• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* e_j1f.c -- float version of e_j1.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  * Bug in __ieee754_j1f fixed by Scott Turner 1/16/2010
4  */
5 
6 /*
7  * ====================================================
8  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9  *
10  * Developed at SunPro, a Sun Microsystems, Inc. business.
11  * Permission to use, copy, modify, and distribute this
12  * software is freely granted, provided that this notice
13  * is preserved.
14  * ====================================================
15  */
16 
17 #ifndef lint
18 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_j1f.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
19 #endif
20 
21 #include "math.h"
22 #include "math_private.h"
23 
24 static float ponef(float), qonef(float);
25 
26 static const float
27 huge    = 1e30,
28 one	= 1.0,
29 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
30 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
31 	/* R0/S0 on [0,2] */
32 r00  = -6.2500000000e-02, /* 0xbd800000 */
33 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
34 r02  = -1.5995563444e-05, /* 0xb7862e36 */
35 r03  =  4.9672799207e-08, /* 0x335557d2 */
36 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
37 s02  =  1.8594678841e-04, /* 0x3942fab6 */
38 s03  =  1.1771846857e-06, /* 0x359dffc2 */
39 s04  =  5.0463624390e-09, /* 0x31ad6446 */
40 s05  =  1.2354227016e-11; /* 0x2d59567e */
41 
42 static const float zero    = 0.0;
43 
44 float
__ieee754_j1f(float x)45 __ieee754_j1f(float x)
46 {
47 	float z, s,c,ss,cc,r,u,v,y;
48 	int32_t hx,ix;
49 
50 	GET_FLOAT_WORD(hx,x);
51 	ix = hx&0x7fffffff;
52 	if(ix>=0x7f800000) return one/x;
53 	y = fabsf(x);
54 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
55 		s = sinf(y);
56 		c = cosf(y);
57 		ss = -s-c;
58 		cc = s-c;
59 		if(ix<0x7f000000) {  /* make sure y+y not overflow */
60 		    z = cosf(y+y);
61 		    if ((s*c)>zero) cc = z/ss;
62 		    else 	    ss = z/cc;
63 		}
64 	/*
65 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
66 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
67 	 */
68 		if(((uint32_t)hx)>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
69 		else {
70 		    u = ponef(y); v = qonef(y);
71 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
72 		}
73 		if(hx<0) return -z;
74 		else  	 return  z;
75 	}
76 	if(ix<0x32000000) {	/* |x|<2**-27 */
77 	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
78 	}
79 	z = x*x;
80 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
81 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
82 	r *= x;
83 	return(x*(float)0.5+r/s);
84 }
85 
86 static const float U0[5] = {
87  -1.9605709612e-01, /* 0xbe48c331 */
88   5.0443872809e-02, /* 0x3d4e9e3c */
89  -1.9125689287e-03, /* 0xbafaaf2a */
90   2.3525259166e-05, /* 0x37c5581c */
91  -9.1909917899e-08, /* 0xb3c56003 */
92 };
93 static const float V0[5] = {
94   1.9916731864e-02, /* 0x3ca3286a */
95   2.0255257550e-04, /* 0x3954644b */
96   1.3560879779e-06, /* 0x35b602d4 */
97   6.2274145840e-09, /* 0x31d5f8eb */
98   1.6655924903e-11, /* 0x2d9281cf */
99 };
100 
101 float
__ieee754_y1f(float x)102 __ieee754_y1f(float x)
103 {
104 	float z, s,c,ss,cc,u,v;
105 	int32_t hx,ix;
106 
107 	GET_FLOAT_WORD(hx,x);
108         ix = 0x7fffffff&hx;
109     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
110 	if(ix>=0x7f800000) return  one/(x+x*x);
111         if(ix==0) return -one/zero;
112         if(hx<0) return zero/zero;
113         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
114                 s = sinf(x);
115                 c = cosf(x);
116                 ss = -s-c;
117                 cc = s-c;
118                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
119                     z = cosf(x+x);
120                     if ((s*c)>zero) cc = z/ss;
121                     else            ss = z/cc;
122                 }
123         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
124          * where x0 = x-3pi/4
125          *      Better formula:
126          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
127          *                      =  1/sqrt(2) * (sin(x) - cos(x))
128          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
129          *                      = -1/sqrt(2) * (cos(x) + sin(x))
130          * To avoid cancellation, use
131          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
132          * to compute the worse one.
133          */
134                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
135                 else {
136                     u = ponef(x); v = qonef(x);
137                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
138                 }
139                 return z;
140         }
141         if(ix<=0x24800000) {    /* x < 2**-54 */
142             return(-tpi/x);
143         }
144         z = x*x;
145         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
146         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
147         return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
148 }
149 
150 /* For x >= 8, the asymptotic expansions of pone is
151  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
152  * We approximate pone by
153  * 	pone(x) = 1 + (R/S)
154  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
155  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
156  * and
157  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
158  */
159 
160 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
161   0.0000000000e+00, /* 0x00000000 */
162   1.1718750000e-01, /* 0x3df00000 */
163   1.3239480972e+01, /* 0x4153d4ea */
164   4.1205184937e+02, /* 0x43ce06a3 */
165   3.8747453613e+03, /* 0x45722bed */
166   7.9144794922e+03, /* 0x45f753d6 */
167 };
168 static const float ps8[5] = {
169   1.1420736694e+02, /* 0x42e46a2c */
170   3.6509309082e+03, /* 0x45642ee5 */
171   3.6956207031e+04, /* 0x47105c35 */
172   9.7602796875e+04, /* 0x47bea166 */
173   3.0804271484e+04, /* 0x46f0a88b */
174 };
175 
176 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
177   1.3199052094e-11, /* 0x2d68333f */
178   1.1718749255e-01, /* 0x3defffff */
179   6.8027510643e+00, /* 0x40d9b023 */
180   1.0830818176e+02, /* 0x42d89dca */
181   5.1763616943e+02, /* 0x440168b7 */
182   5.2871520996e+02, /* 0x44042dc6 */
183 };
184 static const float ps5[5] = {
185   5.9280597687e+01, /* 0x426d1f55 */
186   9.9140142822e+02, /* 0x4477d9b1 */
187   5.3532670898e+03, /* 0x45a74a23 */
188   7.8446904297e+03, /* 0x45f52586 */
189   1.5040468750e+03, /* 0x44bc0180 */
190 };
191 
192 static const float pr3[6] = {
193   3.0250391081e-09, /* 0x314fe10d */
194   1.1718686670e-01, /* 0x3defffab */
195   3.9329774380e+00, /* 0x407bb5e7 */
196   3.5119403839e+01, /* 0x420c7a45 */
197   9.1055007935e+01, /* 0x42b61c2a */
198   4.8559066772e+01, /* 0x42423c7c */
199 };
200 static const float ps3[5] = {
201   3.4791309357e+01, /* 0x420b2a4d */
202   3.3676245117e+02, /* 0x43a86198 */
203   1.0468714600e+03, /* 0x4482dbe3 */
204   8.9081134033e+02, /* 0x445eb3ed */
205   1.0378793335e+02, /* 0x42cf936c */
206 };
207 
208 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
209   1.0771083225e-07, /* 0x33e74ea8 */
210   1.1717621982e-01, /* 0x3deffa16 */
211   2.3685150146e+00, /* 0x401795c0 */
212   1.2242610931e+01, /* 0x4143e1bc */
213   1.7693971634e+01, /* 0x418d8d41 */
214   5.0735230446e+00, /* 0x40a25a4d */
215 };
216 static const float ps2[5] = {
217   2.1436485291e+01, /* 0x41ab7dec */
218   1.2529022980e+02, /* 0x42fa9499 */
219   2.3227647400e+02, /* 0x436846c7 */
220   1.1767937469e+02, /* 0x42eb5bd7 */
221   8.3646392822e+00, /* 0x4105d590 */
222 };
223 
ponef(float x)224 	static float ponef(float x)
225 {
226 	const float *p,*q;
227 	float z,r,s;
228         int32_t ix;
229 	GET_FLOAT_WORD(ix,x);
230 	ix &= 0x7fffffff;
231         if(ix>=0x41000000)     {p = pr8; q= ps8;}
232         else if(ix>=0x40f71c58){p = pr5; q= ps5;}
233         else if(ix>=0x4036db68){p = pr3; q= ps3;}
234         else if(ix>=0x40000000){p = pr2; q= ps2;}
235         z = one/(x*x);
236         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
237         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
238         return one+ r/s;
239 }
240 
241 
242 /* For x >= 8, the asymptotic expansions of qone is
243  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
244  * We approximate pone by
245  * 	qone(x) = s*(0.375 + (R/S))
246  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
247  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
248  * and
249  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
250  */
251 
252 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
253   0.0000000000e+00, /* 0x00000000 */
254  -1.0253906250e-01, /* 0xbdd20000 */
255  -1.6271753311e+01, /* 0xc1822c8d */
256  -7.5960174561e+02, /* 0xc43de683 */
257  -1.1849806641e+04, /* 0xc639273a */
258  -4.8438511719e+04, /* 0xc73d3683 */
259 };
260 static const float qs8[6] = {
261   1.6139537048e+02, /* 0x43216537 */
262   7.8253862305e+03, /* 0x45f48b17 */
263   1.3387534375e+05, /* 0x4802bcd6 */
264   7.1965775000e+05, /* 0x492fb29c */
265   6.6660125000e+05, /* 0x4922be94 */
266  -2.9449025000e+05, /* 0xc88fcb48 */
267 };
268 
269 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
270  -2.0897993405e-11, /* 0xadb7d219 */
271  -1.0253904760e-01, /* 0xbdd1fffe */
272  -8.0564479828e+00, /* 0xc100e736 */
273  -1.8366960144e+02, /* 0xc337ab6b */
274  -1.3731937256e+03, /* 0xc4aba633 */
275  -2.6124443359e+03, /* 0xc523471c */
276 };
277 static const float qs5[6] = {
278   8.1276550293e+01, /* 0x42a28d98 */
279   1.9917987061e+03, /* 0x44f8f98f */
280   1.7468484375e+04, /* 0x468878f8 */
281   4.9851425781e+04, /* 0x4742bb6d */
282   2.7948074219e+04, /* 0x46da5826 */
283  -4.7191835938e+03, /* 0xc5937978 */
284 };
285 
286 static const float qr3[6] = {
287  -5.0783124372e-09, /* 0xb1ae7d4f */
288  -1.0253783315e-01, /* 0xbdd1ff5b */
289  -4.6101160049e+00, /* 0xc0938612 */
290  -5.7847221375e+01, /* 0xc267638e */
291  -2.2824453735e+02, /* 0xc3643e9a */
292  -2.1921012878e+02, /* 0xc35b35cb */
293 };
294 static const float qs3[6] = {
295   4.7665153503e+01, /* 0x423ea91e */
296   6.7386511230e+02, /* 0x4428775e */
297   3.3801528320e+03, /* 0x45534272 */
298   5.5477290039e+03, /* 0x45ad5dd5 */
299   1.9031191406e+03, /* 0x44ede3d0 */
300  -1.3520118713e+02, /* 0xc3073381 */
301 };
302 
303 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
304  -1.7838172539e-07, /* 0xb43f8932 */
305  -1.0251704603e-01, /* 0xbdd1f475 */
306  -2.7522056103e+00, /* 0xc0302423 */
307  -1.9663616180e+01, /* 0xc19d4f16 */
308  -4.2325313568e+01, /* 0xc2294d1f */
309  -2.1371921539e+01, /* 0xc1aaf9b2 */
310 };
311 static const float qs2[6] = {
312   2.9533363342e+01, /* 0x41ec4454 */
313   2.5298155212e+02, /* 0x437cfb47 */
314   7.5750280762e+02, /* 0x443d602e */
315   7.3939318848e+02, /* 0x4438d92a */
316   1.5594900513e+02, /* 0x431bf2f2 */
317  -4.9594988823e+00, /* 0xc09eb437 */
318 };
319 
qonef(float x)320 	static float qonef(float x)
321 {
322 	const float *p,*q;
323 	float  s,r,z;
324 	int32_t ix;
325 	GET_FLOAT_WORD(ix,x);
326 	ix &= 0x7fffffff;
327 	if(ix>=0x40200000)     {p = qr8; q= qs8;}
328 	else if(ix>=0x40f71c58){p = qr5; q= qs5;}
329 	else if(ix>=0x4036db68){p = qr3; q= qs3;}
330 	else if(ix>=0x40000000){p = qr2; q= qs2;}
331 	z = one/(x*x);
332 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
333 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
334 	return ((float).375 + r/s)/x;
335 }
336