1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28 llvm::Value *Array,
29 llvm::Value *Value,
30 unsigned FirstIndex,
31 unsigned LastIndex) {
32 // Alternatively, we could emit this as a loop in the source.
33 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35 Builder.CreateStore(Value, Cell);
36 }
37 }
38
isAggregateTypeForABI(QualType T)39 static bool isAggregateTypeForABI(QualType T) {
40 return CodeGenFunction::hasAggregateLLVMType(T) ||
41 T->isMemberFunctionPointerType();
42 }
43
~ABIInfo()44 ABIInfo::~ABIInfo() {}
45
getContext() const46 ASTContext &ABIInfo::getContext() const {
47 return CGT.getContext();
48 }
49
getVMContext() const50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51 return CGT.getLLVMContext();
52 }
53
getTargetData() const54 const llvm::TargetData &ABIInfo::getTargetData() const {
55 return CGT.getTargetData();
56 }
57
58
dump() const59 void ABIArgInfo::dump() const {
60 raw_ostream &OS = llvm::errs();
61 OS << "(ABIArgInfo Kind=";
62 switch (TheKind) {
63 case Direct:
64 OS << "Direct Type=";
65 if (llvm::Type *Ty = getCoerceToType())
66 Ty->print(OS);
67 else
68 OS << "null";
69 break;
70 case Extend:
71 OS << "Extend";
72 break;
73 case Ignore:
74 OS << "Ignore";
75 break;
76 case Indirect:
77 OS << "Indirect Align=" << getIndirectAlign()
78 << " ByVal=" << getIndirectByVal()
79 << " Realign=" << getIndirectRealign();
80 break;
81 case Expand:
82 OS << "Expand";
83 break;
84 }
85 OS << ")\n";
86 }
87
~TargetCodeGenInfo()88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93 // Verified for:
94 // x86-64 FreeBSD, Linux, Darwin
95 // x86-32 FreeBSD, Linux, Darwin
96 // PowerPC Linux, Darwin
97 // ARM Darwin (*not* EABI)
98 return 32;
99 }
100
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const101 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102 const FunctionNoProtoType *fnType) const {
103 // The following conventions are known to require this to be false:
104 // x86_stdcall
105 // MIPS
106 // For everything else, we just prefer false unless we opt out.
107 return false;
108 }
109
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115 bool AllowArrays) {
116 if (FD->isUnnamedBitfield())
117 return true;
118
119 QualType FT = FD->getType();
120
121 // Constant arrays of empty records count as empty, strip them off.
122 // Constant arrays of zero length always count as empty.
123 if (AllowArrays)
124 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125 if (AT->getSize() == 0)
126 return true;
127 FT = AT->getElementType();
128 }
129
130 const RecordType *RT = FT->getAs<RecordType>();
131 if (!RT)
132 return false;
133
134 // C++ record fields are never empty, at least in the Itanium ABI.
135 //
136 // FIXME: We should use a predicate for whether this behavior is true in the
137 // current ABI.
138 if (isa<CXXRecordDecl>(RT->getDecl()))
139 return false;
140
141 return isEmptyRecord(Context, FT, AllowArrays);
142 }
143
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148 const RecordType *RT = T->getAs<RecordType>();
149 if (!RT)
150 return 0;
151 const RecordDecl *RD = RT->getDecl();
152 if (RD->hasFlexibleArrayMember())
153 return false;
154
155 // If this is a C++ record, check the bases first.
156 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158 e = CXXRD->bases_end(); i != e; ++i)
159 if (!isEmptyRecord(Context, i->getType(), true))
160 return false;
161
162 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163 i != e; ++i)
164 if (!isEmptyField(Context, *i, AllowArrays))
165 return false;
166 return true;
167 }
168
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
hasNonTrivialDestructorOrCopyConstructor(const RecordType * RT)171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173 if (!RD)
174 return false;
175
176 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T)182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183 const RecordType *RT = T->getAs<RecordType>();
184 if (!RT)
185 return false;
186
187 return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199 const RecordType *RT = T->getAsStructureType();
200 if (!RT)
201 return 0;
202
203 const RecordDecl *RD = RT->getDecl();
204 if (RD->hasFlexibleArrayMember())
205 return 0;
206
207 const Type *Found = 0;
208
209 // If this is a C++ record, check the bases first.
210 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212 e = CXXRD->bases_end(); i != e; ++i) {
213 // Ignore empty records.
214 if (isEmptyRecord(Context, i->getType(), true))
215 continue;
216
217 // If we already found an element then this isn't a single-element struct.
218 if (Found)
219 return 0;
220
221 // If this is non-empty and not a single element struct, the composite
222 // cannot be a single element struct.
223 Found = isSingleElementStruct(i->getType(), Context);
224 if (!Found)
225 return 0;
226 }
227 }
228
229 // Check for single element.
230 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231 i != e; ++i) {
232 const FieldDecl *FD = *i;
233 QualType FT = FD->getType();
234
235 // Ignore empty fields.
236 if (isEmptyField(Context, FD, true))
237 continue;
238
239 // If we already found an element then this isn't a single-element
240 // struct.
241 if (Found)
242 return 0;
243
244 // Treat single element arrays as the element.
245 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246 if (AT->getSize().getZExtValue() != 1)
247 break;
248 FT = AT->getElementType();
249 }
250
251 if (!isAggregateTypeForABI(FT)) {
252 Found = FT.getTypePtr();
253 } else {
254 Found = isSingleElementStruct(FT, Context);
255 if (!Found)
256 return 0;
257 }
258 }
259
260 // We don't consider a struct a single-element struct if it has
261 // padding beyond the element type.
262 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263 return 0;
264
265 return Found;
266 }
267
is32Or64BitBasicType(QualType Ty,ASTContext & Context)268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270 !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271 !Ty->isBlockPointerType())
272 return false;
273
274 uint64_t Size = Context.getTypeSize(Ty);
275 return Size == 32 || Size == 64;
276 }
277
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288 // We can only expand structure types.
289 const RecordType *RT = Ty->getAs<RecordType>();
290 if (!RT)
291 return false;
292
293 // We can only expand (C) structures.
294 //
295 // FIXME: This needs to be generalized to handle classes as well.
296 const RecordDecl *RD = RT->getDecl();
297 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298 return false;
299
300 uint64_t Size = 0;
301
302 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303 i != e; ++i) {
304 const FieldDecl *FD = *i;
305
306 if (!is32Or64BitBasicType(FD->getType(), Context))
307 return false;
308
309 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310 // how to expand them yet, and the predicate for telling if a bitfield still
311 // counts as "basic" is more complicated than what we were doing previously.
312 if (FD->isBitField())
313 return false;
314
315 Size += Context.getTypeSize(FD->getType());
316 }
317
318 // Make sure there are not any holes in the struct.
319 if (Size != Context.getTypeSize(Ty))
320 return false;
321
322 return true;
323 }
324
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)332 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334 ABIArgInfo classifyReturnType(QualType RetTy) const;
335 ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
computeInfo(CGFunctionInfo & FI) const337 virtual void computeInfo(CGFunctionInfo &FI) const {
338 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340 it != ie; ++it)
341 it->info = classifyArgumentType(it->type);
342 }
343
344 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345 CodeGenFunction &CGF) const;
346 };
347
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)350 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355 CodeGenFunction &CGF) const {
356 return 0;
357 }
358
classifyArgumentType(QualType Ty) const359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360 if (isAggregateTypeForABI(Ty)) {
361 // Records with non trivial destructors/constructors should not be passed
362 // by value.
363 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366 return ABIArgInfo::getIndirect(0);
367 }
368
369 // Treat an enum type as its underlying type.
370 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371 Ty = EnumTy->getDecl()->getIntegerType();
372
373 return (Ty->isPromotableIntegerType() ?
374 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376
classifyReturnType(QualType RetTy) const377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378 if (RetTy->isVoidType())
379 return ABIArgInfo::getIgnore();
380
381 if (isAggregateTypeForABI(RetTy))
382 return ABIArgInfo::getIndirect(0);
383
384 // Treat an enum type as its underlying type.
385 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386 RetTy = EnumTy->getDecl()->getIntegerType();
387
388 return (RetTy->isPromotableIntegerType() ?
389 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391
392 /// UseX86_MMXType - Return true if this is an MMX type that should use the
393 /// special x86_mmx type.
UseX86_MMXType(llvm::Type * IRType)394 bool UseX86_MMXType(llvm::Type *IRType) {
395 // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
396 // special x86_mmx type.
397 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
398 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
399 IRType->getScalarSizeInBits() != 64;
400 }
401
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)402 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
403 StringRef Constraint,
404 llvm::Type* Ty) {
405 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
406 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
407 return Ty;
408 }
409
410 //===----------------------------------------------------------------------===//
411 // X86-32 ABI Implementation
412 //===----------------------------------------------------------------------===//
413
414 /// X86_32ABIInfo - The X86-32 ABI information.
415 class X86_32ABIInfo : public ABIInfo {
416 static const unsigned MinABIStackAlignInBytes = 4;
417
418 bool IsDarwinVectorABI;
419 bool IsSmallStructInRegABI;
420 bool IsMMXDisabled;
421 bool IsWin32FloatStructABI;
422
isRegisterSize(unsigned Size)423 static bool isRegisterSize(unsigned Size) {
424 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
425 }
426
427 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
428 unsigned callingConvention);
429
430 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
431 /// such that the argument will be passed in memory.
432 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
433
434 /// \brief Return the alignment to use for the given type on the stack.
435 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
436
437 public:
438
439 ABIArgInfo classifyReturnType(QualType RetTy,
440 unsigned callingConvention) const;
441 ABIArgInfo classifyArgumentType(QualType RetTy) const;
442
computeInfo(CGFunctionInfo & FI) const443 virtual void computeInfo(CGFunctionInfo &FI) const {
444 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
445 FI.getCallingConvention());
446 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
447 it != ie; ++it)
448 it->info = classifyArgumentType(it->type);
449 }
450
451 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
452 CodeGenFunction &CGF) const;
453
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool m,bool w)454 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w)
455 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
456 IsMMXDisabled(m), IsWin32FloatStructABI(w) {}
457 };
458
459 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
460 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool m,bool w)461 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
462 bool d, bool p, bool m, bool w)
463 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w)) {}
464
465 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
466 CodeGen::CodeGenModule &CGM) const;
467
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const468 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
469 // Darwin uses different dwarf register numbers for EH.
470 if (CGM.isTargetDarwin()) return 5;
471
472 return 4;
473 }
474
475 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
476 llvm::Value *Address) const;
477
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const478 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
479 StringRef Constraint,
480 llvm::Type* Ty) const {
481 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
482 }
483
484 };
485
486 }
487
488 /// shouldReturnTypeInRegister - Determine if the given type should be
489 /// passed in a register (for the Darwin ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context,unsigned callingConvention)490 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
491 ASTContext &Context,
492 unsigned callingConvention) {
493 uint64_t Size = Context.getTypeSize(Ty);
494
495 // Type must be register sized.
496 if (!isRegisterSize(Size))
497 return false;
498
499 if (Ty->isVectorType()) {
500 // 64- and 128- bit vectors inside structures are not returned in
501 // registers.
502 if (Size == 64 || Size == 128)
503 return false;
504
505 return true;
506 }
507
508 // If this is a builtin, pointer, enum, complex type, member pointer, or
509 // member function pointer it is ok.
510 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
511 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
512 Ty->isBlockPointerType() || Ty->isMemberPointerType())
513 return true;
514
515 // Arrays are treated like records.
516 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
517 return shouldReturnTypeInRegister(AT->getElementType(), Context,
518 callingConvention);
519
520 // Otherwise, it must be a record type.
521 const RecordType *RT = Ty->getAs<RecordType>();
522 if (!RT) return false;
523
524 // FIXME: Traverse bases here too.
525
526 // For thiscall conventions, structures will never be returned in
527 // a register. This is for compatibility with the MSVC ABI
528 if (callingConvention == llvm::CallingConv::X86_ThisCall &&
529 RT->isStructureType()) {
530 return false;
531 }
532
533 // Structure types are passed in register if all fields would be
534 // passed in a register.
535 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
536 e = RT->getDecl()->field_end(); i != e; ++i) {
537 const FieldDecl *FD = *i;
538
539 // Empty fields are ignored.
540 if (isEmptyField(Context, FD, true))
541 continue;
542
543 // Check fields recursively.
544 if (!shouldReturnTypeInRegister(FD->getType(), Context,
545 callingConvention))
546 return false;
547 }
548 return true;
549 }
550
classifyReturnType(QualType RetTy,unsigned callingConvention) const551 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
552 unsigned callingConvention) const {
553 if (RetTy->isVoidType())
554 return ABIArgInfo::getIgnore();
555
556 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
557 // On Darwin, some vectors are returned in registers.
558 if (IsDarwinVectorABI) {
559 uint64_t Size = getContext().getTypeSize(RetTy);
560
561 // 128-bit vectors are a special case; they are returned in
562 // registers and we need to make sure to pick a type the LLVM
563 // backend will like.
564 if (Size == 128)
565 return ABIArgInfo::getDirect(llvm::VectorType::get(
566 llvm::Type::getInt64Ty(getVMContext()), 2));
567
568 // Always return in register if it fits in a general purpose
569 // register, or if it is 64 bits and has a single element.
570 if ((Size == 8 || Size == 16 || Size == 32) ||
571 (Size == 64 && VT->getNumElements() == 1))
572 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
573 Size));
574
575 return ABIArgInfo::getIndirect(0);
576 }
577
578 return ABIArgInfo::getDirect();
579 }
580
581 if (isAggregateTypeForABI(RetTy)) {
582 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
583 // Structures with either a non-trivial destructor or a non-trivial
584 // copy constructor are always indirect.
585 if (hasNonTrivialDestructorOrCopyConstructor(RT))
586 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
587
588 // Structures with flexible arrays are always indirect.
589 if (RT->getDecl()->hasFlexibleArrayMember())
590 return ABIArgInfo::getIndirect(0);
591 }
592
593 // If specified, structs and unions are always indirect.
594 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
595 return ABIArgInfo::getIndirect(0);
596
597 // Small structures which are register sized are generally returned
598 // in a register.
599 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
600 callingConvention)) {
601 uint64_t Size = getContext().getTypeSize(RetTy);
602
603 // As a special-case, if the struct is a "single-element" struct, and
604 // the field is of type "float" or "double", return it in a
605 // floating-point register. (MSVC does not apply this special case.)
606 // We apply a similar transformation for pointer types to improve the
607 // quality of the generated IR.
608 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
609 if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
610 || SeltTy->hasPointerRepresentation())
611 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
612
613 // FIXME: We should be able to narrow this integer in cases with dead
614 // padding.
615 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
616 }
617
618 return ABIArgInfo::getIndirect(0);
619 }
620
621 // Treat an enum type as its underlying type.
622 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
623 RetTy = EnumTy->getDecl()->getIntegerType();
624
625 return (RetTy->isPromotableIntegerType() ?
626 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
627 }
628
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)629 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
630 const RecordType *RT = Ty->getAs<RecordType>();
631 if (!RT)
632 return 0;
633 const RecordDecl *RD = RT->getDecl();
634
635 // If this is a C++ record, check the bases first.
636 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
637 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
638 e = CXXRD->bases_end(); i != e; ++i)
639 if (!isRecordWithSSEVectorType(Context, i->getType()))
640 return false;
641
642 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
643 i != e; ++i) {
644 QualType FT = i->getType();
645
646 if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128)
647 return true;
648
649 if (isRecordWithSSEVectorType(Context, FT))
650 return true;
651 }
652
653 return false;
654 }
655
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const656 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
657 unsigned Align) const {
658 // Otherwise, if the alignment is less than or equal to the minimum ABI
659 // alignment, just use the default; the backend will handle this.
660 if (Align <= MinABIStackAlignInBytes)
661 return 0; // Use default alignment.
662
663 // On non-Darwin, the stack type alignment is always 4.
664 if (!IsDarwinVectorABI) {
665 // Set explicit alignment, since we may need to realign the top.
666 return MinABIStackAlignInBytes;
667 }
668
669 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
670 if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty))
671 return 16;
672
673 return MinABIStackAlignInBytes;
674 }
675
getIndirectResult(QualType Ty,bool ByVal) const676 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
677 if (!ByVal)
678 return ABIArgInfo::getIndirect(0, false);
679
680 // Compute the byval alignment.
681 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
682 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
683 if (StackAlign == 0)
684 return ABIArgInfo::getIndirect(4);
685
686 // If the stack alignment is less than the type alignment, realign the
687 // argument.
688 if (StackAlign < TypeAlign)
689 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
690 /*Realign=*/true);
691
692 return ABIArgInfo::getIndirect(StackAlign);
693 }
694
classifyArgumentType(QualType Ty) const695 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
696 // FIXME: Set alignment on indirect arguments.
697 if (isAggregateTypeForABI(Ty)) {
698 // Structures with flexible arrays are always indirect.
699 if (const RecordType *RT = Ty->getAs<RecordType>()) {
700 // Structures with either a non-trivial destructor or a non-trivial
701 // copy constructor are always indirect.
702 if (hasNonTrivialDestructorOrCopyConstructor(RT))
703 return getIndirectResult(Ty, /*ByVal=*/false);
704
705 if (RT->getDecl()->hasFlexibleArrayMember())
706 return getIndirectResult(Ty);
707 }
708
709 // Ignore empty structs/unions.
710 if (isEmptyRecord(getContext(), Ty, true))
711 return ABIArgInfo::getIgnore();
712
713 // Expand small (<= 128-bit) record types when we know that the stack layout
714 // of those arguments will match the struct. This is important because the
715 // LLVM backend isn't smart enough to remove byval, which inhibits many
716 // optimizations.
717 if (getContext().getTypeSize(Ty) <= 4*32 &&
718 canExpandIndirectArgument(Ty, getContext()))
719 return ABIArgInfo::getExpand();
720
721 return getIndirectResult(Ty);
722 }
723
724 if (const VectorType *VT = Ty->getAs<VectorType>()) {
725 // On Darwin, some vectors are passed in memory, we handle this by passing
726 // it as an i8/i16/i32/i64.
727 if (IsDarwinVectorABI) {
728 uint64_t Size = getContext().getTypeSize(Ty);
729 if ((Size == 8 || Size == 16 || Size == 32) ||
730 (Size == 64 && VT->getNumElements() == 1))
731 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
732 Size));
733 }
734
735 llvm::Type *IRType = CGT.ConvertType(Ty);
736 if (UseX86_MMXType(IRType)) {
737 if (IsMMXDisabled)
738 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
739 64));
740 ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
741 AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
742 return AAI;
743 }
744
745 return ABIArgInfo::getDirect();
746 }
747
748
749 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
750 Ty = EnumTy->getDecl()->getIntegerType();
751
752 return (Ty->isPromotableIntegerType() ?
753 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
754 }
755
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const756 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
757 CodeGenFunction &CGF) const {
758 llvm::Type *BPP = CGF.Int8PtrPtrTy;
759
760 CGBuilderTy &Builder = CGF.Builder;
761 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
762 "ap");
763 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
764
765 // Compute if the address needs to be aligned
766 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
767 Align = getTypeStackAlignInBytes(Ty, Align);
768 Align = std::max(Align, 4U);
769 if (Align > 4) {
770 // addr = (addr + align - 1) & -align;
771 llvm::Value *Offset =
772 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
773 Addr = CGF.Builder.CreateGEP(Addr, Offset);
774 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
775 CGF.Int32Ty);
776 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
777 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
778 Addr->getType(),
779 "ap.cur.aligned");
780 }
781
782 llvm::Type *PTy =
783 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
784 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
785
786 uint64_t Offset =
787 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
788 llvm::Value *NextAddr =
789 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
790 "ap.next");
791 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
792
793 return AddrTyped;
794 }
795
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const796 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
797 llvm::GlobalValue *GV,
798 CodeGen::CodeGenModule &CGM) const {
799 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
800 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
801 // Get the LLVM function.
802 llvm::Function *Fn = cast<llvm::Function>(GV);
803
804 // Now add the 'alignstack' attribute with a value of 16.
805 Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
806 }
807 }
808 }
809
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const810 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
811 CodeGen::CodeGenFunction &CGF,
812 llvm::Value *Address) const {
813 CodeGen::CGBuilderTy &Builder = CGF.Builder;
814
815 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
816
817 // 0-7 are the eight integer registers; the order is different
818 // on Darwin (for EH), but the range is the same.
819 // 8 is %eip.
820 AssignToArrayRange(Builder, Address, Four8, 0, 8);
821
822 if (CGF.CGM.isTargetDarwin()) {
823 // 12-16 are st(0..4). Not sure why we stop at 4.
824 // These have size 16, which is sizeof(long double) on
825 // platforms with 8-byte alignment for that type.
826 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
827 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
828
829 } else {
830 // 9 is %eflags, which doesn't get a size on Darwin for some
831 // reason.
832 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
833
834 // 11-16 are st(0..5). Not sure why we stop at 5.
835 // These have size 12, which is sizeof(long double) on
836 // platforms with 4-byte alignment for that type.
837 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
838 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
839 }
840
841 return false;
842 }
843
844 //===----------------------------------------------------------------------===//
845 // X86-64 ABI Implementation
846 //===----------------------------------------------------------------------===//
847
848
849 namespace {
850 /// X86_64ABIInfo - The X86_64 ABI information.
851 class X86_64ABIInfo : public ABIInfo {
852 enum Class {
853 Integer = 0,
854 SSE,
855 SSEUp,
856 X87,
857 X87Up,
858 ComplexX87,
859 NoClass,
860 Memory
861 };
862
863 /// merge - Implement the X86_64 ABI merging algorithm.
864 ///
865 /// Merge an accumulating classification \arg Accum with a field
866 /// classification \arg Field.
867 ///
868 /// \param Accum - The accumulating classification. This should
869 /// always be either NoClass or the result of a previous merge
870 /// call. In addition, this should never be Memory (the caller
871 /// should just return Memory for the aggregate).
872 static Class merge(Class Accum, Class Field);
873
874 /// postMerge - Implement the X86_64 ABI post merging algorithm.
875 ///
876 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
877 /// final MEMORY or SSE classes when necessary.
878 ///
879 /// \param AggregateSize - The size of the current aggregate in
880 /// the classification process.
881 ///
882 /// \param Lo - The classification for the parts of the type
883 /// residing in the low word of the containing object.
884 ///
885 /// \param Hi - The classification for the parts of the type
886 /// residing in the higher words of the containing object.
887 ///
888 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
889
890 /// classify - Determine the x86_64 register classes in which the
891 /// given type T should be passed.
892 ///
893 /// \param Lo - The classification for the parts of the type
894 /// residing in the low word of the containing object.
895 ///
896 /// \param Hi - The classification for the parts of the type
897 /// residing in the high word of the containing object.
898 ///
899 /// \param OffsetBase - The bit offset of this type in the
900 /// containing object. Some parameters are classified different
901 /// depending on whether they straddle an eightbyte boundary.
902 ///
903 /// If a word is unused its result will be NoClass; if a type should
904 /// be passed in Memory then at least the classification of \arg Lo
905 /// will be Memory.
906 ///
907 /// The \arg Lo class will be NoClass iff the argument is ignored.
908 ///
909 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
910 /// also be ComplexX87.
911 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
912
913 llvm::Type *GetByteVectorType(QualType Ty) const;
914 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
915 unsigned IROffset, QualType SourceTy,
916 unsigned SourceOffset) const;
917 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
918 unsigned IROffset, QualType SourceTy,
919 unsigned SourceOffset) const;
920
921 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
922 /// such that the argument will be returned in memory.
923 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
924
925 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
926 /// such that the argument will be passed in memory.
927 ///
928 /// \param freeIntRegs - The number of free integer registers remaining
929 /// available.
930 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
931
932 ABIArgInfo classifyReturnType(QualType RetTy) const;
933
934 ABIArgInfo classifyArgumentType(QualType Ty,
935 unsigned freeIntRegs,
936 unsigned &neededInt,
937 unsigned &neededSSE) const;
938
939 bool IsIllegalVectorType(QualType Ty) const;
940
941 /// The 0.98 ABI revision clarified a lot of ambiguities,
942 /// unfortunately in ways that were not always consistent with
943 /// certain previous compilers. In particular, platforms which
944 /// required strict binary compatibility with older versions of GCC
945 /// may need to exempt themselves.
honorsRevision0_98() const946 bool honorsRevision0_98() const {
947 return !getContext().getTargetInfo().getTriple().isOSDarwin();
948 }
949
950 bool HasAVX;
951
952 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool hasavx)953 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
954 ABIInfo(CGT), HasAVX(hasavx) {}
955
isPassedUsingAVXType(QualType type) const956 bool isPassedUsingAVXType(QualType type) const {
957 unsigned neededInt, neededSSE;
958 // The freeIntRegs argument doesn't matter here.
959 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
960 if (info.isDirect()) {
961 llvm::Type *ty = info.getCoerceToType();
962 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
963 return (vectorTy->getBitWidth() > 128);
964 }
965 return false;
966 }
967
968 virtual void computeInfo(CGFunctionInfo &FI) const;
969
970 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
971 CodeGenFunction &CGF) const;
972 };
973
974 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
975 class WinX86_64ABIInfo : public ABIInfo {
976
977 ABIArgInfo classify(QualType Ty) const;
978
979 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)980 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
981
982 virtual void computeInfo(CGFunctionInfo &FI) const;
983
984 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
985 CodeGenFunction &CGF) const;
986 };
987
988 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
989 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)990 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
991 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
992
getABIInfo() const993 const X86_64ABIInfo &getABIInfo() const {
994 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
995 }
996
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const997 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
998 return 7;
999 }
1000
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1001 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1002 llvm::Value *Address) const {
1003 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1004
1005 // 0-15 are the 16 integer registers.
1006 // 16 is %rip.
1007 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1008 return false;
1009 }
1010
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1011 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1012 StringRef Constraint,
1013 llvm::Type* Ty) const {
1014 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1015 }
1016
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1017 bool isNoProtoCallVariadic(const CallArgList &args,
1018 const FunctionNoProtoType *fnType) const {
1019 // The default CC on x86-64 sets %al to the number of SSA
1020 // registers used, and GCC sets this when calling an unprototyped
1021 // function, so we override the default behavior. However, don't do
1022 // that when AVX types are involved: the ABI explicitly states it is
1023 // undefined, and it doesn't work in practice because of how the ABI
1024 // defines varargs anyway.
1025 if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1026 bool HasAVXType = false;
1027 for (CallArgList::const_iterator
1028 it = args.begin(), ie = args.end(); it != ie; ++it) {
1029 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1030 HasAVXType = true;
1031 break;
1032 }
1033 }
1034
1035 if (!HasAVXType)
1036 return true;
1037 }
1038
1039 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1040 }
1041
1042 };
1043
1044 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1045 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)1046 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1047 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1048
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1049 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1050 return 7;
1051 }
1052
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1053 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1054 llvm::Value *Address) const {
1055 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1056
1057 // 0-15 are the 16 integer registers.
1058 // 16 is %rip.
1059 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1060 return false;
1061 }
1062 };
1063
1064 }
1065
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const1066 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1067 Class &Hi) const {
1068 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1069 //
1070 // (a) If one of the classes is Memory, the whole argument is passed in
1071 // memory.
1072 //
1073 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1074 // memory.
1075 //
1076 // (c) If the size of the aggregate exceeds two eightbytes and the first
1077 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1078 // argument is passed in memory. NOTE: This is necessary to keep the
1079 // ABI working for processors that don't support the __m256 type.
1080 //
1081 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1082 //
1083 // Some of these are enforced by the merging logic. Others can arise
1084 // only with unions; for example:
1085 // union { _Complex double; unsigned; }
1086 //
1087 // Note that clauses (b) and (c) were added in 0.98.
1088 //
1089 if (Hi == Memory)
1090 Lo = Memory;
1091 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1092 Lo = Memory;
1093 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1094 Lo = Memory;
1095 if (Hi == SSEUp && Lo != SSE)
1096 Hi = SSE;
1097 }
1098
merge(Class Accum,Class Field)1099 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1100 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1101 // classified recursively so that always two fields are
1102 // considered. The resulting class is calculated according to
1103 // the classes of the fields in the eightbyte:
1104 //
1105 // (a) If both classes are equal, this is the resulting class.
1106 //
1107 // (b) If one of the classes is NO_CLASS, the resulting class is
1108 // the other class.
1109 //
1110 // (c) If one of the classes is MEMORY, the result is the MEMORY
1111 // class.
1112 //
1113 // (d) If one of the classes is INTEGER, the result is the
1114 // INTEGER.
1115 //
1116 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1117 // MEMORY is used as class.
1118 //
1119 // (f) Otherwise class SSE is used.
1120
1121 // Accum should never be memory (we should have returned) or
1122 // ComplexX87 (because this cannot be passed in a structure).
1123 assert((Accum != Memory && Accum != ComplexX87) &&
1124 "Invalid accumulated classification during merge.");
1125 if (Accum == Field || Field == NoClass)
1126 return Accum;
1127 if (Field == Memory)
1128 return Memory;
1129 if (Accum == NoClass)
1130 return Field;
1131 if (Accum == Integer || Field == Integer)
1132 return Integer;
1133 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1134 Accum == X87 || Accum == X87Up)
1135 return Memory;
1136 return SSE;
1137 }
1138
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi) const1139 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1140 Class &Lo, Class &Hi) const {
1141 // FIXME: This code can be simplified by introducing a simple value class for
1142 // Class pairs with appropriate constructor methods for the various
1143 // situations.
1144
1145 // FIXME: Some of the split computations are wrong; unaligned vectors
1146 // shouldn't be passed in registers for example, so there is no chance they
1147 // can straddle an eightbyte. Verify & simplify.
1148
1149 Lo = Hi = NoClass;
1150
1151 Class &Current = OffsetBase < 64 ? Lo : Hi;
1152 Current = Memory;
1153
1154 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1155 BuiltinType::Kind k = BT->getKind();
1156
1157 if (k == BuiltinType::Void) {
1158 Current = NoClass;
1159 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1160 Lo = Integer;
1161 Hi = Integer;
1162 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1163 Current = Integer;
1164 } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1165 Current = SSE;
1166 } else if (k == BuiltinType::LongDouble) {
1167 Lo = X87;
1168 Hi = X87Up;
1169 }
1170 // FIXME: _Decimal32 and _Decimal64 are SSE.
1171 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1172 return;
1173 }
1174
1175 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1176 // Classify the underlying integer type.
1177 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1178 return;
1179 }
1180
1181 if (Ty->hasPointerRepresentation()) {
1182 Current = Integer;
1183 return;
1184 }
1185
1186 if (Ty->isMemberPointerType()) {
1187 if (Ty->isMemberFunctionPointerType())
1188 Lo = Hi = Integer;
1189 else
1190 Current = Integer;
1191 return;
1192 }
1193
1194 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1195 uint64_t Size = getContext().getTypeSize(VT);
1196 if (Size == 32) {
1197 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1198 // float> as integer.
1199 Current = Integer;
1200
1201 // If this type crosses an eightbyte boundary, it should be
1202 // split.
1203 uint64_t EB_Real = (OffsetBase) / 64;
1204 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1205 if (EB_Real != EB_Imag)
1206 Hi = Lo;
1207 } else if (Size == 64) {
1208 // gcc passes <1 x double> in memory. :(
1209 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1210 return;
1211
1212 // gcc passes <1 x long long> as INTEGER.
1213 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1214 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1215 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1216 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1217 Current = Integer;
1218 else
1219 Current = SSE;
1220
1221 // If this type crosses an eightbyte boundary, it should be
1222 // split.
1223 if (OffsetBase && OffsetBase != 64)
1224 Hi = Lo;
1225 } else if (Size == 128 || (HasAVX && Size == 256)) {
1226 // Arguments of 256-bits are split into four eightbyte chunks. The
1227 // least significant one belongs to class SSE and all the others to class
1228 // SSEUP. The original Lo and Hi design considers that types can't be
1229 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1230 // This design isn't correct for 256-bits, but since there're no cases
1231 // where the upper parts would need to be inspected, avoid adding
1232 // complexity and just consider Hi to match the 64-256 part.
1233 Lo = SSE;
1234 Hi = SSEUp;
1235 }
1236 return;
1237 }
1238
1239 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1240 QualType ET = getContext().getCanonicalType(CT->getElementType());
1241
1242 uint64_t Size = getContext().getTypeSize(Ty);
1243 if (ET->isIntegralOrEnumerationType()) {
1244 if (Size <= 64)
1245 Current = Integer;
1246 else if (Size <= 128)
1247 Lo = Hi = Integer;
1248 } else if (ET == getContext().FloatTy)
1249 Current = SSE;
1250 else if (ET == getContext().DoubleTy)
1251 Lo = Hi = SSE;
1252 else if (ET == getContext().LongDoubleTy)
1253 Current = ComplexX87;
1254
1255 // If this complex type crosses an eightbyte boundary then it
1256 // should be split.
1257 uint64_t EB_Real = (OffsetBase) / 64;
1258 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1259 if (Hi == NoClass && EB_Real != EB_Imag)
1260 Hi = Lo;
1261
1262 return;
1263 }
1264
1265 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1266 // Arrays are treated like structures.
1267
1268 uint64_t Size = getContext().getTypeSize(Ty);
1269
1270 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1271 // than four eightbytes, ..., it has class MEMORY.
1272 if (Size > 256)
1273 return;
1274
1275 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1276 // fields, it has class MEMORY.
1277 //
1278 // Only need to check alignment of array base.
1279 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1280 return;
1281
1282 // Otherwise implement simplified merge. We could be smarter about
1283 // this, but it isn't worth it and would be harder to verify.
1284 Current = NoClass;
1285 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1286 uint64_t ArraySize = AT->getSize().getZExtValue();
1287
1288 // The only case a 256-bit wide vector could be used is when the array
1289 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1290 // to work for sizes wider than 128, early check and fallback to memory.
1291 if (Size > 128 && EltSize != 256)
1292 return;
1293
1294 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1295 Class FieldLo, FieldHi;
1296 classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1297 Lo = merge(Lo, FieldLo);
1298 Hi = merge(Hi, FieldHi);
1299 if (Lo == Memory || Hi == Memory)
1300 break;
1301 }
1302
1303 postMerge(Size, Lo, Hi);
1304 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1305 return;
1306 }
1307
1308 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1309 uint64_t Size = getContext().getTypeSize(Ty);
1310
1311 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1312 // than four eightbytes, ..., it has class MEMORY.
1313 if (Size > 256)
1314 return;
1315
1316 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1317 // copy constructor or a non-trivial destructor, it is passed by invisible
1318 // reference.
1319 if (hasNonTrivialDestructorOrCopyConstructor(RT))
1320 return;
1321
1322 const RecordDecl *RD = RT->getDecl();
1323
1324 // Assume variable sized types are passed in memory.
1325 if (RD->hasFlexibleArrayMember())
1326 return;
1327
1328 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1329
1330 // Reset Lo class, this will be recomputed.
1331 Current = NoClass;
1332
1333 // If this is a C++ record, classify the bases first.
1334 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1335 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1336 e = CXXRD->bases_end(); i != e; ++i) {
1337 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1338 "Unexpected base class!");
1339 const CXXRecordDecl *Base =
1340 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1341
1342 // Classify this field.
1343 //
1344 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1345 // single eightbyte, each is classified separately. Each eightbyte gets
1346 // initialized to class NO_CLASS.
1347 Class FieldLo, FieldHi;
1348 uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1349 classify(i->getType(), Offset, FieldLo, FieldHi);
1350 Lo = merge(Lo, FieldLo);
1351 Hi = merge(Hi, FieldHi);
1352 if (Lo == Memory || Hi == Memory)
1353 break;
1354 }
1355 }
1356
1357 // Classify the fields one at a time, merging the results.
1358 unsigned idx = 0;
1359 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1360 i != e; ++i, ++idx) {
1361 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1362 bool BitField = i->isBitField();
1363
1364 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1365 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1366 //
1367 // The only case a 256-bit wide vector could be used is when the struct
1368 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1369 // to work for sizes wider than 128, early check and fallback to memory.
1370 //
1371 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1372 Lo = Memory;
1373 return;
1374 }
1375 // Note, skip this test for bit-fields, see below.
1376 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1377 Lo = Memory;
1378 return;
1379 }
1380
1381 // Classify this field.
1382 //
1383 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1384 // exceeds a single eightbyte, each is classified
1385 // separately. Each eightbyte gets initialized to class
1386 // NO_CLASS.
1387 Class FieldLo, FieldHi;
1388
1389 // Bit-fields require special handling, they do not force the
1390 // structure to be passed in memory even if unaligned, and
1391 // therefore they can straddle an eightbyte.
1392 if (BitField) {
1393 // Ignore padding bit-fields.
1394 if (i->isUnnamedBitfield())
1395 continue;
1396
1397 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1398 uint64_t Size = i->getBitWidthValue(getContext());
1399
1400 uint64_t EB_Lo = Offset / 64;
1401 uint64_t EB_Hi = (Offset + Size - 1) / 64;
1402 FieldLo = FieldHi = NoClass;
1403 if (EB_Lo) {
1404 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1405 FieldLo = NoClass;
1406 FieldHi = Integer;
1407 } else {
1408 FieldLo = Integer;
1409 FieldHi = EB_Hi ? Integer : NoClass;
1410 }
1411 } else
1412 classify(i->getType(), Offset, FieldLo, FieldHi);
1413 Lo = merge(Lo, FieldLo);
1414 Hi = merge(Hi, FieldHi);
1415 if (Lo == Memory || Hi == Memory)
1416 break;
1417 }
1418
1419 postMerge(Size, Lo, Hi);
1420 }
1421 }
1422
getIndirectReturnResult(QualType Ty) const1423 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1424 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1425 // place naturally.
1426 if (!isAggregateTypeForABI(Ty)) {
1427 // Treat an enum type as its underlying type.
1428 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1429 Ty = EnumTy->getDecl()->getIntegerType();
1430
1431 return (Ty->isPromotableIntegerType() ?
1432 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1433 }
1434
1435 return ABIArgInfo::getIndirect(0);
1436 }
1437
IsIllegalVectorType(QualType Ty) const1438 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1439 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1440 uint64_t Size = getContext().getTypeSize(VecTy);
1441 unsigned LargestVector = HasAVX ? 256 : 128;
1442 if (Size <= 64 || Size > LargestVector)
1443 return true;
1444 }
1445
1446 return false;
1447 }
1448
getIndirectResult(QualType Ty,unsigned freeIntRegs) const1449 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1450 unsigned freeIntRegs) const {
1451 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1452 // place naturally.
1453 //
1454 // This assumption is optimistic, as there could be free registers available
1455 // when we need to pass this argument in memory, and LLVM could try to pass
1456 // the argument in the free register. This does not seem to happen currently,
1457 // but this code would be much safer if we could mark the argument with
1458 // 'onstack'. See PR12193.
1459 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1460 // Treat an enum type as its underlying type.
1461 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1462 Ty = EnumTy->getDecl()->getIntegerType();
1463
1464 return (Ty->isPromotableIntegerType() ?
1465 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1466 }
1467
1468 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1469 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1470
1471 // Compute the byval alignment. We specify the alignment of the byval in all
1472 // cases so that the mid-level optimizer knows the alignment of the byval.
1473 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1474
1475 // Attempt to avoid passing indirect results using byval when possible. This
1476 // is important for good codegen.
1477 //
1478 // We do this by coercing the value into a scalar type which the backend can
1479 // handle naturally (i.e., without using byval).
1480 //
1481 // For simplicity, we currently only do this when we have exhausted all of the
1482 // free integer registers. Doing this when there are free integer registers
1483 // would require more care, as we would have to ensure that the coerced value
1484 // did not claim the unused register. That would require either reording the
1485 // arguments to the function (so that any subsequent inreg values came first),
1486 // or only doing this optimization when there were no following arguments that
1487 // might be inreg.
1488 //
1489 // We currently expect it to be rare (particularly in well written code) for
1490 // arguments to be passed on the stack when there are still free integer
1491 // registers available (this would typically imply large structs being passed
1492 // by value), so this seems like a fair tradeoff for now.
1493 //
1494 // We can revisit this if the backend grows support for 'onstack' parameter
1495 // attributes. See PR12193.
1496 if (freeIntRegs == 0) {
1497 uint64_t Size = getContext().getTypeSize(Ty);
1498
1499 // If this type fits in an eightbyte, coerce it into the matching integral
1500 // type, which will end up on the stack (with alignment 8).
1501 if (Align == 8 && Size <= 64)
1502 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1503 Size));
1504 }
1505
1506 return ABIArgInfo::getIndirect(Align);
1507 }
1508
1509 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1510 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
1511 /// vector register.
GetByteVectorType(QualType Ty) const1512 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1513 llvm::Type *IRType = CGT.ConvertType(Ty);
1514
1515 // Wrapper structs that just contain vectors are passed just like vectors,
1516 // strip them off if present.
1517 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1518 while (STy && STy->getNumElements() == 1) {
1519 IRType = STy->getElementType(0);
1520 STy = dyn_cast<llvm::StructType>(IRType);
1521 }
1522
1523 // If the preferred type is a 16-byte vector, prefer to pass it.
1524 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1525 llvm::Type *EltTy = VT->getElementType();
1526 unsigned BitWidth = VT->getBitWidth();
1527 if ((BitWidth >= 128 && BitWidth <= 256) &&
1528 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1529 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1530 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1531 EltTy->isIntegerTy(128)))
1532 return VT;
1533 }
1534
1535 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1536 }
1537
1538 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1539 /// is known to either be off the end of the specified type or being in
1540 /// alignment padding. The user type specified is known to be at most 128 bits
1541 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1542 /// classification that put one of the two halves in the INTEGER class.
1543 ///
1544 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)1545 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1546 unsigned EndBit, ASTContext &Context) {
1547 // If the bytes being queried are off the end of the type, there is no user
1548 // data hiding here. This handles analysis of builtins, vectors and other
1549 // types that don't contain interesting padding.
1550 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1551 if (TySize <= StartBit)
1552 return true;
1553
1554 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1555 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1556 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1557
1558 // Check each element to see if the element overlaps with the queried range.
1559 for (unsigned i = 0; i != NumElts; ++i) {
1560 // If the element is after the span we care about, then we're done..
1561 unsigned EltOffset = i*EltSize;
1562 if (EltOffset >= EndBit) break;
1563
1564 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1565 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1566 EndBit-EltOffset, Context))
1567 return false;
1568 }
1569 // If it overlaps no elements, then it is safe to process as padding.
1570 return true;
1571 }
1572
1573 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1574 const RecordDecl *RD = RT->getDecl();
1575 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1576
1577 // If this is a C++ record, check the bases first.
1578 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1579 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1580 e = CXXRD->bases_end(); i != e; ++i) {
1581 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1582 "Unexpected base class!");
1583 const CXXRecordDecl *Base =
1584 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1585
1586 // If the base is after the span we care about, ignore it.
1587 unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1588 if (BaseOffset >= EndBit) continue;
1589
1590 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1591 if (!BitsContainNoUserData(i->getType(), BaseStart,
1592 EndBit-BaseOffset, Context))
1593 return false;
1594 }
1595 }
1596
1597 // Verify that no field has data that overlaps the region of interest. Yes
1598 // this could be sped up a lot by being smarter about queried fields,
1599 // however we're only looking at structs up to 16 bytes, so we don't care
1600 // much.
1601 unsigned idx = 0;
1602 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1603 i != e; ++i, ++idx) {
1604 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1605
1606 // If we found a field after the region we care about, then we're done.
1607 if (FieldOffset >= EndBit) break;
1608
1609 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1610 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1611 Context))
1612 return false;
1613 }
1614
1615 // If nothing in this record overlapped the area of interest, then we're
1616 // clean.
1617 return true;
1618 }
1619
1620 return false;
1621 }
1622
1623 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1624 /// float member at the specified offset. For example, {int,{float}} has a
1625 /// float at offset 4. It is conservatively correct for this routine to return
1626 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::TargetData & TD)1627 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1628 const llvm::TargetData &TD) {
1629 // Base case if we find a float.
1630 if (IROffset == 0 && IRType->isFloatTy())
1631 return true;
1632
1633 // If this is a struct, recurse into the field at the specified offset.
1634 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1635 const llvm::StructLayout *SL = TD.getStructLayout(STy);
1636 unsigned Elt = SL->getElementContainingOffset(IROffset);
1637 IROffset -= SL->getElementOffset(Elt);
1638 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1639 }
1640
1641 // If this is an array, recurse into the field at the specified offset.
1642 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1643 llvm::Type *EltTy = ATy->getElementType();
1644 unsigned EltSize = TD.getTypeAllocSize(EltTy);
1645 IROffset -= IROffset/EltSize*EltSize;
1646 return ContainsFloatAtOffset(EltTy, IROffset, TD);
1647 }
1648
1649 return false;
1650 }
1651
1652
1653 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1654 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1655 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const1656 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1657 QualType SourceTy, unsigned SourceOffset) const {
1658 // The only three choices we have are either double, <2 x float>, or float. We
1659 // pass as float if the last 4 bytes is just padding. This happens for
1660 // structs that contain 3 floats.
1661 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1662 SourceOffset*8+64, getContext()))
1663 return llvm::Type::getFloatTy(getVMContext());
1664
1665 // We want to pass as <2 x float> if the LLVM IR type contains a float at
1666 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
1667 // case.
1668 if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1669 ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1670 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1671
1672 return llvm::Type::getDoubleTy(getVMContext());
1673 }
1674
1675
1676 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1677 /// an 8-byte GPR. This means that we either have a scalar or we are talking
1678 /// about the high or low part of an up-to-16-byte struct. This routine picks
1679 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1680 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1681 /// etc).
1682 ///
1683 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1684 /// the source type. IROffset is an offset in bytes into the LLVM IR type that
1685 /// the 8-byte value references. PrefType may be null.
1686 ///
1687 /// SourceTy is the source level type for the entire argument. SourceOffset is
1688 /// an offset into this that we're processing (which is always either 0 or 8).
1689 ///
1690 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const1691 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1692 QualType SourceTy, unsigned SourceOffset) const {
1693 // If we're dealing with an un-offset LLVM IR type, then it means that we're
1694 // returning an 8-byte unit starting with it. See if we can safely use it.
1695 if (IROffset == 0) {
1696 // Pointers and int64's always fill the 8-byte unit.
1697 if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1698 return IRType;
1699
1700 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1701 // goodness in the source type is just tail padding. This is allowed to
1702 // kick in for struct {double,int} on the int, but not on
1703 // struct{double,int,int} because we wouldn't return the second int. We
1704 // have to do this analysis on the source type because we can't depend on
1705 // unions being lowered a specific way etc.
1706 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1707 IRType->isIntegerTy(32)) {
1708 unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1709
1710 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1711 SourceOffset*8+64, getContext()))
1712 return IRType;
1713 }
1714 }
1715
1716 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1717 // If this is a struct, recurse into the field at the specified offset.
1718 const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1719 if (IROffset < SL->getSizeInBytes()) {
1720 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1721 IROffset -= SL->getElementOffset(FieldIdx);
1722
1723 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1724 SourceTy, SourceOffset);
1725 }
1726 }
1727
1728 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1729 llvm::Type *EltTy = ATy->getElementType();
1730 unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1731 unsigned EltOffset = IROffset/EltSize*EltSize;
1732 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1733 SourceOffset);
1734 }
1735
1736 // Okay, we don't have any better idea of what to pass, so we pass this in an
1737 // integer register that isn't too big to fit the rest of the struct.
1738 unsigned TySizeInBytes =
1739 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1740
1741 assert(TySizeInBytes != SourceOffset && "Empty field?");
1742
1743 // It is always safe to classify this as an integer type up to i64 that
1744 // isn't larger than the structure.
1745 return llvm::IntegerType::get(getVMContext(),
1746 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1747 }
1748
1749
1750 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1751 /// be used as elements of a two register pair to pass or return, return a
1752 /// first class aggregate to represent them. For example, if the low part of
1753 /// a by-value argument should be passed as i32* and the high part as float,
1754 /// return {i32*, float}.
1755 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::TargetData & TD)1756 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1757 const llvm::TargetData &TD) {
1758 // In order to correctly satisfy the ABI, we need to the high part to start
1759 // at offset 8. If the high and low parts we inferred are both 4-byte types
1760 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1761 // the second element at offset 8. Check for this:
1762 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1763 unsigned HiAlign = TD.getABITypeAlignment(Hi);
1764 unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1765 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1766
1767 // To handle this, we have to increase the size of the low part so that the
1768 // second element will start at an 8 byte offset. We can't increase the size
1769 // of the second element because it might make us access off the end of the
1770 // struct.
1771 if (HiStart != 8) {
1772 // There are only two sorts of types the ABI generation code can produce for
1773 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1774 // Promote these to a larger type.
1775 if (Lo->isFloatTy())
1776 Lo = llvm::Type::getDoubleTy(Lo->getContext());
1777 else {
1778 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1779 Lo = llvm::Type::getInt64Ty(Lo->getContext());
1780 }
1781 }
1782
1783 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1784
1785
1786 // Verify that the second element is at an 8-byte offset.
1787 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1788 "Invalid x86-64 argument pair!");
1789 return Result;
1790 }
1791
1792 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const1793 classifyReturnType(QualType RetTy) const {
1794 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1795 // classification algorithm.
1796 X86_64ABIInfo::Class Lo, Hi;
1797 classify(RetTy, 0, Lo, Hi);
1798
1799 // Check some invariants.
1800 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1801 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1802
1803 llvm::Type *ResType = 0;
1804 switch (Lo) {
1805 case NoClass:
1806 if (Hi == NoClass)
1807 return ABIArgInfo::getIgnore();
1808 // If the low part is just padding, it takes no register, leave ResType
1809 // null.
1810 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1811 "Unknown missing lo part");
1812 break;
1813
1814 case SSEUp:
1815 case X87Up:
1816 llvm_unreachable("Invalid classification for lo word.");
1817
1818 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1819 // hidden argument.
1820 case Memory:
1821 return getIndirectReturnResult(RetTy);
1822
1823 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1824 // available register of the sequence %rax, %rdx is used.
1825 case Integer:
1826 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1827
1828 // If we have a sign or zero extended integer, make sure to return Extend
1829 // so that the parameter gets the right LLVM IR attributes.
1830 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1831 // Treat an enum type as its underlying type.
1832 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1833 RetTy = EnumTy->getDecl()->getIntegerType();
1834
1835 if (RetTy->isIntegralOrEnumerationType() &&
1836 RetTy->isPromotableIntegerType())
1837 return ABIArgInfo::getExtend();
1838 }
1839 break;
1840
1841 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1842 // available SSE register of the sequence %xmm0, %xmm1 is used.
1843 case SSE:
1844 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1845 break;
1846
1847 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1848 // returned on the X87 stack in %st0 as 80-bit x87 number.
1849 case X87:
1850 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1851 break;
1852
1853 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1854 // part of the value is returned in %st0 and the imaginary part in
1855 // %st1.
1856 case ComplexX87:
1857 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1858 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1859 llvm::Type::getX86_FP80Ty(getVMContext()),
1860 NULL);
1861 break;
1862 }
1863
1864 llvm::Type *HighPart = 0;
1865 switch (Hi) {
1866 // Memory was handled previously and X87 should
1867 // never occur as a hi class.
1868 case Memory:
1869 case X87:
1870 llvm_unreachable("Invalid classification for hi word.");
1871
1872 case ComplexX87: // Previously handled.
1873 case NoClass:
1874 break;
1875
1876 case Integer:
1877 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1878 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
1879 return ABIArgInfo::getDirect(HighPart, 8);
1880 break;
1881 case SSE:
1882 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1883 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
1884 return ABIArgInfo::getDirect(HighPart, 8);
1885 break;
1886
1887 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1888 // is passed in the next available eightbyte chunk if the last used
1889 // vector register.
1890 //
1891 // SSEUP should always be preceded by SSE, just widen.
1892 case SSEUp:
1893 assert(Lo == SSE && "Unexpected SSEUp classification.");
1894 ResType = GetByteVectorType(RetTy);
1895 break;
1896
1897 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1898 // returned together with the previous X87 value in %st0.
1899 case X87Up:
1900 // If X87Up is preceded by X87, we don't need to do
1901 // anything. However, in some cases with unions it may not be
1902 // preceded by X87. In such situations we follow gcc and pass the
1903 // extra bits in an SSE reg.
1904 if (Lo != X87) {
1905 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1906 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
1907 return ABIArgInfo::getDirect(HighPart, 8);
1908 }
1909 break;
1910 }
1911
1912 // If a high part was specified, merge it together with the low part. It is
1913 // known to pass in the high eightbyte of the result. We do this by forming a
1914 // first class struct aggregate with the high and low part: {low, high}
1915 if (HighPart)
1916 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1917
1918 return ABIArgInfo::getDirect(ResType);
1919 }
1920
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE) const1921 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
1922 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
1923 const
1924 {
1925 X86_64ABIInfo::Class Lo, Hi;
1926 classify(Ty, 0, Lo, Hi);
1927
1928 // Check some invariants.
1929 // FIXME: Enforce these by construction.
1930 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1931 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1932
1933 neededInt = 0;
1934 neededSSE = 0;
1935 llvm::Type *ResType = 0;
1936 switch (Lo) {
1937 case NoClass:
1938 if (Hi == NoClass)
1939 return ABIArgInfo::getIgnore();
1940 // If the low part is just padding, it takes no register, leave ResType
1941 // null.
1942 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1943 "Unknown missing lo part");
1944 break;
1945
1946 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1947 // on the stack.
1948 case Memory:
1949
1950 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1951 // COMPLEX_X87, it is passed in memory.
1952 case X87:
1953 case ComplexX87:
1954 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1955 ++neededInt;
1956 return getIndirectResult(Ty, freeIntRegs);
1957
1958 case SSEUp:
1959 case X87Up:
1960 llvm_unreachable("Invalid classification for lo word.");
1961
1962 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1963 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1964 // and %r9 is used.
1965 case Integer:
1966 ++neededInt;
1967
1968 // Pick an 8-byte type based on the preferred type.
1969 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1970
1971 // If we have a sign or zero extended integer, make sure to return Extend
1972 // so that the parameter gets the right LLVM IR attributes.
1973 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1974 // Treat an enum type as its underlying type.
1975 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1976 Ty = EnumTy->getDecl()->getIntegerType();
1977
1978 if (Ty->isIntegralOrEnumerationType() &&
1979 Ty->isPromotableIntegerType())
1980 return ABIArgInfo::getExtend();
1981 }
1982
1983 break;
1984
1985 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1986 // available SSE register is used, the registers are taken in the
1987 // order from %xmm0 to %xmm7.
1988 case SSE: {
1989 llvm::Type *IRType = CGT.ConvertType(Ty);
1990 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1991 ++neededSSE;
1992 break;
1993 }
1994 }
1995
1996 llvm::Type *HighPart = 0;
1997 switch (Hi) {
1998 // Memory was handled previously, ComplexX87 and X87 should
1999 // never occur as hi classes, and X87Up must be preceded by X87,
2000 // which is passed in memory.
2001 case Memory:
2002 case X87:
2003 case ComplexX87:
2004 llvm_unreachable("Invalid classification for hi word.");
2005
2006 case NoClass: break;
2007
2008 case Integer:
2009 ++neededInt;
2010 // Pick an 8-byte type based on the preferred type.
2011 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2012
2013 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2014 return ABIArgInfo::getDirect(HighPart, 8);
2015 break;
2016
2017 // X87Up generally doesn't occur here (long double is passed in
2018 // memory), except in situations involving unions.
2019 case X87Up:
2020 case SSE:
2021 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2022
2023 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2024 return ABIArgInfo::getDirect(HighPart, 8);
2025
2026 ++neededSSE;
2027 break;
2028
2029 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2030 // eightbyte is passed in the upper half of the last used SSE
2031 // register. This only happens when 128-bit vectors are passed.
2032 case SSEUp:
2033 assert(Lo == SSE && "Unexpected SSEUp classification");
2034 ResType = GetByteVectorType(Ty);
2035 break;
2036 }
2037
2038 // If a high part was specified, merge it together with the low part. It is
2039 // known to pass in the high eightbyte of the result. We do this by forming a
2040 // first class struct aggregate with the high and low part: {low, high}
2041 if (HighPart)
2042 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2043
2044 return ABIArgInfo::getDirect(ResType);
2045 }
2046
computeInfo(CGFunctionInfo & FI) const2047 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2048
2049 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2050
2051 // Keep track of the number of assigned registers.
2052 unsigned freeIntRegs = 6, freeSSERegs = 8;
2053
2054 // If the return value is indirect, then the hidden argument is consuming one
2055 // integer register.
2056 if (FI.getReturnInfo().isIndirect())
2057 --freeIntRegs;
2058
2059 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2060 // get assigned (in left-to-right order) for passing as follows...
2061 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2062 it != ie; ++it) {
2063 unsigned neededInt, neededSSE;
2064 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2065 neededSSE);
2066
2067 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2068 // eightbyte of an argument, the whole argument is passed on the
2069 // stack. If registers have already been assigned for some
2070 // eightbytes of such an argument, the assignments get reverted.
2071 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2072 freeIntRegs -= neededInt;
2073 freeSSERegs -= neededSSE;
2074 } else {
2075 it->info = getIndirectResult(it->type, freeIntRegs);
2076 }
2077 }
2078 }
2079
EmitVAArgFromMemory(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF)2080 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2081 QualType Ty,
2082 CodeGenFunction &CGF) {
2083 llvm::Value *overflow_arg_area_p =
2084 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2085 llvm::Value *overflow_arg_area =
2086 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2087
2088 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2089 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2090 // It isn't stated explicitly in the standard, but in practice we use
2091 // alignment greater than 16 where necessary.
2092 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2093 if (Align > 8) {
2094 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2095 llvm::Value *Offset =
2096 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2097 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2098 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2099 CGF.Int64Ty);
2100 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2101 overflow_arg_area =
2102 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2103 overflow_arg_area->getType(),
2104 "overflow_arg_area.align");
2105 }
2106
2107 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2108 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2109 llvm::Value *Res =
2110 CGF.Builder.CreateBitCast(overflow_arg_area,
2111 llvm::PointerType::getUnqual(LTy));
2112
2113 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2114 // l->overflow_arg_area + sizeof(type).
2115 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2116 // an 8 byte boundary.
2117
2118 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2119 llvm::Value *Offset =
2120 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
2121 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2122 "overflow_arg_area.next");
2123 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2124
2125 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2126 return Res;
2127 }
2128
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2129 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2130 CodeGenFunction &CGF) const {
2131 // Assume that va_list type is correct; should be pointer to LLVM type:
2132 // struct {
2133 // i32 gp_offset;
2134 // i32 fp_offset;
2135 // i8* overflow_arg_area;
2136 // i8* reg_save_area;
2137 // };
2138 unsigned neededInt, neededSSE;
2139
2140 Ty = CGF.getContext().getCanonicalType(Ty);
2141 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2142
2143 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2144 // in the registers. If not go to step 7.
2145 if (!neededInt && !neededSSE)
2146 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2147
2148 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2149 // general purpose registers needed to pass type and num_fp to hold
2150 // the number of floating point registers needed.
2151
2152 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2153 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2154 // l->fp_offset > 304 - num_fp * 16 go to step 7.
2155 //
2156 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2157 // register save space).
2158
2159 llvm::Value *InRegs = 0;
2160 llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2161 llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2162 if (neededInt) {
2163 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2164 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2165 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2166 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2167 }
2168
2169 if (neededSSE) {
2170 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2171 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2172 llvm::Value *FitsInFP =
2173 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2174 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2175 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2176 }
2177
2178 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2179 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2180 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2181 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2182
2183 // Emit code to load the value if it was passed in registers.
2184
2185 CGF.EmitBlock(InRegBlock);
2186
2187 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2188 // an offset of l->gp_offset and/or l->fp_offset. This may require
2189 // copying to a temporary location in case the parameter is passed
2190 // in different register classes or requires an alignment greater
2191 // than 8 for general purpose registers and 16 for XMM registers.
2192 //
2193 // FIXME: This really results in shameful code when we end up needing to
2194 // collect arguments from different places; often what should result in a
2195 // simple assembling of a structure from scattered addresses has many more
2196 // loads than necessary. Can we clean this up?
2197 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2198 llvm::Value *RegAddr =
2199 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2200 "reg_save_area");
2201 if (neededInt && neededSSE) {
2202 // FIXME: Cleanup.
2203 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2204 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2205 llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2206 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2207 llvm::Type *TyLo = ST->getElementType(0);
2208 llvm::Type *TyHi = ST->getElementType(1);
2209 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2210 "Unexpected ABI info for mixed regs");
2211 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2212 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2213 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2214 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2215 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2216 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2217 llvm::Value *V =
2218 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2219 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2220 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2221 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2222
2223 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2224 llvm::PointerType::getUnqual(LTy));
2225 } else if (neededInt) {
2226 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2227 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2228 llvm::PointerType::getUnqual(LTy));
2229 } else if (neededSSE == 1) {
2230 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2231 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2232 llvm::PointerType::getUnqual(LTy));
2233 } else {
2234 assert(neededSSE == 2 && "Invalid number of needed registers!");
2235 // SSE registers are spaced 16 bytes apart in the register save
2236 // area, we need to collect the two eightbytes together.
2237 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2238 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2239 llvm::Type *DoubleTy = CGF.DoubleTy;
2240 llvm::Type *DblPtrTy =
2241 llvm::PointerType::getUnqual(DoubleTy);
2242 llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2243 DoubleTy, NULL);
2244 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2245 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2246 DblPtrTy));
2247 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2248 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2249 DblPtrTy));
2250 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2251 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2252 llvm::PointerType::getUnqual(LTy));
2253 }
2254
2255 // AMD64-ABI 3.5.7p5: Step 5. Set:
2256 // l->gp_offset = l->gp_offset + num_gp * 8
2257 // l->fp_offset = l->fp_offset + num_fp * 16.
2258 if (neededInt) {
2259 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2260 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2261 gp_offset_p);
2262 }
2263 if (neededSSE) {
2264 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2265 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2266 fp_offset_p);
2267 }
2268 CGF.EmitBranch(ContBlock);
2269
2270 // Emit code to load the value if it was passed in memory.
2271
2272 CGF.EmitBlock(InMemBlock);
2273 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2274
2275 // Return the appropriate result.
2276
2277 CGF.EmitBlock(ContBlock);
2278 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2279 "vaarg.addr");
2280 ResAddr->addIncoming(RegAddr, InRegBlock);
2281 ResAddr->addIncoming(MemAddr, InMemBlock);
2282 return ResAddr;
2283 }
2284
classify(QualType Ty) const2285 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2286
2287 if (Ty->isVoidType())
2288 return ABIArgInfo::getIgnore();
2289
2290 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2291 Ty = EnumTy->getDecl()->getIntegerType();
2292
2293 uint64_t Size = getContext().getTypeSize(Ty);
2294
2295 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2296 if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2297 RT->getDecl()->hasFlexibleArrayMember())
2298 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2299
2300 // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2301 if (Size == 128 &&
2302 getContext().getTargetInfo().getTriple().getOS()
2303 == llvm::Triple::MinGW32)
2304 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2305 Size));
2306
2307 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2308 // not 1, 2, 4, or 8 bytes, must be passed by reference."
2309 if (Size <= 64 &&
2310 (Size & (Size - 1)) == 0)
2311 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2312 Size));
2313
2314 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2315 }
2316
2317 if (Ty->isPromotableIntegerType())
2318 return ABIArgInfo::getExtend();
2319
2320 return ABIArgInfo::getDirect();
2321 }
2322
computeInfo(CGFunctionInfo & FI) const2323 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2324
2325 QualType RetTy = FI.getReturnType();
2326 FI.getReturnInfo() = classify(RetTy);
2327
2328 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2329 it != ie; ++it)
2330 it->info = classify(it->type);
2331 }
2332
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2333 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2334 CodeGenFunction &CGF) const {
2335 llvm::Type *BPP = CGF.Int8PtrPtrTy;
2336
2337 CGBuilderTy &Builder = CGF.Builder;
2338 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2339 "ap");
2340 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2341 llvm::Type *PTy =
2342 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2343 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2344
2345 uint64_t Offset =
2346 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2347 llvm::Value *NextAddr =
2348 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2349 "ap.next");
2350 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2351
2352 return AddrTyped;
2353 }
2354
2355 // PowerPC-32
2356
2357 namespace {
2358 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2359 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT)2360 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2361
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2362 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2363 // This is recovered from gcc output.
2364 return 1; // r1 is the dedicated stack pointer
2365 }
2366
2367 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2368 llvm::Value *Address) const;
2369 };
2370
2371 }
2372
2373 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2374 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2375 llvm::Value *Address) const {
2376 // This is calculated from the LLVM and GCC tables and verified
2377 // against gcc output. AFAIK all ABIs use the same encoding.
2378
2379 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2380
2381 llvm::IntegerType *i8 = CGF.Int8Ty;
2382 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2383 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2384 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2385
2386 // 0-31: r0-31, the 4-byte general-purpose registers
2387 AssignToArrayRange(Builder, Address, Four8, 0, 31);
2388
2389 // 32-63: fp0-31, the 8-byte floating-point registers
2390 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2391
2392 // 64-76 are various 4-byte special-purpose registers:
2393 // 64: mq
2394 // 65: lr
2395 // 66: ctr
2396 // 67: ap
2397 // 68-75 cr0-7
2398 // 76: xer
2399 AssignToArrayRange(Builder, Address, Four8, 64, 76);
2400
2401 // 77-108: v0-31, the 16-byte vector registers
2402 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2403
2404 // 109: vrsave
2405 // 110: vscr
2406 // 111: spe_acc
2407 // 112: spefscr
2408 // 113: sfp
2409 AssignToArrayRange(Builder, Address, Four8, 109, 113);
2410
2411 return false;
2412 }
2413
2414
2415 //===----------------------------------------------------------------------===//
2416 // ARM ABI Implementation
2417 //===----------------------------------------------------------------------===//
2418
2419 namespace {
2420
2421 class ARMABIInfo : public ABIInfo {
2422 public:
2423 enum ABIKind {
2424 APCS = 0,
2425 AAPCS = 1,
2426 AAPCS_VFP
2427 };
2428
2429 private:
2430 ABIKind Kind;
2431
2432 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)2433 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2434
isEABI() const2435 bool isEABI() const {
2436 StringRef Env =
2437 getContext().getTargetInfo().getTriple().getEnvironmentName();
2438 return (Env == "gnueabi" || Env == "eabi" || Env == "androideabi");
2439 }
2440
2441 private:
getABIKind() const2442 ABIKind getABIKind() const { return Kind; }
2443
2444 ABIArgInfo classifyReturnType(QualType RetTy) const;
2445 ABIArgInfo classifyArgumentType(QualType RetTy) const;
2446
2447 virtual void computeInfo(CGFunctionInfo &FI) const;
2448
2449 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2450 CodeGenFunction &CGF) const;
2451 };
2452
2453 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2454 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)2455 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2456 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2457
getABIInfo() const2458 const ARMABIInfo &getABIInfo() const {
2459 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2460 }
2461
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2462 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2463 return 13;
2464 }
2465
getARCRetainAutoreleasedReturnValueMarker() const2466 StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2467 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2468 }
2469
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2470 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2471 llvm::Value *Address) const {
2472 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2473
2474 // 0-15 are the 16 integer registers.
2475 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2476 return false;
2477 }
2478
getSizeOfUnwindException() const2479 unsigned getSizeOfUnwindException() const {
2480 if (getABIInfo().isEABI()) return 88;
2481 return TargetCodeGenInfo::getSizeOfUnwindException();
2482 }
2483 };
2484
2485 }
2486
computeInfo(CGFunctionInfo & FI) const2487 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2488 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2489 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2490 it != ie; ++it)
2491 it->info = classifyArgumentType(it->type);
2492
2493 // Always honor user-specified calling convention.
2494 if (FI.getCallingConvention() != llvm::CallingConv::C)
2495 return;
2496
2497 // Calling convention as default by an ABI.
2498 llvm::CallingConv::ID DefaultCC;
2499 if (isEABI())
2500 DefaultCC = llvm::CallingConv::ARM_AAPCS;
2501 else
2502 DefaultCC = llvm::CallingConv::ARM_APCS;
2503
2504 // If user did not ask for specific calling convention explicitly (e.g. via
2505 // pcs attribute), set effective calling convention if it's different than ABI
2506 // default.
2507 switch (getABIKind()) {
2508 case APCS:
2509 if (DefaultCC != llvm::CallingConv::ARM_APCS)
2510 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2511 break;
2512 case AAPCS:
2513 if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2514 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2515 break;
2516 case AAPCS_VFP:
2517 if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2518 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2519 break;
2520 }
2521 }
2522
2523 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2524 /// aggregate. If HAMembers is non-null, the number of base elements
2525 /// contained in the type is returned through it; this is used for the
2526 /// recursive calls that check aggregate component types.
isHomogeneousAggregate(QualType Ty,const Type * & Base,ASTContext & Context,uint64_t * HAMembers=0)2527 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2528 ASTContext &Context,
2529 uint64_t *HAMembers = 0) {
2530 uint64_t Members = 0;
2531 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2532 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2533 return false;
2534 Members *= AT->getSize().getZExtValue();
2535 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2536 const RecordDecl *RD = RT->getDecl();
2537 if (RD->hasFlexibleArrayMember())
2538 return false;
2539
2540 Members = 0;
2541 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2542 i != e; ++i) {
2543 const FieldDecl *FD = *i;
2544 uint64_t FldMembers;
2545 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2546 return false;
2547
2548 Members = (RD->isUnion() ?
2549 std::max(Members, FldMembers) : Members + FldMembers);
2550 }
2551 } else {
2552 Members = 1;
2553 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2554 Members = 2;
2555 Ty = CT->getElementType();
2556 }
2557
2558 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2559 // double, or 64-bit or 128-bit vectors.
2560 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2561 if (BT->getKind() != BuiltinType::Float &&
2562 BT->getKind() != BuiltinType::Double)
2563 return false;
2564 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2565 unsigned VecSize = Context.getTypeSize(VT);
2566 if (VecSize != 64 && VecSize != 128)
2567 return false;
2568 } else {
2569 return false;
2570 }
2571
2572 // The base type must be the same for all members. Vector types of the
2573 // same total size are treated as being equivalent here.
2574 const Type *TyPtr = Ty.getTypePtr();
2575 if (!Base)
2576 Base = TyPtr;
2577 if (Base != TyPtr &&
2578 (!Base->isVectorType() || !TyPtr->isVectorType() ||
2579 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2580 return false;
2581 }
2582
2583 // Homogeneous Aggregates can have at most 4 members of the base type.
2584 if (HAMembers)
2585 *HAMembers = Members;
2586
2587 return (Members > 0 && Members <= 4);
2588 }
2589
classifyArgumentType(QualType Ty) const2590 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2591 if (!isAggregateTypeForABI(Ty)) {
2592 // Treat an enum type as its underlying type.
2593 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2594 Ty = EnumTy->getDecl()->getIntegerType();
2595
2596 return (Ty->isPromotableIntegerType() ?
2597 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2598 }
2599
2600 // Ignore empty records.
2601 if (isEmptyRecord(getContext(), Ty, true))
2602 return ABIArgInfo::getIgnore();
2603
2604 // Structures with either a non-trivial destructor or a non-trivial
2605 // copy constructor are always indirect.
2606 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2607 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2608
2609 if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2610 // Homogeneous Aggregates need to be expanded.
2611 const Type *Base = 0;
2612 if (isHomogeneousAggregate(Ty, Base, getContext())) {
2613 assert(Base && "Base class should be set for homogeneous aggregate");
2614 return ABIArgInfo::getExpand();
2615 }
2616 }
2617
2618 // Otherwise, pass by coercing to a structure of the appropriate size.
2619 //
2620 // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2621 // backend doesn't support byval.
2622 // FIXME: This doesn't handle alignment > 64 bits.
2623 llvm::Type* ElemTy;
2624 unsigned SizeRegs;
2625 if (getContext().getTypeAlign(Ty) > 32) {
2626 ElemTy = llvm::Type::getInt64Ty(getVMContext());
2627 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2628 } else {
2629 ElemTy = llvm::Type::getInt32Ty(getVMContext());
2630 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2631 }
2632
2633 llvm::Type *STy =
2634 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2635 return ABIArgInfo::getDirect(STy);
2636 }
2637
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)2638 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2639 llvm::LLVMContext &VMContext) {
2640 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2641 // is called integer-like if its size is less than or equal to one word, and
2642 // the offset of each of its addressable sub-fields is zero.
2643
2644 uint64_t Size = Context.getTypeSize(Ty);
2645
2646 // Check that the type fits in a word.
2647 if (Size > 32)
2648 return false;
2649
2650 // FIXME: Handle vector types!
2651 if (Ty->isVectorType())
2652 return false;
2653
2654 // Float types are never treated as "integer like".
2655 if (Ty->isRealFloatingType())
2656 return false;
2657
2658 // If this is a builtin or pointer type then it is ok.
2659 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2660 return true;
2661
2662 // Small complex integer types are "integer like".
2663 if (const ComplexType *CT = Ty->getAs<ComplexType>())
2664 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2665
2666 // Single element and zero sized arrays should be allowed, by the definition
2667 // above, but they are not.
2668
2669 // Otherwise, it must be a record type.
2670 const RecordType *RT = Ty->getAs<RecordType>();
2671 if (!RT) return false;
2672
2673 // Ignore records with flexible arrays.
2674 const RecordDecl *RD = RT->getDecl();
2675 if (RD->hasFlexibleArrayMember())
2676 return false;
2677
2678 // Check that all sub-fields are at offset 0, and are themselves "integer
2679 // like".
2680 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2681
2682 bool HadField = false;
2683 unsigned idx = 0;
2684 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2685 i != e; ++i, ++idx) {
2686 const FieldDecl *FD = *i;
2687
2688 // Bit-fields are not addressable, we only need to verify they are "integer
2689 // like". We still have to disallow a subsequent non-bitfield, for example:
2690 // struct { int : 0; int x }
2691 // is non-integer like according to gcc.
2692 if (FD->isBitField()) {
2693 if (!RD->isUnion())
2694 HadField = true;
2695
2696 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2697 return false;
2698
2699 continue;
2700 }
2701
2702 // Check if this field is at offset 0.
2703 if (Layout.getFieldOffset(idx) != 0)
2704 return false;
2705
2706 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2707 return false;
2708
2709 // Only allow at most one field in a structure. This doesn't match the
2710 // wording above, but follows gcc in situations with a field following an
2711 // empty structure.
2712 if (!RD->isUnion()) {
2713 if (HadField)
2714 return false;
2715
2716 HadField = true;
2717 }
2718 }
2719
2720 return true;
2721 }
2722
classifyReturnType(QualType RetTy) const2723 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2724 if (RetTy->isVoidType())
2725 return ABIArgInfo::getIgnore();
2726
2727 // Large vector types should be returned via memory.
2728 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2729 return ABIArgInfo::getIndirect(0);
2730
2731 if (!isAggregateTypeForABI(RetTy)) {
2732 // Treat an enum type as its underlying type.
2733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2734 RetTy = EnumTy->getDecl()->getIntegerType();
2735
2736 return (RetTy->isPromotableIntegerType() ?
2737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2738 }
2739
2740 // Structures with either a non-trivial destructor or a non-trivial
2741 // copy constructor are always indirect.
2742 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2743 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2744
2745 // Are we following APCS?
2746 if (getABIKind() == APCS) {
2747 if (isEmptyRecord(getContext(), RetTy, false))
2748 return ABIArgInfo::getIgnore();
2749
2750 // Complex types are all returned as packed integers.
2751 //
2752 // FIXME: Consider using 2 x vector types if the back end handles them
2753 // correctly.
2754 if (RetTy->isAnyComplexType())
2755 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2756 getContext().getTypeSize(RetTy)));
2757
2758 // Integer like structures are returned in r0.
2759 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2760 // Return in the smallest viable integer type.
2761 uint64_t Size = getContext().getTypeSize(RetTy);
2762 if (Size <= 8)
2763 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2764 if (Size <= 16)
2765 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2766 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2767 }
2768
2769 // Otherwise return in memory.
2770 return ABIArgInfo::getIndirect(0);
2771 }
2772
2773 // Otherwise this is an AAPCS variant.
2774
2775 if (isEmptyRecord(getContext(), RetTy, true))
2776 return ABIArgInfo::getIgnore();
2777
2778 // Check for homogeneous aggregates with AAPCS-VFP.
2779 if (getABIKind() == AAPCS_VFP) {
2780 const Type *Base = 0;
2781 if (isHomogeneousAggregate(RetTy, Base, getContext())) {
2782 assert(Base && "Base class should be set for homogeneous aggregate");
2783 // Homogeneous Aggregates are returned directly.
2784 return ABIArgInfo::getDirect();
2785 }
2786 }
2787
2788 // Aggregates <= 4 bytes are returned in r0; other aggregates
2789 // are returned indirectly.
2790 uint64_t Size = getContext().getTypeSize(RetTy);
2791 if (Size <= 32) {
2792 // Return in the smallest viable integer type.
2793 if (Size <= 8)
2794 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2795 if (Size <= 16)
2796 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2797 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2798 }
2799
2800 return ABIArgInfo::getIndirect(0);
2801 }
2802
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2803 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2804 CodeGenFunction &CGF) const {
2805 llvm::Type *BP = CGF.Int8PtrTy;
2806 llvm::Type *BPP = CGF.Int8PtrPtrTy;
2807
2808 CGBuilderTy &Builder = CGF.Builder;
2809 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2810 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2811 // Handle address alignment for type alignment > 32 bits
2812 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2813 if (TyAlign > 4) {
2814 assert((TyAlign & (TyAlign - 1)) == 0 &&
2815 "Alignment is not power of 2!");
2816 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2817 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2818 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2819 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2820 }
2821 llvm::Type *PTy =
2822 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2823 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2824
2825 uint64_t Offset =
2826 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2827 llvm::Value *NextAddr =
2828 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2829 "ap.next");
2830 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2831
2832 return AddrTyped;
2833 }
2834
2835 //===----------------------------------------------------------------------===//
2836 // PTX ABI Implementation
2837 //===----------------------------------------------------------------------===//
2838
2839 namespace {
2840
2841 class PTXABIInfo : public ABIInfo {
2842 public:
PTXABIInfo(CodeGenTypes & CGT)2843 PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2844
2845 ABIArgInfo classifyReturnType(QualType RetTy) const;
2846 ABIArgInfo classifyArgumentType(QualType Ty) const;
2847
2848 virtual void computeInfo(CGFunctionInfo &FI) const;
2849 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2850 CodeGenFunction &CFG) const;
2851 };
2852
2853 class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2854 public:
PTXTargetCodeGenInfo(CodeGenTypes & CGT)2855 PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2856 : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2857
2858 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2859 CodeGen::CodeGenModule &M) const;
2860 };
2861
classifyReturnType(QualType RetTy) const2862 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2863 if (RetTy->isVoidType())
2864 return ABIArgInfo::getIgnore();
2865 if (isAggregateTypeForABI(RetTy))
2866 return ABIArgInfo::getIndirect(0);
2867 return ABIArgInfo::getDirect();
2868 }
2869
classifyArgumentType(QualType Ty) const2870 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2871 if (isAggregateTypeForABI(Ty))
2872 return ABIArgInfo::getIndirect(0);
2873
2874 return ABIArgInfo::getDirect();
2875 }
2876
computeInfo(CGFunctionInfo & FI) const2877 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2878 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2879 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2880 it != ie; ++it)
2881 it->info = classifyArgumentType(it->type);
2882
2883 // Always honor user-specified calling convention.
2884 if (FI.getCallingConvention() != llvm::CallingConv::C)
2885 return;
2886
2887 // Calling convention as default by an ABI.
2888 llvm::CallingConv::ID DefaultCC;
2889 const LangOptions &LangOpts = getContext().getLangOpts();
2890 if (LangOpts.OpenCL || LangOpts.CUDA) {
2891 // If we are in OpenCL or CUDA mode, then default to device functions
2892 DefaultCC = llvm::CallingConv::PTX_Device;
2893 } else {
2894 // If we are in standard C/C++ mode, use the triple to decide on the default
2895 StringRef Env =
2896 getContext().getTargetInfo().getTriple().getEnvironmentName();
2897 if (Env == "device")
2898 DefaultCC = llvm::CallingConv::PTX_Device;
2899 else
2900 DefaultCC = llvm::CallingConv::PTX_Kernel;
2901 }
2902 FI.setEffectiveCallingConvention(DefaultCC);
2903
2904 }
2905
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CFG) const2906 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2907 CodeGenFunction &CFG) const {
2908 llvm_unreachable("PTX does not support varargs");
2909 }
2910
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const2911 void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2912 llvm::GlobalValue *GV,
2913 CodeGen::CodeGenModule &M) const{
2914 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2915 if (!FD) return;
2916
2917 llvm::Function *F = cast<llvm::Function>(GV);
2918
2919 // Perform special handling in OpenCL mode
2920 if (M.getLangOpts().OpenCL) {
2921 // Use OpenCL function attributes to set proper calling conventions
2922 // By default, all functions are device functions
2923 if (FD->hasAttr<OpenCLKernelAttr>()) {
2924 // OpenCL __kernel functions get a kernel calling convention
2925 F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2926 // And kernel functions are not subject to inlining
2927 F->addFnAttr(llvm::Attribute::NoInline);
2928 }
2929 }
2930
2931 // Perform special handling in CUDA mode.
2932 if (M.getLangOpts().CUDA) {
2933 // CUDA __global__ functions get a kernel calling convention. Since
2934 // __global__ functions cannot be called from the device, we do not
2935 // need to set the noinline attribute.
2936 if (FD->getAttr<CUDAGlobalAttr>())
2937 F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2938 }
2939 }
2940
2941 }
2942
2943 //===----------------------------------------------------------------------===//
2944 // MBlaze ABI Implementation
2945 //===----------------------------------------------------------------------===//
2946
2947 namespace {
2948
2949 class MBlazeABIInfo : public ABIInfo {
2950 public:
MBlazeABIInfo(CodeGenTypes & CGT)2951 MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2952
2953 bool isPromotableIntegerType(QualType Ty) const;
2954
2955 ABIArgInfo classifyReturnType(QualType RetTy) const;
2956 ABIArgInfo classifyArgumentType(QualType RetTy) const;
2957
computeInfo(CGFunctionInfo & FI) const2958 virtual void computeInfo(CGFunctionInfo &FI) const {
2959 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2960 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2961 it != ie; ++it)
2962 it->info = classifyArgumentType(it->type);
2963 }
2964
2965 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2966 CodeGenFunction &CGF) const;
2967 };
2968
2969 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2970 public:
MBlazeTargetCodeGenInfo(CodeGenTypes & CGT)2971 MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2972 : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2973 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2974 CodeGen::CodeGenModule &M) const;
2975 };
2976
2977 }
2978
isPromotableIntegerType(QualType Ty) const2979 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2980 // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2981 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2982 switch (BT->getKind()) {
2983 case BuiltinType::Bool:
2984 case BuiltinType::Char_S:
2985 case BuiltinType::Char_U:
2986 case BuiltinType::SChar:
2987 case BuiltinType::UChar:
2988 case BuiltinType::Short:
2989 case BuiltinType::UShort:
2990 return true;
2991 default:
2992 return false;
2993 }
2994 return false;
2995 }
2996
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2997 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2998 CodeGenFunction &CGF) const {
2999 // FIXME: Implement
3000 return 0;
3001 }
3002
3003
classifyReturnType(QualType RetTy) const3004 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3005 if (RetTy->isVoidType())
3006 return ABIArgInfo::getIgnore();
3007 if (isAggregateTypeForABI(RetTy))
3008 return ABIArgInfo::getIndirect(0);
3009
3010 return (isPromotableIntegerType(RetTy) ?
3011 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3012 }
3013
classifyArgumentType(QualType Ty) const3014 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3015 if (isAggregateTypeForABI(Ty))
3016 return ABIArgInfo::getIndirect(0);
3017
3018 return (isPromotableIntegerType(Ty) ?
3019 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3020 }
3021
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3022 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3023 llvm::GlobalValue *GV,
3024 CodeGen::CodeGenModule &M)
3025 const {
3026 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3027 if (!FD) return;
3028
3029 llvm::CallingConv::ID CC = llvm::CallingConv::C;
3030 if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3031 CC = llvm::CallingConv::MBLAZE_INTR;
3032 else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3033 CC = llvm::CallingConv::MBLAZE_SVOL;
3034
3035 if (CC != llvm::CallingConv::C) {
3036 // Handle 'interrupt_handler' attribute:
3037 llvm::Function *F = cast<llvm::Function>(GV);
3038
3039 // Step 1: Set ISR calling convention.
3040 F->setCallingConv(CC);
3041
3042 // Step 2: Add attributes goodness.
3043 F->addFnAttr(llvm::Attribute::NoInline);
3044 }
3045
3046 // Step 3: Emit _interrupt_handler alias.
3047 if (CC == llvm::CallingConv::MBLAZE_INTR)
3048 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3049 "_interrupt_handler", GV, &M.getModule());
3050 }
3051
3052
3053 //===----------------------------------------------------------------------===//
3054 // MSP430 ABI Implementation
3055 //===----------------------------------------------------------------------===//
3056
3057 namespace {
3058
3059 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3060 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)3061 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3062 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3063 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3064 CodeGen::CodeGenModule &M) const;
3065 };
3066
3067 }
3068
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3069 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3070 llvm::GlobalValue *GV,
3071 CodeGen::CodeGenModule &M) const {
3072 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3073 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3074 // Handle 'interrupt' attribute:
3075 llvm::Function *F = cast<llvm::Function>(GV);
3076
3077 // Step 1: Set ISR calling convention.
3078 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3079
3080 // Step 2: Add attributes goodness.
3081 F->addFnAttr(llvm::Attribute::NoInline);
3082
3083 // Step 3: Emit ISR vector alias.
3084 unsigned Num = attr->getNumber() + 0xffe0;
3085 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3086 "vector_" + Twine::utohexstr(Num),
3087 GV, &M.getModule());
3088 }
3089 }
3090 }
3091
3092 //===----------------------------------------------------------------------===//
3093 // MIPS ABI Implementation. This works for both little-endian and
3094 // big-endian variants.
3095 //===----------------------------------------------------------------------===//
3096
3097 namespace {
3098 class MipsABIInfo : public ABIInfo {
3099 bool IsO32;
3100 unsigned MinABIStackAlignInBytes;
3101 llvm::Type* HandleAggregates(QualType Ty) const;
3102 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3103 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3104 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)3105 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3106 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {}
3107
3108 ABIArgInfo classifyReturnType(QualType RetTy) const;
3109 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3110 virtual void computeInfo(CGFunctionInfo &FI) const;
3111 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3112 CodeGenFunction &CGF) const;
3113 };
3114
3115 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3116 unsigned SizeOfUnwindException;
3117 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)3118 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3119 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3120 SizeOfUnwindException(IsO32 ? 24 : 32) {}
3121
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const3122 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3123 return 29;
3124 }
3125
3126 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3127 llvm::Value *Address) const;
3128
getSizeOfUnwindException() const3129 unsigned getSizeOfUnwindException() const {
3130 return SizeOfUnwindException;
3131 }
3132 };
3133 }
3134
3135 // In N32/64, an aligned double precision floating point field is passed in
3136 // a register.
HandleAggregates(QualType Ty) const3137 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty) const {
3138 if (IsO32)
3139 return 0;
3140
3141 if (Ty->isComplexType())
3142 return CGT.ConvertType(Ty);
3143
3144 const RecordType *RT = Ty->getAs<RecordType>();
3145
3146 // Unions are passed in integer registers.
3147 if (!RT || !RT->isStructureOrClassType())
3148 return 0;
3149
3150 const RecordDecl *RD = RT->getDecl();
3151 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3152 uint64_t StructSize = getContext().getTypeSize(Ty);
3153 assert(!(StructSize % 8) && "Size of structure must be multiple of 8.");
3154
3155 uint64_t LastOffset = 0;
3156 unsigned idx = 0;
3157 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3158 SmallVector<llvm::Type*, 8> ArgList;
3159
3160 // Iterate over fields in the struct/class and check if there are any aligned
3161 // double fields.
3162 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3163 i != e; ++i, ++idx) {
3164 const QualType Ty = (*i)->getType();
3165 const BuiltinType *BT = Ty->getAs<BuiltinType>();
3166
3167 if (!BT || BT->getKind() != BuiltinType::Double)
3168 continue;
3169
3170 uint64_t Offset = Layout.getFieldOffset(idx);
3171 if (Offset % 64) // Ignore doubles that are not aligned.
3172 continue;
3173
3174 // Add ((Offset - LastOffset) / 64) args of type i64.
3175 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3176 ArgList.push_back(I64);
3177
3178 // Add double type.
3179 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3180 LastOffset = Offset + 64;
3181 }
3182
3183 // This struct/class doesn't have an aligned double field.
3184 if (!LastOffset)
3185 return 0;
3186
3187 // Add ((StructSize - LastOffset) / 64) args of type i64.
3188 for (unsigned N = (StructSize - LastOffset) / 64; N; --N)
3189 ArgList.push_back(I64);
3190
3191 // If the size of the remainder is not zero, add one more integer type to
3192 // ArgList.
3193 unsigned R = (StructSize - LastOffset) % 64;
3194 if (R)
3195 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3196
3197 return llvm::StructType::get(getVMContext(), ArgList);
3198 }
3199
getPaddingType(uint64_t Align,uint64_t Offset) const3200 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3201 // Padding is inserted only for N32/64.
3202 if (IsO32)
3203 return 0;
3204
3205 assert(Align <= 16 && "Alignment larger than 16 not handled.");
3206 return (Align == 16 && Offset & 0xf) ?
3207 llvm::IntegerType::get(getVMContext(), 64) : 0;
3208 }
3209
3210 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const3211 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3212 uint64_t OrigOffset = Offset;
3213 uint64_t TySize =
3214 llvm::RoundUpToAlignment(getContext().getTypeSize(Ty), 64) / 8;
3215 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3216 Offset = llvm::RoundUpToAlignment(Offset, std::max(Align, (uint64_t)8));
3217 Offset += TySize;
3218
3219 if (isAggregateTypeForABI(Ty)) {
3220 // Ignore empty aggregates.
3221 if (TySize == 0)
3222 return ABIArgInfo::getIgnore();
3223
3224 // Records with non trivial destructors/constructors should not be passed
3225 // by value.
3226 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3227 Offset = OrigOffset + 8;
3228 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3229 }
3230
3231 // If we have reached here, aggregates are passed either indirectly via a
3232 // byval pointer or directly by coercing to another structure type. In the
3233 // latter case, padding is inserted if the offset of the aggregate is
3234 // unaligned.
3235 llvm::Type *ResType = HandleAggregates(Ty);
3236
3237 if (!ResType)
3238 return ABIArgInfo::getIndirect(0);
3239
3240 return ABIArgInfo::getDirect(ResType, 0, getPaddingType(Align, OrigOffset));
3241 }
3242
3243 // Treat an enum type as its underlying type.
3244 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3245 Ty = EnumTy->getDecl()->getIntegerType();
3246
3247 if (Ty->isPromotableIntegerType())
3248 return ABIArgInfo::getExtend();
3249
3250 return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3251 }
3252
3253 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const3254 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3255 const RecordType *RT = RetTy->getAs<RecordType>();
3256 SmallVector<llvm::Type*, 2> RTList;
3257
3258 if (RT && RT->isStructureOrClassType()) {
3259 const RecordDecl *RD = RT->getDecl();
3260 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3261 unsigned FieldCnt = Layout.getFieldCount();
3262
3263 // N32/64 returns struct/classes in floating point registers if the
3264 // following conditions are met:
3265 // 1. The size of the struct/class is no larger than 128-bit.
3266 // 2. The struct/class has one or two fields all of which are floating
3267 // point types.
3268 // 3. The offset of the first field is zero (this follows what gcc does).
3269 //
3270 // Any other composite results are returned in integer registers.
3271 //
3272 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3273 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3274 for (; b != e; ++b) {
3275 const BuiltinType *BT = (*b)->getType()->getAs<BuiltinType>();
3276
3277 if (!BT || !BT->isFloatingPoint())
3278 break;
3279
3280 RTList.push_back(CGT.ConvertType((*b)->getType()));
3281 }
3282
3283 if (b == e)
3284 return llvm::StructType::get(getVMContext(), RTList,
3285 RD->hasAttr<PackedAttr>());
3286
3287 RTList.clear();
3288 }
3289 }
3290
3291 RTList.push_back(llvm::IntegerType::get(getVMContext(),
3292 std::min(Size, (uint64_t)64)));
3293 if (Size > 64)
3294 RTList.push_back(llvm::IntegerType::get(getVMContext(), Size - 64));
3295
3296 return llvm::StructType::get(getVMContext(), RTList);
3297 }
3298
classifyReturnType(QualType RetTy) const3299 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3300 uint64_t Size = getContext().getTypeSize(RetTy);
3301
3302 if (RetTy->isVoidType() || Size == 0)
3303 return ABIArgInfo::getIgnore();
3304
3305 if (isAggregateTypeForABI(RetTy)) {
3306 if (Size <= 128) {
3307 if (RetTy->isAnyComplexType())
3308 return ABIArgInfo::getDirect();
3309
3310 if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3311 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3312 }
3313
3314 return ABIArgInfo::getIndirect(0);
3315 }
3316
3317 // Treat an enum type as its underlying type.
3318 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3319 RetTy = EnumTy->getDecl()->getIntegerType();
3320
3321 return (RetTy->isPromotableIntegerType() ?
3322 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3323 }
3324
computeInfo(CGFunctionInfo & FI) const3325 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3326 ABIArgInfo &RetInfo = FI.getReturnInfo();
3327 RetInfo = classifyReturnType(FI.getReturnType());
3328
3329 // Check if a pointer to an aggregate is passed as a hidden argument.
3330 uint64_t Offset = RetInfo.isIndirect() ? 8 : 0;
3331
3332 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3333 it != ie; ++it)
3334 it->info = classifyArgumentType(it->type, Offset);
3335 }
3336
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3337 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3338 CodeGenFunction &CGF) const {
3339 llvm::Type *BP = CGF.Int8PtrTy;
3340 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3341
3342 CGBuilderTy &Builder = CGF.Builder;
3343 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3344 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3345 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3346 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3347 llvm::Value *AddrTyped;
3348 unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3349 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3350
3351 if (TypeAlign > MinABIStackAlignInBytes) {
3352 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3353 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3354 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3355 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3356 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3357 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3358 }
3359 else
3360 AddrTyped = Builder.CreateBitCast(Addr, PTy);
3361
3362 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3363 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3364 uint64_t Offset =
3365 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3366 llvm::Value *NextAddr =
3367 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3368 "ap.next");
3369 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3370
3371 return AddrTyped;
3372 }
3373
3374 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3375 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3376 llvm::Value *Address) const {
3377 // This information comes from gcc's implementation, which seems to
3378 // as canonical as it gets.
3379
3380 // Everything on MIPS is 4 bytes. Double-precision FP registers
3381 // are aliased to pairs of single-precision FP registers.
3382 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3383
3384 // 0-31 are the general purpose registers, $0 - $31.
3385 // 32-63 are the floating-point registers, $f0 - $f31.
3386 // 64 and 65 are the multiply/divide registers, $hi and $lo.
3387 // 66 is the (notional, I think) register for signal-handler return.
3388 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3389
3390 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3391 // They are one bit wide and ignored here.
3392
3393 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3394 // (coprocessor 1 is the FP unit)
3395 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3396 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3397 // 176-181 are the DSP accumulator registers.
3398 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3399 return false;
3400 }
3401
3402 //===----------------------------------------------------------------------===//
3403 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3404 // Currently subclassed only to implement custom OpenCL C function attribute
3405 // handling.
3406 //===----------------------------------------------------------------------===//
3407
3408 namespace {
3409
3410 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3411 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)3412 TCETargetCodeGenInfo(CodeGenTypes &CGT)
3413 : DefaultTargetCodeGenInfo(CGT) {}
3414
3415 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3416 CodeGen::CodeGenModule &M) const;
3417 };
3418
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3419 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3420 llvm::GlobalValue *GV,
3421 CodeGen::CodeGenModule &M) const {
3422 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3423 if (!FD) return;
3424
3425 llvm::Function *F = cast<llvm::Function>(GV);
3426
3427 if (M.getLangOpts().OpenCL) {
3428 if (FD->hasAttr<OpenCLKernelAttr>()) {
3429 // OpenCL C Kernel functions are not subject to inlining
3430 F->addFnAttr(llvm::Attribute::NoInline);
3431
3432 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3433
3434 // Convert the reqd_work_group_size() attributes to metadata.
3435 llvm::LLVMContext &Context = F->getContext();
3436 llvm::NamedMDNode *OpenCLMetadata =
3437 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3438
3439 SmallVector<llvm::Value*, 5> Operands;
3440 Operands.push_back(F);
3441
3442 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3443 llvm::APInt(32,
3444 FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3445 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3446 llvm::APInt(32,
3447 FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3448 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3449 llvm::APInt(32,
3450 FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3451
3452 // Add a boolean constant operand for "required" (true) or "hint" (false)
3453 // for implementing the work_group_size_hint attr later. Currently
3454 // always true as the hint is not yet implemented.
3455 Operands.push_back(llvm::ConstantInt::getTrue(Context));
3456 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3457 }
3458 }
3459 }
3460 }
3461
3462 }
3463
3464 //===----------------------------------------------------------------------===//
3465 // Hexagon ABI Implementation
3466 //===----------------------------------------------------------------------===//
3467
3468 namespace {
3469
3470 class HexagonABIInfo : public ABIInfo {
3471
3472
3473 public:
HexagonABIInfo(CodeGenTypes & CGT)3474 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3475
3476 private:
3477
3478 ABIArgInfo classifyReturnType(QualType RetTy) const;
3479 ABIArgInfo classifyArgumentType(QualType RetTy) const;
3480
3481 virtual void computeInfo(CGFunctionInfo &FI) const;
3482
3483 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3484 CodeGenFunction &CGF) const;
3485 };
3486
3487 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3488 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)3489 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3490 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3491
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3492 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3493 return 29;
3494 }
3495 };
3496
3497 }
3498
computeInfo(CGFunctionInfo & FI) const3499 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3500 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3501 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3502 it != ie; ++it)
3503 it->info = classifyArgumentType(it->type);
3504 }
3505
classifyArgumentType(QualType Ty) const3506 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3507 if (!isAggregateTypeForABI(Ty)) {
3508 // Treat an enum type as its underlying type.
3509 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3510 Ty = EnumTy->getDecl()->getIntegerType();
3511
3512 return (Ty->isPromotableIntegerType() ?
3513 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3514 }
3515
3516 // Ignore empty records.
3517 if (isEmptyRecord(getContext(), Ty, true))
3518 return ABIArgInfo::getIgnore();
3519
3520 // Structures with either a non-trivial destructor or a non-trivial
3521 // copy constructor are always indirect.
3522 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3523 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3524
3525 uint64_t Size = getContext().getTypeSize(Ty);
3526 if (Size > 64)
3527 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3528 // Pass in the smallest viable integer type.
3529 else if (Size > 32)
3530 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3531 else if (Size > 16)
3532 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3533 else if (Size > 8)
3534 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3535 else
3536 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3537 }
3538
classifyReturnType(QualType RetTy) const3539 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3540 if (RetTy->isVoidType())
3541 return ABIArgInfo::getIgnore();
3542
3543 // Large vector types should be returned via memory.
3544 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3545 return ABIArgInfo::getIndirect(0);
3546
3547 if (!isAggregateTypeForABI(RetTy)) {
3548 // Treat an enum type as its underlying type.
3549 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3550 RetTy = EnumTy->getDecl()->getIntegerType();
3551
3552 return (RetTy->isPromotableIntegerType() ?
3553 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3554 }
3555
3556 // Structures with either a non-trivial destructor or a non-trivial
3557 // copy constructor are always indirect.
3558 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3559 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3560
3561 if (isEmptyRecord(getContext(), RetTy, true))
3562 return ABIArgInfo::getIgnore();
3563
3564 // Aggregates <= 8 bytes are returned in r0; other aggregates
3565 // are returned indirectly.
3566 uint64_t Size = getContext().getTypeSize(RetTy);
3567 if (Size <= 64) {
3568 // Return in the smallest viable integer type.
3569 if (Size <= 8)
3570 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3571 if (Size <= 16)
3572 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3573 if (Size <= 32)
3574 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3575 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3576 }
3577
3578 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3579 }
3580
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3581 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3582 CodeGenFunction &CGF) const {
3583 // FIXME: Need to handle alignment
3584 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3585
3586 CGBuilderTy &Builder = CGF.Builder;
3587 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3588 "ap");
3589 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3590 llvm::Type *PTy =
3591 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3592 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3593
3594 uint64_t Offset =
3595 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3596 llvm::Value *NextAddr =
3597 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3598 "ap.next");
3599 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3600
3601 return AddrTyped;
3602 }
3603
3604
getTargetCodeGenInfo()3605 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3606 if (TheTargetCodeGenInfo)
3607 return *TheTargetCodeGenInfo;
3608
3609 const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3610 switch (Triple.getArch()) {
3611 default:
3612 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3613
3614 case llvm::Triple::mips:
3615 case llvm::Triple::mipsel:
3616 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3617
3618 case llvm::Triple::mips64:
3619 case llvm::Triple::mips64el:
3620 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3621
3622 case llvm::Triple::arm:
3623 case llvm::Triple::thumb:
3624 {
3625 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3626
3627 if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3628 Kind = ARMABIInfo::APCS;
3629 else if (CodeGenOpts.FloatABI == "hard")
3630 Kind = ARMABIInfo::AAPCS_VFP;
3631
3632 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3633 }
3634
3635 case llvm::Triple::ppc:
3636 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3637
3638 case llvm::Triple::ptx32:
3639 case llvm::Triple::ptx64:
3640 return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3641
3642 case llvm::Triple::mblaze:
3643 return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3644
3645 case llvm::Triple::msp430:
3646 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3647
3648 case llvm::Triple::tce:
3649 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3650
3651 case llvm::Triple::x86: {
3652 bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3653
3654 if (Triple.isOSDarwin())
3655 return *(TheTargetCodeGenInfo =
3656 new X86_32TargetCodeGenInfo(
3657 Types, true, true, DisableMMX, false));
3658
3659 switch (Triple.getOS()) {
3660 case llvm::Triple::Cygwin:
3661 case llvm::Triple::MinGW32:
3662 case llvm::Triple::AuroraUX:
3663 case llvm::Triple::DragonFly:
3664 case llvm::Triple::FreeBSD:
3665 case llvm::Triple::OpenBSD:
3666 return *(TheTargetCodeGenInfo =
3667 new X86_32TargetCodeGenInfo(
3668 Types, false, true, DisableMMX, false));
3669
3670 case llvm::Triple::Win32:
3671 return *(TheTargetCodeGenInfo =
3672 new X86_32TargetCodeGenInfo(
3673 Types, false, true, DisableMMX, true));
3674
3675 default:
3676 return *(TheTargetCodeGenInfo =
3677 new X86_32TargetCodeGenInfo(
3678 Types, false, false, DisableMMX, false));
3679 }
3680 }
3681
3682 case llvm::Triple::x86_64: {
3683 bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3684
3685 switch (Triple.getOS()) {
3686 case llvm::Triple::Win32:
3687 case llvm::Triple::MinGW32:
3688 case llvm::Triple::Cygwin:
3689 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3690 default:
3691 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3692 HasAVX));
3693 }
3694 }
3695 case llvm::Triple::hexagon:
3696 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3697 }
3698 }
3699