct itself.
1448 FinishLayout(D);
1449 }
1450
Layout(const CXXRecordDecl * RD)1451 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1452 InitializeLayout(RD);
1453
1454 // Lay out the vtable and the non-virtual bases.
1455 LayoutNonVirtualBases(RD);
1456
1457 LayoutFields(RD);
1458
1459 NonVirtualSize = Context.toCharUnitsFromBits(
1460 llvm::RoundUpToAlignment(getSizeInBits(),
1461 Context.getTargetInfo().getCharAlign()));
1462 NonVirtualAlignment = Alignment;
1463
1464 if (isMicrosoftCXXABI() &&
1465 NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) {
1466 CharUnits AlignMember =
1467 NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize;
1468
1469 setSize(getSize() + AlignMember);
1470 setDataSize(getSize());
1471
1472 NonVirtualSize = Context.toCharUnitsFromBits(
1473 llvm::RoundUpToAlignment(getSizeInBits(),
1474 Context.getTargetInfo().getCharAlign()));
1475
1476 MSLayoutVirtualBases(RD);
1477
1478 } else {
1479 // Lay out the virtual bases and add the primary virtual base offsets.
1480 LayoutVirtualBases(RD, RD);
1481 }
1482
1483 // Finally, round the size of the total struct up to the alignment
1484 // of the struct itself.
1485 FinishLayout(RD);
1486
1487 #ifndef NDEBUG
1488 // Check that we have base offsets for all bases.
1489 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1490 E = RD->bases_end(); I != E; ++I) {
1491 if (I->isVirtual())
1492 continue;
1493
1494 const CXXRecordDecl *BaseDecl =
1495 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1496
1497 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1498 }
1499
1500 // And all virtual bases.
1501 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
1502 E = RD->vbases_end(); I != E; ++I) {
1503 const CXXRecordDecl *BaseDecl =
1504 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1505
1506 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1507 }
1508 #endif
1509 }
1510
Layout(const ObjCInterfaceDecl * D)1511 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1512 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1513 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1514
1515 UpdateAlignment(SL.getAlignment());
1516
1517 // We start laying out ivars not at the end of the superclass
1518 // structure, but at the next byte following the last field.
1519 setSize(SL.getDataSize());
1520 setDataSize(getSize());
1521 }
1522
1523 InitializeLayout(D);
1524 // Layout each ivar sequentially.
1525 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1526 IVD = IVD->getNextIvar())
1527 LayoutField(IVD);
1528
1529 // Finally, round the size of the total struct up to the alignment of the
1530 // struct itself.
1531 FinishLayout(D);
1532 }
1533
LayoutFields(const RecordDecl * D)1534 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1535 // Layout each field, for now, just sequentially, respecting alignment. In
1536 // the future, this will need to be tweakable by targets.
1537 const FieldDecl *LastFD = 0;
1538 ZeroLengthBitfield = 0;
1539 unsigned RemainingInAlignment = 0;
1540 for (RecordDecl::field_iterator Field = D->field_begin(),
1541 FieldEnd = D->field_end(); Field != FieldEnd; ++Field) {
1542 if (IsMsStruct) {
1543 FieldDecl *FD = (*Field);
1544 if (Context.ZeroBitfieldFollowsBitfield(FD, LastFD))
1545 ZeroLengthBitfield = FD;
1546 // Zero-length bitfields following non-bitfield members are
1547 // ignored:
1548 else if (Context.ZeroBitfieldFollowsNonBitfield(FD, LastFD))
1549 continue;
1550 // FIXME. streamline these conditions into a simple one.
1551 else if (Context.BitfieldFollowsBitfield(FD, LastFD) ||
1552 Context.BitfieldFollowsNonBitfield(FD, LastFD) ||
1553 Context.NonBitfieldFollowsBitfield(FD, LastFD)) {
1554 // 1) Adjacent bit fields are packed into the same 1-, 2-, or
1555 // 4-byte allocation unit if the integral types are the same
1556 // size and if the next bit field fits into the current
1557 // allocation unit without crossing the boundary imposed by the
1558 // common alignment requirements of the bit fields.
1559 // 2) Establish a new alignment for a bitfield following
1560 // a non-bitfield if size of their types differ.
1561 // 3) Establish a new alignment for a non-bitfield following
1562 // a bitfield if size of their types differ.
1563 std::pair<uint64_t, unsigned> FieldInfo =
1564 Context.getTypeInfo(FD->getType());
1565 uint64_t TypeSize = FieldInfo.first;
1566 unsigned FieldAlign = FieldInfo.second;
1567 // This check is needed for 'long long' in -m32 mode.
1568 if (TypeSize > FieldAlign &&
1569 (Context.hasSameType(FD->getType(),
1570 Context.UnsignedLongLongTy)
1571 ||Context.hasSameType(FD->getType(),
1572 Context.LongLongTy)))
1573 FieldAlign = TypeSize;
1574 FieldInfo = Context.getTypeInfo(LastFD->getType());
1575 uint64_t TypeSizeLastFD = FieldInfo.first;
1576 unsigned FieldAlignLastFD = FieldInfo.second;
1577 // This check is needed for 'long long' in -m32 mode.
1578 if (TypeSizeLastFD > FieldAlignLastFD &&
1579 (Context.hasSameType(LastFD->getType(),
1580 Context.UnsignedLongLongTy)
1581 || Context.hasSameType(LastFD->getType(),
1582 Context.LongLongTy)))
1583 FieldAlignLastFD = TypeSizeLastFD;
1584
1585 if (TypeSizeLastFD != TypeSize) {
1586 if (RemainingInAlignment &&
1587 LastFD && LastFD->isBitField() &&
1588 LastFD->getBitWidthValue(Context)) {
1589 // If previous field was a bitfield with some remaining unfilled
1590 // bits, pad the field so current field starts on its type boundary.
1591 uint64_t FieldOffset =
1592 getDataSizeInBits() - UnfilledBitsInLastByte;
1593 uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
1594 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1595 Context.getTargetInfo().getCharAlign()));
1596 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1597 RemainingInAlignment = 0;
1598 }
1599
1600 uint64_t UnpaddedFieldOffset =
1601 getDataSizeInBits() - UnfilledBitsInLastByte;
1602 FieldAlign = std::max(FieldAlign, FieldAlignLastFD);
1603
1604 // The maximum field alignment overrides the aligned attribute.
1605 if (!MaxFieldAlignment.isZero()) {
1606 unsigned MaxFieldAlignmentInBits =
1607 Context.toBits(MaxFieldAlignment);
1608 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1609 }
1610
1611 uint64_t NewSizeInBits =
1612 llvm::RoundUpToAlignment(UnpaddedFieldOffset, FieldAlign);
1613 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1614 Context.getTargetInfo().getCharAlign()));
1615 UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
1616 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1617 }
1618 if (FD->isBitField()) {
1619 uint64_t FieldSize = FD->getBitWidthValue(Context);
1620 assert (FieldSize > 0 && "LayoutFields - ms_struct layout");
1621 if (RemainingInAlignment < FieldSize)
1622 RemainingInAlignment = TypeSize - FieldSize;
1623 else
1624 RemainingInAlignment -= FieldSize;
1625 }
1626 }
1627 else if (FD->isBitField()) {
1628 uint64_t FieldSize = FD->getBitWidthValue(Context);
1629 std::pair<uint64_t, unsigned> FieldInfo =
1630 Context.getTypeInfo(FD->getType());
1631 uint64_t TypeSize = FieldInfo.first;
1632 RemainingInAlignment = TypeSize - FieldSize;
1633 }
1634 LastFD = FD;
1635 }
1636 else if (!Context.getTargetInfo().useBitFieldTypeAlignment() &&
1637 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1638 FieldDecl *FD = (*Field);
1639 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
1640 ZeroLengthBitfield = FD;
1641 }
1642 LayoutField(*Field);
1643 }
1644 if (IsMsStruct && RemainingInAlignment &&
1645 LastFD && LastFD->isBitField() && LastFD->getBitWidthValue(Context)) {
1646 // If we ended a bitfield before the full length of the type then
1647 // pad the struct out to the full length of the last type.
1648 uint64_t FieldOffset =
1649 getDataSizeInBits() - UnfilledBitsInLastByte;
1650 uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
1651 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1652 Context.getTargetInfo().getCharAlign()));
1653 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1654 }
1655 }
1656
LayoutWideBitField(uint64_t FieldSize,uint64_t TypeSize,bool FieldPacked,const FieldDecl * D)1657 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1658 uint64_t TypeSize,
1659 bool FieldPacked,
1660 const FieldDecl *D) {
1661 assert(Context.getLangOpts().CPlusPlus &&
1662 "Can only have wide bit-fields in C++!");
1663
1664 // Itanium C++ ABI 2.4:
1665 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1666 // sizeof(T')*8 <= n.
1667
1668 QualType IntegralPODTypes[] = {
1669 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1670 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1671 };
1672
1673 QualType Type;
1674 for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
1675 I != E; ++I) {
1676 uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
1677
1678 if (Size > FieldSize)
1679 break;
1680
1681 Type = IntegralPODTypes[I];
1682 }
1683 assert(!Type.isNull() && "Did not find a type!");
1684
1685 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1686
1687 // We're not going to use any of the unfilled bits in the last byte.
1688 UnfilledBitsInLastByte = 0;
1689
1690 uint64_t FieldOffset;
1691 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
1692
1693 if (IsUnion) {
1694 setDataSize(std::max(getDataSizeInBits(), FieldSize));
1695 FieldOffset = 0;
1696 } else {
1697 // The bitfield is allocated starting at the next offset aligned
1698 // appropriately for T', with length n bits.
1699 FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
1700 Context.toBits(TypeAlign));
1701
1702 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1703
1704 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1705 Context.getTargetInfo().getCharAlign()));
1706 UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
1707 }
1708
1709 // Place this field at the current location.
1710 FieldOffsets.push_back(FieldOffset);
1711
1712 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1713 Context.toBits(TypeAlign), FieldPacked, D);
1714
1715 // Update the size.
1716 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1717
1718 // Remember max struct/class alignment.
1719 UpdateAlignment(TypeAlign);
1720 }
1721
LayoutBitField(const FieldDecl * D)1722 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1723 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1724 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
1725 uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
1726 uint64_t FieldSize = D->getBitWidthValue(Context);
1727
1728 std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
1729 uint64_t TypeSize = FieldInfo.first;
1730 unsigned FieldAlign = FieldInfo.second;
1731
1732 // This check is needed for 'long long' in -m32 mode.
1733 if (IsMsStruct && (TypeSize > FieldAlign) &&
1734 (Context.hasSameType(D->getType(),
1735 Context.UnsignedLongLongTy)
1736 || Context.hasSameType(D->getType(), Context.LongLongTy)))
1737 FieldAlign = TypeSize;
1738
1739 if (ZeroLengthBitfield) {
1740 std::pair<uint64_t, unsigned> FieldInfo;
1741 unsigned ZeroLengthBitfieldAlignment;
1742 if (IsMsStruct) {
1743 // If a zero-length bitfield is inserted after a bitfield,
1744 // and the alignment of the zero-length bitfield is
1745 // greater than the member that follows it, `bar', `bar'
1746 // will be aligned as the type of the zero-length bitfield.
1747 if (ZeroLengthBitfield != D) {
1748 FieldInfo = Context.getTypeInfo(ZeroLengthBitfield->getType());
1749 ZeroLengthBitfieldAlignment = FieldInfo.second;
1750 // Ignore alignment of subsequent zero-length bitfields.
1751 if ((ZeroLengthBitfieldAlignment > FieldAlign) || (FieldSize == 0))
1752 FieldAlign = ZeroLengthBitfieldAlignment;
1753 if (FieldSize)
1754 ZeroLengthBitfield = 0;
1755 }
1756 } else {
1757 // The alignment of a zero-length bitfield affects the alignment
1758 // of the next member. The alignment is the max of the zero
1759 // length bitfield's alignment and a target specific fixed value.
1760 unsigned ZeroLengthBitfieldBoundary =
1761 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1762 if (ZeroLengthBitfieldBoundary > FieldAlign)
1763 FieldAlign = ZeroLengthBitfieldBoundary;
1764 }
1765 }
1766
1767 if (FieldSize > TypeSize) {
1768 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1769 return;
1770 }
1771
1772 // The align if the field is not packed. This is to check if the attribute
1773 // was unnecessary (-Wpacked).
1774 unsigned UnpackedFieldAlign = FieldAlign;
1775 uint64_t UnpackedFieldOffset = FieldOffset;
1776 if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)
1777 UnpackedFieldAlign = 1;
1778
1779 if (FieldPacked ||
1780 (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield))
1781 FieldAlign = 1;
1782 FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
1783 UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
1784
1785 // The maximum field alignment overrides the aligned attribute.
1786 if (!MaxFieldAlignment.isZero() && FieldSize != 0) {
1787 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1788 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1789 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1790 }
1791
1792 // Check if we need to add padding to give the field the correct alignment.
1793 if (FieldSize == 0 ||
1794 (MaxFieldAlignment.isZero() &&
1795 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize))
1796 FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1797
1798 if (FieldSize == 0 ||
1799 (MaxFieldAlignment.isZero() &&
1800 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1801 UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1802 UnpackedFieldAlign);
1803
1804 // Padding members don't affect overall alignment, unless zero length bitfield
1805 // alignment is enabled.
1806 if (!D->getIdentifier() && !Context.getTargetInfo().useZeroLengthBitfieldAlignment())
1807 FieldAlign = UnpackedFieldAlign = 1;
1808
1809 if (!IsMsStruct)
1810 ZeroLengthBitfield = 0;
1811
1812 if (ExternalLayout)
1813 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1814
1815 // Place this field at the current location.
1816 FieldOffsets.push_back(FieldOffset);
1817
1818 if (!ExternalLayout)
1819 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1820 UnpackedFieldAlign, FieldPacked, D);
1821
1822 // Update DataSize to include the last byte containing (part of) the bitfield.
1823 if (IsUnion) {
1824 // FIXME: I think FieldSize should be TypeSize here.
1825 setDataSize(std::max(getDataSizeInBits(), FieldSize));
1826 } else {
1827 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1828
1829 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1830 Context.getTargetInfo().getCharAlign()));
1831 UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
1832 }
1833
1834 // Update the size.
1835 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1836
1837 // Remember max struct/class alignment.
1838 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1839 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1840 }
1841
LayoutField(const FieldDecl * D)1842 void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
1843 if (D->isBitField()) {
1844 LayoutBitField(D);
1845 return;
1846 }
1847
1848 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
1849
1850 // Reset the unfilled bits.
1851 UnfilledBitsInLastByte = 0;
1852
1853 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1854 CharUnits FieldOffset =
1855 IsUnion ? CharUnits::Zero() : getDataSize();
1856 CharUnits FieldSize;
1857 CharUnits FieldAlign;
1858
1859 if (D->getType()->isIncompleteArrayType()) {
1860 // This is a flexible array member; we can't directly
1861 // query getTypeInfo about these, so we figure it out here.
1862 // Flexible array members don't have any size, but they
1863 // have to be aligned appropriately for their element type.
1864 FieldSize = CharUnits::Zero();
1865 const ArrayType* ATy = Context.getAsArrayType(D->getType());
1866 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1867 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1868 unsigned AS = RT->getPointeeType().getAddressSpace();
1869 FieldSize =
1870 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1871 FieldAlign =
1872 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1873 } else {
1874 std::pair<CharUnits, CharUnits> FieldInfo =
1875 Context.getTypeInfoInChars(D->getType());
1876 FieldSize = FieldInfo.first;
1877 FieldAlign = FieldInfo.second;
1878
1879 if (ZeroLengthBitfield) {
1880 CharUnits ZeroLengthBitfieldBoundary =
1881 Context.toCharUnitsFromBits(
1882 Context.getTargetInfo().getZeroLengthBitfieldBoundary());
1883 if (ZeroLengthBitfieldBoundary == CharUnits::Zero()) {
1884 // If a zero-length bitfield is inserted after a bitfield,
1885 // and the alignment of the zero-length bitfield is
1886 // greater than the member that follows it, `bar', `bar'
1887 // will be aligned as the type of the zero-length bitfield.
1888 std::pair<CharUnits, CharUnits> FieldInfo =
1889 Context.getTypeInfoInChars(ZeroLengthBitfield->getType());
1890 CharUnits ZeroLengthBitfieldAlignment = FieldInfo.second;
1891 if (ZeroLengthBitfieldAlignment > FieldAlign)
1892 FieldAlign = ZeroLengthBitfieldAlignment;
1893 } else if (ZeroLengthBitfieldBoundary > FieldAlign) {
1894 // Align 'bar' based on a fixed alignment specified by the target.
1895 assert(Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1896 "ZeroLengthBitfieldBoundary should only be used in conjunction"
1897 " with useZeroLengthBitfieldAlignment.");
1898 FieldAlign = ZeroLengthBitfieldBoundary;
1899 }
1900 ZeroLengthBitfield = 0;
1901 }
1902
1903 if (Context.getLangOpts().MSBitfields || IsMsStruct) {
1904 // If MS bitfield layout is required, figure out what type is being
1905 // laid out and align the field to the width of that type.
1906
1907 // Resolve all typedefs down to their base type and round up the field
1908 // alignment if necessary.
1909 QualType T = Context.getBaseElementType(D->getType());
1910 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1911 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1912 if (TypeSize > FieldAlign)
1913 FieldAlign = TypeSize;
1914 }
1915 }
1916 }
1917
1918 // The align if the field is not packed. This is to check if the attribute
1919 // was unnecessary (-Wpacked).
1920 CharUnits UnpackedFieldAlign = FieldAlign;
1921 CharUnits UnpackedFieldOffset = FieldOffset;
1922
1923 if (FieldPacked)
1924 FieldAlign = CharUnits::One();
1925 CharUnits MaxAlignmentInChars =
1926 Context.toCharUnitsFromBits(D->getMaxAlignment());
1927 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1928 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1929
1930 // The maximum field alignment overrides the aligned attribute.
1931 if (!MaxFieldAlignment.isZero()) {
1932 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1933 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1934 }
1935
1936 // Round up the current record size to the field's alignment boundary.
1937 FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
1938 UnpackedFieldOffset =
1939 UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
1940
1941 if (ExternalLayout) {
1942 FieldOffset = Context.toCharUnitsFromBits(
1943 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1944
1945 if (!IsUnion && EmptySubobjects) {
1946 // Record the fact that we're placing a field at this offset.
1947 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1948 (void)Allowed;
1949 assert(Allowed && "Externally-placed field cannot be placed here");
1950 }
1951 } else {
1952 if (!IsUnion && EmptySubobjects) {
1953 // Check if we can place the field at this offset.
1954 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1955 // We couldn't place the field at the offset. Try again at a new offset.
1956 FieldOffset += FieldAlign;
1957 }
1958 }
1959 }
1960
1961 // Place this field at the current location.
1962 FieldOffsets.push_back(Context.toBits(FieldOffset));
1963
1964 if (!ExternalLayout)
1965 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1966 Context.toBits(UnpackedFieldOffset),
1967 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1968
1969 // Reserve space for this field.
1970 uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1971 if (IsUnion)
1972 setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1973 else
1974 setDataSize(FieldOffset + FieldSize);
1975
1976 // Update the size.
1977 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1978
1979 // Remember max struct/class alignment.
1980 UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1981 }
1982
FinishLayout(const NamedDecl * D)1983 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1984 if (ExternalLayout) {
1985 setSize(ExternalSize);
1986 return;
1987 }
1988
1989 // In C++, records cannot be of size 0.
1990 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1991 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1992 // Compatibility with gcc requires a class (pod or non-pod)
1993 // which is not empty but of size 0; such as having fields of
1994 // array of zero-length, remains of Size 0
1995 if (RD->isEmpty())
1996 setSize(CharUnits::One());
1997 }
1998 else
1999 setSize(CharUnits::One());
2000 }
2001
2002 // MSVC doesn't round up to the alignment of the record with virtual bases.
2003 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2004 if (isMicrosoftCXXABI() && RD->getNumVBases())
2005 return;
2006 }
2007
2008 // Finally, round the size of the record up to the alignment of the
2009 // record itself.
2010 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastByte;
2011 uint64_t UnpackedSizeInBits =
2012 llvm::RoundUpToAlignment(getSizeInBits(),
2013 Context.toBits(UnpackedAlignment));
2014 CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
2015 setSize(llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment)));
2016
2017 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2018 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2019 // Warn if padding was introduced to the struct/class/union.
2020 if (getSizeInBits() > UnpaddedSize) {
2021 unsigned PadSize = getSizeInBits() - UnpaddedSize;
2022 bool InBits = true;
2023 if (PadSize % CharBitNum == 0) {
2024 PadSize = PadSize / CharBitNum;
2025 InBits = false;
2026 }
2027 Diag(RD->getLocation(), diag::warn_padded_struct_size)
2028 << Context.getTypeDeclType(RD)
2029 << PadSize
2030 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
2031 }
2032
2033 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
2034 // bother since there won't be alignment issues.
2035 if (Packed && UnpackedAlignment > CharUnits::One() &&
2036 getSize() == UnpackedSize)
2037 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2038 << Context.getTypeDeclType(RD);
2039 }
2040 }
2041
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)2042 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
2043 CharUnits UnpackedNewAlignment) {
2044 // The alignment is not modified when using 'mac68k' alignment or when
2045 // we have an externally-supplied layout that also provides overall alignment.
2046 if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
2047 return;
2048
2049 if (NewAlignment > Alignment) {
2050 assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
2051 "Alignment not a power of 2"));
2052 Alignment = NewAlignment;
2053 }
2054
2055 if (UnpackedNewAlignment > UnpackedAlignment) {
2056 assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
2057 "Alignment not a power of 2"));
2058 UnpackedAlignment = UnpackedNewAlignment;
2059 }
2060 }
2061
2062 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)2063 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2064 uint64_t ComputedOffset) {
2065 assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
2066 "Field does not have an external offset");
2067
2068 uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
2069
2070 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2071 // The externally-supplied field offset is before the field offset we
2072 // computed. Assume that the structure is packed.
2073 Alignment = CharUnits::fromQuantity(1);
2074 InferAlignment = false;
2075 }
2076
2077 // Use the externally-supplied field offset.
2078 return ExternalFieldOffset;
2079 }
2080
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)2081 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
2082 uint64_t UnpaddedOffset,
2083 uint64_t UnpackedOffset,
2084 unsigned UnpackedAlign,
2085 bool isPacked,
2086 const FieldDecl *D) {
2087 // We let objc ivars without warning, objc interfaces generally are not used
2088 // for padding tricks.
2089 if (isa<ObjCIvarDecl>(D))
2090 return;
2091
2092 // Don't warn about structs created without a SourceLocation. This can
2093 // be done by clients of the AST, such as codegen.
2094 if (D->getLocation().isInvalid())
2095 return;
2096
2097 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2098
2099 // Warn if padding was introduced to the struct/class.
2100 if (!IsUnion && Offset > UnpaddedOffset) {
2101 unsigned PadSize = Offset - UnpaddedOffset;
2102 bool InBits = true;
2103 if (PadSize % CharBitNum == 0) {
2104 PadSize = PadSize / CharBitNum;
2105 InBits = false;
2106 }
2107 if (D->getIdentifier())
2108 Diag(D->getLocation(), diag::warn_padded_struct_field)
2109 << (D->getParent()->isStruct() ? 0 : 1) // struct|class
2110 << Context.getTypeDeclType(D->getParent())
2111 << PadSize
2112 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
2113 << D->getIdentifier();
2114 else
2115 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2116 << (D->getParent()->isStruct() ? 0 : 1) // struct|class
2117 << Context.getTypeDeclType(D->getParent())
2118 << PadSize
2119 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
2120 }
2121
2122 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
2123 // bother since there won't be alignment issues.
2124 if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
2125 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2126 << D->getIdentifier();
2127 }
2128
2129 const CXXMethodDecl *
ComputeKeyFunction(const CXXRecordDecl * RD)2130 RecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) {
2131 // If a class isn't polymorphic it doesn't have a key function.
2132 if (!RD->isPolymorphic())
2133 return 0;
2134
2135 // A class that is not externally visible doesn't have a key function. (Or
2136 // at least, there's no point to assigning a key function to such a class;
2137 // this doesn't affect the ABI.)
2138 if (RD->getLinkage() != ExternalLinkage)
2139 return 0;
2140
2141 // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
2142 // Same behavior as GCC.
2143 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2144 if (TSK == TSK_ImplicitInstantiation ||
2145 TSK == TSK_ExplicitInstantiationDefinition)
2146 return 0;
2147
2148 for (CXXRecordDecl::method_iterator I = RD->method_begin(),
2149 E = RD->method_end(); I != E; ++I) {
2150 const CXXMethodDecl *MD = *I;
2151
2152 if (!MD->isVirtual())
2153 continue;
2154
2155 if (MD->isPure())
2156 continue;
2157
2158 // Ignore implicit member functions, they are always marked as inline, but
2159 // they don't have a body until they're defined.
2160 if (MD->isImplicit())
2161 continue;
2162
2163 if (MD->isInlineSpecified())
2164 continue;
2165
2166 if (MD->hasInlineBody())
2167 continue;
2168
2169 // We found it.
2170 return MD;
2171 }
2172
2173 return 0;
2174 }
2175
2176 DiagnosticBuilder
Diag(SourceLocation Loc,unsigned DiagID)2177 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
2178 return Context.getDiagnostics().Report(Loc, DiagID);
2179 }
2180
2181 /// getASTRecordLayout - Get or compute information about the layout of the
2182 /// specified record (struct/union/class), which indicates its size and field
2183 /// position information.
2184 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const2185 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2186 // These asserts test different things. A record has a definition
2187 // as soon as we begin to parse the definition. That definition is
2188 // not a complete definition (which is what isDefinition() tests)
2189 // until we *finish* parsing the definition.
2190
2191 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2192 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2193
2194 D = D->getDefinition();
2195 assert(D && "Cannot get layout of forward declarations!");
2196 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2197
2198 // Look up this layout, if already laid out, return what we have.
2199 // Note that we can't save a reference to the entry because this function
2200 // is recursive.
2201 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2202 if (Entry) return *Entry;
2203
2204 const ASTRecordLayout *NewEntry;
2205
2206 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2207 EmptySubobjectMap EmptySubobjects(*this, RD);
2208 RecordLayoutBuilder Builder(*this, &EmptySubobjects);
2209 Builder.Layout(RD);
2210
2211 // MSVC gives the vb-table pointer an alignment equal to that of
2212 // the non-virtual part of the structure. That's an inherently
2213 // multi-pass operation. If our first pass doesn't give us
2214 // adequate alignment, try again with the specified minimum
2215 // alignment. This is *much* more maintainable than computing the
2216 // alignment in advance in a separately-coded pass; it's also
2217 // significantly more efficient in the common case where the
2218 // vb-table doesn't need extra padding.
2219 if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) &&
2220 (Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) {
2221 Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment);
2222 Builder.Layout(RD);
2223 }
2224
2225 // FIXME: This is not always correct. See the part about bitfields at
2226 // http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
2227 // FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
2228 // This does not affect the calculations of MSVC layouts
2229 bool IsPODForThePurposeOfLayout =
2230 (!Builder.isMicrosoftCXXABI() && cast<CXXRecordDecl>(D)->isPOD());
2231
2232 // FIXME: This should be done in FinalizeLayout.
2233 CharUnits DataSize =
2234 IsPODForThePurposeOfLayout ? Builder.getSize() : Builder.getDataSize();
2235 CharUnits NonVirtualSize =
2236 IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize;
2237
2238 NewEntry =
2239 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2240 Builder.Alignment,
2241 Builder.VFPtrOffset,
2242 Builder.VBPtrOffset,
2243 DataSize,
2244 Builder.FieldOffsets.data(),
2245 Builder.FieldOffsets.size(),
2246 NonVirtualSize,
2247 Builder.NonVirtualAlignment,
2248 EmptySubobjects.SizeOfLargestEmptySubobject,
2249 Builder.PrimaryBase,
2250 Builder.PrimaryBaseIsVirtual,
2251 Builder.Bases, Builder.VBases);
2252 } else {
2253 RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
2254 Builder.Layout(D);
2255
2256 NewEntry =
2257 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2258 Builder.Alignment,
2259 Builder.getSize(),
2260 Builder.FieldOffsets.data(),
2261 Builder.FieldOffsets.size());
2262 }
2263
2264 ASTRecordLayouts[D] = NewEntry;
2265
2266 if (getLangOpts().DumpRecordLayouts) {
2267 llvm::errs() << "\n*** Dumping AST Record Layout\n";
2268 DumpRecordLayout(D, llvm::errs(), getLangOpts().DumpRecordLayoutsSimple);
2269 }
2270
2271 return *NewEntry;
2272 }
2273
getKeyFunction(const CXXRecordDecl * RD)2274 const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
2275 RD = cast<CXXRecordDecl>(RD->getDefinition());
2276 assert(RD && "Cannot get key function for forward declarations!");
2277
2278 const CXXMethodDecl *&Entry = KeyFunctions[RD];
2279 if (!Entry)
2280 Entry = RecordLayoutBuilder::ComputeKeyFunction(RD);
2281
2282 return Entry;
2283 }
2284
getFieldOffset(const ASTContext & C,const FieldDecl * FD)2285 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
2286 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
2287 return Layout.getFieldOffset(FD->getFieldIndex());
2288 }
2289
getFieldOffset(const ValueDecl * VD) const2290 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
2291 uint64_t OffsetInBits;
2292 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
2293 OffsetInBits = ::getFieldOffset(*this, FD);
2294 } else {
2295 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
2296
2297 OffsetInBits = 0;
2298 for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(),
2299 CE = IFD->chain_end();
2300 CI != CE; ++CI)
2301 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(*CI));
2302 }
2303
2304 return OffsetInBits;
2305 }
2306
2307 /// getObjCLayout - Get or compute information about the layout of the
2308 /// given interface.
2309 ///
2310 /// \param Impl - If given, also include the layout of the interface's
2311 /// implementation. This may differ by including synthesized ivars.
2312 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const2313 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
2314 const ObjCImplementationDecl *Impl) const {
2315 // Retrieve the definition
2316 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2317 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
2318 D = D->getDefinition();
2319 assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
2320
2321 // Look up this layout, if already laid out, return what we have.
2322 ObjCContainerDecl *Key =
2323 Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
2324 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
2325 return *Entry;
2326
2327 // Add in synthesized ivar count if laying out an implementation.
2328 if (Impl) {
2329 unsigned SynthCount = CountNonClassIvars(D);
2330 // If there aren't any sythesized ivars then reuse the interface
2331 // entry. Note we can't cache this because we simply free all
2332 // entries later; however we shouldn't look up implementations
2333 // frequently.
2334 if (SynthCount == 0)
2335 return getObjCLayout(D, 0);
2336 }
2337
2338 RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
2339 Builder.Layout(D);
2340
2341 const ASTRecordLayout *NewEntry =
2342 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2343 Builder.Alignment,
2344 Builder.getDataSize(),
2345 Builder.FieldOffsets.data(),
2346 Builder.FieldOffsets.size());
2347
2348 ObjCLayouts[Key] = NewEntry;
2349
2350 return *NewEntry;
2351 }
2352
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)2353 static void PrintOffset(raw_ostream &OS,
2354 CharUnits Offset, unsigned IndentLevel) {
2355 OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
2356 OS.indent(IndentLevel * 2);
2357 }
2358
DumpCXXRecordLayout(raw_ostream & OS,const CXXRecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool IncludeVirtualBases)2359 static void DumpCXXRecordLayout(raw_ostream &OS,
2360 const CXXRecordDecl *RD, const ASTContext &C,
2361 CharUnits Offset,
2362 unsigned IndentLevel,
2363 const char* Description,
2364 bool IncludeVirtualBases) {
2365 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
2366
2367 PrintOffset(OS, Offset, IndentLevel);
2368 OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
2369 if (Description)
2370 OS << ' ' << Description;
2371 if (RD->isEmpty())
2372 OS << " (empty)";
2373 OS << '\n';
2374
2375 IndentLevel++;
2376
2377 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
2378 bool HasVfptr = Layout.getVFPtrOffset() != CharUnits::fromQuantity(-1);
2379 bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1);
2380
2381 // Vtable pointer.
2382 if (RD->isDynamicClass() && !PrimaryBase &&
2383 C.getTargetInfo().getCXXABI() != CXXABI_Microsoft) {
2384 PrintOffset(OS, Offset, IndentLevel);
2385 OS << '(' << *RD << " vtable pointer)\n";
2386 }
2387
2388 // Dump (non-virtual) bases
2389 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
2390 E = RD->bases_end(); I != E; ++I) {
2391 assert(!I->getType()->isDependentType() &&
2392 "Cannot layout class with dependent bases.");
2393 if (I->isVirtual())
2394 continue;
2395
2396 const CXXRecordDecl *Base =
2397 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
2398
2399 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
2400
2401 DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
2402 Base == PrimaryBase ? "(primary base)" : "(base)",
2403 /*IncludeVirtualBases=*/false);
2404 }
2405
2406 // vfptr and vbptr (for Microsoft C++ ABI)
2407 if (HasVfptr) {
2408 PrintOffset(OS, Offset + Layout.getVFPtrOffset(), IndentLevel);
2409 OS << '(' << *RD << " vftable pointer)\n";
2410 }
2411 if (HasVbptr) {
2412 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
2413 OS << '(' << *RD << " vbtable pointer)\n";
2414 }
2415
2416 // Dump fields.
2417 uint64_t FieldNo = 0;
2418 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2419 E = RD->field_end(); I != E; ++I, ++FieldNo) {
2420 const FieldDecl *Field = *I;
2421 CharUnits FieldOffset = Offset +
2422 C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
2423
2424 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2425 if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2426 DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
2427 Field->getName().data(),
2428 /*IncludeVirtualBases=*/true);
2429 continue;
2430 }
2431 }
2432
2433 PrintOffset(OS, FieldOffset, IndentLevel);
2434 OS << Field->getType().getAsString() << ' ' << *Field << '\n';
2435 }
2436
2437 if (!IncludeVirtualBases)
2438 return;
2439
2440 // Dump virtual bases.
2441 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
2442 E = RD->vbases_end(); I != E; ++I) {
2443 assert(I->isVirtual() && "Found non-virtual class!");
2444 const CXXRecordDecl *VBase =
2445 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
2446
2447 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
2448 DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
2449 VBase == PrimaryBase ?
2450 "(primary virtual base)" : "(virtual base)",
2451 /*IncludeVirtualBases=*/false);
2452 }
2453
2454 OS << " sizeof=" << Layout.getSize().getQuantity();
2455 OS << ", dsize=" << Layout.getDataSize().getQuantity();
2456 OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
2457 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
2458 OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << '\n';
2459 OS << '\n';
2460 }
2461
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const2462 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
2463 raw_ostream &OS,
2464 bool Simple) const {
2465 const ASTRecordLayout &Info = getASTRecordLayout(RD);
2466
2467 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
2468 if (!Simple)
2469 return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
2470 /*IncludeVirtualBases=*/true);
2471
2472 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
2473 if (!Simple) {
2474 OS << "Record: ";
2475 RD->dump();
2476 }
2477 OS << "\nLayout: ";
2478 OS << "<ASTRecordLayout\n";
2479 OS << " Size:" << toBits(Info.getSize()) << "\n";
2480 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
2481 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
2482 OS << " FieldOffsets: [";
2483 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
2484 if (i) OS << ", ";
2485 OS << Info.getFieldOffset(i);
2486 }
2487 OS << "]>\n";
2488 }
2489