1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defined the types Store and StoreManager.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/DeclObjC.h"
18
19 using namespace clang;
20 using namespace ento;
21
StoreManager(ProgramStateManager & stateMgr)22 StoreManager::StoreManager(ProgramStateManager &stateMgr)
23 : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
24 MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
25
enterStackFrame(ProgramStateRef state,const LocationContext * callerCtx,const StackFrameContext * calleeCtx)26 StoreRef StoreManager::enterStackFrame(ProgramStateRef state,
27 const LocationContext *callerCtx,
28 const StackFrameContext *calleeCtx) {
29 return StoreRef(state->getStore(), *this);
30 }
31
MakeElementRegion(const MemRegion * Base,QualType EleTy,uint64_t index)32 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
33 QualType EleTy, uint64_t index) {
34 NonLoc idx = svalBuilder.makeArrayIndex(index);
35 return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
36 }
37
38 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
IsCompleteType(ASTContext & Ctx,QualType Ty)39 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
40 if (const RecordType *RT = Ty->getAs<RecordType>()) {
41 const RecordDecl *D = RT->getDecl();
42 if (!D->getDefinition())
43 return false;
44 }
45
46 return true;
47 }
48
BindDefault(Store store,const MemRegion * R,SVal V)49 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
50 return StoreRef(store, *this);
51 }
52
GetElementZeroRegion(const MemRegion * R,QualType T)53 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
54 QualType T) {
55 NonLoc idx = svalBuilder.makeZeroArrayIndex();
56 assert(!T.isNull());
57 return MRMgr.getElementRegion(T, idx, R, Ctx);
58 }
59
castRegion(const MemRegion * R,QualType CastToTy)60 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
61
62 ASTContext &Ctx = StateMgr.getContext();
63
64 // Handle casts to Objective-C objects.
65 if (CastToTy->isObjCObjectPointerType())
66 return R->StripCasts();
67
68 if (CastToTy->isBlockPointerType()) {
69 // FIXME: We may need different solutions, depending on the symbol
70 // involved. Blocks can be casted to/from 'id', as they can be treated
71 // as Objective-C objects. This could possibly be handled by enhancing
72 // our reasoning of downcasts of symbolic objects.
73 if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
74 return R;
75
76 // We don't know what to make of it. Return a NULL region, which
77 // will be interpretted as UnknownVal.
78 return NULL;
79 }
80
81 // Now assume we are casting from pointer to pointer. Other cases should
82 // already be handled.
83 QualType PointeeTy = CastToTy->getPointeeType();
84 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
85
86 // Handle casts to void*. We just pass the region through.
87 if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
88 return R;
89
90 // Handle casts from compatible types.
91 if (R->isBoundable())
92 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
93 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
94 if (CanonPointeeTy == ObjTy)
95 return R;
96 }
97
98 // Process region cast according to the kind of the region being cast.
99 switch (R->getKind()) {
100 case MemRegion::CXXThisRegionKind:
101 case MemRegion::GenericMemSpaceRegionKind:
102 case MemRegion::StackLocalsSpaceRegionKind:
103 case MemRegion::StackArgumentsSpaceRegionKind:
104 case MemRegion::HeapSpaceRegionKind:
105 case MemRegion::UnknownSpaceRegionKind:
106 case MemRegion::StaticGlobalSpaceRegionKind:
107 case MemRegion::GlobalInternalSpaceRegionKind:
108 case MemRegion::GlobalSystemSpaceRegionKind:
109 case MemRegion::GlobalImmutableSpaceRegionKind: {
110 llvm_unreachable("Invalid region cast");
111 }
112
113 case MemRegion::FunctionTextRegionKind:
114 case MemRegion::BlockTextRegionKind:
115 case MemRegion::BlockDataRegionKind:
116 case MemRegion::StringRegionKind:
117 // FIXME: Need to handle arbitrary downcasts.
118 case MemRegion::SymbolicRegionKind:
119 case MemRegion::AllocaRegionKind:
120 case MemRegion::CompoundLiteralRegionKind:
121 case MemRegion::FieldRegionKind:
122 case MemRegion::ObjCIvarRegionKind:
123 case MemRegion::ObjCStringRegionKind:
124 case MemRegion::VarRegionKind:
125 case MemRegion::CXXTempObjectRegionKind:
126 case MemRegion::CXXBaseObjectRegionKind:
127 return MakeElementRegion(R, PointeeTy);
128
129 case MemRegion::ElementRegionKind: {
130 // If we are casting from an ElementRegion to another type, the
131 // algorithm is as follows:
132 //
133 // (1) Compute the "raw offset" of the ElementRegion from the
134 // base region. This is done by calling 'getAsRawOffset()'.
135 //
136 // (2a) If we get a 'RegionRawOffset' after calling
137 // 'getAsRawOffset()', determine if the absolute offset
138 // can be exactly divided into chunks of the size of the
139 // casted-pointee type. If so, create a new ElementRegion with
140 // the pointee-cast type as the new ElementType and the index
141 // being the offset divded by the chunk size. If not, create
142 // a new ElementRegion at offset 0 off the raw offset region.
143 //
144 // (2b) If we don't a get a 'RegionRawOffset' after calling
145 // 'getAsRawOffset()', it means that we are at offset 0.
146 //
147 // FIXME: Handle symbolic raw offsets.
148
149 const ElementRegion *elementR = cast<ElementRegion>(R);
150 const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
151 const MemRegion *baseR = rawOff.getRegion();
152
153 // If we cannot compute a raw offset, throw up our hands and return
154 // a NULL MemRegion*.
155 if (!baseR)
156 return NULL;
157
158 CharUnits off = rawOff.getOffset();
159
160 if (off.isZero()) {
161 // Edge case: we are at 0 bytes off the beginning of baseR. We
162 // check to see if type we are casting to is the same as the base
163 // region. If so, just return the base region.
164 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
165 QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
166 QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
167 if (CanonPointeeTy == ObjTy)
168 return baseR;
169 }
170
171 // Otherwise, create a new ElementRegion at offset 0.
172 return MakeElementRegion(baseR, PointeeTy);
173 }
174
175 // We have a non-zero offset from the base region. We want to determine
176 // if the offset can be evenly divided by sizeof(PointeeTy). If so,
177 // we create an ElementRegion whose index is that value. Otherwise, we
178 // create two ElementRegions, one that reflects a raw offset and the other
179 // that reflects the cast.
180
181 // Compute the index for the new ElementRegion.
182 int64_t newIndex = 0;
183 const MemRegion *newSuperR = 0;
184
185 // We can only compute sizeof(PointeeTy) if it is a complete type.
186 if (IsCompleteType(Ctx, PointeeTy)) {
187 // Compute the size in **bytes**.
188 CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
189 if (!pointeeTySize.isZero()) {
190 // Is the offset a multiple of the size? If so, we can layer the
191 // ElementRegion (with elementType == PointeeTy) directly on top of
192 // the base region.
193 if (off % pointeeTySize == 0) {
194 newIndex = off / pointeeTySize;
195 newSuperR = baseR;
196 }
197 }
198 }
199
200 if (!newSuperR) {
201 // Create an intermediate ElementRegion to represent the raw byte.
202 // This will be the super region of the final ElementRegion.
203 newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
204 }
205
206 return MakeElementRegion(newSuperR, PointeeTy, newIndex);
207 }
208 }
209
210 llvm_unreachable("unreachable");
211 }
212
213
214 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
215 /// implicit casts that arise from loads from regions that are reinterpreted
216 /// as another region.
CastRetrievedVal(SVal V,const TypedValueRegion * R,QualType castTy,bool performTestOnly)217 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
218 QualType castTy, bool performTestOnly) {
219
220 if (castTy.isNull() || V.isUnknownOrUndef())
221 return V;
222
223 ASTContext &Ctx = svalBuilder.getContext();
224
225 if (performTestOnly) {
226 // Automatically translate references to pointers.
227 QualType T = R->getValueType();
228 if (const ReferenceType *RT = T->getAs<ReferenceType>())
229 T = Ctx.getPointerType(RT->getPointeeType());
230
231 assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
232 return V;
233 }
234
235 return svalBuilder.dispatchCast(V, castTy);
236 }
237
getLValueFieldOrIvar(const Decl * D,SVal Base)238 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
239 if (Base.isUnknownOrUndef())
240 return Base;
241
242 Loc BaseL = cast<Loc>(Base);
243 const MemRegion* BaseR = 0;
244
245 switch (BaseL.getSubKind()) {
246 case loc::MemRegionKind:
247 BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
248 break;
249
250 case loc::GotoLabelKind:
251 // These are anormal cases. Flag an undefined value.
252 return UndefinedVal();
253
254 case loc::ConcreteIntKind:
255 // While these seem funny, this can happen through casts.
256 // FIXME: What we should return is the field offset. For example,
257 // add the field offset to the integer value. That way funny things
258 // like this work properly: &(((struct foo *) 0xa)->f)
259 return Base;
260
261 default:
262 llvm_unreachable("Unhandled Base.");
263 }
264
265 // NOTE: We must have this check first because ObjCIvarDecl is a subclass
266 // of FieldDecl.
267 if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
268 return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
269
270 return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
271 }
272
getLValueIvar(const ObjCIvarDecl * decl,SVal base)273 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
274 return getLValueFieldOrIvar(decl, base);
275 }
276
getLValueElement(QualType elementType,NonLoc Offset,SVal Base)277 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
278 SVal Base) {
279
280 // If the base is an unknown or undefined value, just return it back.
281 // FIXME: For absolute pointer addresses, we just return that value back as
282 // well, although in reality we should return the offset added to that
283 // value.
284 if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
285 return Base;
286
287 const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
288
289 // Pointer of any type can be cast and used as array base.
290 const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
291
292 // Convert the offset to the appropriate size and signedness.
293 Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
294
295 if (!ElemR) {
296 //
297 // If the base region is not an ElementRegion, create one.
298 // This can happen in the following example:
299 //
300 // char *p = __builtin_alloc(10);
301 // p[1] = 8;
302 //
303 // Observe that 'p' binds to an AllocaRegion.
304 //
305 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
306 BaseRegion, Ctx));
307 }
308
309 SVal BaseIdx = ElemR->getIndex();
310
311 if (!isa<nonloc::ConcreteInt>(BaseIdx))
312 return UnknownVal();
313
314 const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
315
316 // Only allow non-integer offsets if the base region has no offset itself.
317 // FIXME: This is a somewhat arbitrary restriction. We should be using
318 // SValBuilder here to add the two offsets without checking their types.
319 if (!isa<nonloc::ConcreteInt>(Offset)) {
320 if (isa<ElementRegion>(BaseRegion->StripCasts()))
321 return UnknownVal();
322
323 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
324 ElemR->getSuperRegion(),
325 Ctx));
326 }
327
328 const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
329 assert(BaseIdxI.isSigned());
330
331 // Compute the new index.
332 nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
333 OffI));
334
335 // Construct the new ElementRegion.
336 const MemRegion *ArrayR = ElemR->getSuperRegion();
337 return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
338 Ctx));
339 }
340
~BindingsHandler()341 StoreManager::BindingsHandler::~BindingsHandler() {}
342
HandleBinding(StoreManager & SMgr,Store store,const MemRegion * R,SVal val)343 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
344 Store store,
345 const MemRegion* R,
346 SVal val) {
347 SymbolRef SymV = val.getAsLocSymbol();
348 if (!SymV || SymV != Sym)
349 return true;
350
351 if (Binding) {
352 First = false;
353 return false;
354 }
355 else
356 Binding = R;
357
358 return true;
359 }
360
anchor()361 void SubRegionMap::anchor() { }
anchor()362 void SubRegionMap::Visitor::anchor() { }
363