• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/AST/Attr.h"
11 #include "clang/AST/CXXInheritance.h"
12 #include "clang/AST/Decl.h"
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/RecordLayout.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/SemaDiagnostic.h"
19 #include "llvm/Support/Format.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/CrashRecoveryContext.h"
23 
24 using namespace clang;
25 
26 namespace {
27 
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40   /// Class - The class for this base info.
41   const CXXRecordDecl *Class;
42 
43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44   bool IsVirtual;
45 
46   /// Bases - Information about the base subobjects.
47   SmallVector<BaseSubobjectInfo*, 4> Bases;
48 
49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50   /// of this base info (if one exists).
51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52 
53   // FIXME: Document.
54   const BaseSubobjectInfo *Derived;
55 };
56 
57 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
58 /// offsets while laying out a C++ class.
59 class EmptySubobjectMap {
60   const ASTContext &Context;
61   uint64_t CharWidth;
62 
63   /// Class - The class whose empty entries we're keeping track of.
64   const CXXRecordDecl *Class;
65 
66   /// EmptyClassOffsets - A map from offsets to empty record decls.
67   typedef SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
68   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
69   EmptyClassOffsetsMapTy EmptyClassOffsets;
70 
71   /// MaxEmptyClassOffset - The highest offset known to contain an empty
72   /// base subobject.
73   CharUnits MaxEmptyClassOffset;
74 
75   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
76   /// member subobject that is empty.
77   void ComputeEmptySubobjectSizes();
78 
79   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
80 
81   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
82                                  CharUnits Offset, bool PlacingEmptyBase);
83 
84   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
85                                   const CXXRecordDecl *Class,
86                                   CharUnits Offset);
87   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
88 
89   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
90   /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const91   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
92     return Offset <= MaxEmptyClassOffset;
93   }
94 
95   CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const96   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
97     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
98     assert(FieldOffset % CharWidth == 0 &&
99            "Field offset not at char boundary!");
100 
101     return Context.toCharUnitsFromBits(FieldOffset);
102   }
103 
104 protected:
105   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
106                                  CharUnits Offset) const;
107 
108   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
109                                      CharUnits Offset);
110 
111   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
112                                       const CXXRecordDecl *Class,
113                                       CharUnits Offset) const;
114   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
115                                       CharUnits Offset) const;
116 
117 public:
118   /// This holds the size of the largest empty subobject (either a base
119   /// or a member). Will be zero if the record being built doesn't contain
120   /// any empty classes.
121   CharUnits SizeOfLargestEmptySubobject;
122 
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)123   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
124   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
125       ComputeEmptySubobjectSizes();
126   }
127 
128   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
129   /// at the given offset.
130   /// Returns false if placing the record will result in two components
131   /// (direct or indirect) of the same type having the same offset.
132   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
133                             CharUnits Offset);
134 
135   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
136   /// offset.
137   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
138 };
139 
ComputeEmptySubobjectSizes()140 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
141   // Check the bases.
142   for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
143        E = Class->bases_end(); I != E; ++I) {
144     const CXXRecordDecl *BaseDecl =
145       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
146 
147     CharUnits EmptySize;
148     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
149     if (BaseDecl->isEmpty()) {
150       // If the class decl is empty, get its size.
151       EmptySize = Layout.getSize();
152     } else {
153       // Otherwise, we get the largest empty subobject for the decl.
154       EmptySize = Layout.getSizeOfLargestEmptySubobject();
155     }
156 
157     if (EmptySize > SizeOfLargestEmptySubobject)
158       SizeOfLargestEmptySubobject = EmptySize;
159   }
160 
161   // Check the fields.
162   for (CXXRecordDecl::field_iterator I = Class->field_begin(),
163        E = Class->field_end(); I != E; ++I) {
164     const FieldDecl *FD = *I;
165 
166     const RecordType *RT =
167       Context.getBaseElementType(FD->getType())->getAs<RecordType>();
168 
169     // We only care about record types.
170     if (!RT)
171       continue;
172 
173     CharUnits EmptySize;
174     const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
175     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
176     if (MemberDecl->isEmpty()) {
177       // If the class decl is empty, get its size.
178       EmptySize = Layout.getSize();
179     } else {
180       // Otherwise, we get the largest empty subobject for the decl.
181       EmptySize = Layout.getSizeOfLargestEmptySubobject();
182     }
183 
184     if (EmptySize > SizeOfLargestEmptySubobject)
185       SizeOfLargestEmptySubobject = EmptySize;
186   }
187 }
188 
189 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const190 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
191                                              CharUnits Offset) const {
192   // We only need to check empty bases.
193   if (!RD->isEmpty())
194     return true;
195 
196   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
197   if (I == EmptyClassOffsets.end())
198     return true;
199 
200   const ClassVectorTy& Classes = I->second;
201   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
202     return true;
203 
204   // There is already an empty class of the same type at this offset.
205   return false;
206 }
207 
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)208 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
209                                              CharUnits Offset) {
210   // We only care about empty bases.
211   if (!RD->isEmpty())
212     return;
213 
214   // If we have empty structures inside an union, we can assign both
215   // the same offset. Just avoid pushing them twice in the list.
216   ClassVectorTy& Classes = EmptyClassOffsets[Offset];
217   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
218     return;
219 
220   Classes.push_back(RD);
221 
222   // Update the empty class offset.
223   if (Offset > MaxEmptyClassOffset)
224     MaxEmptyClassOffset = Offset;
225 }
226 
227 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)228 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
229                                                  CharUnits Offset) {
230   // We don't have to keep looking past the maximum offset that's known to
231   // contain an empty class.
232   if (!AnyEmptySubobjectsBeyondOffset(Offset))
233     return true;
234 
235   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
236     return false;
237 
238   // Traverse all non-virtual bases.
239   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
240   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
241     BaseSubobjectInfo* Base = Info->Bases[I];
242     if (Base->IsVirtual)
243       continue;
244 
245     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
246 
247     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
248       return false;
249   }
250 
251   if (Info->PrimaryVirtualBaseInfo) {
252     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
253 
254     if (Info == PrimaryVirtualBaseInfo->Derived) {
255       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
256         return false;
257     }
258   }
259 
260   // Traverse all member variables.
261   unsigned FieldNo = 0;
262   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
263        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
264     const FieldDecl *FD = *I;
265     if (FD->isBitField())
266       continue;
267 
268     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
269     if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
270       return false;
271   }
272 
273   return true;
274 }
275 
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)276 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
277                                                   CharUnits Offset,
278                                                   bool PlacingEmptyBase) {
279   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
280     // We know that the only empty subobjects that can conflict with empty
281     // subobject of non-empty bases, are empty bases that can be placed at
282     // offset zero. Because of this, we only need to keep track of empty base
283     // subobjects with offsets less than the size of the largest empty
284     // subobject for our class.
285     return;
286   }
287 
288   AddSubobjectAtOffset(Info->Class, Offset);
289 
290   // Traverse all non-virtual bases.
291   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
292   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
293     BaseSubobjectInfo* Base = Info->Bases[I];
294     if (Base->IsVirtual)
295       continue;
296 
297     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
298     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
299   }
300 
301   if (Info->PrimaryVirtualBaseInfo) {
302     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
303 
304     if (Info == PrimaryVirtualBaseInfo->Derived)
305       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
306                                 PlacingEmptyBase);
307   }
308 
309   // Traverse all member variables.
310   unsigned FieldNo = 0;
311   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
312        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
313     const FieldDecl *FD = *I;
314     if (FD->isBitField())
315       continue;
316 
317     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
318     UpdateEmptyFieldSubobjects(FD, FieldOffset);
319   }
320 }
321 
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)322 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
323                                              CharUnits Offset) {
324   // If we know this class doesn't have any empty subobjects we don't need to
325   // bother checking.
326   if (SizeOfLargestEmptySubobject.isZero())
327     return true;
328 
329   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
330     return false;
331 
332   // We are able to place the base at this offset. Make sure to update the
333   // empty base subobject map.
334   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
335   return true;
336 }
337 
338 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const339 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
340                                                   const CXXRecordDecl *Class,
341                                                   CharUnits Offset) const {
342   // We don't have to keep looking past the maximum offset that's known to
343   // contain an empty class.
344   if (!AnyEmptySubobjectsBeyondOffset(Offset))
345     return true;
346 
347   if (!CanPlaceSubobjectAtOffset(RD, Offset))
348     return false;
349 
350   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
351 
352   // Traverse all non-virtual bases.
353   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
354        E = RD->bases_end(); I != E; ++I) {
355     if (I->isVirtual())
356       continue;
357 
358     const CXXRecordDecl *BaseDecl =
359       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
360 
361     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
362     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
363       return false;
364   }
365 
366   if (RD == Class) {
367     // This is the most derived class, traverse virtual bases as well.
368     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
369          E = RD->vbases_end(); I != E; ++I) {
370       const CXXRecordDecl *VBaseDecl =
371         cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
372 
373       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
374       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
375         return false;
376     }
377   }
378 
379   // Traverse all member variables.
380   unsigned FieldNo = 0;
381   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
382        I != E; ++I, ++FieldNo) {
383     const FieldDecl *FD = *I;
384     if (FD->isBitField())
385       continue;
386 
387     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
388 
389     if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
390       return false;
391   }
392 
393   return true;
394 }
395 
396 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const397 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
398                                                   CharUnits Offset) const {
399   // We don't have to keep looking past the maximum offset that's known to
400   // contain an empty class.
401   if (!AnyEmptySubobjectsBeyondOffset(Offset))
402     return true;
403 
404   QualType T = FD->getType();
405   if (const RecordType *RT = T->getAs<RecordType>()) {
406     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
407     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
408   }
409 
410   // If we have an array type we need to look at every element.
411   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
412     QualType ElemTy = Context.getBaseElementType(AT);
413     const RecordType *RT = ElemTy->getAs<RecordType>();
414     if (!RT)
415       return true;
416 
417     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
418     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
419 
420     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
421     CharUnits ElementOffset = Offset;
422     for (uint64_t I = 0; I != NumElements; ++I) {
423       // We don't have to keep looking past the maximum offset that's known to
424       // contain an empty class.
425       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
426         return true;
427 
428       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
429         return false;
430 
431       ElementOffset += Layout.getSize();
432     }
433   }
434 
435   return true;
436 }
437 
438 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)439 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
440                                          CharUnits Offset) {
441   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
442     return false;
443 
444   // We are able to place the member variable at this offset.
445   // Make sure to update the empty base subobject map.
446   UpdateEmptyFieldSubobjects(FD, Offset);
447   return true;
448 }
449 
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset)450 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
451                                                    const CXXRecordDecl *Class,
452                                                    CharUnits Offset) {
453   // We know that the only empty subobjects that can conflict with empty
454   // field subobjects are subobjects of empty bases that can be placed at offset
455   // zero. Because of this, we only need to keep track of empty field
456   // subobjects with offsets less than the size of the largest empty
457   // subobject for our class.
458   if (Offset >= SizeOfLargestEmptySubobject)
459     return;
460 
461   AddSubobjectAtOffset(RD, Offset);
462 
463   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
464 
465   // Traverse all non-virtual bases.
466   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
467        E = RD->bases_end(); I != E; ++I) {
468     if (I->isVirtual())
469       continue;
470 
471     const CXXRecordDecl *BaseDecl =
472       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
473 
474     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
475     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
476   }
477 
478   if (RD == Class) {
479     // This is the most derived class, traverse virtual bases as well.
480     for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
481          E = RD->vbases_end(); I != E; ++I) {
482       const CXXRecordDecl *VBaseDecl =
483       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
484 
485       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
486       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
487     }
488   }
489 
490   // Traverse all member variables.
491   unsigned FieldNo = 0;
492   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
493        I != E; ++I, ++FieldNo) {
494     const FieldDecl *FD = *I;
495     if (FD->isBitField())
496       continue;
497 
498     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
499 
500     UpdateEmptyFieldSubobjects(FD, FieldOffset);
501   }
502 }
503 
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset)504 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
505                                                    CharUnits Offset) {
506   QualType T = FD->getType();
507   if (const RecordType *RT = T->getAs<RecordType>()) {
508     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
509     UpdateEmptyFieldSubobjects(RD, RD, Offset);
510     return;
511   }
512 
513   // If we have an array type we need to update every element.
514   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
515     QualType ElemTy = Context.getBaseElementType(AT);
516     const RecordType *RT = ElemTy->getAs<RecordType>();
517     if (!RT)
518       return;
519 
520     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
521     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
522 
523     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
524     CharUnits ElementOffset = Offset;
525 
526     for (uint64_t I = 0; I != NumElements; ++I) {
527       // We know that the only empty subobjects that can conflict with empty
528       // field subobjects are subobjects of empty bases that can be placed at
529       // offset zero. Because of this, we only need to keep track of empty field
530       // subobjects with offsets less than the size of the largest empty
531       // subobject for our class.
532       if (ElementOffset >= SizeOfLargestEmptySubobject)
533         return;
534 
535       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
536       ElementOffset += Layout.getSize();
537     }
538   }
539 }
540 
541 class RecordLayoutBuilder {
542 protected:
543   // FIXME: Remove this and make the appropriate fields public.
544   friend class clang::ASTContext;
545 
546   const ASTContext &Context;
547 
548   EmptySubobjectMap *EmptySubobjects;
549 
550   /// Size - The current size of the record layout.
551   uint64_t Size;
552 
553   /// Alignment - The current alignment of the record layout.
554   CharUnits Alignment;
555 
556   /// \brief The alignment if attribute packed is not used.
557   CharUnits UnpackedAlignment;
558 
559   SmallVector<uint64_t, 16> FieldOffsets;
560 
561   /// \brief Whether the external AST source has provided a layout for this
562   /// record.
563   unsigned ExternalLayout : 1;
564 
565   /// \brief Whether we need to infer alignment, even when we have an
566   /// externally-provided layout.
567   unsigned InferAlignment : 1;
568 
569   /// Packed - Whether the record is packed or not.
570   unsigned Packed : 1;
571 
572   unsigned IsUnion : 1;
573 
574   unsigned IsMac68kAlign : 1;
575 
576   unsigned IsMsStruct : 1;
577 
578   /// UnfilledBitsInLastByte - If the last field laid out was a bitfield,
579   /// this contains the number of bits in the last byte that can be used for
580   /// an adjacent bitfield if necessary.
581   unsigned char UnfilledBitsInLastByte;
582 
583   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
584   /// #pragma pack.
585   CharUnits MaxFieldAlignment;
586 
587   /// DataSize - The data size of the record being laid out.
588   uint64_t DataSize;
589 
590   CharUnits NonVirtualSize;
591   CharUnits NonVirtualAlignment;
592 
593   FieldDecl *ZeroLengthBitfield;
594 
595   /// PrimaryBase - the primary base class (if one exists) of the class
596   /// we're laying out.
597   const CXXRecordDecl *PrimaryBase;
598 
599   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
600   /// out is virtual.
601   bool PrimaryBaseIsVirtual;
602 
603   /// VFPtrOffset - Virtual function table offset. Only for MS layout.
604   CharUnits VFPtrOffset;
605 
606   /// VBPtrOffset - Virtual base table offset. Only for MS layout.
607   CharUnits VBPtrOffset;
608 
609   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
610 
611   /// Bases - base classes and their offsets in the record.
612   BaseOffsetsMapTy Bases;
613 
614   // VBases - virtual base classes and their offsets in the record.
615   BaseOffsetsMapTy VBases;
616 
617   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
618   /// primary base classes for some other direct or indirect base class.
619   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
620 
621   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
622   /// inheritance graph order. Used for determining the primary base class.
623   const CXXRecordDecl *FirstNearlyEmptyVBase;
624 
625   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
626   /// avoid visiting virtual bases more than once.
627   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
628 
629   /// \brief Externally-provided size.
630   uint64_t ExternalSize;
631 
632   /// \brief Externally-provided alignment.
633   uint64_t ExternalAlign;
634 
635   /// \brief Externally-provided field offsets.
636   llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
637 
638   /// \brief Externally-provided direct, non-virtual base offsets.
639   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
640 
641   /// \brief Externally-provided virtual base offsets.
642   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
643 
RecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)644   RecordLayoutBuilder(const ASTContext &Context,
645                       EmptySubobjectMap *EmptySubobjects)
646     : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
647       Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
648       ExternalLayout(false), InferAlignment(false),
649       Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
650       UnfilledBitsInLastByte(0), MaxFieldAlignment(CharUnits::Zero()),
651       DataSize(0), NonVirtualSize(CharUnits::Zero()),
652       NonVirtualAlignment(CharUnits::One()),
653       ZeroLengthBitfield(0), PrimaryBase(0),
654       PrimaryBaseIsVirtual(false),
655       VFPtrOffset(CharUnits::fromQuantity(-1)),
656       VBPtrOffset(CharUnits::fromQuantity(-1)),
657       FirstNearlyEmptyVBase(0) { }
658 
659   /// Reset this RecordLayoutBuilder to a fresh state, using the given
660   /// alignment as the initial alignment.  This is used for the
661   /// correct layout of vb-table pointers in MSVC.
resetWithTargetAlignment(CharUnits TargetAlignment)662   void resetWithTargetAlignment(CharUnits TargetAlignment) {
663     const ASTContext &Context = this->Context;
664     EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
665     this->~RecordLayoutBuilder();
666     new (this) RecordLayoutBuilder(Context, EmptySubobjects);
667     Alignment = UnpackedAlignment = TargetAlignment;
668   }
669 
670   void Layout(const RecordDecl *D);
671   void Layout(const CXXRecordDecl *D);
672   void Layout(const ObjCInterfaceDecl *D);
673 
674   void LayoutFields(const RecordDecl *D);
675   void LayoutField(const FieldDecl *D);
676   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
677                           bool FieldPacked, const FieldDecl *D);
678   void LayoutBitField(const FieldDecl *D);
679 
isMicrosoftCXXABI() const680   bool isMicrosoftCXXABI() const {
681     return Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft;
682   }
683 
684   void MSLayoutVirtualBases(const CXXRecordDecl *RD);
685 
686   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
687   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
688 
689   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
690     BaseSubobjectInfoMapTy;
691 
692   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
693   /// of the class we're laying out to their base subobject info.
694   BaseSubobjectInfoMapTy VirtualBaseInfo;
695 
696   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
697   /// class we're laying out to their base subobject info.
698   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
699 
700   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
701   /// bases of the given class.
702   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
703 
704   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
705   /// single class and all of its base classes.
706   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
707                                               bool IsVirtual,
708                                               BaseSubobjectInfo *Derived);
709 
710   /// DeterminePrimaryBase - Determine the primary base of the given class.
711   void DeterminePrimaryBase(const CXXRecordDecl *RD);
712 
713   void SelectPrimaryVBase(const CXXRecordDecl *RD);
714 
715   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
716 
717   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
718   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
719   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
720 
721   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
722   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
723 
724   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
725                                     CharUnits Offset);
726 
727   bool needsVFTable(const CXXRecordDecl *RD) const;
728   bool hasNewVirtualFunction(const CXXRecordDecl *RD) const;
729   bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const;
730 
731   /// LayoutVirtualBases - Lays out all the virtual bases.
732   void LayoutVirtualBases(const CXXRecordDecl *RD,
733                           const CXXRecordDecl *MostDerivedClass);
734 
735   /// LayoutVirtualBase - Lays out a single virtual base.
736   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
737 
738   /// LayoutBase - Will lay out a base and return the offset where it was
739   /// placed, in chars.
740   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
741 
742   /// InitializeLayout - Initialize record layout for the given record decl.
743   void InitializeLayout(const Decl *D);
744 
745   /// FinishLayout - Finalize record layout. Adjust record size based on the
746   /// alignment.
747   void FinishLayout(const NamedDecl *D);
748 
749   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
UpdateAlignment(CharUnits NewAlignment)750   void UpdateAlignment(CharUnits NewAlignment) {
751     UpdateAlignment(NewAlignment, NewAlignment);
752   }
753 
754   /// \brief Retrieve the externally-supplied field offset for the given
755   /// field.
756   ///
757   /// \param Field The field whose offset is being queried.
758   /// \param ComputedOffset The offset that we've computed for this field.
759   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
760                                      uint64_t ComputedOffset);
761 
762   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
763                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
764                           bool isPacked, const FieldDecl *D);
765 
766   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
767 
getSize() const768   CharUnits getSize() const {
769     assert(Size % Context.getCharWidth() == 0);
770     return Context.toCharUnitsFromBits(Size);
771   }
getSizeInBits() const772   uint64_t getSizeInBits() const { return Size; }
773 
setSize(CharUnits NewSize)774   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)775   void setSize(uint64_t NewSize) { Size = NewSize; }
776 
getAligment() const777   CharUnits getAligment() const { return Alignment; }
778 
getDataSize() const779   CharUnits getDataSize() const {
780     assert(DataSize % Context.getCharWidth() == 0);
781     return Context.toCharUnitsFromBits(DataSize);
782   }
getDataSizeInBits() const783   uint64_t getDataSizeInBits() const { return DataSize; }
784 
setDataSize(CharUnits NewSize)785   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)786   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
787 
788   RecordLayoutBuilder(const RecordLayoutBuilder&);   // DO NOT IMPLEMENT
789   void operator=(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
790 public:
791   static const CXXMethodDecl *ComputeKeyFunction(const CXXRecordDecl *RD);
792 };
793 } // end anonymous namespace
794 
795 void
SelectPrimaryVBase(const CXXRecordDecl * RD)796 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
797   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
798          E = RD->bases_end(); I != E; ++I) {
799     assert(!I->getType()->isDependentType() &&
800            "Cannot layout class with dependent bases.");
801 
802     const CXXRecordDecl *Base =
803       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
804 
805     // Check if this is a nearly empty virtual base.
806     if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
807       // If it's not an indirect primary base, then we've found our primary
808       // base.
809       if (!IndirectPrimaryBases.count(Base)) {
810         PrimaryBase = Base;
811         PrimaryBaseIsVirtual = true;
812         return;
813       }
814 
815       // Is this the first nearly empty virtual base?
816       if (!FirstNearlyEmptyVBase)
817         FirstNearlyEmptyVBase = Base;
818     }
819 
820     SelectPrimaryVBase(Base);
821     if (PrimaryBase)
822       return;
823   }
824 }
825 
826 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)827 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
828   // If the class isn't dynamic, it won't have a primary base.
829   if (!RD->isDynamicClass())
830     return;
831 
832   // Compute all the primary virtual bases for all of our direct and
833   // indirect bases, and record all their primary virtual base classes.
834   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
835 
836   // If the record has a dynamic base class, attempt to choose a primary base
837   // class. It is the first (in direct base class order) non-virtual dynamic
838   // base class, if one exists.
839   for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
840          e = RD->bases_end(); i != e; ++i) {
841     // Ignore virtual bases.
842     if (i->isVirtual())
843       continue;
844 
845     const CXXRecordDecl *Base =
846       cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
847 
848     if (isPossiblePrimaryBase(Base)) {
849       // We found it.
850       PrimaryBase = Base;
851       PrimaryBaseIsVirtual = false;
852       return;
853     }
854   }
855 
856   // The Microsoft ABI doesn't have primary virtual bases.
857   if (isMicrosoftCXXABI()) {
858     assert(!PrimaryBase && "Should not get here with a primary base!");
859     return;
860   }
861 
862   // Under the Itanium ABI, if there is no non-virtual primary base class,
863   // try to compute the primary virtual base.  The primary virtual base is
864   // the first nearly empty virtual base that is not an indirect primary
865   // virtual base class, if one exists.
866   if (RD->getNumVBases() != 0) {
867     SelectPrimaryVBase(RD);
868     if (PrimaryBase)
869       return;
870   }
871 
872   // Otherwise, it is the first indirect primary base class, if one exists.
873   if (FirstNearlyEmptyVBase) {
874     PrimaryBase = FirstNearlyEmptyVBase;
875     PrimaryBaseIsVirtual = true;
876     return;
877   }
878 
879   assert(!PrimaryBase && "Should not get here with a primary base!");
880 }
881 
882 BaseSubobjectInfo *
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)883 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
884                                               bool IsVirtual,
885                                               BaseSubobjectInfo *Derived) {
886   BaseSubobjectInfo *Info;
887 
888   if (IsVirtual) {
889     // Check if we already have info about this virtual base.
890     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
891     if (InfoSlot) {
892       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
893       return InfoSlot;
894     }
895 
896     // We don't, create it.
897     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
898     Info = InfoSlot;
899   } else {
900     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
901   }
902 
903   Info->Class = RD;
904   Info->IsVirtual = IsVirtual;
905   Info->Derived = 0;
906   Info->PrimaryVirtualBaseInfo = 0;
907 
908   const CXXRecordDecl *PrimaryVirtualBase = 0;
909   BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
910 
911   // Check if this base has a primary virtual base.
912   if (RD->getNumVBases()) {
913     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
914     if (Layout.isPrimaryBaseVirtual()) {
915       // This base does have a primary virtual base.
916       PrimaryVirtualBase = Layout.getPrimaryBase();
917       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
918 
919       // Now check if we have base subobject info about this primary base.
920       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
921 
922       if (PrimaryVirtualBaseInfo) {
923         if (PrimaryVirtualBaseInfo->Derived) {
924           // We did have info about this primary base, and it turns out that it
925           // has already been claimed as a primary virtual base for another
926           // base.
927           PrimaryVirtualBase = 0;
928         } else {
929           // We can claim this base as our primary base.
930           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
931           PrimaryVirtualBaseInfo->Derived = Info;
932         }
933       }
934     }
935   }
936 
937   // Now go through all direct bases.
938   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
939        E = RD->bases_end(); I != E; ++I) {
940     bool IsVirtual = I->isVirtual();
941 
942     const CXXRecordDecl *BaseDecl =
943       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
944 
945     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
946   }
947 
948   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
949     // Traversing the bases must have created the base info for our primary
950     // virtual base.
951     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
952     assert(PrimaryVirtualBaseInfo &&
953            "Did not create a primary virtual base!");
954 
955     // Claim the primary virtual base as our primary virtual base.
956     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
957     PrimaryVirtualBaseInfo->Derived = Info;
958   }
959 
960   return Info;
961 }
962 
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)963 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
964   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
965        E = RD->bases_end(); I != E; ++I) {
966     bool IsVirtual = I->isVirtual();
967 
968     const CXXRecordDecl *BaseDecl =
969       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
970 
971     // Compute the base subobject info for this base.
972     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
973 
974     if (IsVirtual) {
975       // ComputeBaseInfo has already added this base for us.
976       assert(VirtualBaseInfo.count(BaseDecl) &&
977              "Did not add virtual base!");
978     } else {
979       // Add the base info to the map of non-virtual bases.
980       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
981              "Non-virtual base already exists!");
982       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
983     }
984   }
985 }
986 
987 void
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)988 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
989   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
990 
991   // The maximum field alignment overrides base align.
992   if (!MaxFieldAlignment.isZero()) {
993     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
994     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
995   }
996 
997   // Round up the current record size to pointer alignment.
998   setSize(getSize().RoundUpToAlignment(BaseAlign));
999   setDataSize(getSize());
1000 
1001   // Update the alignment.
1002   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1003 }
1004 
1005 void
LayoutNonVirtualBases(const CXXRecordDecl * RD)1006 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
1007   // Then, determine the primary base class.
1008   DeterminePrimaryBase(RD);
1009 
1010   // Compute base subobject info.
1011   ComputeBaseSubobjectInfo(RD);
1012 
1013   // If we have a primary base class, lay it out.
1014   if (PrimaryBase) {
1015     if (PrimaryBaseIsVirtual) {
1016       // If the primary virtual base was a primary virtual base of some other
1017       // base class we'll have to steal it.
1018       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1019       PrimaryBaseInfo->Derived = 0;
1020 
1021       // We have a virtual primary base, insert it as an indirect primary base.
1022       IndirectPrimaryBases.insert(PrimaryBase);
1023 
1024       assert(!VisitedVirtualBases.count(PrimaryBase) &&
1025              "vbase already visited!");
1026       VisitedVirtualBases.insert(PrimaryBase);
1027 
1028       LayoutVirtualBase(PrimaryBaseInfo);
1029     } else {
1030       BaseSubobjectInfo *PrimaryBaseInfo =
1031         NonVirtualBaseInfo.lookup(PrimaryBase);
1032       assert(PrimaryBaseInfo &&
1033              "Did not find base info for non-virtual primary base!");
1034 
1035       LayoutNonVirtualBase(PrimaryBaseInfo);
1036     }
1037 
1038   // If this class needs a vtable/vf-table and didn't get one from a
1039   // primary base, add it in now.
1040   } else if (needsVFTable(RD)) {
1041     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1042     CharUnits PtrWidth =
1043       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1044     CharUnits PtrAlign =
1045       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1046     EnsureVTablePointerAlignment(PtrAlign);
1047     if (isMicrosoftCXXABI())
1048       VFPtrOffset = getSize();
1049     setSize(getSize() + PtrWidth);
1050     setDataSize(getSize());
1051   }
1052 
1053   bool HasDirectVirtualBases = false;
1054   bool HasNonVirtualBaseWithVBTable = false;
1055 
1056   // Now lay out the non-virtual bases.
1057   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1058          E = RD->bases_end(); I != E; ++I) {
1059 
1060     // Ignore virtual bases, but remember that we saw one.
1061     if (I->isVirtual()) {
1062       HasDirectVirtualBases = true;
1063       continue;
1064     }
1065 
1066     const CXXRecordDecl *BaseDecl =
1067       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1068 
1069     // Remember if this base has virtual bases itself.
1070     if (BaseDecl->getNumVBases())
1071       HasNonVirtualBaseWithVBTable = true;
1072 
1073     // Skip the primary base, because we've already laid it out.  The
1074     // !PrimaryBaseIsVirtual check is required because we might have a
1075     // non-virtual base of the same type as a primary virtual base.
1076     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1077       continue;
1078 
1079     // Lay out the base.
1080     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1081     assert(BaseInfo && "Did not find base info for non-virtual base!");
1082 
1083     LayoutNonVirtualBase(BaseInfo);
1084   }
1085 
1086   // In the MS ABI, add the vb-table pointer if we need one, which is
1087   // whenever we have a virtual base and we can't re-use a vb-table
1088   // pointer from a non-virtual base.
1089   if (isMicrosoftCXXABI() &&
1090       HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) {
1091     CharUnits PtrWidth =
1092       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1093     CharUnits PtrAlign =
1094       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1095 
1096     // MSVC potentially over-aligns the vb-table pointer by giving it
1097     // the max alignment of all the non-virtual objects in the class.
1098     // This is completely unnecessary, but we're not here to pass
1099     // judgment.
1100     //
1101     // Note that we've only laid out the non-virtual bases, so on the
1102     // first pass Alignment won't be set correctly here, but if the
1103     // vb-table doesn't end up aligned correctly we'll come through
1104     // and redo the layout from scratch with the right alignment.
1105     //
1106     // TODO: Instead of doing this, just lay out the fields as if the
1107     // vb-table were at offset zero, then retroactively bump the field
1108     // offsets up.
1109     PtrAlign = std::max(PtrAlign, Alignment);
1110 
1111     EnsureVTablePointerAlignment(PtrAlign);
1112     VBPtrOffset = getSize();
1113     setSize(getSize() + PtrWidth);
1114     setDataSize(getSize());
1115   }
1116 }
1117 
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1118 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
1119   // Layout the base.
1120   CharUnits Offset = LayoutBase(Base);
1121 
1122   // Add its base class offset.
1123   assert(!Bases.count(Base->Class) && "base offset already exists!");
1124   Bases.insert(std::make_pair(Base->Class, Offset));
1125 
1126   AddPrimaryVirtualBaseOffsets(Base, Offset);
1127 }
1128 
1129 void
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1130 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
1131                                                   CharUnits Offset) {
1132   // This base isn't interesting, it has no virtual bases.
1133   if (!Info->Class->getNumVBases())
1134     return;
1135 
1136   // First, check if we have a virtual primary base to add offsets for.
1137   if (Info->PrimaryVirtualBaseInfo) {
1138     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1139            "Primary virtual base is not virtual!");
1140     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1141       // Add the offset.
1142       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1143              "primary vbase offset already exists!");
1144       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1145                                    Offset));
1146 
1147       // Traverse the primary virtual base.
1148       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1149     }
1150   }
1151 
1152   // Now go through all direct non-virtual bases.
1153   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1154   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
1155     const BaseSubobjectInfo *Base = Info->Bases[I];
1156     if (Base->IsVirtual)
1157       continue;
1158 
1159     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1160     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1161   }
1162 }
1163 
1164 /// needsVFTable - Return true if this class needs a vtable or vf-table
1165 /// when laid out as a base class.  These are treated the same because
1166 /// they're both always laid out at offset zero.
1167 ///
1168 /// This function assumes that the class has no primary base.
needsVFTable(const CXXRecordDecl * RD) const1169 bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const {
1170   assert(!PrimaryBase);
1171 
1172   // In the Itanium ABI, every dynamic class needs a vtable: even if
1173   // this class has no virtual functions as a base class (i.e. it's
1174   // non-polymorphic or only has virtual functions from virtual
1175   // bases),x it still needs a vtable to locate its virtual bases.
1176   if (!isMicrosoftCXXABI())
1177     return RD->isDynamicClass();
1178 
1179   // In the MS ABI, we need a vfptr if the class has virtual functions
1180   // other than those declared by its virtual bases.  The AST doesn't
1181   // tell us that directly, and checking manually for virtual
1182   // functions that aren't overrides is expensive, but there are
1183   // some important shortcuts:
1184 
1185   //  - Non-polymorphic classes have no virtual functions at all.
1186   if (!RD->isPolymorphic()) return false;
1187 
1188   //  - Polymorphic classes with no virtual bases must either declare
1189   //    virtual functions directly or inherit them, but in the latter
1190   //    case we would have a primary base.
1191   if (RD->getNumVBases() == 0) return true;
1192 
1193   return hasNewVirtualFunction(RD);
1194 }
1195 
1196 /// hasNewVirtualFunction - Does the given polymorphic class declare a
1197 /// virtual function that does not override a method from any of its
1198 /// base classes?
1199 bool
hasNewVirtualFunction(const CXXRecordDecl * RD) const1200 RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD) const {
1201   assert(RD->isPolymorphic());
1202   if (!RD->getNumBases())
1203     return true;
1204 
1205   for (CXXRecordDecl::method_iterator method = RD->method_begin();
1206        method != RD->method_end();
1207        ++method) {
1208     if (method->isVirtual() && !method->size_overridden_methods()) {
1209       return true;
1210     }
1211   }
1212   return false;
1213 }
1214 
1215 /// isPossiblePrimaryBase - Is the given base class an acceptable
1216 /// primary base class?
1217 bool
isPossiblePrimaryBase(const CXXRecordDecl * Base) const1218 RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *Base) const {
1219   // In the Itanium ABI, a class can be a primary base class if it has
1220   // a vtable for any reason.
1221   if (!isMicrosoftCXXABI())
1222     return Base->isDynamicClass();
1223 
1224   // In the MS ABI, a class can only be a primary base class if it
1225   // provides a vf-table at a static offset.  That means it has to be
1226   // non-virtual base.  The existence of a separate vb-table means
1227   // that it's possible to get virtual functions only from a virtual
1228   // base, which we have to guard against.
1229 
1230   // First off, it has to have virtual functions.
1231   if (!Base->isPolymorphic()) return false;
1232 
1233   // If it has no virtual bases, then everything is at a static offset.
1234   if (!Base->getNumVBases()) return true;
1235 
1236   // Okay, just ask the base class's layout.
1237   return (Context.getASTRecordLayout(Base).getVFPtrOffset()
1238             != CharUnits::fromQuantity(-1));
1239 }
1240 
1241 void
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1242 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
1243                                         const CXXRecordDecl *MostDerivedClass) {
1244   const CXXRecordDecl *PrimaryBase;
1245   bool PrimaryBaseIsVirtual;
1246 
1247   if (MostDerivedClass == RD) {
1248     PrimaryBase = this->PrimaryBase;
1249     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1250   } else {
1251     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1252     PrimaryBase = Layout.getPrimaryBase();
1253     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1254   }
1255 
1256   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1257          E = RD->bases_end(); I != E; ++I) {
1258     assert(!I->getType()->isDependentType() &&
1259            "Cannot layout class with dependent bases.");
1260 
1261     const CXXRecordDecl *BaseDecl =
1262       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1263 
1264     if (I->isVirtual()) {
1265       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1266         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1267 
1268         // Only lay out the virtual base if it's not an indirect primary base.
1269         if (!IndirectPrimaryBase) {
1270           // Only visit virtual bases once.
1271           if (!VisitedVirtualBases.insert(BaseDecl))
1272             continue;
1273 
1274           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1275           assert(BaseInfo && "Did not find virtual base info!");
1276           LayoutVirtualBase(BaseInfo);
1277         }
1278       }
1279     }
1280 
1281     if (!BaseDecl->getNumVBases()) {
1282       // This base isn't interesting since it doesn't have any virtual bases.
1283       continue;
1284     }
1285 
1286     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1287   }
1288 }
1289 
MSLayoutVirtualBases(const CXXRecordDecl * RD)1290 void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) {
1291 
1292   if (!RD->getNumVBases())
1293     return;
1294 
1295   // This is substantially simplified because there are no virtual
1296   // primary bases.
1297   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
1298        E = RD->vbases_end(); I != E; ++I) {
1299     const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
1300     const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1301     assert(BaseInfo && "Did not find virtual base info!");
1302 
1303     LayoutVirtualBase(BaseInfo);
1304   }
1305 }
1306 
LayoutVirtualBase(const BaseSubobjectInfo * Base)1307 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
1308   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1309 
1310   // Layout the base.
1311   CharUnits Offset = LayoutBase(Base);
1312 
1313   // Add its base class offset.
1314   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1315   VBases.insert(std::make_pair(Base->Class, Offset));
1316 
1317   AddPrimaryVirtualBaseOffsets(Base, Offset);
1318 }
1319 
LayoutBase(const BaseSubobjectInfo * Base)1320 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1321   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1322 
1323 
1324   CharUnits Offset;
1325 
1326   // Query the external layout to see if it provides an offset.
1327   bool HasExternalLayout = false;
1328   if (ExternalLayout) {
1329     llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1330     if (Base->IsVirtual) {
1331       Known = ExternalVirtualBaseOffsets.find(Base->Class);
1332       if (Known != ExternalVirtualBaseOffsets.end()) {
1333         Offset = Known->second;
1334         HasExternalLayout = true;
1335       }
1336     } else {
1337       Known = ExternalBaseOffsets.find(Base->Class);
1338       if (Known != ExternalBaseOffsets.end()) {
1339         Offset = Known->second;
1340         HasExternalLayout = true;
1341       }
1342     }
1343   }
1344 
1345   // If we have an empty base class, try to place it at offset 0.
1346   if (Base->Class->isEmpty() &&
1347       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1348       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1349     setSize(std::max(getSize(), Layout.getSize()));
1350 
1351     return CharUnits::Zero();
1352   }
1353 
1354   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
1355   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1356 
1357   // The maximum field alignment overrides base align.
1358   if (!MaxFieldAlignment.isZero()) {
1359     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1360     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1361   }
1362 
1363   if (!HasExternalLayout) {
1364     // Round up the current record size to the base's alignment boundary.
1365     Offset = getDataSize().RoundUpToAlignment(BaseAlign);
1366 
1367     // Try to place the base.
1368     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1369       Offset += BaseAlign;
1370   } else {
1371     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1372     (void)Allowed;
1373     assert(Allowed && "Base subobject externally placed at overlapping offset");
1374   }
1375 
1376   if (!Base->Class->isEmpty()) {
1377     // Update the data size.
1378     setDataSize(Offset + Layout.getNonVirtualSize());
1379 
1380     setSize(std::max(getSize(), getDataSize()));
1381   } else
1382     setSize(std::max(getSize(), Offset + Layout.getSize()));
1383 
1384   // Remember max struct/class alignment.
1385   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1386 
1387   return Offset;
1388 }
1389 
InitializeLayout(const Decl * D)1390 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
1391   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1392     IsUnion = RD->isUnion();
1393 
1394   Packed = D->hasAttr<PackedAttr>();
1395 
1396   IsMsStruct = D->hasAttr<MsStructAttr>();
1397 
1398   // Honor the default struct packing maximum alignment flag.
1399   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1400     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1401   }
1402 
1403   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1404   // and forces all structures to have 2-byte alignment. The IBM docs on it
1405   // allude to additional (more complicated) semantics, especially with regard
1406   // to bit-fields, but gcc appears not to follow that.
1407   if (D->hasAttr<AlignMac68kAttr>()) {
1408     IsMac68kAlign = true;
1409     MaxFieldAlignment = CharUnits::fromQuantity(2);
1410     Alignment = CharUnits::fromQuantity(2);
1411   } else {
1412     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1413       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1414 
1415     if (unsigned MaxAlign = D->getMaxAlignment())
1416       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1417   }
1418 
1419   // If there is an external AST source, ask it for the various offsets.
1420   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1421     if (ExternalASTSource *External = Context.getExternalSource()) {
1422       ExternalLayout = External->layoutRecordType(RD,
1423                                                   ExternalSize,
1424                                                   ExternalAlign,
1425                                                   ExternalFieldOffsets,
1426                                                   ExternalBaseOffsets,
1427                                                   ExternalVirtualBaseOffsets);
1428 
1429       // Update based on external alignment.
1430       if (ExternalLayout) {
1431         if (ExternalAlign > 0) {
1432           Alignment = Context.toCharUnitsFromBits(ExternalAlign);
1433           UnpackedAlignment = Alignment;
1434         } else {
1435           // The external source didn't have alignment information; infer it.
1436           InferAlignment = true;
1437         }
1438       }
1439     }
1440 }
1441 
Layout(const RecordDecl * D)1442 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
1443   InitializeLayout(D);
1444   LayoutFields(D);
1445 
1446   // Finally, round the size of the total struct up to the alignment of the
1447   // struct itself.
1448   FinishLayout(D);
1449 }
1450 
Layout(const CXXRecordDecl * RD)1451 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1452   InitializeLayout(RD);
1453 
1454   // Lay out the vtable and the non-virtual bases.
1455   LayoutNonVirtualBases(RD);
1456 
1457   LayoutFields(RD);
1458 
1459   NonVirtualSize = Context.toCharUnitsFromBits(
1460         llvm::RoundUpToAlignment(getSizeInBits(),
1461                                  Context.getTargetInfo().getCharAlign()));
1462   NonVirtualAlignment = Alignment;
1463 
1464   if (isMicrosoftCXXABI() &&
1465       NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) {
1466     CharUnits AlignMember =
1467       NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize;
1468 
1469     setSize(getSize() + AlignMember);
1470     setDataSize(getSize());
1471 
1472     NonVirtualSize = Context.toCharUnitsFromBits(
1473                              llvm::RoundUpToAlignment(getSizeInBits(),
1474                              Context.getTargetInfo().getCharAlign()));
1475 
1476     MSLayoutVirtualBases(RD);
1477 
1478   } else {
1479     // Lay out the virtual bases and add the primary virtual base offsets.
1480     LayoutVirtualBases(RD, RD);
1481   }
1482 
1483   // Finally, round the size of the total struct up to the alignment
1484   // of the struct itself.
1485   FinishLayout(RD);
1486 
1487 #ifndef NDEBUG
1488   // Check that we have base offsets for all bases.
1489   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1490        E = RD->bases_end(); I != E; ++I) {
1491     if (I->isVirtual())
1492       continue;
1493 
1494     const CXXRecordDecl *BaseDecl =
1495       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1496 
1497     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1498   }
1499 
1500   // And all virtual bases.
1501   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
1502        E = RD->vbases_end(); I != E; ++I) {
1503     const CXXRecordDecl *BaseDecl =
1504       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1505 
1506     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1507   }
1508 #endif
1509 }
1510 
Layout(const ObjCInterfaceDecl * D)1511 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1512   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1513     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1514 
1515     UpdateAlignment(SL.getAlignment());
1516 
1517     // We start laying out ivars not at the end of the superclass
1518     // structure, but at the next byte following the last field.
1519     setSize(SL.getDataSize());
1520     setDataSize(getSize());
1521   }
1522 
1523   InitializeLayout(D);
1524   // Layout each ivar sequentially.
1525   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1526        IVD = IVD->getNextIvar())
1527     LayoutField(IVD);
1528 
1529   // Finally, round the size of the total struct up to the alignment of the
1530   // struct itself.
1531   FinishLayout(D);
1532 }
1533 
LayoutFields(const RecordDecl * D)1534 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1535   // Layout each field, for now, just sequentially, respecting alignment.  In
1536   // the future, this will need to be tweakable by targets.
1537   const FieldDecl *LastFD = 0;
1538   ZeroLengthBitfield = 0;
1539   unsigned RemainingInAlignment = 0;
1540   for (RecordDecl::field_iterator Field = D->field_begin(),
1541        FieldEnd = D->field_end(); Field != FieldEnd; ++Field) {
1542     if (IsMsStruct) {
1543       FieldDecl *FD =  (*Field);
1544       if (Context.ZeroBitfieldFollowsBitfield(FD, LastFD))
1545         ZeroLengthBitfield = FD;
1546       // Zero-length bitfields following non-bitfield members are
1547       // ignored:
1548       else if (Context.ZeroBitfieldFollowsNonBitfield(FD, LastFD))
1549         continue;
1550       // FIXME. streamline these conditions into a simple one.
1551       else if (Context.BitfieldFollowsBitfield(FD, LastFD) ||
1552                Context.BitfieldFollowsNonBitfield(FD, LastFD) ||
1553                Context.NonBitfieldFollowsBitfield(FD, LastFD)) {
1554         // 1) Adjacent bit fields are packed into the same 1-, 2-, or
1555         // 4-byte allocation unit if the integral types are the same
1556         // size and if the next bit field fits into the current
1557         // allocation unit without crossing the boundary imposed by the
1558         // common alignment requirements of the bit fields.
1559         // 2) Establish a new alignment for a bitfield following
1560         // a non-bitfield if size of their types differ.
1561         // 3) Establish a new alignment for a non-bitfield following
1562         // a bitfield if size of their types differ.
1563         std::pair<uint64_t, unsigned> FieldInfo =
1564           Context.getTypeInfo(FD->getType());
1565         uint64_t TypeSize = FieldInfo.first;
1566         unsigned FieldAlign = FieldInfo.second;
1567         // This check is needed for 'long long' in -m32 mode.
1568         if (TypeSize > FieldAlign &&
1569             (Context.hasSameType(FD->getType(),
1570                                 Context.UnsignedLongLongTy)
1571              ||Context.hasSameType(FD->getType(),
1572                                    Context.LongLongTy)))
1573           FieldAlign = TypeSize;
1574         FieldInfo = Context.getTypeInfo(LastFD->getType());
1575         uint64_t TypeSizeLastFD = FieldInfo.first;
1576         unsigned FieldAlignLastFD = FieldInfo.second;
1577         // This check is needed for 'long long' in -m32 mode.
1578         if (TypeSizeLastFD > FieldAlignLastFD &&
1579             (Context.hasSameType(LastFD->getType(),
1580                                 Context.UnsignedLongLongTy)
1581              || Context.hasSameType(LastFD->getType(),
1582                                     Context.LongLongTy)))
1583           FieldAlignLastFD = TypeSizeLastFD;
1584 
1585         if (TypeSizeLastFD != TypeSize) {
1586           if (RemainingInAlignment &&
1587               LastFD && LastFD->isBitField() &&
1588               LastFD->getBitWidthValue(Context)) {
1589             // If previous field was a bitfield with some remaining unfilled
1590             // bits, pad the field so current field starts on its type boundary.
1591             uint64_t FieldOffset =
1592             getDataSizeInBits() - UnfilledBitsInLastByte;
1593             uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
1594             setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1595                                                  Context.getTargetInfo().getCharAlign()));
1596             setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1597             RemainingInAlignment = 0;
1598           }
1599 
1600           uint64_t UnpaddedFieldOffset =
1601             getDataSizeInBits() - UnfilledBitsInLastByte;
1602           FieldAlign = std::max(FieldAlign, FieldAlignLastFD);
1603 
1604           // The maximum field alignment overrides the aligned attribute.
1605           if (!MaxFieldAlignment.isZero()) {
1606             unsigned MaxFieldAlignmentInBits =
1607               Context.toBits(MaxFieldAlignment);
1608             FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1609           }
1610 
1611           uint64_t NewSizeInBits =
1612             llvm::RoundUpToAlignment(UnpaddedFieldOffset, FieldAlign);
1613           setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1614                                                Context.getTargetInfo().getCharAlign()));
1615           UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
1616           setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1617         }
1618         if (FD->isBitField()) {
1619           uint64_t FieldSize = FD->getBitWidthValue(Context);
1620           assert (FieldSize > 0 && "LayoutFields - ms_struct layout");
1621           if (RemainingInAlignment < FieldSize)
1622             RemainingInAlignment = TypeSize - FieldSize;
1623           else
1624             RemainingInAlignment -= FieldSize;
1625         }
1626       }
1627       else if (FD->isBitField()) {
1628         uint64_t FieldSize = FD->getBitWidthValue(Context);
1629         std::pair<uint64_t, unsigned> FieldInfo =
1630           Context.getTypeInfo(FD->getType());
1631         uint64_t TypeSize = FieldInfo.first;
1632         RemainingInAlignment = TypeSize - FieldSize;
1633       }
1634       LastFD = FD;
1635     }
1636     else if (!Context.getTargetInfo().useBitFieldTypeAlignment() &&
1637              Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1638       FieldDecl *FD =  (*Field);
1639       if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
1640         ZeroLengthBitfield = FD;
1641     }
1642     LayoutField(*Field);
1643   }
1644   if (IsMsStruct && RemainingInAlignment &&
1645       LastFD && LastFD->isBitField() && LastFD->getBitWidthValue(Context)) {
1646     // If we ended a bitfield before the full length of the type then
1647     // pad the struct out to the full length of the last type.
1648     uint64_t FieldOffset =
1649       getDataSizeInBits() - UnfilledBitsInLastByte;
1650     uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
1651     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1652                                          Context.getTargetInfo().getCharAlign()));
1653     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1654   }
1655 }
1656 
LayoutWideBitField(uint64_t FieldSize,uint64_t TypeSize,bool FieldPacked,const FieldDecl * D)1657 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1658                                              uint64_t TypeSize,
1659                                              bool FieldPacked,
1660                                              const FieldDecl *D) {
1661   assert(Context.getLangOpts().CPlusPlus &&
1662          "Can only have wide bit-fields in C++!");
1663 
1664   // Itanium C++ ABI 2.4:
1665   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1666   //   sizeof(T')*8 <= n.
1667 
1668   QualType IntegralPODTypes[] = {
1669     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1670     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1671   };
1672 
1673   QualType Type;
1674   for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
1675        I != E; ++I) {
1676     uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
1677 
1678     if (Size > FieldSize)
1679       break;
1680 
1681     Type = IntegralPODTypes[I];
1682   }
1683   assert(!Type.isNull() && "Did not find a type!");
1684 
1685   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1686 
1687   // We're not going to use any of the unfilled bits in the last byte.
1688   UnfilledBitsInLastByte = 0;
1689 
1690   uint64_t FieldOffset;
1691   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
1692 
1693   if (IsUnion) {
1694     setDataSize(std::max(getDataSizeInBits(), FieldSize));
1695     FieldOffset = 0;
1696   } else {
1697     // The bitfield is allocated starting at the next offset aligned
1698     // appropriately for T', with length n bits.
1699     FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
1700                                            Context.toBits(TypeAlign));
1701 
1702     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1703 
1704     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1705                                          Context.getTargetInfo().getCharAlign()));
1706     UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
1707   }
1708 
1709   // Place this field at the current location.
1710   FieldOffsets.push_back(FieldOffset);
1711 
1712   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1713                     Context.toBits(TypeAlign), FieldPacked, D);
1714 
1715   // Update the size.
1716   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1717 
1718   // Remember max struct/class alignment.
1719   UpdateAlignment(TypeAlign);
1720 }
1721 
LayoutBitField(const FieldDecl * D)1722 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1723   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1724   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
1725   uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
1726   uint64_t FieldSize = D->getBitWidthValue(Context);
1727 
1728   std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
1729   uint64_t TypeSize = FieldInfo.first;
1730   unsigned FieldAlign = FieldInfo.second;
1731 
1732   // This check is needed for 'long long' in -m32 mode.
1733   if (IsMsStruct && (TypeSize > FieldAlign) &&
1734       (Context.hasSameType(D->getType(),
1735                            Context.UnsignedLongLongTy)
1736        || Context.hasSameType(D->getType(), Context.LongLongTy)))
1737     FieldAlign = TypeSize;
1738 
1739   if (ZeroLengthBitfield) {
1740     std::pair<uint64_t, unsigned> FieldInfo;
1741     unsigned ZeroLengthBitfieldAlignment;
1742     if (IsMsStruct) {
1743       // If a zero-length bitfield is inserted after a bitfield,
1744       // and the alignment of the zero-length bitfield is
1745       // greater than the member that follows it, `bar', `bar'
1746       // will be aligned as the type of the zero-length bitfield.
1747       if (ZeroLengthBitfield != D) {
1748         FieldInfo = Context.getTypeInfo(ZeroLengthBitfield->getType());
1749         ZeroLengthBitfieldAlignment = FieldInfo.second;
1750         // Ignore alignment of subsequent zero-length bitfields.
1751         if ((ZeroLengthBitfieldAlignment > FieldAlign) || (FieldSize == 0))
1752           FieldAlign = ZeroLengthBitfieldAlignment;
1753         if (FieldSize)
1754           ZeroLengthBitfield = 0;
1755       }
1756     } else {
1757       // The alignment of a zero-length bitfield affects the alignment
1758       // of the next member.  The alignment is the max of the zero
1759       // length bitfield's alignment and a target specific fixed value.
1760       unsigned ZeroLengthBitfieldBoundary =
1761         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1762       if (ZeroLengthBitfieldBoundary > FieldAlign)
1763         FieldAlign = ZeroLengthBitfieldBoundary;
1764     }
1765   }
1766 
1767   if (FieldSize > TypeSize) {
1768     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1769     return;
1770   }
1771 
1772   // The align if the field is not packed. This is to check if the attribute
1773   // was unnecessary (-Wpacked).
1774   unsigned UnpackedFieldAlign = FieldAlign;
1775   uint64_t UnpackedFieldOffset = FieldOffset;
1776   if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)
1777     UnpackedFieldAlign = 1;
1778 
1779   if (FieldPacked ||
1780       (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield))
1781     FieldAlign = 1;
1782   FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
1783   UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
1784 
1785   // The maximum field alignment overrides the aligned attribute.
1786   if (!MaxFieldAlignment.isZero() && FieldSize != 0) {
1787     unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1788     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1789     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1790   }
1791 
1792   // Check if we need to add padding to give the field the correct alignment.
1793   if (FieldSize == 0 ||
1794       (MaxFieldAlignment.isZero() &&
1795        (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize))
1796     FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1797 
1798   if (FieldSize == 0 ||
1799       (MaxFieldAlignment.isZero() &&
1800        (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1801     UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1802                                                    UnpackedFieldAlign);
1803 
1804   // Padding members don't affect overall alignment, unless zero length bitfield
1805   // alignment is enabled.
1806   if (!D->getIdentifier() && !Context.getTargetInfo().useZeroLengthBitfieldAlignment())
1807     FieldAlign = UnpackedFieldAlign = 1;
1808 
1809   if (!IsMsStruct)
1810     ZeroLengthBitfield = 0;
1811 
1812   if (ExternalLayout)
1813     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1814 
1815   // Place this field at the current location.
1816   FieldOffsets.push_back(FieldOffset);
1817 
1818   if (!ExternalLayout)
1819     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1820                       UnpackedFieldAlign, FieldPacked, D);
1821 
1822   // Update DataSize to include the last byte containing (part of) the bitfield.
1823   if (IsUnion) {
1824     // FIXME: I think FieldSize should be TypeSize here.
1825     setDataSize(std::max(getDataSizeInBits(), FieldSize));
1826   } else {
1827     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1828 
1829     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1830                                          Context.getTargetInfo().getCharAlign()));
1831     UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
1832   }
1833 
1834   // Update the size.
1835   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1836 
1837   // Remember max struct/class alignment.
1838   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1839                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1840 }
1841 
LayoutField(const FieldDecl * D)1842 void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
1843   if (D->isBitField()) {
1844     LayoutBitField(D);
1845     return;
1846   }
1847 
1848   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
1849 
1850   // Reset the unfilled bits.
1851   UnfilledBitsInLastByte = 0;
1852 
1853   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1854   CharUnits FieldOffset =
1855     IsUnion ? CharUnits::Zero() : getDataSize();
1856   CharUnits FieldSize;
1857   CharUnits FieldAlign;
1858 
1859   if (D->getType()->isIncompleteArrayType()) {
1860     // This is a flexible array member; we can't directly
1861     // query getTypeInfo about these, so we figure it out here.
1862     // Flexible array members don't have any size, but they
1863     // have to be aligned appropriately for their element type.
1864     FieldSize = CharUnits::Zero();
1865     const ArrayType* ATy = Context.getAsArrayType(D->getType());
1866     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1867   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1868     unsigned AS = RT->getPointeeType().getAddressSpace();
1869     FieldSize =
1870       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1871     FieldAlign =
1872       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1873   } else {
1874     std::pair<CharUnits, CharUnits> FieldInfo =
1875       Context.getTypeInfoInChars(D->getType());
1876     FieldSize = FieldInfo.first;
1877     FieldAlign = FieldInfo.second;
1878 
1879     if (ZeroLengthBitfield) {
1880       CharUnits ZeroLengthBitfieldBoundary =
1881         Context.toCharUnitsFromBits(
1882           Context.getTargetInfo().getZeroLengthBitfieldBoundary());
1883       if (ZeroLengthBitfieldBoundary == CharUnits::Zero()) {
1884         // If a zero-length bitfield is inserted after a bitfield,
1885         // and the alignment of the zero-length bitfield is
1886         // greater than the member that follows it, `bar', `bar'
1887         // will be aligned as the type of the zero-length bitfield.
1888         std::pair<CharUnits, CharUnits> FieldInfo =
1889           Context.getTypeInfoInChars(ZeroLengthBitfield->getType());
1890         CharUnits ZeroLengthBitfieldAlignment = FieldInfo.second;
1891         if (ZeroLengthBitfieldAlignment > FieldAlign)
1892           FieldAlign = ZeroLengthBitfieldAlignment;
1893       } else if (ZeroLengthBitfieldBoundary > FieldAlign) {
1894         // Align 'bar' based on a fixed alignment specified by the target.
1895         assert(Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1896                "ZeroLengthBitfieldBoundary should only be used in conjunction"
1897                " with useZeroLengthBitfieldAlignment.");
1898         FieldAlign = ZeroLengthBitfieldBoundary;
1899       }
1900       ZeroLengthBitfield = 0;
1901     }
1902 
1903     if (Context.getLangOpts().MSBitfields || IsMsStruct) {
1904       // If MS bitfield layout is required, figure out what type is being
1905       // laid out and align the field to the width of that type.
1906 
1907       // Resolve all typedefs down to their base type and round up the field
1908       // alignment if necessary.
1909       QualType T = Context.getBaseElementType(D->getType());
1910       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1911         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1912         if (TypeSize > FieldAlign)
1913           FieldAlign = TypeSize;
1914       }
1915     }
1916   }
1917 
1918   // The align if the field is not packed. This is to check if the attribute
1919   // was unnecessary (-Wpacked).
1920   CharUnits UnpackedFieldAlign = FieldAlign;
1921   CharUnits UnpackedFieldOffset = FieldOffset;
1922 
1923   if (FieldPacked)
1924     FieldAlign = CharUnits::One();
1925   CharUnits MaxAlignmentInChars =
1926     Context.toCharUnitsFromBits(D->getMaxAlignment());
1927   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1928   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1929 
1930   // The maximum field alignment overrides the aligned attribute.
1931   if (!MaxFieldAlignment.isZero()) {
1932     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1933     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1934   }
1935 
1936   // Round up the current record size to the field's alignment boundary.
1937   FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
1938   UnpackedFieldOffset =
1939     UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
1940 
1941   if (ExternalLayout) {
1942     FieldOffset = Context.toCharUnitsFromBits(
1943                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1944 
1945     if (!IsUnion && EmptySubobjects) {
1946       // Record the fact that we're placing a field at this offset.
1947       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1948       (void)Allowed;
1949       assert(Allowed && "Externally-placed field cannot be placed here");
1950     }
1951   } else {
1952     if (!IsUnion && EmptySubobjects) {
1953       // Check if we can place the field at this offset.
1954       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1955         // We couldn't place the field at the offset. Try again at a new offset.
1956         FieldOffset += FieldAlign;
1957       }
1958     }
1959   }
1960 
1961   // Place this field at the current location.
1962   FieldOffsets.push_back(Context.toBits(FieldOffset));
1963 
1964   if (!ExternalLayout)
1965     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1966                       Context.toBits(UnpackedFieldOffset),
1967                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1968 
1969   // Reserve space for this field.
1970   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1971   if (IsUnion)
1972     setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1973   else
1974     setDataSize(FieldOffset + FieldSize);
1975 
1976   // Update the size.
1977   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1978 
1979   // Remember max struct/class alignment.
1980   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1981 }
1982 
FinishLayout(const NamedDecl * D)1983 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1984   if (ExternalLayout) {
1985     setSize(ExternalSize);
1986     return;
1987   }
1988 
1989   // In C++, records cannot be of size 0.
1990   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1991     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1992       // Compatibility with gcc requires a class (pod or non-pod)
1993       // which is not empty but of size 0; such as having fields of
1994       // array of zero-length, remains of Size 0
1995       if (RD->isEmpty())
1996         setSize(CharUnits::One());
1997     }
1998     else
1999       setSize(CharUnits::One());
2000   }
2001 
2002   // MSVC doesn't round up to the alignment of the record with virtual bases.
2003   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2004     if (isMicrosoftCXXABI() && RD->getNumVBases())
2005       return;
2006   }
2007 
2008   // Finally, round the size of the record up to the alignment of the
2009   // record itself.
2010   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastByte;
2011   uint64_t UnpackedSizeInBits =
2012     llvm::RoundUpToAlignment(getSizeInBits(),
2013                              Context.toBits(UnpackedAlignment));
2014   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
2015   setSize(llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment)));
2016 
2017   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2018   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2019     // Warn if padding was introduced to the struct/class/union.
2020     if (getSizeInBits() > UnpaddedSize) {
2021       unsigned PadSize = getSizeInBits() - UnpaddedSize;
2022       bool InBits = true;
2023       if (PadSize % CharBitNum == 0) {
2024         PadSize = PadSize / CharBitNum;
2025         InBits = false;
2026       }
2027       Diag(RD->getLocation(), diag::warn_padded_struct_size)
2028           << Context.getTypeDeclType(RD)
2029           << PadSize
2030           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
2031     }
2032 
2033     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
2034     // bother since there won't be alignment issues.
2035     if (Packed && UnpackedAlignment > CharUnits::One() &&
2036         getSize() == UnpackedSize)
2037       Diag(D->getLocation(), diag::warn_unnecessary_packed)
2038           << Context.getTypeDeclType(RD);
2039   }
2040 }
2041 
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)2042 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
2043                                           CharUnits UnpackedNewAlignment) {
2044   // The alignment is not modified when using 'mac68k' alignment or when
2045   // we have an externally-supplied layout that also provides overall alignment.
2046   if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
2047     return;
2048 
2049   if (NewAlignment > Alignment) {
2050     assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
2051            "Alignment not a power of 2"));
2052     Alignment = NewAlignment;
2053   }
2054 
2055   if (UnpackedNewAlignment > UnpackedAlignment) {
2056     assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
2057            "Alignment not a power of 2"));
2058     UnpackedAlignment = UnpackedNewAlignment;
2059   }
2060 }
2061 
2062 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)2063 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2064                                                uint64_t ComputedOffset) {
2065   assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
2066          "Field does not have an external offset");
2067 
2068   uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
2069 
2070   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2071     // The externally-supplied field offset is before the field offset we
2072     // computed. Assume that the structure is packed.
2073     Alignment = CharUnits::fromQuantity(1);
2074     InferAlignment = false;
2075   }
2076 
2077   // Use the externally-supplied field offset.
2078   return ExternalFieldOffset;
2079 }
2080 
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)2081 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
2082                                             uint64_t UnpaddedOffset,
2083                                             uint64_t UnpackedOffset,
2084                                             unsigned UnpackedAlign,
2085                                             bool isPacked,
2086                                             const FieldDecl *D) {
2087   // We let objc ivars without warning, objc interfaces generally are not used
2088   // for padding tricks.
2089   if (isa<ObjCIvarDecl>(D))
2090     return;
2091 
2092   // Don't warn about structs created without a SourceLocation.  This can
2093   // be done by clients of the AST, such as codegen.
2094   if (D->getLocation().isInvalid())
2095     return;
2096 
2097   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2098 
2099   // Warn if padding was introduced to the struct/class.
2100   if (!IsUnion && Offset > UnpaddedOffset) {
2101     unsigned PadSize = Offset - UnpaddedOffset;
2102     bool InBits = true;
2103     if (PadSize % CharBitNum == 0) {
2104       PadSize = PadSize / CharBitNum;
2105       InBits = false;
2106     }
2107     if (D->getIdentifier())
2108       Diag(D->getLocation(), diag::warn_padded_struct_field)
2109           << (D->getParent()->isStruct() ? 0 : 1) // struct|class
2110           << Context.getTypeDeclType(D->getParent())
2111           << PadSize
2112           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
2113           << D->getIdentifier();
2114     else
2115       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2116           << (D->getParent()->isStruct() ? 0 : 1) // struct|class
2117           << Context.getTypeDeclType(D->getParent())
2118           << PadSize
2119           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
2120   }
2121 
2122   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
2123   // bother since there won't be alignment issues.
2124   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
2125     Diag(D->getLocation(), diag::warn_unnecessary_packed)
2126         << D->getIdentifier();
2127 }
2128 
2129 const CXXMethodDecl *
ComputeKeyFunction(const CXXRecordDecl * RD)2130 RecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) {
2131   // If a class isn't polymorphic it doesn't have a key function.
2132   if (!RD->isPolymorphic())
2133     return 0;
2134 
2135   // A class that is not externally visible doesn't have a key function. (Or
2136   // at least, there's no point to assigning a key function to such a class;
2137   // this doesn't affect the ABI.)
2138   if (RD->getLinkage() != ExternalLinkage)
2139     return 0;
2140 
2141   // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
2142   // Same behavior as GCC.
2143   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2144   if (TSK == TSK_ImplicitInstantiation ||
2145       TSK == TSK_ExplicitInstantiationDefinition)
2146     return 0;
2147 
2148   for (CXXRecordDecl::method_iterator I = RD->method_begin(),
2149          E = RD->method_end(); I != E; ++I) {
2150     const CXXMethodDecl *MD = *I;
2151 
2152     if (!MD->isVirtual())
2153       continue;
2154 
2155     if (MD->isPure())
2156       continue;
2157 
2158     // Ignore implicit member functions, they are always marked as inline, but
2159     // they don't have a body until they're defined.
2160     if (MD->isImplicit())
2161       continue;
2162 
2163     if (MD->isInlineSpecified())
2164       continue;
2165 
2166     if (MD->hasInlineBody())
2167       continue;
2168 
2169     // We found it.
2170     return MD;
2171   }
2172 
2173   return 0;
2174 }
2175 
2176 DiagnosticBuilder
Diag(SourceLocation Loc,unsigned DiagID)2177 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
2178   return Context.getDiagnostics().Report(Loc, DiagID);
2179 }
2180 
2181 /// getASTRecordLayout - Get or compute information about the layout of the
2182 /// specified record (struct/union/class), which indicates its size and field
2183 /// position information.
2184 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const2185 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2186   // These asserts test different things.  A record has a definition
2187   // as soon as we begin to parse the definition.  That definition is
2188   // not a complete definition (which is what isDefinition() tests)
2189   // until we *finish* parsing the definition.
2190 
2191   if (D->hasExternalLexicalStorage() && !D->getDefinition())
2192     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2193 
2194   D = D->getDefinition();
2195   assert(D && "Cannot get layout of forward declarations!");
2196   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2197 
2198   // Look up this layout, if already laid out, return what we have.
2199   // Note that we can't save a reference to the entry because this function
2200   // is recursive.
2201   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2202   if (Entry) return *Entry;
2203 
2204   const ASTRecordLayout *NewEntry;
2205 
2206   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2207     EmptySubobjectMap EmptySubobjects(*this, RD);
2208     RecordLayoutBuilder Builder(*this, &EmptySubobjects);
2209     Builder.Layout(RD);
2210 
2211     // MSVC gives the vb-table pointer an alignment equal to that of
2212     // the non-virtual part of the structure.  That's an inherently
2213     // multi-pass operation.  If our first pass doesn't give us
2214     // adequate alignment, try again with the specified minimum
2215     // alignment.  This is *much* more maintainable than computing the
2216     // alignment in advance in a separately-coded pass; it's also
2217     // significantly more efficient in the common case where the
2218     // vb-table doesn't need extra padding.
2219     if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) &&
2220         (Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) {
2221       Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment);
2222       Builder.Layout(RD);
2223     }
2224 
2225     // FIXME: This is not always correct. See the part about bitfields at
2226     // http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
2227     // FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
2228     // This does not affect the calculations of MSVC layouts
2229     bool IsPODForThePurposeOfLayout =
2230       (!Builder.isMicrosoftCXXABI() && cast<CXXRecordDecl>(D)->isPOD());
2231 
2232     // FIXME: This should be done in FinalizeLayout.
2233     CharUnits DataSize =
2234       IsPODForThePurposeOfLayout ? Builder.getSize() : Builder.getDataSize();
2235     CharUnits NonVirtualSize =
2236       IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize;
2237 
2238     NewEntry =
2239       new (*this) ASTRecordLayout(*this, Builder.getSize(),
2240                                   Builder.Alignment,
2241                                   Builder.VFPtrOffset,
2242                                   Builder.VBPtrOffset,
2243                                   DataSize,
2244                                   Builder.FieldOffsets.data(),
2245                                   Builder.FieldOffsets.size(),
2246                                   NonVirtualSize,
2247                                   Builder.NonVirtualAlignment,
2248                                   EmptySubobjects.SizeOfLargestEmptySubobject,
2249                                   Builder.PrimaryBase,
2250                                   Builder.PrimaryBaseIsVirtual,
2251                                   Builder.Bases, Builder.VBases);
2252   } else {
2253     RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
2254     Builder.Layout(D);
2255 
2256     NewEntry =
2257       new (*this) ASTRecordLayout(*this, Builder.getSize(),
2258                                   Builder.Alignment,
2259                                   Builder.getSize(),
2260                                   Builder.FieldOffsets.data(),
2261                                   Builder.FieldOffsets.size());
2262   }
2263 
2264   ASTRecordLayouts[D] = NewEntry;
2265 
2266   if (getLangOpts().DumpRecordLayouts) {
2267     llvm::errs() << "\n*** Dumping AST Record Layout\n";
2268     DumpRecordLayout(D, llvm::errs(), getLangOpts().DumpRecordLayoutsSimple);
2269   }
2270 
2271   return *NewEntry;
2272 }
2273 
getKeyFunction(const CXXRecordDecl * RD)2274 const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
2275   RD = cast<CXXRecordDecl>(RD->getDefinition());
2276   assert(RD && "Cannot get key function for forward declarations!");
2277 
2278   const CXXMethodDecl *&Entry = KeyFunctions[RD];
2279   if (!Entry)
2280     Entry = RecordLayoutBuilder::ComputeKeyFunction(RD);
2281 
2282   return Entry;
2283 }
2284 
getFieldOffset(const ASTContext & C,const FieldDecl * FD)2285 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
2286   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
2287   return Layout.getFieldOffset(FD->getFieldIndex());
2288 }
2289 
getFieldOffset(const ValueDecl * VD) const2290 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
2291   uint64_t OffsetInBits;
2292   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
2293     OffsetInBits = ::getFieldOffset(*this, FD);
2294   } else {
2295     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
2296 
2297     OffsetInBits = 0;
2298     for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(),
2299                                            CE = IFD->chain_end();
2300          CI != CE; ++CI)
2301       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(*CI));
2302   }
2303 
2304   return OffsetInBits;
2305 }
2306 
2307 /// getObjCLayout - Get or compute information about the layout of the
2308 /// given interface.
2309 ///
2310 /// \param Impl - If given, also include the layout of the interface's
2311 /// implementation. This may differ by including synthesized ivars.
2312 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const2313 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
2314                           const ObjCImplementationDecl *Impl) const {
2315   // Retrieve the definition
2316   if (D->hasExternalLexicalStorage() && !D->getDefinition())
2317     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
2318   D = D->getDefinition();
2319   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
2320 
2321   // Look up this layout, if already laid out, return what we have.
2322   ObjCContainerDecl *Key =
2323     Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
2324   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
2325     return *Entry;
2326 
2327   // Add in synthesized ivar count if laying out an implementation.
2328   if (Impl) {
2329     unsigned SynthCount = CountNonClassIvars(D);
2330     // If there aren't any sythesized ivars then reuse the interface
2331     // entry. Note we can't cache this because we simply free all
2332     // entries later; however we shouldn't look up implementations
2333     // frequently.
2334     if (SynthCount == 0)
2335       return getObjCLayout(D, 0);
2336   }
2337 
2338   RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
2339   Builder.Layout(D);
2340 
2341   const ASTRecordLayout *NewEntry =
2342     new (*this) ASTRecordLayout(*this, Builder.getSize(),
2343                                 Builder.Alignment,
2344                                 Builder.getDataSize(),
2345                                 Builder.FieldOffsets.data(),
2346                                 Builder.FieldOffsets.size());
2347 
2348   ObjCLayouts[Key] = NewEntry;
2349 
2350   return *NewEntry;
2351 }
2352 
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)2353 static void PrintOffset(raw_ostream &OS,
2354                         CharUnits Offset, unsigned IndentLevel) {
2355   OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
2356   OS.indent(IndentLevel * 2);
2357 }
2358 
DumpCXXRecordLayout(raw_ostream & OS,const CXXRecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool IncludeVirtualBases)2359 static void DumpCXXRecordLayout(raw_ostream &OS,
2360                                 const CXXRecordDecl *RD, const ASTContext &C,
2361                                 CharUnits Offset,
2362                                 unsigned IndentLevel,
2363                                 const char* Description,
2364                                 bool IncludeVirtualBases) {
2365   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
2366 
2367   PrintOffset(OS, Offset, IndentLevel);
2368   OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
2369   if (Description)
2370     OS << ' ' << Description;
2371   if (RD->isEmpty())
2372     OS << " (empty)";
2373   OS << '\n';
2374 
2375   IndentLevel++;
2376 
2377   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
2378   bool HasVfptr = Layout.getVFPtrOffset() != CharUnits::fromQuantity(-1);
2379   bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1);
2380 
2381   // Vtable pointer.
2382   if (RD->isDynamicClass() && !PrimaryBase &&
2383       C.getTargetInfo().getCXXABI() != CXXABI_Microsoft) {
2384     PrintOffset(OS, Offset, IndentLevel);
2385     OS << '(' << *RD << " vtable pointer)\n";
2386   }
2387 
2388   // Dump (non-virtual) bases
2389   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
2390          E = RD->bases_end(); I != E; ++I) {
2391     assert(!I->getType()->isDependentType() &&
2392            "Cannot layout class with dependent bases.");
2393     if (I->isVirtual())
2394       continue;
2395 
2396     const CXXRecordDecl *Base =
2397       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
2398 
2399     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
2400 
2401     DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
2402                         Base == PrimaryBase ? "(primary base)" : "(base)",
2403                         /*IncludeVirtualBases=*/false);
2404   }
2405 
2406   // vfptr and vbptr (for Microsoft C++ ABI)
2407   if (HasVfptr) {
2408     PrintOffset(OS, Offset + Layout.getVFPtrOffset(), IndentLevel);
2409     OS << '(' << *RD << " vftable pointer)\n";
2410   }
2411   if (HasVbptr) {
2412     PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
2413     OS << '(' << *RD << " vbtable pointer)\n";
2414   }
2415 
2416   // Dump fields.
2417   uint64_t FieldNo = 0;
2418   for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2419          E = RD->field_end(); I != E; ++I, ++FieldNo) {
2420     const FieldDecl *Field = *I;
2421     CharUnits FieldOffset = Offset +
2422       C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
2423 
2424     if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2425       if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2426         DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
2427                             Field->getName().data(),
2428                             /*IncludeVirtualBases=*/true);
2429         continue;
2430       }
2431     }
2432 
2433     PrintOffset(OS, FieldOffset, IndentLevel);
2434     OS << Field->getType().getAsString() << ' ' << *Field << '\n';
2435   }
2436 
2437   if (!IncludeVirtualBases)
2438     return;
2439 
2440   // Dump virtual bases.
2441   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
2442          E = RD->vbases_end(); I != E; ++I) {
2443     assert(I->isVirtual() && "Found non-virtual class!");
2444     const CXXRecordDecl *VBase =
2445       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
2446 
2447     CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
2448     DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
2449                         VBase == PrimaryBase ?
2450                         "(primary virtual base)" : "(virtual base)",
2451                         /*IncludeVirtualBases=*/false);
2452   }
2453 
2454   OS << "  sizeof=" << Layout.getSize().getQuantity();
2455   OS << ", dsize=" << Layout.getDataSize().getQuantity();
2456   OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
2457   OS << "  nvsize=" << Layout.getNonVirtualSize().getQuantity();
2458   OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << '\n';
2459   OS << '\n';
2460 }
2461 
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const2462 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
2463                                   raw_ostream &OS,
2464                                   bool Simple) const {
2465   const ASTRecordLayout &Info = getASTRecordLayout(RD);
2466 
2467   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
2468     if (!Simple)
2469       return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
2470                                  /*IncludeVirtualBases=*/true);
2471 
2472   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
2473   if (!Simple) {
2474     OS << "Record: ";
2475     RD->dump();
2476   }
2477   OS << "\nLayout: ";
2478   OS << "<ASTRecordLayout\n";
2479   OS << "  Size:" << toBits(Info.getSize()) << "\n";
2480   OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
2481   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
2482   OS << "  FieldOffsets: [";
2483   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
2484     if (i) OS << ", ";
2485     OS << Info.getFieldOffset(i);
2486   }
2487   OS << "]>\n";
2488 }
2489