1<?xml version="1.0"?> <!-- -*- sgml -*- --> 2<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd" 4[ <!ENTITY % vg-entities SYSTEM "../../docs/xml/vg-entities.xml"> %vg-entities; ]> 5 6<chapter id="cl-manual" xreflabel="Callgrind Manual"> 7<title>Callgrind: a call-graph generating cache and branch prediction profiler</title> 8 9 10<para>To use this tool, you must specify 11<option>--tool=callgrind</option> on the 12Valgrind command line.</para> 13 14<sect1 id="cl-manual.use" xreflabel="Overview"> 15<title>Overview</title> 16 17<para>Callgrind is a profiling tool that records the call history among 18functions in a program's run as a call-graph. 19By default, the collected data consists of 20the number of instructions executed, their relationship 21to source lines, the caller/callee relationship between functions, 22and the numbers of such calls. 23Optionally, cache simulation and/or branch prediction (similar to Cachegrind) 24can produce further information about the runtime behavior of an application. 25</para> 26 27<para>The profile data is written out to a file at program 28termination. For presentation of the data, and interactive control 29of the profiling, two command line tools are provided:</para> 30<variablelist> 31 <varlistentry> 32 <term><command>callgrind_annotate</command></term> 33 <listitem> 34 <para>This command reads in the profile data, and prints a 35 sorted lists of functions, optionally with source annotation.</para> 36 37 <para>For graphical visualization of the data, try 38 <ulink url="&cl-gui-url;">KCachegrind</ulink>, which is a KDE/Qt based 39 GUI that makes it easy to navigate the large amount of data that 40 Callgrind produces.</para> 41 42 </listitem> 43 </varlistentry> 44 45 <varlistentry> 46 <term><command>callgrind_control</command></term> 47 <listitem> 48 <para>This command enables you to interactively observe and control 49 the status of a program currently running under Callgrind's control, 50 without stopping the program. You can get statistics information as 51 well as the current stack trace, and you can request zeroing of counters 52 or dumping of profile data.</para> 53 </listitem> 54 </varlistentry> 55</variablelist> 56 57 <sect2 id="cl-manual.functionality" xreflabel="Functionality"> 58 <title>Functionality</title> 59 60<para>Cachegrind collects flat profile data: event counts (data reads, 61cache misses, etc.) are attributed directly to the function they 62occurred in. This cost attribution mechanism is 63called <emphasis>self</emphasis> or <emphasis>exclusive</emphasis> 64attribution.</para> 65 66<para>Callgrind extends this functionality by propagating costs 67across function call boundaries. If function <function>foo</function> calls 68<function>bar</function>, the costs from <function>bar</function> are added into 69<function>foo</function>'s costs. When applied to the program as a whole, 70this builds up a picture of so called <emphasis>inclusive</emphasis> 71costs, that is, where the cost of each function includes the costs of 72all functions it called, directly or indirectly.</para> 73 74<para>As an example, the inclusive cost of 75<function>main</function> should be almost 100 percent 76of the total program cost. Because of costs arising before 77<function>main</function> is run, such as 78initialization of the run time linker and construction of global C++ 79objects, the inclusive cost of <function>main</function> 80is not exactly 100 percent of the total program cost.</para> 81 82<para>Together with the call graph, this allows you to find the 83specific call chains starting from 84<function>main</function> in which the majority of the 85program's costs occur. Caller/callee cost attribution is also useful 86for profiling functions called from multiple call sites, and where 87optimization opportunities depend on changing code in the callers, in 88particular by reducing the call count.</para> 89 90<para>Callgrind's cache simulation is based on that of Cachegrind. 91Read the documentation for <xref linkend="cg-manual"/> first. The material 92below describes the features supported in addition to Cachegrind's 93features.</para> 94 95<para>Callgrind's ability to detect function calls and returns depends 96on the instruction set of the platform it is run on. It works best 97on x86 and amd64, and unfortunately currently does not work so well 98on PowerPC code. This is because there are no explicit call or return 99instructions in the PowerPC instruction set, so Callgrind has to rely 100on heuristics to detect calls and returns.</para> 101 102 </sect2> 103 104 <sect2 id="cl-manual.basics" xreflabel="Basic Usage"> 105 <title>Basic Usage</title> 106 107 <para>As with Cachegrind, you probably want to compile with debugging info 108 (the <option>-g</option> option) and with optimization turned on.</para> 109 110 <para>To start a profile run for a program, execute: 111 <screen>valgrind --tool=callgrind [callgrind options] your-program [program options]</screen> 112 </para> 113 114 <para>While the simulation is running, you can observe execution with: 115 <screen>callgrind_control -b</screen> 116 This will print out the current backtrace. To annotate the backtrace with 117 event counts, run 118 <screen>callgrind_control -e -b</screen> 119 </para> 120 121 <para>After program termination, a profile data file named 122 <computeroutput>callgrind.out.<pid></computeroutput> 123 is generated, where <emphasis>pid</emphasis> is the process ID 124 of the program being profiled. 125 The data file contains information about the calls made in the 126 program among the functions executed, together with 127 <command>Instruction Read</command> (Ir) event counts.</para> 128 129 <para>To generate a function-by-function summary from the profile 130 data file, use 131 <screen>callgrind_annotate [options] callgrind.out.<pid></screen> 132 This summary is similar to the output you get from a Cachegrind 133 run with cg_annotate: the list 134 of functions is ordered by exclusive cost of functions, which also 135 are the ones that are shown. 136 Important for the additional features of Callgrind are 137 the following two options:</para> 138 139 <itemizedlist> 140 <listitem> 141 <para><option>--inclusive=yes</option>: Instead of using 142 exclusive cost of functions as sorting order, use and show 143 inclusive cost.</para> 144 </listitem> 145 146 <listitem> 147 <para><option>--tree=both</option>: Interleave into the 148 top level list of functions, information on the callers and the callees 149 of each function. In these lines, which represents executed 150 calls, the cost gives the number of events spent in the call. 151 Indented, above each function, there is the list of callers, 152 and below, the list of callees. The sum of events in calls to 153 a given function (caller lines), as well as the sum of events in 154 calls from the function (callee lines) together with the self 155 cost, gives the total inclusive cost of the function.</para> 156 </listitem> 157 </itemizedlist> 158 159 <para>Use <option>--auto=yes</option> to get annotated source code 160 for all relevant functions for which the source can be found. In 161 addition to source annotation as produced by 162 <computeroutput>cg_annotate</computeroutput>, you will see the 163 annotated call sites with call counts. For all other options, 164 consult the (Cachegrind) documentation for 165 <computeroutput>cg_annotate</computeroutput>. 166 </para> 167 168 <para>For better call graph browsing experience, it is highly recommended 169 to use <ulink url="&cl-gui-url;">KCachegrind</ulink>. 170 If your code 171 has a significant fraction of its cost in <emphasis>cycles</emphasis> (sets 172 of functions calling each other in a recursive manner), you have to 173 use KCachegrind, as <computeroutput>callgrind_annotate</computeroutput> 174 currently does not do any cycle detection, which is important to get correct 175 results in this case.</para> 176 177 <para>If you are additionally interested in measuring the 178 cache behavior of your program, use Callgrind with the option 179 <option><xref linkend="clopt.cache-sim"/>=yes</option>. For 180 branch prediction simulation, use <option><xref linkend="clopt.branch-sim"/>=yes</option>. 181 Expect a further slow down approximately by a factor of 2.</para> 182 183 <para>If the program section you want to profile is somewhere in the 184 middle of the run, it is beneficial to 185 <emphasis>fast forward</emphasis> to this section without any 186 profiling, and then enable profiling. This is achieved by using 187 the command line option 188 <option><xref linkend="opt.instr-atstart"/>=no</option> 189 and running, in a shell: 190 <computeroutput>callgrind_control -i on</computeroutput> just before the 191 interesting code section is executed. To exactly specify 192 the code position where profiling should start, use the client request 193 <computeroutput><xref linkend="cr.start-instr"/></computeroutput>.</para> 194 195 <para>If you want to be able to see assembly code level annotation, specify 196 <option><xref linkend="opt.dump-instr"/>=yes</option>. This will produce 197 profile data at instruction granularity. Note that the resulting profile 198 data 199 can only be viewed with KCachegrind. For assembly annotation, it also is 200 interesting to see more details of the control flow inside of functions, 201 i.e. (conditional) jumps. This will be collected by further specifying 202 <option><xref linkend="opt.collect-jumps"/>=yes</option>.</para> 203 204 </sect2> 205 206</sect1> 207 208<sect1 id="cl-manual.usage" xreflabel="Advanced Usage"> 209<title>Advanced Usage</title> 210 211 <sect2 id="cl-manual.dumps" 212 xreflabel="Multiple dumps from one program run"> 213 <title>Multiple profiling dumps from one program run</title> 214 215 <para>Sometimes you are not interested in characteristics of a full 216 program run, but only of a small part of it, for example execution of one 217 algorithm. If there are multiple algorithms, or one algorithm 218 running with different input data, it may even be useful to get different 219 profile information for different parts of a single program run.</para> 220 221 <para>Profile data files have names of the form 222<screen> 223callgrind.out.<emphasis>pid</emphasis>.<emphasis>part</emphasis>-<emphasis>threadID</emphasis> 224</screen> 225 </para> 226 <para>where <emphasis>pid</emphasis> is the PID of the running 227 program, <emphasis>part</emphasis> is a number incremented on each 228 dump (".part" is skipped for the dump at program termination), and 229 <emphasis>threadID</emphasis> is a thread identification 230 ("-threadID" is only used if you request dumps of individual 231 threads with <option><xref linkend="opt.separate-threads"/>=yes</option>).</para> 232 233 <para>There are different ways to generate multiple profile dumps 234 while a program is running under Callgrind's supervision. Nevertheless, 235 all methods trigger the same action, which is "dump all profile 236 information since the last dump or program start, and zero cost 237 counters afterwards". To allow for zeroing cost counters without 238 dumping, there is a second action "zero all cost counters now". 239 The different methods are:</para> 240 <itemizedlist> 241 242 <listitem> 243 <para><command>Dump on program termination.</command> 244 This method is the standard way and doesn't need any special 245 action on your part.</para> 246 </listitem> 247 248 <listitem> 249 <para><command>Spontaneous, interactive dumping.</command> Use 250 <screen>callgrind_control -d [hint [PID/Name]]</screen> to 251 request the dumping of profile information of the supervised 252 application with PID or Name. <emphasis>hint</emphasis> is an 253 arbitrary string you can optionally specify to later be able to 254 distinguish profile dumps. The control program will not terminate 255 before the dump is completely written. Note that the application 256 must be actively running for detection of the dump command. So, 257 for a GUI application, resize the window, or for a server, send a 258 request.</para> 259 <para>If you are using <ulink url="&cl-gui-url;">KCachegrind</ulink> 260 for browsing of profile information, you can use the toolbar 261 button <command>Force dump</command>. This will request a dump 262 and trigger a reload after the dump is written.</para> 263 </listitem> 264 265 <listitem> 266 <para><command>Periodic dumping after execution of a specified 267 number of basic blocks</command>. For this, use the command line 268 option <option><xref linkend="opt.dump-every-bb"/>=count</option>. 269 </para> 270 </listitem> 271 272 <listitem> 273 <para><command>Dumping at enter/leave of specified functions.</command> 274 Use the 275 option <option><xref linkend="opt.dump-before"/>=function</option> 276 and <option><xref linkend="opt.dump-after"/>=function</option>. 277 To zero cost counters before entering a function, use 278 <option><xref linkend="opt.zero-before"/>=function</option>.</para> 279 <para>You can specify these options multiple times for different 280 functions. Function specifications support wildcards: e.g. use 281 <option><xref linkend="opt.dump-before"/>='foo*'</option> to 282 generate dumps before entering any function starting with 283 <emphasis>foo</emphasis>.</para> 284 </listitem> 285 286 <listitem> 287 <para><command>Program controlled dumping.</command> 288 Insert 289 <computeroutput><xref linkend="cr.dump-stats"/>;</computeroutput> 290 at the position in your code where you want a profile dump to happen. Use 291 <computeroutput><xref linkend="cr.zero-stats"/>;</computeroutput> to only 292 zero profile counters. 293 See <xref linkend="cl-manual.clientrequests"/> for more information on 294 Callgrind specific client requests.</para> 295 </listitem> 296 </itemizedlist> 297 298 <para>If you are running a multi-threaded application and specify the 299 command line option <option><xref linkend="opt.separate-threads"/>=yes</option>, 300 every thread will be profiled on its own and will create its own 301 profile dump. Thus, the last two methods will only generate one dump 302 of the currently running thread. With the other methods, you will get 303 multiple dumps (one for each thread) on a dump request.</para> 304 305 </sect2> 306 307 308 309 <sect2 id="cl-manual.limits" 310 xreflabel="Limiting range of event collection"> 311 <title>Limiting the range of collected events</title> 312 313 <para>For aggregating events (function enter/leave, 314 instruction execution, memory access) into event numbers, 315 first, the events must be recognizable by Callgrind, and second, 316 the collection state must be enabled.</para> 317 318 <para>Event collection is only possible if <emphasis>instrumentation</emphasis> 319 for program code is enabled. This is the default, but for faster 320 execution (identical to <computeroutput>valgrind --tool=none</computeroutput>), 321 it can be disabled until the program reaches a state in which 322 you want to start collecting profiling data. 323 Callgrind can start without instrumentation 324 by specifying option <option><xref linkend="opt.instr-atstart"/>=no</option>. 325 Instrumentation can be enabled interactively 326 with: <screen>callgrind_control -i on</screen> 327 and off by specifying "off" instead of "on". 328 Furthermore, instrumentation state can be programatically changed with 329 the macros <computeroutput><xref linkend="cr.start-instr"/>;</computeroutput> 330 and <computeroutput><xref linkend="cr.stop-instr"/>;</computeroutput>. 331 </para> 332 333 <para>In addition to enabling instrumentation, you must also enable 334 event collection for the parts of your program you are interested in. 335 By default, event collection is enabled everywhere. 336 You can limit collection to a specific function 337 by using 338 <option><xref linkend="opt.toggle-collect"/>=function</option>. 339 This will toggle the collection state on entering and leaving 340 the specified functions. 341 When this option is in effect, the default collection state 342 at program start is "off". Only events happening while running 343 inside of the given function will be collected. Recursive 344 calls of the given function do not trigger any action.</para> 345 346 <para>It is important to note that with instrumentation disabled, the 347 cache simulator cannot see any memory access events, and thus, any 348 simulated cache state will be frozen and wrong without instrumentation. 349 Therefore, to get useful cache events (hits/misses) after switching on 350 instrumentation, the cache first must warm up, 351 probably leading to many <emphasis>cold misses</emphasis> 352 which would not have happened in reality. If you do not want to see these, 353 start event collection a few million instructions after you have enabled 354 instrumentation.</para> 355 356 </sect2> 357 358 <sect2 id="cl-manual.busevents" xreflabel="Counting global bus events"> 359 <title>Counting global bus events</title> 360 361 <para>For access to shared data among threads in a multithreaded 362 code, synchronization is required to avoid raced conditions. 363 Synchronization primitives are usually implemented via atomic instructions. 364 However, excessive use of such instructions can lead to performance 365 issues.</para> 366 367 <para>To enable analysis of this problem, Callgrind optionally can count 368 the number of atomic instructions executed. More precisely, for x86/x86_64, 369 these are instructions using a lock prefix. For architectures supporting 370 LL/SC, these are the number of SC instructions executed. For both, the term 371 "global bus events" is used.</para> 372 373 <para>The short name of the event type used for global bus events is "Ge". 374 To count global bus events, use <option><xref linkend="clopt.collect-bus"/>=yes</option>. 375 </para> 376 </sect2> 377 378 <sect2 id="cl-manual.cycles" xreflabel="Avoiding cycles"> 379 <title>Avoiding cycles</title> 380 381 <para>Informally speaking, a cycle is a group of functions which 382 call each other in a recursive way.</para> 383 384 <para>Formally speaking, a cycle is a nonempty set S of functions, 385 such that for every pair of functions F and G in S, it is possible 386 to call from F to G (possibly via intermediate functions) and also 387 from G to F. Furthermore, S must be maximal -- that is, be the 388 largest set of functions satisfying this property. For example, if 389 a third function H is called from inside S and calls back into S, 390 then H is also part of the cycle and should be included in S.</para> 391 392 <para>Recursion is quite usual in programs, and therefore, cycles 393 sometimes appear in the call graph output of Callgrind. However, 394 the title of this chapter should raise two questions: What is bad 395 about cycles which makes you want to avoid them? And: How can 396 cycles be avoided without changing program code?</para> 397 398 <para>Cycles are not bad in itself, but tend to make performance 399 analysis of your code harder. This is because inclusive costs 400 for calls inside of a cycle are meaningless. The definition of 401 inclusive cost, i.e. self cost of a function plus inclusive cost 402 of its callees, needs a topological order among functions. For 403 cycles, this does not hold true: callees of a function in a cycle include 404 the function itself. Therefore, KCachegrind does cycle detection 405 and skips visualization of any inclusive cost for calls inside 406 of cycles. Further, all functions in a cycle are collapsed into artifical 407 functions called like <computeroutput>Cycle 1</computeroutput>.</para> 408 409 <para>Now, when a program exposes really big cycles (as is 410 true for some GUI code, or in general code using event or callback based 411 programming style), you lose the nice property to let you pinpoint 412 the bottlenecks by following call chains from 413 <function>main</function>, guided via 414 inclusive cost. In addition, KCachegrind loses its ability to show 415 interesting parts of the call graph, as it uses inclusive costs to 416 cut off uninteresting areas.</para> 417 418 <para>Despite the meaningless of inclusive costs in cycles, the big 419 drawback for visualization motivates the possibility to temporarily 420 switch off cycle detection in KCachegrind, which can lead to 421 misguiding visualization. However, often cycles appear because of 422 unlucky superposition of independent call chains in a way that 423 the profile result will see a cycle. Neglecting uninteresting 424 calls with very small measured inclusive cost would break these 425 cycles. In such cases, incorrect handling of cycles by not detecting 426 them still gives meaningful profiling visualization.</para> 427 428 <para>It has to be noted that currently, <command>callgrind_annotate</command> 429 does not do any cycle detection at all. For program executions with function 430 recursion, it e.g. can print nonsense inclusive costs way above 100%.</para> 431 432 <para>After describing why cycles are bad for profiling, it is worth 433 talking about cycle avoidance. The key insight here is that symbols in 434 the profile data do not have to exactly match the symbols found in the 435 program. Instead, the symbol name could encode additional information 436 from the current execution context such as recursion level of the 437 current function, or even some part of the call chain leading to the 438 function. While encoding of additional information into symbols is 439 quite capable of avoiding cycles, it has to be used carefully to not cause 440 symbol explosion. The latter imposes large memory requirement for Callgrind 441 with possible out-of-memory conditions, and big profile data files.</para> 442 443 <para>A further possibility to avoid cycles in Callgrind's profile data 444 output is to simply leave out given functions in the call graph. Of course, this 445 also skips any call information from and to an ignored function, and thus can 446 break a cycle. Candidates for this typically are dispatcher functions in event 447 driven code. The option to ignore calls to a function is 448 <option><xref linkend="opt.fn-skip"/>=function</option>. Aside from 449 possibly breaking cycles, this is used in Callgrind to skip 450 trampoline functions in the PLT sections 451 for calls to functions in shared libraries. You can see the difference 452 if you profile with <option><xref linkend="opt.skip-plt"/>=no</option>. 453 If a call is ignored, its cost events will be propagated to the 454 enclosing function.</para> 455 456 <para>If you have a recursive function, you can distinguish the first 457 10 recursion levels by specifying 458 <option><xref linkend="opt.separate-recs-num"/>=function</option>. 459 Or for all functions with 460 <option><xref linkend="opt.separate-recs"/>=10</option>, but this will 461 give you much bigger profile data files. In the profile data, you will see 462 the recursion levels of "func" as the different functions with names 463 "func", "func'2", "func'3" and so on.</para> 464 465 <para>If you have call chains "A > B > C" and "A > C > B" 466 in your program, you usually get a "false" cycle "B <> C". Use 467 <option><xref linkend="opt.separate-callers-num"/>=B</option> 468 <option><xref linkend="opt.separate-callers-num"/>=C</option>, 469 and functions "B" and "C" will be treated as different functions 470 depending on the direct caller. Using the apostrophe for appending 471 this "context" to the function name, you get "A > B'A > C'B" 472 and "A > C'A > B'C", and there will be no cycle. Use 473 <option><xref linkend="opt.separate-callers"/>=2</option> to get a 2-caller 474 dependency for all functions. Note that doing this will increase 475 the size of profile data files.</para> 476 477 </sect2> 478 479 <sect2 id="cl-manual.forkingprograms" xreflabel="Forking Programs"> 480 <title>Forking Programs</title> 481 482 <para>If your program forks, the child will inherit all the profiling 483 data that has been gathered for the parent. To start with empty profile 484 counter values in the child, the client request 485 <computeroutput><xref linkend="cr.zero-stats"/>;</computeroutput> 486 can be inserted into code to be executed by the child, directly after 487 <computeroutput>fork</computeroutput>.</para> 488 489 <para>However, you will have to make sure that the output file format string 490 (controlled by <option>--callgrind-out-file</option>) does contain 491 <option>%p</option> (which is true by default). Otherwise, the 492 outputs from the parent and child will overwrite each other or will be 493 intermingled, which almost certainly is not what you want.</para> 494 495 <para>You will be able to control the new child independently from 496 the parent via callgrind_control.</para> 497 498 </sect2> 499 500</sect1> 501 502 503<sect1 id="cl-manual.options" xreflabel="Callgrind Command-line Options"> 504<title>Callgrind Command-line Options</title> 505 506<para> 507In the following, options are grouped into classes. 508</para> 509<para> 510Some options allow the specification of a function/symbol name, such as 511<option><xref linkend="opt.dump-before"/>=function</option>, or 512<option><xref linkend="opt.fn-skip"/>=function</option>. All these options 513can be specified multiple times for different functions. 514In addition, the function specifications actually are patterns by supporting 515the use of wildcards '*' (zero or more arbitrary characters) and '?' 516(exactly one arbitrary character), similar to file name globbing in the 517shell. This feature is important especially for C++, as without wildcard 518usage, the function would have to be specified in full extent, including 519parameter signature. </para> 520 521<sect2 id="cl-manual.options.creation" 522 xreflabel="Dump creation options"> 523<title>Dump creation options</title> 524 525<para> 526These options influence the name and format of the profile data files. 527</para> 528 529<!-- start of xi:include in the manpage --> 530<variablelist id="cl.opts.list.creation"> 531 532 <varlistentry id="opt.callgrind-out-file" xreflabel="--callgrind-out-file"> 533 <term> 534 <option><![CDATA[--callgrind-out-file=<file> ]]></option> 535 </term> 536 <listitem> 537 <para>Write the profile data to 538 <computeroutput>file</computeroutput> rather than to the default 539 output file, 540 <computeroutput>callgrind.out.<pid></computeroutput>. The 541 <option>%p</option> and <option>%q</option> format specifiers 542 can be used to embed the process ID and/or the contents of an 543 environment variable in the name, as is the case for the core 544 option <option><xref linkend="opt.log-file"/></option>. 545 When multiple dumps are made, the file name 546 is modified further; see below.</para> 547 </listitem> 548 </varlistentry> 549 550 <varlistentry id="opt.dump-line" xreflabel="--dump-line"> 551 <term> 552 <option><![CDATA[--dump-line=<no|yes> [default: yes] ]]></option> 553 </term> 554 <listitem> 555 <para>This specifies that event counting should be performed at 556 source line granularity. This allows source annotation for sources 557 which are compiled with debug information 558 (<option>-g</option>).</para> 559 </listitem> 560 </varlistentry> 561 562 <varlistentry id="opt.dump-instr" xreflabel="--dump-instr"> 563 <term> 564 <option><![CDATA[--dump-instr=<no|yes> [default: no] ]]></option> 565 </term> 566 <listitem> 567 <para>This specifies that event counting should be performed at 568 per-instruction granularity. 569 This allows for assembly code 570 annotation. Currently the results can only be 571 displayed by KCachegrind.</para> 572 </listitem> 573 </varlistentry> 574 575 <varlistentry id="opt.compress-strings" xreflabel="--compress-strings"> 576 <term> 577 <option><![CDATA[--compress-strings=<no|yes> [default: yes] ]]></option> 578 </term> 579 <listitem> 580 <para>This option influences the output format of the profile data. 581 It specifies whether strings (file and function names) should be 582 identified by numbers. This shrinks the file, 583 but makes it more difficult 584 for humans to read (which is not recommended in any case).</para> 585 </listitem> 586 </varlistentry> 587 588 <varlistentry id="opt.compress-pos" xreflabel="--compress-pos"> 589 <term> 590 <option><![CDATA[--compress-pos=<no|yes> [default: yes] ]]></option> 591 </term> 592 <listitem> 593 <para>This option influences the output format of the profile data. 594 It specifies whether numerical positions are always specified as absolute 595 values or are allowed to be relative to previous numbers. 596 This shrinks the file size.</para> 597 </listitem> 598 </varlistentry> 599 600 <varlistentry id="opt.combine-dumps" xreflabel="--combine-dumps"> 601 <term> 602 <option><![CDATA[--combine-dumps=<no|yes> [default: no] ]]></option> 603 </term> 604 <listitem> 605 <para>When enabled, when multiple profile data parts are to be 606 generated these parts are appended to the same output file. 607 Not recommended.</para> 608 </listitem> 609 </varlistentry> 610 611</variablelist> 612</sect2> 613 614<sect2 id="cl-manual.options.activity" 615 xreflabel="Activity options"> 616<title>Activity options</title> 617 618<para> 619These options specify when actions relating to event counts are to 620be executed. For interactive control use callgrind_control. 621</para> 622 623<!-- start of xi:include in the manpage --> 624<variablelist id="cl.opts.list.activity"> 625 626 <varlistentry id="opt.dump-every-bb" xreflabel="--dump-every-bb"> 627 <term> 628 <option><![CDATA[--dump-every-bb=<count> [default: 0, never] ]]></option> 629 </term> 630 <listitem> 631 <para>Dump profile data every <option>count</option> basic blocks. 632 Whether a dump is needed is only checked when Valgrind's internal 633 scheduler is run. Therefore, the minimum setting useful is about 100000. 634 The count is a 64-bit value to make long dump periods possible. 635 </para> 636 </listitem> 637 </varlistentry> 638 639 <varlistentry id="opt.dump-before" xreflabel="--dump-before"> 640 <term> 641 <option><![CDATA[--dump-before=<function> ]]></option> 642 </term> 643 <listitem> 644 <para>Dump when entering <option>function</option>.</para> 645 </listitem> 646 </varlistentry> 647 648 <varlistentry id="opt.zero-before" xreflabel="--zero-before"> 649 <term> 650 <option><![CDATA[--zero-before=<function> ]]></option> 651 </term> 652 <listitem> 653 <para>Zero all costs when entering <option>function</option>.</para> 654 </listitem> 655 </varlistentry> 656 657 <varlistentry id="opt.dump-after" xreflabel="--dump-after"> 658 <term> 659 <option><![CDATA[--dump-after=<function> ]]></option> 660 </term> 661 <listitem> 662 <para>Dump when leaving <option>function</option>.</para> 663 </listitem> 664 </varlistentry> 665 666</variablelist> 667<!-- end of xi:include in the manpage --> 668</sect2> 669 670<sect2 id="cl-manual.options.collection" 671 xreflabel="Data collection options"> 672<title>Data collection options</title> 673 674<para> 675These options specify when events are to be aggregated into event counts. 676Also see <xref linkend="cl-manual.limits"/>.</para> 677 678<!-- start of xi:include in the manpage --> 679<variablelist id="cl.opts.list.collection"> 680 681 <varlistentry id="opt.instr-atstart" xreflabel="--instr-atstart"> 682 <term> 683 <option><![CDATA[--instr-atstart=<yes|no> [default: yes] ]]></option> 684 </term> 685 <listitem> 686 <para>Specify if you want Callgrind to start simulation and 687 profiling from the beginning of the program. 688 When set to <computeroutput>no</computeroutput>, 689 Callgrind will not be able 690 to collect any information, including calls, but it will have at 691 most a slowdown of around 4, which is the minimum Valgrind 692 overhead. Instrumentation can be interactively enabled via 693 <computeroutput>callgrind_control -i on</computeroutput>.</para> 694 <para>Note that the resulting call graph will most probably not 695 contain <function>main</function>, but will contain all the 696 functions executed after instrumentation was enabled. 697 Instrumentation can also programatically enabled/disabled. See the 698 Callgrind include file 699 <computeroutput>callgrind.h</computeroutput> for the macro 700 you have to use in your source code.</para> <para>For cache 701 simulation, results will be less accurate when switching on 702 instrumentation later in the program run, as the simulator starts 703 with an empty cache at that moment. Switch on event collection 704 later to cope with this error.</para> 705 </listitem> 706 </varlistentry> 707 708 <varlistentry id="opt.collect-atstart" xreflabel="--collect-atstart"> 709 <term> 710 <option><![CDATA[--collect-atstart=<yes|no> [default: yes] ]]></option> 711 </term> 712 <listitem> 713 <para>Specify whether event collection is enabled at beginning 714 of the profile run.</para> 715 <para>To only look at parts of your program, you have two 716 possibilities:</para> 717 <orderedlist> 718 <listitem> 719 <para>Zero event counters before entering the program part you 720 want to profile, and dump the event counters to a file after 721 leaving that program part.</para> 722 </listitem> 723 <listitem> 724 <para>Switch on/off collection state as needed to only see 725 event counters happening while inside of the program part you 726 want to profile.</para> 727 </listitem> 728 </orderedlist> 729 <para>The second option can be used if the program part you want to 730 profile is called many times. Option 1, i.e. creating a lot of 731 dumps is not practical here.</para> 732 <para>Collection state can be 733 toggled at entry and exit of a given function with the 734 option <option><xref linkend="opt.toggle-collect"/></option>. If you 735 use this option, collection 736 state should be disabled at the beginning. Note that the 737 specification of <option>--toggle-collect</option> 738 implicitly sets 739 <option>--collect-state=no</option>.</para> 740 <para>Collection state can be toggled also by inserting the client request 741 <computeroutput> 742 <!-- commented out because it causes broken links in the man page 743 <xref linkend="cr.toggle-collect"/>; 744 --> 745 CALLGRIND_TOGGLE_COLLECT 746 ;</computeroutput> 747 at the needed code positions.</para> 748 </listitem> 749 </varlistentry> 750 751 <varlistentry id="opt.toggle-collect" xreflabel="--toggle-collect"> 752 <term> 753 <option><![CDATA[--toggle-collect=<function> ]]></option> 754 </term> 755 <listitem> 756 <para>Toggle collection on entry/exit of <option>function</option>.</para> 757 </listitem> 758 </varlistentry> 759 760 <varlistentry id="opt.collect-jumps" xreflabel="--collect-jumps"> 761 <term> 762 <option><![CDATA[--collect-jumps=<no|yes> [default: no] ]]></option> 763 </term> 764 <listitem> 765 <para>This specifies whether information for (conditional) jumps 766 should be collected. As above, callgrind_annotate currently is not 767 able to show you the data. You have to use KCachegrind to get jump 768 arrows in the annotated code.</para> 769 </listitem> 770 </varlistentry> 771 772 <varlistentry id="opt.collect-systime" xreflabel="--collect-systime"> 773 <term> 774 <option><![CDATA[--collect-systime=<no|yes> [default: no] ]]></option> 775 </term> 776 <listitem> 777 <para>This specifies whether information for system call times 778 should be collected.</para> 779 </listitem> 780 </varlistentry> 781 782 <varlistentry id="clopt.collect-bus" xreflabel="--collect-bus"> 783 <term> 784 <option><![CDATA[--collect-bus=<no|yes> [default: no] ]]></option> 785 </term> 786 <listitem> 787 <para>This specifies whether the number of global bus events executed 788 should be collected. The event type "Ge" is used for these events.</para> 789 </listitem> 790 </varlistentry> 791 792</variablelist> 793<!-- end of xi:include in the manpage --> 794</sect2> 795 796<sect2 id="cl-manual.options.separation" 797 xreflabel="Cost entity separation options"> 798<title>Cost entity separation options</title> 799 800<para> 801These options specify how event counts should be attributed to execution 802contexts. 803For example, they specify whether the recursion level or the 804call chain leading to a function should be taken into account, 805and whether the thread ID should be considered. 806Also see <xref linkend="cl-manual.cycles"/>.</para> 807 808<!-- start of xi:include in the manpage --> 809<variablelist id="cmd-options.separation"> 810 811 <varlistentry id="opt.separate-threads" xreflabel="--separate-threads"> 812 <term> 813 <option><![CDATA[--separate-threads=<no|yes> [default: no] ]]></option> 814 </term> 815 <listitem> 816 <para>This option specifies whether profile data should be generated 817 separately for every thread. If yes, the file names get "-threadID" 818 appended.</para> 819 </listitem> 820 </varlistentry> 821 822 <varlistentry id="opt.separate-callers" xreflabel="--separate-callers"> 823 <term> 824 <option><![CDATA[--separate-callers=<callers> [default: 0] ]]></option> 825 </term> 826 <listitem> 827 <para>Separate contexts by at most <callers> functions in the 828 call chain. See <xref linkend="cl-manual.cycles"/>.</para> 829 </listitem> 830 </varlistentry> 831 832 <varlistentry id="opt.separate-callers-num" xreflabel="--separate-callers2"> 833 <term> 834 <option><![CDATA[--separate-callers<number>=<function> ]]></option> 835 </term> 836 <listitem> 837 <para>Separate <option>number</option> callers for <option>function</option>. 838 See <xref linkend="cl-manual.cycles"/>.</para> 839 </listitem> 840 </varlistentry> 841 842 <varlistentry id="opt.separate-recs" xreflabel="--separate-recs"> 843 <term> 844 <option><![CDATA[--separate-recs=<level> [default: 2] ]]></option> 845 </term> 846 <listitem> 847 <para>Separate function recursions by at most <option>level</option> levels. 848 See <xref linkend="cl-manual.cycles"/>.</para> 849 </listitem> 850 </varlistentry> 851 852 <varlistentry id="opt.separate-recs-num" xreflabel="--separate-recs10"> 853 <term> 854 <option><![CDATA[--separate-recs<number>=<function> ]]></option> 855 </term> 856 <listitem> 857 <para>Separate <option>number</option> recursions for <option>function</option>. 858 See <xref linkend="cl-manual.cycles"/>.</para> 859 </listitem> 860 </varlistentry> 861 862 <varlistentry id="opt.skip-plt" xreflabel="--skip-plt"> 863 <term> 864 <option><![CDATA[--skip-plt=<no|yes> [default: yes] ]]></option> 865 </term> 866 <listitem> 867 <para>Ignore calls to/from PLT sections.</para> 868 </listitem> 869 </varlistentry> 870 871 <varlistentry id="opt.skip-direct-rec" xreflabel="--skip-direct-rec"> 872 <term> 873 <option><![CDATA[--skip-direct-rec=<no|yes> [default: yes] ]]></option> 874 </term> 875 <listitem> 876 <para>Ignore direct recursions.</para> 877 </listitem> 878 </varlistentry> 879 880 <varlistentry id="opt.fn-skip" xreflabel="--fn-skip"> 881 <term> 882 <option><![CDATA[--fn-skip=<function> ]]></option> 883 </term> 884 <listitem> 885 <para>Ignore calls to/from a given function. E.g. if you have a 886 call chain A > B > C, and you specify function B to be 887 ignored, you will only see A > C.</para> 888 <para>This is very convenient to skip functions handling callback 889 behaviour. For example, with the signal/slot mechanism in the 890 Qt graphics library, you only want 891 to see the function emitting a signal to call the slots connected 892 to that signal. First, determine the real call chain to see the 893 functions needed to be skipped, then use this option.</para> 894 </listitem> 895 </varlistentry> 896 897<!-- 898 commenting out as it is only enabled with CLG_EXPERIMENTAL. (Nb: I had to 899 insert a space between the double dash to avoid XML comment problems.) 900 901 <varlistentry id="opt.fn-group"> 902 <term> 903 <option><![CDATA[- -fn-group<number>=<function> ]]></option> 904 </term> 905 <listitem> 906 <para>Put a function into a separate group. This influences the 907 context name for cycle avoidance. All functions inside such a 908 group are treated as being the same for context name building, which 909 resembles the call chain leading to a context. By specifying function 910 groups with this option, you can shorten the context name, as functions 911 in the same group will not appear in sequence in the name. </para> 912 </listitem> 913 </varlistentry> 914--> 915 916</variablelist> 917<!-- end of xi:include in the manpage --> 918</sect2> 919 920 921<sect2 id="cl-manual.options.simulation" 922 xreflabel="Simulation options"> 923<title>Simulation options</title> 924 925<!-- start of xi:include in the manpage --> 926<variablelist id="cl.opts.list.simulation"> 927 928 <varlistentry id="clopt.cache-sim" xreflabel="--cache-sim"> 929 <term> 930 <option><![CDATA[--cache-sim=<yes|no> [default: no] ]]></option> 931 </term> 932 <listitem> 933 <para>Specify if you want to do full cache simulation. By default, 934 only instruction read accesses will be counted ("Ir"). 935 With cache simulation, further event counters are enabled: 936 Cache misses on instruction reads ("I1mr"/"ILmr"), 937 data read accesses ("Dr") and related cache misses ("D1mr"/"DLmr"), 938 data write accesses ("Dw") and related cache misses ("D1mw"/"DLmw"). 939 For more information, see <xref linkend="cg-manual"/>. 940 </para> 941 </listitem> 942 </varlistentry> 943 944 <varlistentry id="clopt.branch-sim" xreflabel="--branch-sim"> 945 <term> 946 <option><![CDATA[--branch-sim=<yes|no> [default: no] ]]></option> 947 </term> 948 <listitem> 949 <para>Specify if you want to do branch prediction simulation. 950 Further event counters are enabled: Number of executed conditional 951 branches and related predictor misses ("Bc"/"Bcm"), executed indirect 952 jumps and related misses of the jump address predictor ("Bi"/"Bim"). 953 </para> 954 </listitem> 955 </varlistentry> 956 957</variablelist> 958<!-- end of xi:include in the manpage --> 959</sect2> 960 961 962<sect2 id="cl-manual.options.cachesimulation" 963 xreflabel="Cache simulation options"> 964<title>Cache simulation options</title> 965 966<!-- start of xi:include in the manpage --> 967<variablelist id="cl.opts.list.cachesimulation"> 968 969 <varlistentry id="opt.simulate-wb" xreflabel="--simulate-wb"> 970 <term> 971 <option><![CDATA[--simulate-wb=<yes|no> [default: no] ]]></option> 972 </term> 973 <listitem> 974 <para>Specify whether write-back behavior should be simulated, allowing 975 to distinguish LL caches misses with and without write backs. 976 The cache model of Cachegrind/Callgrind does not specify write-through 977 vs. write-back behavior, and this also is not relevant for the number 978 of generated miss counts. However, with explicit write-back simulation 979 it can be decided whether a miss triggers not only the loading of a new 980 cache line, but also if a write back of a dirty cache line had to take 981 place before. The new dirty miss events are ILdmr, DLdmr, and DLdmw, 982 for misses because of instruction read, data read, and data write, 983 respectively. As they produce two memory transactions, they should 984 account for a doubled time estimation in relation to a normal miss. 985 </para> 986 </listitem> 987 </varlistentry> 988 989 <varlistentry id="opt.simulate-hwpref" xreflabel="--simulate-hwpref"> 990 <term> 991 <option><![CDATA[--simulate-hwpref=<yes|no> [default: no] ]]></option> 992 </term> 993 <listitem> 994 <para>Specify whether simulation of a hardware prefetcher should be 995 added which is able to detect stream access in the second level cache 996 by comparing accesses to separate to each page. 997 As the simulation can not decide about any timing issues of prefetching, 998 it is assumed that any hardware prefetch triggered succeeds before a 999 real access is done. Thus, this gives a best-case scenario by covering 1000 all possible stream accesses.</para> 1001 </listitem> 1002 </varlistentry> 1003 1004 <varlistentry id="opt.cacheuse" xreflabel="--cacheuse"> 1005 <term> 1006 <option><![CDATA[--cacheuse=<yes|no> [default: no] ]]></option> 1007 </term> 1008 <listitem> 1009 <para>Specify whether cache line use should be collected. For every 1010 cache line, from loading to it being evicted, the number of accesses 1011 as well as the number of actually used bytes is determined. This 1012 behavior is related to the code which triggered loading of the cache 1013 line. In contrast to miss counters, which shows the position where 1014 the symptoms of bad cache behavior (i.e. latencies) happens, the 1015 use counters try to pinpoint at the reason (i.e. the code with the 1016 bad access behavior). The new counters are defined in a way such 1017 that worse behavior results in higher cost. 1018 AcCost1 and AcCost2 are counters showing bad temporal locality 1019 for L1 and LL caches, respectively. This is done by summing up 1020 reciprocal values of the numbers of accesses of each cache line, 1021 multiplied by 1000 (as only integer costs are allowed). E.g. for 1022 a given source line with 5 read accesses, a value of 5000 AcCost 1023 means that for every access, a new cache line was loaded and directly 1024 evicted afterwards without further accesses. Similarly, SpLoss1/2 1025 shows bad spatial locality for L1 and LL caches, respectively. It 1026 gives the <emphasis>spatial loss</emphasis> count of bytes which 1027 were loaded into cache but never accessed. It pinpoints at code 1028 accessing data in a way such that cache space is wasted. This hints 1029 at bad layout of data structures in memory. Assuming a cache line 1030 size of 64 bytes and 100 L1 misses for a given source line, the 1031 loading of 6400 bytes into L1 was triggered. If SpLoss1 shows a 1032 value of 3200 for this line, this means that half of the loaded data was 1033 never used, or using a better data layout, only half of the cache 1034 space would have been needed. 1035 Please note that for cache line use counters, it currently is 1036 not possible to provide meaningful inclusive costs. Therefore, 1037 inclusive cost of these counters should be ignored. 1038 </para> 1039 </listitem> 1040 </varlistentry> 1041 1042 <varlistentry id="opt.I1" xreflabel="--I1"> 1043 <term> 1044 <option><![CDATA[--I1=<size>,<associativity>,<line size> ]]></option> 1045 </term> 1046 <listitem> 1047 <para>Specify the size, associativity and line size of the level 1 1048 instruction cache. </para> 1049 </listitem> 1050 </varlistentry> 1051 1052 <varlistentry id="opt.D1" xreflabel="--D1"> 1053 <term> 1054 <option><![CDATA[--D1=<size>,<associativity>,<line size> ]]></option> 1055 </term> 1056 <listitem> 1057 <para>Specify the size, associativity and line size of the level 1 1058 data cache.</para> 1059 </listitem> 1060 </varlistentry> 1061 1062 <varlistentry id="opt.LL" xreflabel="--LL"> 1063 <term> 1064 <option><![CDATA[--LL=<size>,<associativity>,<line size> ]]></option> 1065 </term> 1066 <listitem> 1067 <para>Specify the size, associativity and line size of the last-level 1068 cache.</para> 1069 </listitem> 1070 </varlistentry> 1071</variablelist> 1072<!-- end of xi:include in the manpage --> 1073 1074</sect2> 1075 1076</sect1> 1077 1078<sect1 id="cl-manual.monitor-commands" xreflabel="Callgrind Monitor Commands"> 1079<title>Callgrind Monitor Commands</title> 1080<para>The Callgrind tool provides monitor commands handled by the Valgrind 1081gdbserver (see <xref linkend="manual-core-adv.gdbserver-commandhandling"/>). 1082</para> 1083 1084<itemizedlist> 1085 <listitem> 1086 <para><varname>dump [<dump_hint>]</varname> requests to dump the 1087 profile data. </para> 1088 </listitem> 1089 1090 <listitem> 1091 <para><varname>zero</varname> requests to zero the profile data 1092 counters. </para> 1093 </listitem> 1094 1095 <listitem> 1096 <para><varname>instrumentation [on|off]</varname> requests to set 1097 (if parameter on/off is given) or get the current instrumentation state. 1098 </para> 1099 </listitem> 1100 1101 <listitem> 1102 <para><varname>status</varname> requests to print out some status 1103 information.</para> 1104 </listitem> 1105 1106</itemizedlist> 1107</sect1> 1108 1109<sect1 id="cl-manual.clientrequests" xreflabel="Client request reference"> 1110<title>Callgrind specific client requests</title> 1111 1112<para>Callgrind provides the following specific client requests in 1113<filename>callgrind.h</filename>. See that file for the exact details of 1114their arguments.</para> 1115 1116<variablelist id="cl.clientrequests.list"> 1117 1118 <varlistentry id="cr.dump-stats" xreflabel="CALLGRIND_DUMP_STATS"> 1119 <term> 1120 <computeroutput>CALLGRIND_DUMP_STATS</computeroutput> 1121 </term> 1122 <listitem> 1123 <para>Force generation of a profile dump at specified position 1124 in code, for the current thread only. Written counters will be reset 1125 to zero.</para> 1126 </listitem> 1127 </varlistentry> 1128 1129 <varlistentry id="cr.dump-stats-at" xreflabel="CALLGRIND_DUMP_STATS_AT"> 1130 <term> 1131 <computeroutput>CALLGRIND_DUMP_STATS_AT(string)</computeroutput> 1132 </term> 1133 <listitem> 1134 <para>Same as <computeroutput>CALLGRIND_DUMP_STATS</computeroutput>, 1135 but allows to specify a string to be able to distinguish profile 1136 dumps.</para> 1137 </listitem> 1138 </varlistentry> 1139 1140 <varlistentry id="cr.zero-stats" xreflabel="CALLGRIND_ZERO_STATS"> 1141 <term> 1142 <computeroutput>CALLGRIND_ZERO_STATS</computeroutput> 1143 </term> 1144 <listitem> 1145 <para>Reset the profile counters for the current thread to zero.</para> 1146 </listitem> 1147 </varlistentry> 1148 1149 <varlistentry id="cr.toggle-collect" xreflabel="CALLGRIND_TOGGLE_COLLECT"> 1150 <term> 1151 <computeroutput>CALLGRIND_TOGGLE_COLLECT</computeroutput> 1152 </term> 1153 <listitem> 1154 <para>Toggle the collection state. This allows to ignore events 1155 with regard to profile counters. See also options 1156 <option><xref linkend="opt.collect-atstart"/></option> and 1157 <option><xref linkend="opt.toggle-collect"/></option>.</para> 1158 </listitem> 1159 </varlistentry> 1160 1161 <varlistentry id="cr.start-instr" xreflabel="CALLGRIND_START_INSTRUMENTATION"> 1162 <term> 1163 <computeroutput>CALLGRIND_START_INSTRUMENTATION</computeroutput> 1164 </term> 1165 <listitem> 1166 <para>Start full Callgrind instrumentation if not already enabled. 1167 When cache simulation is done, this will flush the simulated cache 1168 and lead to an artifical cache warmup phase afterwards with 1169 cache misses which would not have happened in reality. See also 1170 option <option><xref linkend="opt.instr-atstart"/></option>.</para> 1171 </listitem> 1172 </varlistentry> 1173 1174 <varlistentry id="cr.stop-instr" xreflabel="CALLGRIND_STOP_INSTRUMENTATION"> 1175 <term> 1176 <computeroutput>CALLGRIND_STOP_INSTRUMENTATION</computeroutput> 1177 </term> 1178 <listitem> 1179 <para>Stop full Callgrind instrumentation if not already disabled. 1180 This flushes Valgrinds translation cache, and does no additional 1181 instrumentation afterwards: it effectivly will run at the same 1182 speed as Nulgrind, i.e. at minimal slowdown. Use this to 1183 speed up the Callgrind run for uninteresting code parts. Use 1184 <computeroutput><xref linkend="cr.start-instr"/></computeroutput> to 1185 enable instrumentation again. See also option 1186 <option><xref linkend="opt.instr-atstart"/></option>.</para> 1187 </listitem> 1188 </varlistentry> 1189 1190</variablelist> 1191 1192</sect1> 1193 1194 1195 1196<sect1 id="cl-manual.callgrind_annotate-options" xreflabel="callgrind_annotate Command-line Options"> 1197<title>callgrind_annotate Command-line Options</title> 1198 1199<!-- start of xi:include in the manpage --> 1200<variablelist id="callgrind_annotate.opts.list"> 1201 1202 <varlistentry> 1203 <term><option>-h --help</option></term> 1204 <listitem> 1205 <para>Show summary of options.</para> 1206 </listitem> 1207 </varlistentry> 1208 1209 <varlistentry> 1210 <term><option>--version</option></term> 1211 <listitem> 1212 <para>Show version of callgrind_annotate.</para> 1213 </listitem> 1214 </varlistentry> 1215 1216 <varlistentry> 1217 <term> 1218 <option>--show=A,B,C [default: all]</option> 1219 </term> 1220 <listitem> 1221 <para>Only show figures for events A,B,C.</para> 1222 </listitem> 1223 </varlistentry> 1224 1225 <varlistentry> 1226 <term> 1227 <option>--sort=A,B,C</option> 1228 </term> 1229 <listitem> 1230 <para>Sort columns by events A,B,C [event column order].</para> 1231 </listitem> 1232 </varlistentry> 1233 1234 <varlistentry> 1235 <term> 1236 <option><![CDATA[--threshold=<0--100> [default: 99%] ]]></option> 1237 </term> 1238 <listitem> 1239 <para>Percentage of counts (of primary sort event) we are 1240 interested in.</para> 1241 </listitem> 1242 </varlistentry> 1243 1244 <varlistentry> 1245 <term> 1246 <option><![CDATA[--auto=<yes|no> [default: no] ]]></option> 1247 </term> 1248 <listitem> 1249 <para>Annotate all source files containing functions that helped 1250 reach the event count threshold.</para> 1251 </listitem> 1252 </varlistentry> 1253 1254 <varlistentry> 1255 <term> 1256 <option>--context=N [default: 8] </option> 1257 </term> 1258 <listitem> 1259 <para>Print N lines of context before and after annotated 1260 lines.</para> 1261 </listitem> 1262 </varlistentry> 1263 1264 <varlistentry> 1265 <term> 1266 <option><![CDATA[--inclusive=<yes|no> [default: no] ]]></option> 1267 </term> 1268 <listitem> 1269 <para>Add subroutine costs to functions calls.</para> 1270 </listitem> 1271 </varlistentry> 1272 1273 <varlistentry> 1274 <term> 1275 <option><![CDATA[--tree=<none|caller|calling|both> [default: none] ]]></option> 1276 </term> 1277 <listitem> 1278 <para>Print for each function their callers, the called functions 1279 or both.</para> 1280 </listitem> 1281 </varlistentry> 1282 1283 <varlistentry> 1284 <term> 1285 <option><![CDATA[-I, --include=<dir> ]]></option> 1286 </term> 1287 <listitem> 1288 <para>Add <option>dir</option> to the list of directories to search 1289 for source files.</para> 1290 </listitem> 1291 </varlistentry> 1292 1293</variablelist> 1294<!-- end of xi:include in the manpage --> 1295 1296 1297</sect1> 1298 1299 1300 1301 1302<sect1 id="cl-manual.callgrind_control-options" xreflabel="callgrind_control Command-line Options"> 1303<title>callgrind_control Command-line Options</title> 1304 1305<para>By default, callgrind_control acts on all programs run by the 1306 current user under Callgrind. It is possible to limit the actions to 1307 specified Callgrind runs by providing a list of pids or program names as 1308 argument. The default action is to give some brief information about the 1309 applications being run under Callgrind.</para> 1310 1311<!-- start of xi:include in the manpage --> 1312<variablelist id="callgrind_control.opts.list"> 1313 1314 <varlistentry> 1315 <term><option>-h --help</option></term> 1316 <listitem> 1317 <para>Show a short description, usage, and summary of options.</para> 1318 </listitem> 1319 </varlistentry> 1320 1321 <varlistentry> 1322 <term><option>--version</option></term> 1323 <listitem> 1324 <para>Show version of callgrind_control.</para> 1325 </listitem> 1326 </varlistentry> 1327 1328 <varlistentry> 1329 <term><option>-l --long</option></term> 1330 <listitem> 1331 <para>Show also the working directory, in addition to the brief 1332 information given by default. 1333 </para> 1334 </listitem> 1335 </varlistentry> 1336 1337 <varlistentry> 1338 <term><option>-s --stat</option></term> 1339 <listitem> 1340 <para>Show statistics information about active Callgrind runs.</para> 1341 </listitem> 1342 </varlistentry> 1343 1344 <varlistentry> 1345 <term><option>-b --back</option></term> 1346 <listitem> 1347 <para>Show stack/back traces of each thread in active Callgrind runs. For 1348 each active function in the stack trace, also the number of invocations 1349 since program start (or last dump) is shown. This option can be 1350 combined with -e to show inclusive cost of active functions.</para> 1351 </listitem> 1352 </varlistentry> 1353 1354 <varlistentry> 1355 <term><option><![CDATA[-e [A,B,...] ]]></option> (default: all)</term> 1356 <listitem> 1357 <para>Show the current per-thread, exclusive cost values of event 1358 counters. If no explicit event names are given, figures for all event 1359 types which are collected in the given Callgrind run are 1360 shown. Otherwise, only figures for event types A, B, ... are shown. If 1361 this option is combined with -b, inclusive cost for the functions of 1362 each active stack frame is provided, too. 1363 </para> 1364 </listitem> 1365 </varlistentry> 1366 1367 <varlistentry> 1368 <term><option><![CDATA[--dump[=<desc>] ]]></option> (default: no description)</term> 1369 <listitem> 1370 <para>Request the dumping of profile information. Optionally, a 1371 description can be specified which is written into the dump as part of 1372 the information giving the reason which triggered the dump action. This 1373 can be used to distinguish multiple dumps.</para> 1374 </listitem> 1375 </varlistentry> 1376 1377 <varlistentry> 1378 <term><option>-z --zero</option></term> 1379 <listitem> 1380 <para>Zero all event counters.</para> 1381 </listitem> 1382 </varlistentry> 1383 1384 <varlistentry> 1385 <term><option>-k --kill</option></term> 1386 <listitem> 1387 <para>Force a Callgrind run to be terminated.</para> 1388 </listitem> 1389 </varlistentry> 1390 1391 <varlistentry> 1392 <term><option><![CDATA[--instr=<on|off>]]></option></term> 1393 <listitem> 1394 <para>Switch instrumentation mode on or off. If a Callgrind run has 1395 instrumentation disabled, no simulation is done and no events are 1396 counted. This is useful to skip uninteresting program parts, as there 1397 is much less slowdown (same as with the Valgrind tool "none"). See also 1398 the Callgrind option <option>--instr-atstart</option>.</para> 1399 </listitem> 1400 </varlistentry> 1401 1402 <varlistentry> 1403 <term><option><![CDATA[-w=<dir>]]></option></term> 1404 <listitem> 1405 <para>Specify the startup directory of an active Callgrind run. On some 1406 systems, active Callgrind runs can not be detected. To be able to 1407 control these, the failed auto-detection can be worked around by 1408 specifying the directory where a Callgrind run was started.</para> 1409 </listitem> 1410 </varlistentry> 1411</variablelist> 1412<!-- end of xi:include in the manpage --> 1413 1414</sect1> 1415 1416</chapter> 1417