1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "regalloc"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/Value.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/Target/TargetRegisterInfo.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/DenseSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include <algorithm>
37 #include <limits>
38 #include <cmath>
39 using namespace llvm;
40
41 // Hidden options for help debugging.
42 static cl::opt<bool> DisableReMat("disable-rematerialization",
43 cl::init(false), cl::Hidden);
44
45 STATISTIC(numIntervals , "Number of original intervals");
46
47 char LiveIntervals::ID = 0;
48 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
49 "Live Interval Analysis", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)50 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
51 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
52 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
53 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
54 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
55 "Live Interval Analysis", false, false)
56
57 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
58 AU.setPreservesCFG();
59 AU.addRequired<AliasAnalysis>();
60 AU.addPreserved<AliasAnalysis>();
61 AU.addRequired<LiveVariables>();
62 AU.addPreserved<LiveVariables>();
63 AU.addPreservedID(MachineLoopInfoID);
64 AU.addPreservedID(MachineDominatorsID);
65 AU.addPreserved<SlotIndexes>();
66 AU.addRequiredTransitive<SlotIndexes>();
67 MachineFunctionPass::getAnalysisUsage(AU);
68 }
69
releaseMemory()70 void LiveIntervals::releaseMemory() {
71 // Free the live intervals themselves.
72 for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
73 E = r2iMap_.end(); I != E; ++I)
74 delete I->second;
75
76 r2iMap_.clear();
77 RegMaskSlots.clear();
78 RegMaskBits.clear();
79 RegMaskBlocks.clear();
80
81 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
82 VNInfoAllocator.Reset();
83 }
84
85 /// runOnMachineFunction - Register allocate the whole function
86 ///
runOnMachineFunction(MachineFunction & fn)87 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
88 mf_ = &fn;
89 mri_ = &mf_->getRegInfo();
90 tm_ = &fn.getTarget();
91 tri_ = tm_->getRegisterInfo();
92 tii_ = tm_->getInstrInfo();
93 aa_ = &getAnalysis<AliasAnalysis>();
94 lv_ = &getAnalysis<LiveVariables>();
95 indexes_ = &getAnalysis<SlotIndexes>();
96 allocatableRegs_ = tri_->getAllocatableSet(fn);
97 reservedRegs_ = tri_->getReservedRegs(fn);
98
99 computeIntervals();
100
101 numIntervals += getNumIntervals();
102
103 DEBUG(dump());
104 return true;
105 }
106
107 /// print - Implement the dump method.
print(raw_ostream & OS,const Module *) const108 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
109 OS << "********** INTERVALS **********\n";
110
111 // Dump the physregs.
112 for (unsigned Reg = 1, RegE = tri_->getNumRegs(); Reg != RegE; ++Reg)
113 if (const LiveInterval *LI = r2iMap_.lookup(Reg)) {
114 LI->print(OS, tri_);
115 OS << '\n';
116 }
117
118 // Dump the virtregs.
119 for (unsigned Reg = 0, RegE = mri_->getNumVirtRegs(); Reg != RegE; ++Reg)
120 if (const LiveInterval *LI =
121 r2iMap_.lookup(TargetRegisterInfo::index2VirtReg(Reg))) {
122 LI->print(OS, tri_);
123 OS << '\n';
124 }
125
126 printInstrs(OS);
127 }
128
printInstrs(raw_ostream & OS) const129 void LiveIntervals::printInstrs(raw_ostream &OS) const {
130 OS << "********** MACHINEINSTRS **********\n";
131 mf_->print(OS, indexes_);
132 }
133
dumpInstrs() const134 void LiveIntervals::dumpInstrs() const {
135 printInstrs(dbgs());
136 }
137
138 static
MultipleDefsBySameMI(const MachineInstr & MI,unsigned MOIdx)139 bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
140 unsigned Reg = MI.getOperand(MOIdx).getReg();
141 for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
142 const MachineOperand &MO = MI.getOperand(i);
143 if (!MO.isReg())
144 continue;
145 if (MO.getReg() == Reg && MO.isDef()) {
146 assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
147 MI.getOperand(MOIdx).getSubReg() &&
148 (MO.getSubReg() || MO.isImplicit()));
149 return true;
150 }
151 }
152 return false;
153 }
154
155 /// isPartialRedef - Return true if the specified def at the specific index is
156 /// partially re-defining the specified live interval. A common case of this is
157 /// a definition of the sub-register.
isPartialRedef(SlotIndex MIIdx,MachineOperand & MO,LiveInterval & interval)158 bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
159 LiveInterval &interval) {
160 if (!MO.getSubReg() || MO.isEarlyClobber())
161 return false;
162
163 SlotIndex RedefIndex = MIIdx.getRegSlot();
164 const LiveRange *OldLR =
165 interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
166 MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
167 if (DefMI != 0) {
168 return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
169 }
170 return false;
171 }
172
handleVirtualRegisterDef(MachineBasicBlock * mbb,MachineBasicBlock::iterator mi,SlotIndex MIIdx,MachineOperand & MO,unsigned MOIdx,LiveInterval & interval)173 void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
174 MachineBasicBlock::iterator mi,
175 SlotIndex MIIdx,
176 MachineOperand& MO,
177 unsigned MOIdx,
178 LiveInterval &interval) {
179 DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
180
181 // Virtual registers may be defined multiple times (due to phi
182 // elimination and 2-addr elimination). Much of what we do only has to be
183 // done once for the vreg. We use an empty interval to detect the first
184 // time we see a vreg.
185 LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
186 if (interval.empty()) {
187 // Get the Idx of the defining instructions.
188 SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
189
190 // Make sure the first definition is not a partial redefinition.
191 assert(!MO.readsReg() && "First def cannot also read virtual register "
192 "missing <undef> flag?");
193
194 VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
195 assert(ValNo->id == 0 && "First value in interval is not 0?");
196
197 // Loop over all of the blocks that the vreg is defined in. There are
198 // two cases we have to handle here. The most common case is a vreg
199 // whose lifetime is contained within a basic block. In this case there
200 // will be a single kill, in MBB, which comes after the definition.
201 if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
202 // FIXME: what about dead vars?
203 SlotIndex killIdx;
204 if (vi.Kills[0] != mi)
205 killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
206 else
207 killIdx = defIndex.getDeadSlot();
208
209 // If the kill happens after the definition, we have an intra-block
210 // live range.
211 if (killIdx > defIndex) {
212 assert(vi.AliveBlocks.empty() &&
213 "Shouldn't be alive across any blocks!");
214 LiveRange LR(defIndex, killIdx, ValNo);
215 interval.addRange(LR);
216 DEBUG(dbgs() << " +" << LR << "\n");
217 return;
218 }
219 }
220
221 // The other case we handle is when a virtual register lives to the end
222 // of the defining block, potentially live across some blocks, then is
223 // live into some number of blocks, but gets killed. Start by adding a
224 // range that goes from this definition to the end of the defining block.
225 LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
226 DEBUG(dbgs() << " +" << NewLR);
227 interval.addRange(NewLR);
228
229 bool PHIJoin = lv_->isPHIJoin(interval.reg);
230
231 if (PHIJoin) {
232 // A phi join register is killed at the end of the MBB and revived as a new
233 // valno in the killing blocks.
234 assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
235 DEBUG(dbgs() << " phi-join");
236 ValNo->setHasPHIKill(true);
237 } else {
238 // Iterate over all of the blocks that the variable is completely
239 // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
240 // live interval.
241 for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
242 E = vi.AliveBlocks.end(); I != E; ++I) {
243 MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
244 LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
245 interval.addRange(LR);
246 DEBUG(dbgs() << " +" << LR);
247 }
248 }
249
250 // Finally, this virtual register is live from the start of any killing
251 // block to the 'use' slot of the killing instruction.
252 for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
253 MachineInstr *Kill = vi.Kills[i];
254 SlotIndex Start = getMBBStartIdx(Kill->getParent());
255 SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
256
257 // Create interval with one of a NEW value number. Note that this value
258 // number isn't actually defined by an instruction, weird huh? :)
259 if (PHIJoin) {
260 assert(getInstructionFromIndex(Start) == 0 &&
261 "PHI def index points at actual instruction.");
262 ValNo = interval.getNextValue(Start, VNInfoAllocator);
263 ValNo->setIsPHIDef(true);
264 }
265 LiveRange LR(Start, killIdx, ValNo);
266 interval.addRange(LR);
267 DEBUG(dbgs() << " +" << LR);
268 }
269
270 } else {
271 if (MultipleDefsBySameMI(*mi, MOIdx))
272 // Multiple defs of the same virtual register by the same instruction.
273 // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
274 // This is likely due to elimination of REG_SEQUENCE instructions. Return
275 // here since there is nothing to do.
276 return;
277
278 // If this is the second time we see a virtual register definition, it
279 // must be due to phi elimination or two addr elimination. If this is
280 // the result of two address elimination, then the vreg is one of the
281 // def-and-use register operand.
282
283 // It may also be partial redef like this:
284 // 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
285 // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
286 bool PartReDef = isPartialRedef(MIIdx, MO, interval);
287 if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
288 // If this is a two-address definition, then we have already processed
289 // the live range. The only problem is that we didn't realize there
290 // are actually two values in the live interval. Because of this we
291 // need to take the LiveRegion that defines this register and split it
292 // into two values.
293 SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
294
295 const LiveRange *OldLR =
296 interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
297 VNInfo *OldValNo = OldLR->valno;
298 SlotIndex DefIndex = OldValNo->def.getRegSlot();
299
300 // Delete the previous value, which should be short and continuous,
301 // because the 2-addr copy must be in the same MBB as the redef.
302 interval.removeRange(DefIndex, RedefIndex);
303
304 // The new value number (#1) is defined by the instruction we claimed
305 // defined value #0.
306 VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
307
308 // Value#0 is now defined by the 2-addr instruction.
309 OldValNo->def = RedefIndex;
310
311 // Add the new live interval which replaces the range for the input copy.
312 LiveRange LR(DefIndex, RedefIndex, ValNo);
313 DEBUG(dbgs() << " replace range with " << LR);
314 interval.addRange(LR);
315
316 // If this redefinition is dead, we need to add a dummy unit live
317 // range covering the def slot.
318 if (MO.isDead())
319 interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
320 OldValNo));
321
322 DEBUG({
323 dbgs() << " RESULT: ";
324 interval.print(dbgs(), tri_);
325 });
326 } else if (lv_->isPHIJoin(interval.reg)) {
327 // In the case of PHI elimination, each variable definition is only
328 // live until the end of the block. We've already taken care of the
329 // rest of the live range.
330
331 SlotIndex defIndex = MIIdx.getRegSlot();
332 if (MO.isEarlyClobber())
333 defIndex = MIIdx.getRegSlot(true);
334
335 VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
336
337 SlotIndex killIndex = getMBBEndIdx(mbb);
338 LiveRange LR(defIndex, killIndex, ValNo);
339 interval.addRange(LR);
340 ValNo->setHasPHIKill(true);
341 DEBUG(dbgs() << " phi-join +" << LR);
342 } else {
343 llvm_unreachable("Multiply defined register");
344 }
345 }
346
347 DEBUG(dbgs() << '\n');
348 }
349
isRegLiveIntoSuccessor(const MachineBasicBlock * MBB,unsigned Reg)350 static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) {
351 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
352 SE = MBB->succ_end();
353 SI != SE; ++SI) {
354 const MachineBasicBlock* succ = *SI;
355 if (succ->isLiveIn(Reg))
356 return true;
357 }
358 return false;
359 }
360
handlePhysicalRegisterDef(MachineBasicBlock * MBB,MachineBasicBlock::iterator mi,SlotIndex MIIdx,MachineOperand & MO,LiveInterval & interval)361 void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
362 MachineBasicBlock::iterator mi,
363 SlotIndex MIIdx,
364 MachineOperand& MO,
365 LiveInterval &interval) {
366 DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
367
368 SlotIndex baseIndex = MIIdx;
369 SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
370 SlotIndex end = start;
371
372 // If it is not used after definition, it is considered dead at
373 // the instruction defining it. Hence its interval is:
374 // [defSlot(def), defSlot(def)+1)
375 // For earlyclobbers, the defSlot was pushed back one; the extra
376 // advance below compensates.
377 if (MO.isDead()) {
378 DEBUG(dbgs() << " dead");
379 end = start.getDeadSlot();
380 goto exit;
381 }
382
383 // If it is not dead on definition, it must be killed by a
384 // subsequent instruction. Hence its interval is:
385 // [defSlot(def), useSlot(kill)+1)
386 baseIndex = baseIndex.getNextIndex();
387 while (++mi != MBB->end()) {
388
389 if (mi->isDebugValue())
390 continue;
391 if (getInstructionFromIndex(baseIndex) == 0)
392 baseIndex = indexes_->getNextNonNullIndex(baseIndex);
393
394 if (mi->killsRegister(interval.reg, tri_)) {
395 DEBUG(dbgs() << " killed");
396 end = baseIndex.getRegSlot();
397 goto exit;
398 } else {
399 int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
400 if (DefIdx != -1) {
401 if (mi->isRegTiedToUseOperand(DefIdx)) {
402 // Two-address instruction.
403 end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber());
404 } else {
405 // Another instruction redefines the register before it is ever read.
406 // Then the register is essentially dead at the instruction that
407 // defines it. Hence its interval is:
408 // [defSlot(def), defSlot(def)+1)
409 DEBUG(dbgs() << " dead");
410 end = start.getDeadSlot();
411 }
412 goto exit;
413 }
414 }
415
416 baseIndex = baseIndex.getNextIndex();
417 }
418
419 // If we get here the register *should* be live out.
420 assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!");
421
422 // FIXME: We need saner rules for reserved regs.
423 if (isReserved(interval.reg)) {
424 end = start.getDeadSlot();
425 } else {
426 // Unreserved, unallocable registers like EFLAGS can be live across basic
427 // block boundaries.
428 assert(isRegLiveIntoSuccessor(MBB, interval.reg) &&
429 "Unreserved reg not live-out?");
430 end = getMBBEndIdx(MBB);
431 }
432 exit:
433 assert(start < end && "did not find end of interval?");
434
435 // Already exists? Extend old live interval.
436 VNInfo *ValNo = interval.getVNInfoAt(start);
437 bool Extend = ValNo != 0;
438 if (!Extend)
439 ValNo = interval.getNextValue(start, VNInfoAllocator);
440 LiveRange LR(start, end, ValNo);
441 interval.addRange(LR);
442 DEBUG(dbgs() << " +" << LR << '\n');
443 }
444
handleRegisterDef(MachineBasicBlock * MBB,MachineBasicBlock::iterator MI,SlotIndex MIIdx,MachineOperand & MO,unsigned MOIdx)445 void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
446 MachineBasicBlock::iterator MI,
447 SlotIndex MIIdx,
448 MachineOperand& MO,
449 unsigned MOIdx) {
450 if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
451 handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
452 getOrCreateInterval(MO.getReg()));
453 else
454 handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
455 getOrCreateInterval(MO.getReg()));
456 }
457
handleLiveInRegister(MachineBasicBlock * MBB,SlotIndex MIIdx,LiveInterval & interval)458 void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
459 SlotIndex MIIdx,
460 LiveInterval &interval) {
461 assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) &&
462 "Only physical registers can be live in.");
463 assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() ||
464 MBB->isLandingPad()) &&
465 "Allocatable live-ins only valid for entry blocks and landing pads.");
466
467 DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
468
469 // Look for kills, if it reaches a def before it's killed, then it shouldn't
470 // be considered a livein.
471 MachineBasicBlock::iterator mi = MBB->begin();
472 MachineBasicBlock::iterator E = MBB->end();
473 // Skip over DBG_VALUE at the start of the MBB.
474 if (mi != E && mi->isDebugValue()) {
475 while (++mi != E && mi->isDebugValue())
476 ;
477 if (mi == E)
478 // MBB is empty except for DBG_VALUE's.
479 return;
480 }
481
482 SlotIndex baseIndex = MIIdx;
483 SlotIndex start = baseIndex;
484 if (getInstructionFromIndex(baseIndex) == 0)
485 baseIndex = indexes_->getNextNonNullIndex(baseIndex);
486
487 SlotIndex end = baseIndex;
488 bool SeenDefUse = false;
489
490 while (mi != E) {
491 if (mi->killsRegister(interval.reg, tri_)) {
492 DEBUG(dbgs() << " killed");
493 end = baseIndex.getRegSlot();
494 SeenDefUse = true;
495 break;
496 } else if (mi->modifiesRegister(interval.reg, tri_)) {
497 // Another instruction redefines the register before it is ever read.
498 // Then the register is essentially dead at the instruction that defines
499 // it. Hence its interval is:
500 // [defSlot(def), defSlot(def)+1)
501 DEBUG(dbgs() << " dead");
502 end = start.getDeadSlot();
503 SeenDefUse = true;
504 break;
505 }
506
507 while (++mi != E && mi->isDebugValue())
508 // Skip over DBG_VALUE.
509 ;
510 if (mi != E)
511 baseIndex = indexes_->getNextNonNullIndex(baseIndex);
512 }
513
514 // Live-in register might not be used at all.
515 if (!SeenDefUse) {
516 if (isAllocatable(interval.reg) ||
517 !isRegLiveIntoSuccessor(MBB, interval.reg)) {
518 // Allocatable registers are never live through.
519 // Non-allocatable registers that aren't live into any successors also
520 // aren't live through.
521 DEBUG(dbgs() << " dead");
522 return;
523 } else {
524 // If we get here the register is non-allocatable and live into some
525 // successor. We'll conservatively assume it's live-through.
526 DEBUG(dbgs() << " live through");
527 end = getMBBEndIdx(MBB);
528 }
529 }
530
531 SlotIndex defIdx = getMBBStartIdx(MBB);
532 assert(getInstructionFromIndex(defIdx) == 0 &&
533 "PHI def index points at actual instruction.");
534 VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator);
535 vni->setIsPHIDef(true);
536 LiveRange LR(start, end, vni);
537
538 interval.addRange(LR);
539 DEBUG(dbgs() << " +" << LR << '\n');
540 }
541
542 /// computeIntervals - computes the live intervals for virtual
543 /// registers. for some ordering of the machine instructions [1,N] a
544 /// live interval is an interval [i, j) where 1 <= i <= j < N for
545 /// which a variable is live
computeIntervals()546 void LiveIntervals::computeIntervals() {
547 DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
548 << "********** Function: "
549 << ((Value*)mf_->getFunction())->getName() << '\n');
550
551 RegMaskBlocks.resize(mf_->getNumBlockIDs());
552
553 SmallVector<unsigned, 8> UndefUses;
554 for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
555 MBBI != E; ++MBBI) {
556 MachineBasicBlock *MBB = MBBI;
557 RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
558
559 if (MBB->empty())
560 continue;
561
562 // Track the index of the current machine instr.
563 SlotIndex MIIndex = getMBBStartIdx(MBB);
564 DEBUG(dbgs() << "BB#" << MBB->getNumber()
565 << ":\t\t# derived from " << MBB->getName() << "\n");
566
567 // Create intervals for live-ins to this BB first.
568 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
569 LE = MBB->livein_end(); LI != LE; ++LI) {
570 handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
571 }
572
573 // Skip over empty initial indices.
574 if (getInstructionFromIndex(MIIndex) == 0)
575 MIIndex = indexes_->getNextNonNullIndex(MIIndex);
576
577 for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
578 MI != miEnd; ++MI) {
579 DEBUG(dbgs() << MIIndex << "\t" << *MI);
580 if (MI->isDebugValue())
581 continue;
582 assert(indexes_->getInstructionFromIndex(MIIndex) == MI &&
583 "Lost SlotIndex synchronization");
584
585 // Handle defs.
586 for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
587 MachineOperand &MO = MI->getOperand(i);
588
589 // Collect register masks.
590 if (MO.isRegMask()) {
591 RegMaskSlots.push_back(MIIndex.getRegSlot());
592 RegMaskBits.push_back(MO.getRegMask());
593 continue;
594 }
595
596 if (!MO.isReg() || !MO.getReg())
597 continue;
598
599 // handle register defs - build intervals
600 if (MO.isDef())
601 handleRegisterDef(MBB, MI, MIIndex, MO, i);
602 else if (MO.isUndef())
603 UndefUses.push_back(MO.getReg());
604 }
605
606 // Move to the next instr slot.
607 MIIndex = indexes_->getNextNonNullIndex(MIIndex);
608 }
609
610 // Compute the number of register mask instructions in this block.
611 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
612 RMB.second = RegMaskSlots.size() - RMB.first;;
613 }
614
615 // Create empty intervals for registers defined by implicit_def's (except
616 // for those implicit_def that define values which are liveout of their
617 // blocks.
618 for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
619 unsigned UndefReg = UndefUses[i];
620 (void)getOrCreateInterval(UndefReg);
621 }
622 }
623
createInterval(unsigned reg)624 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
625 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
626 return new LiveInterval(reg, Weight);
627 }
628
629 /// dupInterval - Duplicate a live interval. The caller is responsible for
630 /// managing the allocated memory.
dupInterval(LiveInterval * li)631 LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
632 LiveInterval *NewLI = createInterval(li->reg);
633 NewLI->Copy(*li, mri_, getVNInfoAllocator());
634 return NewLI;
635 }
636
637 /// shrinkToUses - After removing some uses of a register, shrink its live
638 /// range to just the remaining uses. This method does not compute reaching
639 /// defs for new uses, and it doesn't remove dead defs.
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)640 bool LiveIntervals::shrinkToUses(LiveInterval *li,
641 SmallVectorImpl<MachineInstr*> *dead) {
642 DEBUG(dbgs() << "Shrink: " << *li << '\n');
643 assert(TargetRegisterInfo::isVirtualRegister(li->reg)
644 && "Can only shrink virtual registers");
645 // Find all the values used, including PHI kills.
646 SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
647
648 // Blocks that have already been added to WorkList as live-out.
649 SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
650
651 // Visit all instructions reading li->reg.
652 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
653 MachineInstr *UseMI = I.skipInstruction();) {
654 if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
655 continue;
656 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
657 // Note: This intentionally picks up the wrong VNI in case of an EC redef.
658 // See below.
659 VNInfo *VNI = li->getVNInfoBefore(Idx);
660 if (!VNI) {
661 // This shouldn't happen: readsVirtualRegister returns true, but there is
662 // no live value. It is likely caused by a target getting <undef> flags
663 // wrong.
664 DEBUG(dbgs() << Idx << '\t' << *UseMI
665 << "Warning: Instr claims to read non-existent value in "
666 << *li << '\n');
667 continue;
668 }
669 // Special case: An early-clobber tied operand reads and writes the
670 // register one slot early. The getVNInfoBefore call above would have
671 // picked up the value defined by UseMI. Adjust the kill slot and value.
672 if (SlotIndex::isSameInstr(VNI->def, Idx)) {
673 Idx = VNI->def;
674 VNI = li->getVNInfoBefore(Idx);
675 assert(VNI && "Early-clobber tied value not available");
676 }
677 WorkList.push_back(std::make_pair(Idx, VNI));
678 }
679
680 // Create a new live interval with only minimal live segments per def.
681 LiveInterval NewLI(li->reg, 0);
682 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
683 I != E; ++I) {
684 VNInfo *VNI = *I;
685 if (VNI->isUnused())
686 continue;
687 NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
688 }
689
690 // Keep track of the PHIs that are in use.
691 SmallPtrSet<VNInfo*, 8> UsedPHIs;
692
693 // Extend intervals to reach all uses in WorkList.
694 while (!WorkList.empty()) {
695 SlotIndex Idx = WorkList.back().first;
696 VNInfo *VNI = WorkList.back().second;
697 WorkList.pop_back();
698 const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
699 SlotIndex BlockStart = getMBBStartIdx(MBB);
700
701 // Extend the live range for VNI to be live at Idx.
702 if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
703 (void)ExtVNI;
704 assert(ExtVNI == VNI && "Unexpected existing value number");
705 // Is this a PHIDef we haven't seen before?
706 if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
707 continue;
708 // The PHI is live, make sure the predecessors are live-out.
709 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
710 PE = MBB->pred_end(); PI != PE; ++PI) {
711 if (!LiveOut.insert(*PI))
712 continue;
713 SlotIndex Stop = getMBBEndIdx(*PI);
714 // A predecessor is not required to have a live-out value for a PHI.
715 if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
716 WorkList.push_back(std::make_pair(Stop, PVNI));
717 }
718 continue;
719 }
720
721 // VNI is live-in to MBB.
722 DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
723 NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
724
725 // Make sure VNI is live-out from the predecessors.
726 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
727 PE = MBB->pred_end(); PI != PE; ++PI) {
728 if (!LiveOut.insert(*PI))
729 continue;
730 SlotIndex Stop = getMBBEndIdx(*PI);
731 assert(li->getVNInfoBefore(Stop) == VNI &&
732 "Wrong value out of predecessor");
733 WorkList.push_back(std::make_pair(Stop, VNI));
734 }
735 }
736
737 // Handle dead values.
738 bool CanSeparate = false;
739 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
740 I != E; ++I) {
741 VNInfo *VNI = *I;
742 if (VNI->isUnused())
743 continue;
744 LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
745 assert(LII != NewLI.end() && "Missing live range for PHI");
746 if (LII->end != VNI->def.getDeadSlot())
747 continue;
748 if (VNI->isPHIDef()) {
749 // This is a dead PHI. Remove it.
750 VNI->setIsUnused(true);
751 NewLI.removeRange(*LII);
752 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
753 CanSeparate = true;
754 } else {
755 // This is a dead def. Make sure the instruction knows.
756 MachineInstr *MI = getInstructionFromIndex(VNI->def);
757 assert(MI && "No instruction defining live value");
758 MI->addRegisterDead(li->reg, tri_);
759 if (dead && MI->allDefsAreDead()) {
760 DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
761 dead->push_back(MI);
762 }
763 }
764 }
765
766 // Move the trimmed ranges back.
767 li->ranges.swap(NewLI.ranges);
768 DEBUG(dbgs() << "Shrunk: " << *li << '\n');
769 return CanSeparate;
770 }
771
772
773 //===----------------------------------------------------------------------===//
774 // Register allocator hooks.
775 //
776
addKillFlags()777 void LiveIntervals::addKillFlags() {
778 for (iterator I = begin(), E = end(); I != E; ++I) {
779 unsigned Reg = I->first;
780 if (TargetRegisterInfo::isPhysicalRegister(Reg))
781 continue;
782 if (mri_->reg_nodbg_empty(Reg))
783 continue;
784 LiveInterval *LI = I->second;
785
786 // Every instruction that kills Reg corresponds to a live range end point.
787 for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
788 ++RI) {
789 // A block index indicates an MBB edge.
790 if (RI->end.isBlock())
791 continue;
792 MachineInstr *MI = getInstructionFromIndex(RI->end);
793 if (!MI)
794 continue;
795 MI->addRegisterKilled(Reg, NULL);
796 }
797 }
798 }
799
800 /// getReMatImplicitUse - If the remat definition MI has one (for now, we only
801 /// allow one) virtual register operand, then its uses are implicitly using
802 /// the register. Returns the virtual register.
getReMatImplicitUse(const LiveInterval & li,MachineInstr * MI) const803 unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
804 MachineInstr *MI) const {
805 unsigned RegOp = 0;
806 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
807 MachineOperand &MO = MI->getOperand(i);
808 if (!MO.isReg() || !MO.isUse())
809 continue;
810 unsigned Reg = MO.getReg();
811 if (Reg == 0 || Reg == li.reg)
812 continue;
813
814 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isAllocatable(Reg))
815 continue;
816 RegOp = MO.getReg();
817 break; // Found vreg operand - leave the loop.
818 }
819 return RegOp;
820 }
821
822 /// isValNoAvailableAt - Return true if the val# of the specified interval
823 /// which reaches the given instruction also reaches the specified use index.
isValNoAvailableAt(const LiveInterval & li,MachineInstr * MI,SlotIndex UseIdx) const824 bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
825 SlotIndex UseIdx) const {
826 VNInfo *UValNo = li.getVNInfoAt(UseIdx);
827 return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
828 }
829
830 /// isReMaterializable - Returns true if the definition MI of the specified
831 /// val# of the specified interval is re-materializable.
832 bool
isReMaterializable(const LiveInterval & li,const VNInfo * ValNo,MachineInstr * MI,const SmallVectorImpl<LiveInterval * > * SpillIs,bool & isLoad)833 LiveIntervals::isReMaterializable(const LiveInterval &li,
834 const VNInfo *ValNo, MachineInstr *MI,
835 const SmallVectorImpl<LiveInterval*> *SpillIs,
836 bool &isLoad) {
837 if (DisableReMat)
838 return false;
839
840 if (!tii_->isTriviallyReMaterializable(MI, aa_))
841 return false;
842
843 // Target-specific code can mark an instruction as being rematerializable
844 // if it has one virtual reg use, though it had better be something like
845 // a PIC base register which is likely to be live everywhere.
846 unsigned ImpUse = getReMatImplicitUse(li, MI);
847 if (ImpUse) {
848 const LiveInterval &ImpLi = getInterval(ImpUse);
849 for (MachineRegisterInfo::use_nodbg_iterator
850 ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
851 ri != re; ++ri) {
852 MachineInstr *UseMI = &*ri;
853 SlotIndex UseIdx = getInstructionIndex(UseMI);
854 if (li.getVNInfoAt(UseIdx) != ValNo)
855 continue;
856 if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
857 return false;
858 }
859
860 // If a register operand of the re-materialized instruction is going to
861 // be spilled next, then it's not legal to re-materialize this instruction.
862 if (SpillIs)
863 for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
864 if (ImpUse == (*SpillIs)[i]->reg)
865 return false;
866 }
867 return true;
868 }
869
870 /// isReMaterializable - Returns true if every definition of MI of every
871 /// val# of the specified interval is re-materializable.
872 bool
isReMaterializable(const LiveInterval & li,const SmallVectorImpl<LiveInterval * > * SpillIs,bool & isLoad)873 LiveIntervals::isReMaterializable(const LiveInterval &li,
874 const SmallVectorImpl<LiveInterval*> *SpillIs,
875 bool &isLoad) {
876 isLoad = false;
877 for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
878 i != e; ++i) {
879 const VNInfo *VNI = *i;
880 if (VNI->isUnused())
881 continue; // Dead val#.
882 // Is the def for the val# rematerializable?
883 MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
884 if (!ReMatDefMI)
885 return false;
886 bool DefIsLoad = false;
887 if (!ReMatDefMI ||
888 !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
889 return false;
890 isLoad |= DefIsLoad;
891 }
892 return true;
893 }
894
895 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const896 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
897 // A local live range must be fully contained inside the block, meaning it is
898 // defined and killed at instructions, not at block boundaries. It is not
899 // live in or or out of any block.
900 //
901 // It is technically possible to have a PHI-defined live range identical to a
902 // single block, but we are going to return false in that case.
903
904 SlotIndex Start = LI.beginIndex();
905 if (Start.isBlock())
906 return NULL;
907
908 SlotIndex Stop = LI.endIndex();
909 if (Stop.isBlock())
910 return NULL;
911
912 // getMBBFromIndex doesn't need to search the MBB table when both indexes
913 // belong to proper instructions.
914 MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start);
915 MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop);
916 return MBB1 == MBB2 ? MBB1 : NULL;
917 }
918
919 float
getSpillWeight(bool isDef,bool isUse,unsigned loopDepth)920 LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
921 // Limit the loop depth ridiculousness.
922 if (loopDepth > 200)
923 loopDepth = 200;
924
925 // The loop depth is used to roughly estimate the number of times the
926 // instruction is executed. Something like 10^d is simple, but will quickly
927 // overflow a float. This expression behaves like 10^d for small d, but is
928 // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
929 // headroom before overflow.
930 // By the way, powf() might be unavailable here. For consistency,
931 // We may take pow(double,double).
932 float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
933
934 return (isDef + isUse) * lc;
935 }
936
addLiveRangeToEndOfBlock(unsigned reg,MachineInstr * startInst)937 LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
938 MachineInstr* startInst) {
939 LiveInterval& Interval = getOrCreateInterval(reg);
940 VNInfo* VN = Interval.getNextValue(
941 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
942 getVNInfoAllocator());
943 VN->setHasPHIKill(true);
944 LiveRange LR(
945 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
946 getMBBEndIdx(startInst->getParent()), VN);
947 Interval.addRange(LR);
948
949 return LR;
950 }
951
952
953 //===----------------------------------------------------------------------===//
954 // Register mask functions
955 //===----------------------------------------------------------------------===//
956
checkRegMaskInterference(LiveInterval & LI,BitVector & UsableRegs)957 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
958 BitVector &UsableRegs) {
959 if (LI.empty())
960 return false;
961 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
962
963 // Use a smaller arrays for local live ranges.
964 ArrayRef<SlotIndex> Slots;
965 ArrayRef<const uint32_t*> Bits;
966 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
967 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
968 Bits = getRegMaskBitsInBlock(MBB->getNumber());
969 } else {
970 Slots = getRegMaskSlots();
971 Bits = getRegMaskBits();
972 }
973
974 // We are going to enumerate all the register mask slots contained in LI.
975 // Start with a binary search of RegMaskSlots to find a starting point.
976 ArrayRef<SlotIndex>::iterator SlotI =
977 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
978 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
979
980 // No slots in range, LI begins after the last call.
981 if (SlotI == SlotE)
982 return false;
983
984 bool Found = false;
985 for (;;) {
986 assert(*SlotI >= LiveI->start);
987 // Loop over all slots overlapping this segment.
988 while (*SlotI < LiveI->end) {
989 // *SlotI overlaps LI. Collect mask bits.
990 if (!Found) {
991 // This is the first overlap. Initialize UsableRegs to all ones.
992 UsableRegs.clear();
993 UsableRegs.resize(tri_->getNumRegs(), true);
994 Found = true;
995 }
996 // Remove usable registers clobbered by this mask.
997 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
998 if (++SlotI == SlotE)
999 return Found;
1000 }
1001 // *SlotI is beyond the current LI segment.
1002 LiveI = LI.advanceTo(LiveI, *SlotI);
1003 if (LiveI == LiveE)
1004 return Found;
1005 // Advance SlotI until it overlaps.
1006 while (*SlotI < LiveI->start)
1007 if (++SlotI == SlotE)
1008 return Found;
1009 }
1010 }
1011
1012 //===----------------------------------------------------------------------===//
1013 // IntervalUpdate class.
1014 //===----------------------------------------------------------------------===//
1015
1016 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
1017 class LiveIntervals::HMEditor {
1018 private:
1019 LiveIntervals& LIS;
1020 const MachineRegisterInfo& MRI;
1021 const TargetRegisterInfo& TRI;
1022 SlotIndex NewIdx;
1023
1024 typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
1025 typedef DenseSet<IntRangePair> RangeSet;
1026
1027 struct RegRanges {
1028 LiveRange* Use;
1029 LiveRange* EC;
1030 LiveRange* Dead;
1031 LiveRange* Def;
RegRangesLiveIntervals::HMEditor::RegRanges1032 RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
1033 };
1034 typedef DenseMap<unsigned, RegRanges> BundleRanges;
1035
1036 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex NewIdx)1037 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
1038 const TargetRegisterInfo& TRI, SlotIndex NewIdx)
1039 : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
1040
1041 // Update intervals for all operands of MI from OldIdx to NewIdx.
1042 // This assumes that MI used to be at OldIdx, and now resides at
1043 // NewIdx.
moveAllRangesFrom(MachineInstr * MI,SlotIndex OldIdx)1044 void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
1045 assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
1046
1047 // Collect the operands.
1048 RangeSet Entering, Internal, Exiting;
1049 bool hasRegMaskOp = false;
1050 collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
1051
1052 // To keep the LiveRanges valid within an interval, move the ranges closest
1053 // to the destination first. This prevents ranges from overlapping, to that
1054 // APIs like removeRange still work.
1055 if (NewIdx < OldIdx) {
1056 moveAllEnteringFrom(OldIdx, Entering);
1057 moveAllInternalFrom(OldIdx, Internal);
1058 moveAllExitingFrom(OldIdx, Exiting);
1059 }
1060 else {
1061 moveAllExitingFrom(OldIdx, Exiting);
1062 moveAllInternalFrom(OldIdx, Internal);
1063 moveAllEnteringFrom(OldIdx, Entering);
1064 }
1065
1066 if (hasRegMaskOp)
1067 updateRegMaskSlots(OldIdx);
1068
1069 #ifndef NDEBUG
1070 LIValidator validator;
1071 validator = std::for_each(Entering.begin(), Entering.end(), validator);
1072 validator = std::for_each(Internal.begin(), Internal.end(), validator);
1073 validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
1074 assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
1075 #endif
1076
1077 }
1078
1079 // Update intervals for all operands of MI to refer to BundleStart's
1080 // SlotIndex.
moveAllRangesInto(MachineInstr * MI,MachineInstr * BundleStart)1081 void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
1082 if (MI == BundleStart)
1083 return; // Bundling instr with itself - nothing to do.
1084
1085 SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
1086 assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
1087 "SlotIndex <-> Instruction mapping broken for MI");
1088
1089 // Collect all ranges already in the bundle.
1090 MachineBasicBlock::instr_iterator BII(BundleStart);
1091 RangeSet Entering, Internal, Exiting;
1092 bool hasRegMaskOp = false;
1093 collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
1094 assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1095 for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
1096 if (&*BII == MI)
1097 continue;
1098 collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
1099 assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1100 }
1101
1102 BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
1103
1104 collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
1105 assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1106
1107 DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
1108 DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
1109 DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
1110
1111 moveAllEnteringFromInto(OldIdx, Entering, BR);
1112 moveAllInternalFromInto(OldIdx, Internal, BR);
1113 moveAllExitingFromInto(OldIdx, Exiting, BR);
1114
1115
1116 #ifndef NDEBUG
1117 LIValidator validator;
1118 validator = std::for_each(Entering.begin(), Entering.end(), validator);
1119 validator = std::for_each(Internal.begin(), Internal.end(), validator);
1120 validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
1121 assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
1122 #endif
1123 }
1124
1125 private:
1126
1127 #ifndef NDEBUG
1128 class LIValidator {
1129 private:
1130 DenseSet<const LiveInterval*> Checked, Bogus;
1131 public:
operator ()(const IntRangePair & P)1132 void operator()(const IntRangePair& P) {
1133 const LiveInterval* LI = P.first;
1134 if (Checked.count(LI))
1135 return;
1136 Checked.insert(LI);
1137 if (LI->empty())
1138 return;
1139 SlotIndex LastEnd = LI->begin()->start;
1140 for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
1141 LRI != LRE; ++LRI) {
1142 const LiveRange& LR = *LRI;
1143 if (LastEnd > LR.start || LR.start >= LR.end)
1144 Bogus.insert(LI);
1145 LastEnd = LR.end;
1146 }
1147 }
1148
rangesOk() const1149 bool rangesOk() const {
1150 return Bogus.empty();
1151 }
1152 };
1153 #endif
1154
1155 // Collect IntRangePairs for all operands of MI that may need fixing.
1156 // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
1157 // maps).
collectRanges(MachineInstr * MI,RangeSet & Entering,RangeSet & Internal,RangeSet & Exiting,bool & hasRegMaskOp,SlotIndex OldIdx)1158 void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
1159 RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
1160 hasRegMaskOp = false;
1161 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1162 MOE = MI->operands_end();
1163 MOI != MOE; ++MOI) {
1164 const MachineOperand& MO = *MOI;
1165
1166 if (MO.isRegMask()) {
1167 hasRegMaskOp = true;
1168 continue;
1169 }
1170
1171 if (!MO.isReg() || MO.getReg() == 0)
1172 continue;
1173
1174 unsigned Reg = MO.getReg();
1175
1176 // TODO: Currently we're skipping uses that are reserved or have no
1177 // interval, but we're not updating their kills. This should be
1178 // fixed.
1179 if (!LIS.hasInterval(Reg) ||
1180 (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
1181 continue;
1182
1183 LiveInterval* LI = &LIS.getInterval(Reg);
1184
1185 if (MO.readsReg()) {
1186 LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
1187 if (LR != 0)
1188 Entering.insert(std::make_pair(LI, LR));
1189 }
1190 if (MO.isDef()) {
1191 if (MO.isEarlyClobber()) {
1192 LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot(true));
1193 assert(LR != 0 && "No EC range?");
1194 if (LR->end > OldIdx.getDeadSlot())
1195 Exiting.insert(std::make_pair(LI, LR));
1196 else
1197 Internal.insert(std::make_pair(LI, LR));
1198 } else if (MO.isDead()) {
1199 LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
1200 assert(LR != 0 && "No dead-def range?");
1201 Internal.insert(std::make_pair(LI, LR));
1202 } else {
1203 LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getDeadSlot());
1204 assert(LR && LR->end > OldIdx.getDeadSlot() &&
1205 "Non-dead-def should have live range exiting.");
1206 Exiting.insert(std::make_pair(LI, LR));
1207 }
1208 }
1209 }
1210 }
1211
1212 // Collect IntRangePairs for all operands of MI that may need fixing.
collectRangesInBundle(MachineInstr * MI,RangeSet & Entering,RangeSet & Exiting,SlotIndex MIStartIdx,SlotIndex MIEndIdx)1213 void collectRangesInBundle(MachineInstr* MI, RangeSet& Entering,
1214 RangeSet& Exiting, SlotIndex MIStartIdx,
1215 SlotIndex MIEndIdx) {
1216 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1217 MOE = MI->operands_end();
1218 MOI != MOE; ++MOI) {
1219 const MachineOperand& MO = *MOI;
1220 assert(!MO.isRegMask() && "Can't have RegMasks in bundles.");
1221 if (!MO.isReg() || MO.getReg() == 0)
1222 continue;
1223
1224 unsigned Reg = MO.getReg();
1225
1226 // TODO: Currently we're skipping uses that are reserved or have no
1227 // interval, but we're not updating their kills. This should be
1228 // fixed.
1229 if (!LIS.hasInterval(Reg) ||
1230 (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
1231 continue;
1232
1233 LiveInterval* LI = &LIS.getInterval(Reg);
1234
1235 if (MO.readsReg()) {
1236 LiveRange* LR = LI->getLiveRangeContaining(MIStartIdx);
1237 if (LR != 0)
1238 Entering.insert(std::make_pair(LI, LR));
1239 }
1240 if (MO.isDef()) {
1241 assert(!MO.isEarlyClobber() && "Early clobbers not allowed in bundles.");
1242 assert(!MO.isDead() && "Dead-defs not allowed in bundles.");
1243 LiveRange* LR = LI->getLiveRangeContaining(MIEndIdx.getDeadSlot());
1244 assert(LR != 0 && "Internal ranges not allowed in bundles.");
1245 Exiting.insert(std::make_pair(LI, LR));
1246 }
1247 }
1248 }
1249
createBundleRanges(RangeSet & Entering,RangeSet & Internal,RangeSet & Exiting)1250 BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) {
1251 BundleRanges BR;
1252
1253 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1254 EI != EE; ++EI) {
1255 LiveInterval* LI = EI->first;
1256 LiveRange* LR = EI->second;
1257 BR[LI->reg].Use = LR;
1258 }
1259
1260 for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1261 II != IE; ++II) {
1262 LiveInterval* LI = II->first;
1263 LiveRange* LR = II->second;
1264 if (LR->end.isDead()) {
1265 BR[LI->reg].Dead = LR;
1266 } else {
1267 BR[LI->reg].EC = LR;
1268 }
1269 }
1270
1271 for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1272 EI != EE; ++EI) {
1273 LiveInterval* LI = EI->first;
1274 LiveRange* LR = EI->second;
1275 BR[LI->reg].Def = LR;
1276 }
1277
1278 return BR;
1279 }
1280
moveKillFlags(unsigned reg,SlotIndex OldIdx,SlotIndex newKillIdx)1281 void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
1282 MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
1283 if (!OldKillMI->killsRegister(reg))
1284 return; // Bail out if we don't have kill flags on the old register.
1285 MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
1286 assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
1287 assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill.");
1288 OldKillMI->clearRegisterKills(reg, &TRI);
1289 NewKillMI->addRegisterKilled(reg, &TRI);
1290 }
1291
updateRegMaskSlots(SlotIndex OldIdx)1292 void updateRegMaskSlots(SlotIndex OldIdx) {
1293 SmallVectorImpl<SlotIndex>::iterator RI =
1294 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1295 OldIdx);
1296 assert(*RI == OldIdx && "No RegMask at OldIdx.");
1297 *RI = NewIdx;
1298 assert(*prior(RI) < *RI && *RI < *next(RI) &&
1299 "RegSlots out of order. Did you move one call across another?");
1300 }
1301
1302 // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(unsigned Reg,SlotIndex OldIdx)1303 SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
1304 SlotIndex LastUse = NewIdx;
1305 for (MachineRegisterInfo::use_nodbg_iterator
1306 UI = MRI.use_nodbg_begin(Reg),
1307 UE = MRI.use_nodbg_end();
1308 UI != UE; UI.skipInstruction()) {
1309 const MachineInstr* MI = &*UI;
1310 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1311 if (InstSlot > LastUse && InstSlot < OldIdx)
1312 LastUse = InstSlot;
1313 }
1314 return LastUse;
1315 }
1316
moveEnteringUpFrom(SlotIndex OldIdx,IntRangePair & P)1317 void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
1318 LiveInterval* LI = P.first;
1319 LiveRange* LR = P.second;
1320 bool LiveThrough = LR->end > OldIdx.getRegSlot();
1321 if (LiveThrough)
1322 return;
1323 SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1324 if (LastUse != NewIdx)
1325 moveKillFlags(LI->reg, NewIdx, LastUse);
1326 LR->end = LastUse.getRegSlot();
1327 }
1328
moveEnteringDownFrom(SlotIndex OldIdx,IntRangePair & P)1329 void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
1330 LiveInterval* LI = P.first;
1331 LiveRange* LR = P.second;
1332 // Extend the LiveRange if NewIdx is past the end.
1333 if (NewIdx > LR->end) {
1334 // Move kill flags if OldIdx was not originally the end
1335 // (otherwise LR->end points to an invalid slot).
1336 if (LR->end.getRegSlot() != OldIdx.getRegSlot()) {
1337 assert(LR->end > OldIdx && "LiveRange does not cover original slot");
1338 moveKillFlags(LI->reg, LR->end, NewIdx);
1339 }
1340 LR->end = NewIdx.getRegSlot();
1341 }
1342 }
1343
moveAllEnteringFrom(SlotIndex OldIdx,RangeSet & Entering)1344 void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
1345 bool GoingUp = NewIdx < OldIdx;
1346
1347 if (GoingUp) {
1348 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1349 EI != EE; ++EI)
1350 moveEnteringUpFrom(OldIdx, *EI);
1351 } else {
1352 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1353 EI != EE; ++EI)
1354 moveEnteringDownFrom(OldIdx, *EI);
1355 }
1356 }
1357
moveInternalFrom(SlotIndex OldIdx,IntRangePair & P)1358 void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
1359 LiveInterval* LI = P.first;
1360 LiveRange* LR = P.second;
1361 assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1362 LR->end <= OldIdx.getDeadSlot() &&
1363 "Range should be internal to OldIdx.");
1364 LiveRange Tmp(*LR);
1365 Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1366 Tmp.valno->def = Tmp.start;
1367 Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
1368 LI->removeRange(*LR);
1369 LI->addRange(Tmp);
1370 }
1371
moveAllInternalFrom(SlotIndex OldIdx,RangeSet & Internal)1372 void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
1373 for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1374 II != IE; ++II)
1375 moveInternalFrom(OldIdx, *II);
1376 }
1377
moveExitingFrom(SlotIndex OldIdx,IntRangePair & P)1378 void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
1379 LiveRange* LR = P.second;
1380 assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1381 "Range should start in OldIdx.");
1382 assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
1383 SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1384 LR->start = NewStart;
1385 LR->valno->def = NewStart;
1386 }
1387
moveAllExitingFrom(SlotIndex OldIdx,RangeSet & Exiting)1388 void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
1389 for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1390 EI != EE; ++EI)
1391 moveExitingFrom(OldIdx, *EI);
1392 }
1393
moveEnteringUpFromInto(SlotIndex OldIdx,IntRangePair & P,BundleRanges & BR)1394 void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
1395 BundleRanges& BR) {
1396 LiveInterval* LI = P.first;
1397 LiveRange* LR = P.second;
1398 bool LiveThrough = LR->end > OldIdx.getRegSlot();
1399 if (LiveThrough) {
1400 assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
1401 "Def in bundle should be def range.");
1402 assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1403 "If bundle has use for this reg it should be LR.");
1404 BR[LI->reg].Use = LR;
1405 return;
1406 }
1407
1408 SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1409 moveKillFlags(LI->reg, OldIdx, LastUse);
1410
1411 if (LR->start < NewIdx) {
1412 // Becoming a new entering range.
1413 assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
1414 "Bundle shouldn't be re-defining reg mid-range.");
1415 assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1416 "Bundle shouldn't have different use range for same reg.");
1417 LR->end = LastUse.getRegSlot();
1418 BR[LI->reg].Use = LR;
1419 } else {
1420 // Becoming a new Dead-def.
1421 assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
1422 "Live range starting at unexpected slot.");
1423 assert(BR[LI->reg].Def == LR && "Reg should have def range.");
1424 assert(BR[LI->reg].Dead == 0 &&
1425 "Can't have def and dead def of same reg in a bundle.");
1426 LR->end = LastUse.getDeadSlot();
1427 BR[LI->reg].Dead = BR[LI->reg].Def;
1428 BR[LI->reg].Def = 0;
1429 }
1430 }
1431
moveEnteringDownFromInto(SlotIndex OldIdx,IntRangePair & P,BundleRanges & BR)1432 void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
1433 BundleRanges& BR) {
1434 LiveInterval* LI = P.first;
1435 LiveRange* LR = P.second;
1436 if (NewIdx > LR->end) {
1437 // Range extended to bundle. Add to bundle uses.
1438 // Note: Currently adds kill flags to bundle start.
1439 assert(BR[LI->reg].Use == 0 &&
1440 "Bundle already has use range for reg.");
1441 moveKillFlags(LI->reg, LR->end, NewIdx);
1442 LR->end = NewIdx.getRegSlot();
1443 BR[LI->reg].Use = LR;
1444 } else {
1445 assert(BR[LI->reg].Use != 0 &&
1446 "Bundle should already have a use range for reg.");
1447 }
1448 }
1449
moveAllEnteringFromInto(SlotIndex OldIdx,RangeSet & Entering,BundleRanges & BR)1450 void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
1451 BundleRanges& BR) {
1452 bool GoingUp = NewIdx < OldIdx;
1453
1454 if (GoingUp) {
1455 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1456 EI != EE; ++EI)
1457 moveEnteringUpFromInto(OldIdx, *EI, BR);
1458 } else {
1459 for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1460 EI != EE; ++EI)
1461 moveEnteringDownFromInto(OldIdx, *EI, BR);
1462 }
1463 }
1464
moveInternalFromInto(SlotIndex OldIdx,IntRangePair & P,BundleRanges & BR)1465 void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
1466 BundleRanges& BR) {
1467 // TODO: Sane rules for moving ranges into bundles.
1468 }
1469
moveAllInternalFromInto(SlotIndex OldIdx,RangeSet & Internal,BundleRanges & BR)1470 void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
1471 BundleRanges& BR) {
1472 for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1473 II != IE; ++II)
1474 moveInternalFromInto(OldIdx, *II, BR);
1475 }
1476
moveExitingFromInto(SlotIndex OldIdx,IntRangePair & P,BundleRanges & BR)1477 void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
1478 BundleRanges& BR) {
1479 LiveInterval* LI = P.first;
1480 LiveRange* LR = P.second;
1481
1482 assert(LR->start.isRegister() &&
1483 "Don't know how to merge exiting ECs into bundles yet.");
1484
1485 if (LR->end > NewIdx.getDeadSlot()) {
1486 // This range is becoming an exiting range on the bundle.
1487 // If there was an old dead-def of this reg, delete it.
1488 if (BR[LI->reg].Dead != 0) {
1489 LI->removeRange(*BR[LI->reg].Dead);
1490 BR[LI->reg].Dead = 0;
1491 }
1492 assert(BR[LI->reg].Def == 0 &&
1493 "Can't have two defs for the same variable exiting a bundle.");
1494 LR->start = NewIdx.getRegSlot();
1495 LR->valno->def = LR->start;
1496 BR[LI->reg].Def = LR;
1497 } else {
1498 // This range is becoming internal to the bundle.
1499 assert(LR->end == NewIdx.getRegSlot() &&
1500 "Can't bundle def whose kill is before the bundle");
1501 if (BR[LI->reg].Dead || BR[LI->reg].Def) {
1502 // Already have a def for this. Just delete range.
1503 LI->removeRange(*LR);
1504 } else {
1505 // Make range dead, record.
1506 LR->end = NewIdx.getDeadSlot();
1507 BR[LI->reg].Dead = LR;
1508 assert(BR[LI->reg].Use == LR &&
1509 "Range becoming dead should currently be use.");
1510 }
1511 // In both cases the range is no longer a use on the bundle.
1512 BR[LI->reg].Use = 0;
1513 }
1514 }
1515
moveAllExitingFromInto(SlotIndex OldIdx,RangeSet & Exiting,BundleRanges & BR)1516 void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
1517 BundleRanges& BR) {
1518 for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1519 EI != EE; ++EI)
1520 moveExitingFromInto(OldIdx, *EI, BR);
1521 }
1522
1523 };
1524
handleMove(MachineInstr * MI)1525 void LiveIntervals::handleMove(MachineInstr* MI) {
1526 SlotIndex OldIndex = indexes_->getInstructionIndex(MI);
1527 indexes_->removeMachineInstrFromMaps(MI);
1528 SlotIndex NewIndex = MI->isInsideBundle() ?
1529 indexes_->getInstructionIndex(MI) :
1530 indexes_->insertMachineInstrInMaps(MI);
1531 assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1532 OldIndex < getMBBEndIdx(MI->getParent()) &&
1533 "Cannot handle moves across basic block boundaries.");
1534 assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1535
1536 HMEditor HME(*this, *mri_, *tri_, NewIndex);
1537 HME.moveAllRangesFrom(MI, OldIndex);
1538 }
1539
handleMoveIntoBundle(MachineInstr * MI,MachineInstr * BundleStart)1540 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) {
1541 SlotIndex NewIndex = indexes_->getInstructionIndex(BundleStart);
1542 HMEditor HME(*this, *mri_, *tri_, NewIndex);
1543 HME.moveAllRangesInto(MI, BundleStart);
1544 }
1545