1 //===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header contains common, non-processor-specific data structures and 11 // constants for the ELF file format. 12 // 13 // The details of the ELF32 bits in this file are largely based on the Tool 14 // Interface Standard (TIS) Executable and Linking Format (ELF) Specification 15 // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format 16 // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_SUPPORT_ELF_H 21 #define LLVM_SUPPORT_ELF_H 22 23 #include "llvm/Support/DataTypes.h" 24 #include <cstring> 25 26 namespace llvm { 27 28 namespace ELF { 29 30 typedef uint32_t Elf32_Addr; // Program address 31 typedef uint32_t Elf32_Off; // File offset 32 typedef uint16_t Elf32_Half; 33 typedef uint32_t Elf32_Word; 34 typedef int32_t Elf32_Sword; 35 36 typedef uint64_t Elf64_Addr; 37 typedef uint64_t Elf64_Off; 38 typedef uint16_t Elf64_Half; 39 typedef uint32_t Elf64_Word; 40 typedef int32_t Elf64_Sword; 41 typedef uint64_t Elf64_Xword; 42 typedef int64_t Elf64_Sxword; 43 44 // Object file magic string. 45 static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' }; 46 47 // e_ident size and indices. 48 enum { 49 EI_MAG0 = 0, // File identification index. 50 EI_MAG1 = 1, // File identification index. 51 EI_MAG2 = 2, // File identification index. 52 EI_MAG3 = 3, // File identification index. 53 EI_CLASS = 4, // File class. 54 EI_DATA = 5, // Data encoding. 55 EI_VERSION = 6, // File version. 56 EI_OSABI = 7, // OS/ABI identification. 57 EI_ABIVERSION = 8, // ABI version. 58 EI_PAD = 9, // Start of padding bytes. 59 EI_NIDENT = 16 // Number of bytes in e_ident. 60 }; 61 62 struct Elf32_Ehdr { 63 unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes 64 Elf32_Half e_type; // Type of file (see ET_* below) 65 Elf32_Half e_machine; // Required architecture for this file (see EM_*) 66 Elf32_Word e_version; // Must be equal to 1 67 Elf32_Addr e_entry; // Address to jump to in order to start program 68 Elf32_Off e_phoff; // Program header table's file offset, in bytes 69 Elf32_Off e_shoff; // Section header table's file offset, in bytes 70 Elf32_Word e_flags; // Processor-specific flags 71 Elf32_Half e_ehsize; // Size of ELF header, in bytes 72 Elf32_Half e_phentsize; // Size of an entry in the program header table 73 Elf32_Half e_phnum; // Number of entries in the program header table 74 Elf32_Half e_shentsize; // Size of an entry in the section header table 75 Elf32_Half e_shnum; // Number of entries in the section header table 76 Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table checkMagicElf32_Ehdr77 bool checkMagic() const { 78 return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; 79 } getFileClassElf32_Ehdr80 unsigned char getFileClass() const { return e_ident[EI_CLASS]; } getDataEncodingElf32_Ehdr81 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } 82 }; 83 84 // 64-bit ELF header. Fields are the same as for ELF32, but with different 85 // types (see above). 86 struct Elf64_Ehdr { 87 unsigned char e_ident[EI_NIDENT]; 88 Elf64_Half e_type; 89 Elf64_Half e_machine; 90 Elf64_Word e_version; 91 Elf64_Addr e_entry; 92 Elf64_Off e_phoff; 93 Elf64_Off e_shoff; 94 Elf64_Word e_flags; 95 Elf64_Half e_ehsize; 96 Elf64_Half e_phentsize; 97 Elf64_Half e_phnum; 98 Elf64_Half e_shentsize; 99 Elf64_Half e_shnum; 100 Elf64_Half e_shstrndx; checkMagicElf64_Ehdr101 bool checkMagic() const { 102 return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; 103 } getFileClassElf64_Ehdr104 unsigned char getFileClass() const { return e_ident[EI_CLASS]; } getDataEncodingElf64_Ehdr105 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } 106 }; 107 108 // File types 109 enum { 110 ET_NONE = 0, // No file type 111 ET_REL = 1, // Relocatable file 112 ET_EXEC = 2, // Executable file 113 ET_DYN = 3, // Shared object file 114 ET_CORE = 4, // Core file 115 ET_LOPROC = 0xff00, // Beginning of processor-specific codes 116 ET_HIPROC = 0xffff // Processor-specific 117 }; 118 119 // Versioning 120 enum { 121 EV_NONE = 0, 122 EV_CURRENT = 1 123 }; 124 125 // Machine architectures 126 enum { 127 EM_NONE = 0, // No machine 128 EM_M32 = 1, // AT&T WE 32100 129 EM_SPARC = 2, // SPARC 130 EM_386 = 3, // Intel 386 131 EM_68K = 4, // Motorola 68000 132 EM_88K = 5, // Motorola 88000 133 EM_486 = 6, // Intel 486 (deprecated) 134 EM_860 = 7, // Intel 80860 135 EM_MIPS = 8, // MIPS R3000 136 EM_S370 = 9, // IBM System/370 137 EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian 138 EM_PARISC = 15, // Hewlett-Packard PA-RISC 139 EM_VPP500 = 17, // Fujitsu VPP500 140 EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC 141 EM_960 = 19, // Intel 80960 142 EM_PPC = 20, // PowerPC 143 EM_PPC64 = 21, // PowerPC64 144 EM_S390 = 22, // IBM System/390 145 EM_SPU = 23, // IBM SPU/SPC 146 EM_V800 = 36, // NEC V800 147 EM_FR20 = 37, // Fujitsu FR20 148 EM_RH32 = 38, // TRW RH-32 149 EM_RCE = 39, // Motorola RCE 150 EM_ARM = 40, // ARM 151 EM_ALPHA = 41, // DEC Alpha 152 EM_SH = 42, // Hitachi SH 153 EM_SPARCV9 = 43, // SPARC V9 154 EM_TRICORE = 44, // Siemens TriCore 155 EM_ARC = 45, // Argonaut RISC Core 156 EM_H8_300 = 46, // Hitachi H8/300 157 EM_H8_300H = 47, // Hitachi H8/300H 158 EM_H8S = 48, // Hitachi H8S 159 EM_H8_500 = 49, // Hitachi H8/500 160 EM_IA_64 = 50, // Intel IA-64 processor architecture 161 EM_MIPS_X = 51, // Stanford MIPS-X 162 EM_COLDFIRE = 52, // Motorola ColdFire 163 EM_68HC12 = 53, // Motorola M68HC12 164 EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator 165 EM_PCP = 55, // Siemens PCP 166 EM_NCPU = 56, // Sony nCPU embedded RISC processor 167 EM_NDR1 = 57, // Denso NDR1 microprocessor 168 EM_STARCORE = 58, // Motorola Star*Core processor 169 EM_ME16 = 59, // Toyota ME16 processor 170 EM_ST100 = 60, // STMicroelectronics ST100 processor 171 EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family 172 EM_X86_64 = 62, // AMD x86-64 architecture 173 EM_PDSP = 63, // Sony DSP Processor 174 EM_PDP10 = 64, // Digital Equipment Corp. PDP-10 175 EM_PDP11 = 65, // Digital Equipment Corp. PDP-11 176 EM_FX66 = 66, // Siemens FX66 microcontroller 177 EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller 178 EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller 179 EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller 180 EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller 181 EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller 182 EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller 183 EM_SVX = 73, // Silicon Graphics SVx 184 EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller 185 EM_VAX = 75, // Digital VAX 186 EM_CRIS = 76, // Axis Communications 32-bit embedded processor 187 EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor 188 EM_FIREPATH = 78, // Element 14 64-bit DSP Processor 189 EM_ZSP = 79, // LSI Logic 16-bit DSP Processor 190 EM_MMIX = 80, // Donald Knuth's educational 64-bit processor 191 EM_HUANY = 81, // Harvard University machine-independent object files 192 EM_PRISM = 82, // SiTera Prism 193 EM_AVR = 83, // Atmel AVR 8-bit microcontroller 194 EM_FR30 = 84, // Fujitsu FR30 195 EM_D10V = 85, // Mitsubishi D10V 196 EM_D30V = 86, // Mitsubishi D30V 197 EM_V850 = 87, // NEC v850 198 EM_M32R = 88, // Mitsubishi M32R 199 EM_MN10300 = 89, // Matsushita MN10300 200 EM_MN10200 = 90, // Matsushita MN10200 201 EM_PJ = 91, // picoJava 202 EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor 203 EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old 204 // spelling/synonym: EM_ARC_A5) 205 EM_XTENSA = 94, // Tensilica Xtensa Architecture 206 EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor 207 EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor 208 EM_NS32K = 97, // National Semiconductor 32000 series 209 EM_TPC = 98, // Tenor Network TPC processor 210 EM_SNP1K = 99, // Trebia SNP 1000 processor 211 EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200 212 EM_IP2K = 101, // Ubicom IP2xxx microcontroller family 213 EM_MAX = 102, // MAX Processor 214 EM_CR = 103, // National Semiconductor CompactRISC microprocessor 215 EM_F2MC16 = 104, // Fujitsu F2MC16 216 EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430 217 EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor 218 EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors 219 EM_SEP = 108, // Sharp embedded microprocessor 220 EM_ARCA = 109, // Arca RISC Microprocessor 221 EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC 222 // of Peking University 223 EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU 224 EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor 225 EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor 226 EM_CRX = 114, // National Semiconductor CompactRISC CRX 227 EM_XGATE = 115, // Motorola XGATE embedded processor 228 EM_C166 = 116, // Infineon C16x/XC16x processor 229 EM_M16C = 117, // Renesas M16C series microprocessors 230 EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal 231 // Controller 232 EM_CE = 119, // Freescale Communication Engine RISC core 233 EM_M32C = 120, // Renesas M32C series microprocessors 234 EM_TSK3000 = 131, // Altium TSK3000 core 235 EM_RS08 = 132, // Freescale RS08 embedded processor 236 EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP 237 // processors 238 EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor 239 EM_SCORE7 = 135, // Sunplus S+core7 RISC processor 240 EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor 241 EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor 242 EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture 243 EM_SE_C17 = 139, // Seiko Epson C17 family 244 EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family 245 EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family 246 EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family 247 EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor 248 EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor 249 EM_R32C = 162, // Renesas R32C series microprocessors 250 EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family 251 EM_QDSP6 = 164, // QUALCOMM DSP6 Processor 252 EM_8051 = 165, // Intel 8051 and variants 253 EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable 254 // and extensible RISC processors 255 EM_NDS32 = 167, // Andes Technology compact code size embedded RISC 256 // processor family 257 EM_ECOG1 = 168, // Cyan Technology eCOG1X family 258 EM_ECOG1X = 168, // Cyan Technology eCOG1X family 259 EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers 260 EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor 261 EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor 262 EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture 263 EM_RX = 173, // Renesas RX family 264 EM_METAG = 174, // Imagination Technologies META processor 265 // architecture 266 EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture 267 EM_ECOG16 = 176, // Cyan Technology eCOG16 family 268 EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit 269 // microprocessor 270 EM_ETPU = 178, // Freescale Extended Time Processing Unit 271 EM_SLE9X = 179, // Infineon Technologies SLE9X core 272 EM_L10M = 180, // Intel L10M 273 EM_K10M = 181, // Intel K10M 274 EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family 275 EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller 276 EM_TILE64 = 187, // Tilera TILE64 multicore architecture family 277 EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family 278 EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core 279 EM_CUDA = 190, // NVIDIA CUDA architecture 280 EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family 281 EM_CLOUDSHIELD = 192, // CloudShield architecture family 282 EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family 283 EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family 284 EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2 285 EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core 286 EM_RL78 = 197, // Renesas RL78 family 287 EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor 288 EM_78KOR = 199, // Renesas 78KOR family 289 EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC) 290 EM_MBLAZE = 47787 // Xilinx MicroBlaze 291 }; 292 293 // Object file classes. 294 enum { 295 ELFCLASSNONE = 0, 296 ELFCLASS32 = 1, // 32-bit object file 297 ELFCLASS64 = 2 // 64-bit object file 298 }; 299 300 // Object file byte orderings. 301 enum { 302 ELFDATANONE = 0, // Invalid data encoding. 303 ELFDATA2LSB = 1, // Little-endian object file 304 ELFDATA2MSB = 2 // Big-endian object file 305 }; 306 307 // OS ABI identification. 308 enum { 309 ELFOSABI_NONE = 0, // UNIX System V ABI 310 ELFOSABI_HPUX = 1, // HP-UX operating system 311 ELFOSABI_NETBSD = 2, // NetBSD 312 ELFOSABI_LINUX = 3, // GNU/Linux 313 ELFOSABI_HURD = 4, // GNU/Hurd 314 ELFOSABI_SOLARIS = 6, // Solaris 315 ELFOSABI_AIX = 7, // AIX 316 ELFOSABI_IRIX = 8, // IRIX 317 ELFOSABI_FREEBSD = 9, // FreeBSD 318 ELFOSABI_TRU64 = 10, // TRU64 UNIX 319 ELFOSABI_MODESTO = 11, // Novell Modesto 320 ELFOSABI_OPENBSD = 12, // OpenBSD 321 ELFOSABI_OPENVMS = 13, // OpenVMS 322 ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel 323 ELFOSABI_AROS = 15, // AROS 324 ELFOSABI_FENIXOS = 16, // FenixOS 325 ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 326 ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000 327 ELFOSABI_ARM = 97, // ARM 328 ELFOSABI_STANDALONE = 255 // Standalone (embedded) application 329 }; 330 331 // X86_64 relocations. 332 enum { 333 R_X86_64_NONE = 0, 334 R_X86_64_64 = 1, 335 R_X86_64_PC32 = 2, 336 R_X86_64_GOT32 = 3, 337 R_X86_64_PLT32 = 4, 338 R_X86_64_COPY = 5, 339 R_X86_64_GLOB_DAT = 6, 340 R_X86_64_JUMP_SLOT = 7, 341 R_X86_64_RELATIVE = 8, 342 R_X86_64_GOTPCREL = 9, 343 R_X86_64_32 = 10, 344 R_X86_64_32S = 11, 345 R_X86_64_16 = 12, 346 R_X86_64_PC16 = 13, 347 R_X86_64_8 = 14, 348 R_X86_64_PC8 = 15, 349 R_X86_64_DTPMOD64 = 16, 350 R_X86_64_DTPOFF64 = 17, 351 R_X86_64_TPOFF64 = 18, 352 R_X86_64_TLSGD = 19, 353 R_X86_64_TLSLD = 20, 354 R_X86_64_DTPOFF32 = 21, 355 R_X86_64_GOTTPOFF = 22, 356 R_X86_64_TPOFF32 = 23, 357 R_X86_64_PC64 = 24, 358 R_X86_64_GOTOFF64 = 25, 359 R_X86_64_GOTPC32 = 26, 360 R_X86_64_GOT64 = 27, 361 R_X86_64_GOTPCREL64 = 28, 362 R_X86_64_GOTPC64 = 29, 363 R_X86_64_GOTPLT64 = 30, 364 R_X86_64_PLTOFF64 = 31, 365 R_X86_64_SIZE32 = 32, 366 R_X86_64_SIZE64 = 33, 367 R_X86_64_GOTPC32_TLSDESC = 34, 368 R_X86_64_TLSDESC_CALL = 35, 369 R_X86_64_TLSDESC = 36 370 }; 371 372 // i386 relocations. 373 // TODO: this is just a subset 374 enum { 375 R_386_NONE = 0, 376 R_386_32 = 1, 377 R_386_PC32 = 2, 378 R_386_GOT32 = 3, 379 R_386_PLT32 = 4, 380 R_386_COPY = 5, 381 R_386_GLOB_DAT = 6, 382 R_386_JUMP_SLOT = 7, 383 R_386_RELATIVE = 8, 384 R_386_GOTOFF = 9, 385 R_386_GOTPC = 10, 386 R_386_32PLT = 11, 387 R_386_TLS_TPOFF = 14, 388 R_386_TLS_IE = 15, 389 R_386_TLS_GOTIE = 16, 390 R_386_TLS_LE = 17, 391 R_386_TLS_GD = 18, 392 R_386_TLS_LDM = 19, 393 R_386_16 = 20, 394 R_386_PC16 = 21, 395 R_386_8 = 22, 396 R_386_PC8 = 23, 397 R_386_TLS_GD_32 = 24, 398 R_386_TLS_GD_PUSH = 25, 399 R_386_TLS_GD_CALL = 26, 400 R_386_TLS_GD_POP = 27, 401 R_386_TLS_LDM_32 = 28, 402 R_386_TLS_LDM_PUSH = 29, 403 R_386_TLS_LDM_CALL = 30, 404 R_386_TLS_LDM_POP = 31, 405 R_386_TLS_LDO_32 = 32, 406 R_386_TLS_IE_32 = 33, 407 R_386_TLS_LE_32 = 34, 408 R_386_TLS_DTPMOD32 = 35, 409 R_386_TLS_DTPOFF32 = 36, 410 R_386_TLS_TPOFF32 = 37, 411 R_386_TLS_GOTDESC = 39, 412 R_386_TLS_DESC_CALL = 40, 413 R_386_TLS_DESC = 41, 414 R_386_IRELATIVE = 42, 415 R_386_NUM = 43 416 }; 417 418 // MBlaze relocations. 419 enum { 420 R_MICROBLAZE_NONE = 0, 421 R_MICROBLAZE_32 = 1, 422 R_MICROBLAZE_32_PCREL = 2, 423 R_MICROBLAZE_64_PCREL = 3, 424 R_MICROBLAZE_32_PCREL_LO = 4, 425 R_MICROBLAZE_64 = 5, 426 R_MICROBLAZE_32_LO = 6, 427 R_MICROBLAZE_SRO32 = 7, 428 R_MICROBLAZE_SRW32 = 8, 429 R_MICROBLAZE_64_NONE = 9, 430 R_MICROBLAZE_32_SYM_OP_SYM = 10, 431 R_MICROBLAZE_GNU_VTINHERIT = 11, 432 R_MICROBLAZE_GNU_VTENTRY = 12, 433 R_MICROBLAZE_GOTPC_64 = 13, 434 R_MICROBLAZE_GOT_64 = 14, 435 R_MICROBLAZE_PLT_64 = 15, 436 R_MICROBLAZE_REL = 16, 437 R_MICROBLAZE_JUMP_SLOT = 17, 438 R_MICROBLAZE_GLOB_DAT = 18, 439 R_MICROBLAZE_GOTOFF_64 = 19, 440 R_MICROBLAZE_GOTOFF_32 = 20, 441 R_MICROBLAZE_COPY = 21 442 }; 443 444 enum { 445 R_PPC_NONE = 0, /* No relocation. */ 446 R_PPC_ADDR32 = 1, 447 R_PPC_ADDR24 = 2, 448 R_PPC_ADDR16 = 3, 449 R_PPC_ADDR16_LO = 4, 450 R_PPC_ADDR16_HI = 5, 451 R_PPC_ADDR16_HA = 6, 452 R_PPC_ADDR14 = 7, 453 R_PPC_ADDR14_BRTAKEN = 8, 454 R_PPC_ADDR14_BRNTAKEN = 9, 455 R_PPC_REL24 = 10, 456 R_PPC_REL14 = 11, 457 R_PPC_REL14_BRTAKEN = 12, 458 R_PPC_REL14_BRNTAKEN = 13, 459 R_PPC_REL32 = 26 460 }; 461 462 // ARM Specific e_flags 463 enum { EF_ARM_EABIMASK = 0xFF000000U }; 464 465 // ELF Relocation types for ARM 466 // Meets 2.08 ABI Specs. 467 468 enum { 469 R_ARM_NONE = 0x00, 470 R_ARM_PC24 = 0x01, 471 R_ARM_ABS32 = 0x02, 472 R_ARM_REL32 = 0x03, 473 R_ARM_LDR_PC_G0 = 0x04, 474 R_ARM_ABS16 = 0x05, 475 R_ARM_ABS12 = 0x06, 476 R_ARM_THM_ABS5 = 0x07, 477 R_ARM_ABS8 = 0x08, 478 R_ARM_SBREL32 = 0x09, 479 R_ARM_THM_CALL = 0x0a, 480 R_ARM_THM_PC8 = 0x0b, 481 R_ARM_BREL_ADJ = 0x0c, 482 R_ARM_TLS_DESC = 0x0d, 483 R_ARM_THM_SWI8 = 0x0e, 484 R_ARM_XPC25 = 0x0f, 485 R_ARM_THM_XPC22 = 0x10, 486 R_ARM_TLS_DTPMOD32 = 0x11, 487 R_ARM_TLS_DTPOFF32 = 0x12, 488 R_ARM_TLS_TPOFF32 = 0x13, 489 R_ARM_COPY = 0x14, 490 R_ARM_GLOB_DAT = 0x15, 491 R_ARM_JUMP_SLOT = 0x16, 492 R_ARM_RELATIVE = 0x17, 493 R_ARM_GOTOFF32 = 0x18, 494 R_ARM_BASE_PREL = 0x19, 495 R_ARM_GOT_BREL = 0x1a, 496 R_ARM_PLT32 = 0x1b, 497 R_ARM_CALL = 0x1c, 498 R_ARM_JUMP24 = 0x1d, 499 R_ARM_THM_JUMP24 = 0x1e, 500 R_ARM_BASE_ABS = 0x1f, 501 R_ARM_ALU_PCREL_7_0 = 0x20, 502 R_ARM_ALU_PCREL_15_8 = 0x21, 503 R_ARM_ALU_PCREL_23_15 = 0x22, 504 R_ARM_LDR_SBREL_11_0_NC = 0x23, 505 R_ARM_ALU_SBREL_19_12_NC = 0x24, 506 R_ARM_ALU_SBREL_27_20_CK = 0x25, 507 R_ARM_TARGET1 = 0x26, 508 R_ARM_SBREL31 = 0x27, 509 R_ARM_V4BX = 0x28, 510 R_ARM_TARGET2 = 0x29, 511 R_ARM_PREL31 = 0x2a, 512 R_ARM_MOVW_ABS_NC = 0x2b, 513 R_ARM_MOVT_ABS = 0x2c, 514 R_ARM_MOVW_PREL_NC = 0x2d, 515 R_ARM_MOVT_PREL = 0x2e, 516 R_ARM_THM_MOVW_ABS_NC = 0x2f, 517 R_ARM_THM_MOVT_ABS = 0x30, 518 R_ARM_THM_MOVW_PREL_NC = 0x31, 519 R_ARM_THM_MOVT_PREL = 0x32, 520 R_ARM_THM_JUMP19 = 0x33, 521 R_ARM_THM_JUMP6 = 0x34, 522 R_ARM_THM_ALU_PREL_11_0 = 0x35, 523 R_ARM_THM_PC12 = 0x36, 524 R_ARM_ABS32_NOI = 0x37, 525 R_ARM_REL32_NOI = 0x38, 526 R_ARM_ALU_PC_G0_NC = 0x39, 527 R_ARM_ALU_PC_G0 = 0x3a, 528 R_ARM_ALU_PC_G1_NC = 0x3b, 529 R_ARM_ALU_PC_G1 = 0x3c, 530 R_ARM_ALU_PC_G2 = 0x3d, 531 R_ARM_LDR_PC_G1 = 0x3e, 532 R_ARM_LDR_PC_G2 = 0x3f, 533 R_ARM_LDRS_PC_G0 = 0x40, 534 R_ARM_LDRS_PC_G1 = 0x41, 535 R_ARM_LDRS_PC_G2 = 0x42, 536 R_ARM_LDC_PC_G0 = 0x43, 537 R_ARM_LDC_PC_G1 = 0x44, 538 R_ARM_LDC_PC_G2 = 0x45, 539 R_ARM_ALU_SB_G0_NC = 0x46, 540 R_ARM_ALU_SB_G0 = 0x47, 541 R_ARM_ALU_SB_G1_NC = 0x48, 542 R_ARM_ALU_SB_G1 = 0x49, 543 R_ARM_ALU_SB_G2 = 0x4a, 544 R_ARM_LDR_SB_G0 = 0x4b, 545 R_ARM_LDR_SB_G1 = 0x4c, 546 R_ARM_LDR_SB_G2 = 0x4d, 547 R_ARM_LDRS_SB_G0 = 0x4e, 548 R_ARM_LDRS_SB_G1 = 0x4f, 549 R_ARM_LDRS_SB_G2 = 0x50, 550 R_ARM_LDC_SB_G0 = 0x51, 551 R_ARM_LDC_SB_G1 = 0x52, 552 R_ARM_LDC_SB_G2 = 0x53, 553 R_ARM_MOVW_BREL_NC = 0x54, 554 R_ARM_MOVT_BREL = 0x55, 555 R_ARM_MOVW_BREL = 0x56, 556 R_ARM_THM_MOVW_BREL_NC = 0x57, 557 R_ARM_THM_MOVT_BREL = 0x58, 558 R_ARM_THM_MOVW_BREL = 0x59, 559 R_ARM_TLS_GOTDESC = 0x5a, 560 R_ARM_TLS_CALL = 0x5b, 561 R_ARM_TLS_DESCSEQ = 0x5c, 562 R_ARM_THM_TLS_CALL = 0x5d, 563 R_ARM_PLT32_ABS = 0x5e, 564 R_ARM_GOT_ABS = 0x5f, 565 R_ARM_GOT_PREL = 0x60, 566 R_ARM_GOT_BREL12 = 0x61, 567 R_ARM_GOTOFF12 = 0x62, 568 R_ARM_GOTRELAX = 0x63, 569 R_ARM_GNU_VTENTRY = 0x64, 570 R_ARM_GNU_VTINHERIT = 0x65, 571 R_ARM_THM_JUMP11 = 0x66, 572 R_ARM_THM_JUMP8 = 0x67, 573 R_ARM_TLS_GD32 = 0x68, 574 R_ARM_TLS_LDM32 = 0x69, 575 R_ARM_TLS_LDO32 = 0x6a, 576 R_ARM_TLS_IE32 = 0x6b, 577 R_ARM_TLS_LE32 = 0x6c, 578 R_ARM_TLS_LDO12 = 0x6d, 579 R_ARM_TLS_LE12 = 0x6e, 580 R_ARM_TLS_IE12GP = 0x6f, 581 R_ARM_PRIVATE_0 = 0x70, 582 R_ARM_PRIVATE_1 = 0x71, 583 R_ARM_PRIVATE_2 = 0x72, 584 R_ARM_PRIVATE_3 = 0x73, 585 R_ARM_PRIVATE_4 = 0x74, 586 R_ARM_PRIVATE_5 = 0x75, 587 R_ARM_PRIVATE_6 = 0x76, 588 R_ARM_PRIVATE_7 = 0x77, 589 R_ARM_PRIVATE_8 = 0x78, 590 R_ARM_PRIVATE_9 = 0x79, 591 R_ARM_PRIVATE_10 = 0x7a, 592 R_ARM_PRIVATE_11 = 0x7b, 593 R_ARM_PRIVATE_12 = 0x7c, 594 R_ARM_PRIVATE_13 = 0x7d, 595 R_ARM_PRIVATE_14 = 0x7e, 596 R_ARM_PRIVATE_15 = 0x7f, 597 R_ARM_ME_TOO = 0x80, 598 R_ARM_THM_TLS_DESCSEQ16 = 0x81, 599 R_ARM_THM_TLS_DESCSEQ32 = 0x82 600 }; 601 602 // Mips Specific e_flags 603 enum { 604 EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions 605 EF_MIPS_PIC = 0x00000002, // Position independent code 606 EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code 607 EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set 608 EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set 609 EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set 610 EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set 611 EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set 612 EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h 613 EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h 614 EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2 615 EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2 616 EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant 617 }; 618 619 // ELF Relocation types for Mips 620 // . 621 enum { 622 R_MIPS_NONE = 0, 623 R_MIPS_16 = 1, 624 R_MIPS_32 = 2, 625 R_MIPS_REL32 = 3, 626 R_MIPS_26 = 4, 627 R_MIPS_HI16 = 5, 628 R_MIPS_LO16 = 6, 629 R_MIPS_GPREL16 = 7, 630 R_MIPS_LITERAL = 8, 631 R_MIPS_GOT16 = 9, 632 R_MIPS_GOT = 9, 633 R_MIPS_PC16 = 10, 634 R_MIPS_CALL16 = 11, 635 R_MIPS_GPREL32 = 12, 636 R_MIPS_SHIFT5 = 16, 637 R_MIPS_SHIFT6 = 17, 638 R_MIPS_64 = 18, 639 R_MIPS_GOT_DISP = 19, 640 R_MIPS_GOT_PAGE = 20, 641 R_MIPS_GOT_OFST = 21, 642 R_MIPS_GOT_HI16 = 22, 643 R_MIPS_GOT_LO16 = 23, 644 R_MIPS_SUB = 24, 645 R_MIPS_INSERT_A = 25, 646 R_MIPS_INSERT_B = 26, 647 R_MIPS_DELETE = 27, 648 R_MIPS_HIGHER = 28, 649 R_MIPS_HIGHEST = 29, 650 R_MIPS_CALL_HI16 = 30, 651 R_MIPS_CALL_LO16 = 31, 652 R_MIPS_SCN_DISP = 32, 653 R_MIPS_REL16 = 33, 654 R_MIPS_ADD_IMMEDIATE = 34, 655 R_MIPS_PJUMP = 35, 656 R_MIPS_RELGOT = 36, 657 R_MIPS_JALR = 37, 658 R_MIPS_TLS_DTPMOD32 = 38, 659 R_MIPS_TLS_DTPREL32 = 39, 660 R_MIPS_TLS_DTPMOD64 = 40, 661 R_MIPS_TLS_DTPREL64 = 41, 662 R_MIPS_TLS_GD = 42, 663 R_MIPS_TLS_LDM = 43, 664 R_MIPS_TLS_DTPREL_HI16 = 44, 665 R_MIPS_TLS_DTPREL_LO16 = 45, 666 R_MIPS_TLS_GOTTPREL = 46, 667 R_MIPS_TLS_TPREL32 = 47, 668 R_MIPS_TLS_TPREL64 = 48, 669 R_MIPS_TLS_TPREL_HI16 = 49, 670 R_MIPS_TLS_TPREL_LO16 = 50, 671 R_MIPS_GLOB_DAT = 51, 672 R_MIPS_COPY = 126, 673 R_MIPS_JUMP_SLOT = 127, 674 R_MIPS_NUM = 218 675 }; 676 677 // Section header. 678 struct Elf32_Shdr { 679 Elf32_Word sh_name; // Section name (index into string table) 680 Elf32_Word sh_type; // Section type (SHT_*) 681 Elf32_Word sh_flags; // Section flags (SHF_*) 682 Elf32_Addr sh_addr; // Address where section is to be loaded 683 Elf32_Off sh_offset; // File offset of section data, in bytes 684 Elf32_Word sh_size; // Size of section, in bytes 685 Elf32_Word sh_link; // Section type-specific header table index link 686 Elf32_Word sh_info; // Section type-specific extra information 687 Elf32_Word sh_addralign; // Section address alignment 688 Elf32_Word sh_entsize; // Size of records contained within the section 689 }; 690 691 // Section header for ELF64 - same fields as ELF32, different types. 692 struct Elf64_Shdr { 693 Elf64_Word sh_name; 694 Elf64_Word sh_type; 695 Elf64_Xword sh_flags; 696 Elf64_Addr sh_addr; 697 Elf64_Off sh_offset; 698 Elf64_Xword sh_size; 699 Elf64_Word sh_link; 700 Elf64_Word sh_info; 701 Elf64_Xword sh_addralign; 702 Elf64_Xword sh_entsize; 703 }; 704 705 // Special section indices. 706 enum { 707 SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless 708 SHN_LORESERVE = 0xff00, // Lowest reserved index 709 SHN_LOPROC = 0xff00, // Lowest processor-specific index 710 SHN_HIPROC = 0xff1f, // Highest processor-specific index 711 SHN_LOOS = 0xff20, // Lowest operating system-specific index 712 SHN_HIOS = 0xff3f, // Highest operating system-specific index 713 SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation 714 SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables 715 SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE 716 SHN_HIRESERVE = 0xffff // Highest reserved index 717 }; 718 719 // Section types. 720 enum { 721 SHT_NULL = 0, // No associated section (inactive entry). 722 SHT_PROGBITS = 1, // Program-defined contents. 723 SHT_SYMTAB = 2, // Symbol table. 724 SHT_STRTAB = 3, // String table. 725 SHT_RELA = 4, // Relocation entries; explicit addends. 726 SHT_HASH = 5, // Symbol hash table. 727 SHT_DYNAMIC = 6, // Information for dynamic linking. 728 SHT_NOTE = 7, // Information about the file. 729 SHT_NOBITS = 8, // Data occupies no space in the file. 730 SHT_REL = 9, // Relocation entries; no explicit addends. 731 SHT_SHLIB = 10, // Reserved. 732 SHT_DYNSYM = 11, // Symbol table. 733 SHT_INIT_ARRAY = 14, // Pointers to initialization functions. 734 SHT_FINI_ARRAY = 15, // Pointers to termination functions. 735 SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. 736 SHT_GROUP = 17, // Section group. 737 SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries. 738 SHT_LOOS = 0x60000000, // Lowest operating system-specific type. 739 SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes. 740 SHT_GNU_HASH = 0x6ffffff6, // GNU style dynamic hash table. 741 SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions. 742 SHT_GNU_verneed = 0x6ffffffe, // GNU version references. 743 SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table. 744 SHT_HIOS = 0x6fffffff, // Highest operating system-specific type. 745 SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type. 746 747 // Fixme: All this is duplicated in MCSectionELF. Why?? 748 // Exception Index table 749 SHT_ARM_EXIDX = 0x70000001U, 750 // BPABI DLL dynamic linking pre-emption map 751 SHT_ARM_PREEMPTMAP = 0x70000002U, 752 // Object file compatibility attributes 753 SHT_ARM_ATTRIBUTES = 0x70000003U, 754 SHT_ARM_DEBUGOVERLAY = 0x70000004U, 755 SHT_ARM_OVERLAYSECTION = 0x70000005U, 756 757 SHT_X86_64_UNWIND = 0x70000001, // Unwind information 758 759 SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type. 760 SHT_LOUSER = 0x80000000, // Lowest type reserved for applications. 761 SHT_HIUSER = 0xffffffff // Highest type reserved for applications. 762 }; 763 764 // Section flags. 765 enum { 766 // Section data should be writable during execution. 767 SHF_WRITE = 0x1, 768 769 // Section occupies memory during program execution. 770 SHF_ALLOC = 0x2, 771 772 // Section contains executable machine instructions. 773 SHF_EXECINSTR = 0x4, 774 775 // The data in this section may be merged. 776 SHF_MERGE = 0x10, 777 778 // The data in this section is null-terminated strings. 779 SHF_STRINGS = 0x20, 780 781 // A field in this section holds a section header table index. 782 SHF_INFO_LINK = 0x40U, 783 784 // Adds special ordering requirements for link editors. 785 SHF_LINK_ORDER = 0x80U, 786 787 // This section requires special OS-specific processing to avoid incorrect 788 // behavior. 789 SHF_OS_NONCONFORMING = 0x100U, 790 791 // This section is a member of a section group. 792 SHF_GROUP = 0x200U, 793 794 // This section holds Thread-Local Storage. 795 SHF_TLS = 0x400U, 796 797 // Start of target-specific flags. 798 799 /// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped 800 /// together by the linker to form the constant pool and the cp register is 801 /// set to the start of the constant pool by the boot code. 802 XCORE_SHF_CP_SECTION = 0x800U, 803 804 /// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped 805 /// together by the linker to form the data section and the dp register is 806 /// set to the start of the section by the boot code. 807 XCORE_SHF_DP_SECTION = 0x1000U, 808 809 SHF_MASKOS = 0x0ff00000, 810 811 // Bits indicating processor-specific flags. 812 SHF_MASKPROC = 0xf0000000, 813 814 // If an object file section does not have this flag set, then it may not hold 815 // more than 2GB and can be freely referred to in objects using smaller code 816 // models. Otherwise, only objects using larger code models can refer to them. 817 // For example, a medium code model object can refer to data in a section that 818 // sets this flag besides being able to refer to data in a section that does 819 // not set it; likewise, a small code model object can refer only to code in a 820 // section that does not set this flag. 821 SHF_X86_64_LARGE = 0x10000000 822 }; 823 824 // Section Group Flags 825 enum { 826 GRP_COMDAT = 0x1, 827 GRP_MASKOS = 0x0ff00000, 828 GRP_MASKPROC = 0xf0000000 829 }; 830 831 // Symbol table entries for ELF32. 832 struct Elf32_Sym { 833 Elf32_Word st_name; // Symbol name (index into string table) 834 Elf32_Addr st_value; // Value or address associated with the symbol 835 Elf32_Word st_size; // Size of the symbol 836 unsigned char st_info; // Symbol's type and binding attributes 837 unsigned char st_other; // Must be zero; reserved 838 Elf32_Half st_shndx; // Which section (header table index) it's defined in 839 840 // These accessors and mutators correspond to the ELF32_ST_BIND, 841 // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: getBindingElf32_Sym842 unsigned char getBinding() const { return st_info >> 4; } getTypeElf32_Sym843 unsigned char getType() const { return st_info & 0x0f; } setBindingElf32_Sym844 void setBinding(unsigned char b) { setBindingAndType(b, getType()); } setTypeElf32_Sym845 void setType(unsigned char t) { setBindingAndType(getBinding(), t); } setBindingAndTypeElf32_Sym846 void setBindingAndType(unsigned char b, unsigned char t) { 847 st_info = (b << 4) + (t & 0x0f); 848 } 849 }; 850 851 // Symbol table entries for ELF64. 852 struct Elf64_Sym { 853 Elf64_Word st_name; // Symbol name (index into string table) 854 unsigned char st_info; // Symbol's type and binding attributes 855 unsigned char st_other; // Must be zero; reserved 856 Elf64_Half st_shndx; // Which section (header table index) it's defined in 857 Elf64_Addr st_value; // Value or address associated with the symbol 858 Elf64_Xword st_size; // Size of the symbol 859 860 // These accessors and mutators are identical to those defined for ELF32 861 // symbol table entries. getBindingElf64_Sym862 unsigned char getBinding() const { return st_info >> 4; } getTypeElf64_Sym863 unsigned char getType() const { return st_info & 0x0f; } setBindingElf64_Sym864 void setBinding(unsigned char b) { setBindingAndType(b, getType()); } setTypeElf64_Sym865 void setType(unsigned char t) { setBindingAndType(getBinding(), t); } setBindingAndTypeElf64_Sym866 void setBindingAndType(unsigned char b, unsigned char t) { 867 st_info = (b << 4) + (t & 0x0f); 868 } 869 }; 870 871 // The size (in bytes) of symbol table entries. 872 enum { 873 SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size 874 SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size. 875 }; 876 877 // Symbol bindings. 878 enum { 879 STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def 880 STB_GLOBAL = 1, // Global symbol, visible to all object files being combined 881 STB_WEAK = 2, // Weak symbol, like global but lower-precedence 882 STB_LOOS = 10, // Lowest operating system-specific binding type 883 STB_HIOS = 12, // Highest operating system-specific binding type 884 STB_LOPROC = 13, // Lowest processor-specific binding type 885 STB_HIPROC = 15 // Highest processor-specific binding type 886 }; 887 888 // Symbol types. 889 enum { 890 STT_NOTYPE = 0, // Symbol's type is not specified 891 STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.) 892 STT_FUNC = 2, // Symbol is executable code (function, etc.) 893 STT_SECTION = 3, // Symbol refers to a section 894 STT_FILE = 4, // Local, absolute symbol that refers to a file 895 STT_COMMON = 5, // An uninitialized common block 896 STT_TLS = 6, // Thread local data object 897 STT_LOOS = 7, // Lowest operating system-specific symbol type 898 STT_HIOS = 8, // Highest operating system-specific symbol type 899 STT_GNU_IFUNC = 10, // GNU indirect function 900 STT_LOPROC = 13, // Lowest processor-specific symbol type 901 STT_HIPROC = 15 // Highest processor-specific symbol type 902 }; 903 904 enum { 905 STV_DEFAULT = 0, // Visibility is specified by binding type 906 STV_INTERNAL = 1, // Defined by processor supplements 907 STV_HIDDEN = 2, // Not visible to other components 908 STV_PROTECTED = 3 // Visible in other components but not preemptable 909 }; 910 911 // Relocation entry, without explicit addend. 912 struct Elf32_Rel { 913 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) 914 Elf32_Word r_info; // Symbol table index and type of relocation to apply 915 916 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 917 // and ELF32_R_INFO macros defined in the ELF specification: getSymbolElf32_Rel918 Elf32_Word getSymbol() const { return (r_info >> 8); } getTypeElf32_Rel919 unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } setSymbolElf32_Rel920 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } setTypeElf32_Rel921 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } setSymbolAndTypeElf32_Rel922 void setSymbolAndType(Elf32_Word s, unsigned char t) { 923 r_info = (s << 8) + t; 924 } 925 }; 926 927 // Relocation entry with explicit addend. 928 struct Elf32_Rela { 929 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) 930 Elf32_Word r_info; // Symbol table index and type of relocation to apply 931 Elf32_Sword r_addend; // Compute value for relocatable field by adding this 932 933 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 934 // and ELF32_R_INFO macros defined in the ELF specification: getSymbolElf32_Rela935 Elf32_Word getSymbol() const { return (r_info >> 8); } getTypeElf32_Rela936 unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } setSymbolElf32_Rela937 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } setTypeElf32_Rela938 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } setSymbolAndTypeElf32_Rela939 void setSymbolAndType(Elf32_Word s, unsigned char t) { 940 r_info = (s << 8) + t; 941 } 942 }; 943 944 // Relocation entry, without explicit addend. 945 struct Elf64_Rel { 946 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). 947 Elf64_Xword r_info; // Symbol table index and type of relocation to apply. 948 949 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 950 // and ELF64_R_INFO macros defined in the ELF specification: getSymbolElf64_Rel951 Elf64_Xword getSymbol() const { return (r_info >> 32); } getTypeElf64_Rel952 unsigned char getType() const { 953 return (unsigned char) (r_info & 0xffffffffL); 954 } setSymbolElf64_Rel955 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } setTypeElf64_Rel956 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } setSymbolAndTypeElf64_Rel957 void setSymbolAndType(Elf64_Xword s, unsigned char t) { 958 r_info = (s << 32) + (t&0xffffffffL); 959 } 960 }; 961 962 // Relocation entry with explicit addend. 963 struct Elf64_Rela { 964 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). 965 Elf64_Xword r_info; // Symbol table index and type of relocation to apply. 966 Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. 967 968 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 969 // and ELF64_R_INFO macros defined in the ELF specification: getSymbolElf64_Rela970 Elf64_Xword getSymbol() const { return (r_info >> 32); } getTypeElf64_Rela971 unsigned char getType() const { 972 return (unsigned char) (r_info & 0xffffffffL); 973 } setSymbolElf64_Rela974 void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); } setTypeElf64_Rela975 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } setSymbolAndTypeElf64_Rela976 void setSymbolAndType(Elf64_Xword s, unsigned char t) { 977 r_info = (s << 32) + (t&0xffffffffL); 978 } 979 }; 980 981 // Program header for ELF32. 982 struct Elf32_Phdr { 983 Elf32_Word p_type; // Type of segment 984 Elf32_Off p_offset; // File offset where segment is located, in bytes 985 Elf32_Addr p_vaddr; // Virtual address of beginning of segment 986 Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific) 987 Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) 988 Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) 989 Elf32_Word p_flags; // Segment flags 990 Elf32_Word p_align; // Segment alignment constraint 991 }; 992 993 // Program header for ELF64. 994 struct Elf64_Phdr { 995 Elf64_Word p_type; // Type of segment 996 Elf64_Word p_flags; // Segment flags 997 Elf64_Off p_offset; // File offset where segment is located, in bytes 998 Elf64_Addr p_vaddr; // Virtual address of beginning of segment 999 Elf64_Addr p_paddr; // Physical address of beginning of segment (OS-specific) 1000 Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) 1001 Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) 1002 Elf64_Xword p_align; // Segment alignment constraint 1003 }; 1004 1005 // Segment types. 1006 enum { 1007 PT_NULL = 0, // Unused segment. 1008 PT_LOAD = 1, // Loadable segment. 1009 PT_DYNAMIC = 2, // Dynamic linking information. 1010 PT_INTERP = 3, // Interpreter pathname. 1011 PT_NOTE = 4, // Auxiliary information. 1012 PT_SHLIB = 5, // Reserved. 1013 PT_PHDR = 6, // The program header table itself. 1014 PT_TLS = 7, // The thread-local storage template. 1015 PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type. 1016 1017 // x86-64 program header types. 1018 // These all contain stack unwind tables. 1019 PT_GNU_EH_FRAME = 0x6474e550, 1020 PT_SUNW_EH_FRAME = 0x6474e550, 1021 PT_SUNW_UNWIND = 0x6464e550, 1022 1023 PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type. 1024 PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type. 1025 PT_HIPROC = 0x7fffffff // Highest processor-specific program hdr entry type. 1026 }; 1027 1028 // Segment flag bits. 1029 enum { 1030 PF_X = 1, // Execute 1031 PF_W = 2, // Write 1032 PF_R = 4, // Read 1033 PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics. 1034 PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics. 1035 }; 1036 1037 // Dynamic table entry for ELF32. 1038 struct Elf32_Dyn 1039 { 1040 Elf32_Sword d_tag; // Type of dynamic table entry. 1041 union 1042 { 1043 Elf32_Word d_val; // Integer value of entry. 1044 Elf32_Addr d_ptr; // Pointer value of entry. 1045 } d_un; 1046 }; 1047 1048 // Dynamic table entry for ELF64. 1049 struct Elf64_Dyn 1050 { 1051 Elf64_Sxword d_tag; // Type of dynamic table entry. 1052 union 1053 { 1054 Elf64_Xword d_val; // Integer value of entry. 1055 Elf64_Addr d_ptr; // Pointer value of entry. 1056 } d_un; 1057 }; 1058 1059 // Dynamic table entry tags. 1060 enum { 1061 DT_NULL = 0, // Marks end of dynamic array. 1062 DT_NEEDED = 1, // String table offset of needed library. 1063 DT_PLTRELSZ = 2, // Size of relocation entries in PLT. 1064 DT_PLTGOT = 3, // Address associated with linkage table. 1065 DT_HASH = 4, // Address of symbolic hash table. 1066 DT_STRTAB = 5, // Address of dynamic string table. 1067 DT_SYMTAB = 6, // Address of dynamic symbol table. 1068 DT_RELA = 7, // Address of relocation table (Rela entries). 1069 DT_RELASZ = 8, // Size of Rela relocation table. 1070 DT_RELAENT = 9, // Size of a Rela relocation entry. 1071 DT_STRSZ = 10, // Total size of the string table. 1072 DT_SYMENT = 11, // Size of a symbol table entry. 1073 DT_INIT = 12, // Address of initialization function. 1074 DT_FINI = 13, // Address of termination function. 1075 DT_SONAME = 14, // String table offset of a shared objects name. 1076 DT_RPATH = 15, // String table offset of library search path. 1077 DT_SYMBOLIC = 16, // Changes symbol resolution algorithm. 1078 DT_REL = 17, // Address of relocation table (Rel entries). 1079 DT_RELSZ = 18, // Size of Rel relocation table. 1080 DT_RELENT = 19, // Size of a Rel relocation entry. 1081 DT_PLTREL = 20, // Type of relocation entry used for linking. 1082 DT_DEBUG = 21, // Reserved for debugger. 1083 DT_TEXTREL = 22, // Relocations exist for non-writable segments. 1084 DT_JMPREL = 23, // Address of relocations associated with PLT. 1085 DT_BIND_NOW = 24, // Process all relocations before execution. 1086 DT_INIT_ARRAY = 25, // Pointer to array of initialization functions. 1087 DT_FINI_ARRAY = 26, // Pointer to array of termination functions. 1088 DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY. 1089 DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY. 1090 DT_RUNPATH = 29, // String table offset of lib search path. 1091 DT_FLAGS = 30, // Flags. 1092 DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules 1093 // for the interpretation of the d_un union. 1094 1095 DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions. 1096 DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array. 1097 1098 DT_LOOS = 0x60000000, // Start of environment specific tags. 1099 DT_HIOS = 0x6FFFFFFF, // End of environment specific tags. 1100 DT_LOPROC = 0x70000000, // Start of processor specific tags. 1101 DT_HIPROC = 0x7FFFFFFF // End of processor specific tags. 1102 }; 1103 1104 // DT_FLAGS values. 1105 enum { 1106 DF_ORIGIN = 0x01, // The object may reference $ORIGIN. 1107 DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe. 1108 DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment. 1109 DF_BIND_NOW = 0x08, // Process all relocations on load. 1110 DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically. 1111 }; 1112 1113 // ElfXX_VerDef structure version (GNU versioning) 1114 enum { 1115 VER_DEF_NONE = 0, 1116 VER_DEF_CURRENT = 1 1117 }; 1118 1119 // VerDef Flags (ElfXX_VerDef::vd_flags) 1120 enum { 1121 VER_FLG_BASE = 0x1, 1122 VER_FLG_WEAK = 0x2, 1123 VER_FLG_INFO = 0x4 1124 }; 1125 1126 // Special constants for the version table. (SHT_GNU_versym/.gnu.version) 1127 enum { 1128 VER_NDX_LOCAL = 0, // Unversioned local symbol 1129 VER_NDX_GLOBAL = 1, // Unversioned global symbol 1130 VERSYM_VERSION = 0x7fff, // Version Index mask 1131 VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version) 1132 }; 1133 1134 // ElfXX_VerNeed structure version (GNU versioning) 1135 enum { 1136 VER_NEED_NONE = 0, 1137 VER_NEED_CURRENT = 1 1138 }; 1139 1140 } // end namespace ELF 1141 1142 } // end namespace llvm 1143 1144 #endif 1145