1 //===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that generates random .ll files to stress-test
11 // different components in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "llvm/LLVMContext.h"
15 #include "llvm/Module.h"
16 #include "llvm/PassManager.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instruction.h"
19 #include "llvm/CallGraphSCCPass.h"
20 #include "llvm/Assembly/PrintModulePass.h"
21 #include "llvm/Analysis/Verifier.h"
22 #include "llvm/Support/PassNameParser.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ManagedStatic.h"
25 #include "llvm/Support/PluginLoader.h"
26 #include "llvm/Support/PrettyStackTrace.h"
27 #include "llvm/Support/ToolOutputFile.h"
28 #include <memory>
29 #include <sstream>
30 #include <set>
31 #include <vector>
32 #include <algorithm>
33 using namespace llvm;
34
35 static cl::opt<unsigned> SeedCL("seed",
36 cl::desc("Seed used for randomness"), cl::init(0));
37 static cl::opt<unsigned> SizeCL("size",
38 cl::desc("The estimated size of the generated function (# of instrs)"),
39 cl::init(100));
40 static cl::opt<std::string>
41 OutputFilename("o", cl::desc("Override output filename"),
42 cl::value_desc("filename"));
43
44 static cl::opt<bool> GenHalfFloat("generate-half-float",
45 cl::desc("Generate half-length floating-point values"), cl::init(false));
46 static cl::opt<bool> GenX86FP80("generate-x86-fp80",
47 cl::desc("Generate 80-bit X86 floating-point values"), cl::init(false));
48 static cl::opt<bool> GenFP128("generate-fp128",
49 cl::desc("Generate 128-bit floating-point values"), cl::init(false));
50 static cl::opt<bool> GenPPCFP128("generate-ppc-fp128",
51 cl::desc("Generate 128-bit PPC floating-point values"), cl::init(false));
52 static cl::opt<bool> GenX86MMX("generate-x86-mmx",
53 cl::desc("Generate X86 MMX floating-point values"), cl::init(false));
54
55 /// A utility class to provide a pseudo-random number generator which is
56 /// the same across all platforms. This is somewhat close to the libc
57 /// implementation. Note: This is not a cryptographically secure pseudorandom
58 /// number generator.
59 class Random {
60 public:
61 /// C'tor
Random(unsigned _seed)62 Random(unsigned _seed):Seed(_seed) {}
63
64 /// Return a random integer, up to a
65 /// maximum of 2**19 - 1.
Rand()66 uint32_t Rand() {
67 uint32_t Val = Seed + 0x000b07a1;
68 Seed = (Val * 0x3c7c0ac1);
69 // Only lowest 19 bits are random-ish.
70 return Seed & 0x7ffff;
71 }
72
73 /// Return a random 32 bit integer.
Rand32()74 uint32_t Rand32() {
75 uint32_t Val = Rand();
76 Val &= 0xffff;
77 return Val | (Rand() << 16);
78 }
79
80 /// Return a random 64 bit integer.
Rand64()81 uint64_t Rand64() {
82 uint64_t Val = Rand32();
83 return Val | (uint64_t(Rand32()) << 32);
84 }
85 private:
86 unsigned Seed;
87 };
88
89 /// Generate an empty function with a default argument list.
GenEmptyFunction(Module * M)90 Function *GenEmptyFunction(Module *M) {
91 // Type Definitions
92 std::vector<Type*> ArgsTy;
93 // Define a few arguments
94 LLVMContext &Context = M->getContext();
95 ArgsTy.push_back(PointerType::get(IntegerType::getInt8Ty(Context), 0));
96 ArgsTy.push_back(PointerType::get(IntegerType::getInt32Ty(Context), 0));
97 ArgsTy.push_back(PointerType::get(IntegerType::getInt64Ty(Context), 0));
98 ArgsTy.push_back(IntegerType::getInt32Ty(Context));
99 ArgsTy.push_back(IntegerType::getInt64Ty(Context));
100 ArgsTy.push_back(IntegerType::getInt8Ty(Context));
101
102 FunctionType *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, 0);
103 // Pick a unique name to describe the input parameters
104 std::stringstream ss;
105 ss<<"autogen_SD"<<SeedCL;
106 Function *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage,
107 ss.str(), M);
108
109 Func->setCallingConv(CallingConv::C);
110 return Func;
111 }
112
113 /// A base class, implementing utilities needed for
114 /// modifying and adding new random instructions.
115 struct Modifier {
116 /// Used to store the randomly generated values.
117 typedef std::vector<Value*> PieceTable;
118
119 public:
120 /// C'tor
ModifierModifier121 Modifier(BasicBlock *Block, PieceTable *PT, Random *R):
122 BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {}
123 /// Add a new instruction.
124 virtual void Act() = 0;
125 /// Add N new instructions,
ActNModifier126 virtual void ActN(unsigned n) {
127 for (unsigned i=0; i<n; ++i)
128 Act();
129 }
130
131 protected:
132 /// Return a random value from the list of known values.
getRandomValModifier133 Value *getRandomVal() {
134 assert(PT->size());
135 return PT->at(Ran->Rand() % PT->size());
136 }
137
getRandomConstantModifier138 Constant *getRandomConstant(Type *Tp) {
139 if (Tp->isIntegerTy()) {
140 if (Ran->Rand() & 1)
141 return ConstantInt::getAllOnesValue(Tp);
142 return ConstantInt::getNullValue(Tp);
143 } else if (Tp->isFloatingPointTy()) {
144 if (Ran->Rand() & 1)
145 return ConstantFP::getAllOnesValue(Tp);
146 return ConstantFP::getNullValue(Tp);
147 }
148 return UndefValue::get(Tp);
149 }
150
151 /// Return a random value with a known type.
getRandomValueModifier152 Value *getRandomValue(Type *Tp) {
153 unsigned index = Ran->Rand();
154 for (unsigned i=0; i<PT->size(); ++i) {
155 Value *V = PT->at((index + i) % PT->size());
156 if (V->getType() == Tp)
157 return V;
158 }
159
160 // If the requested type was not found, generate a constant value.
161 if (Tp->isIntegerTy()) {
162 if (Ran->Rand() & 1)
163 return ConstantInt::getAllOnesValue(Tp);
164 return ConstantInt::getNullValue(Tp);
165 } else if (Tp->isFloatingPointTy()) {
166 if (Ran->Rand() & 1)
167 return ConstantFP::getAllOnesValue(Tp);
168 return ConstantFP::getNullValue(Tp);
169 } else if (Tp->isVectorTy()) {
170 VectorType *VTp = cast<VectorType>(Tp);
171
172 std::vector<Constant*> TempValues;
173 TempValues.reserve(VTp->getNumElements());
174 for (unsigned i = 0; i < VTp->getNumElements(); ++i)
175 TempValues.push_back(getRandomConstant(VTp->getScalarType()));
176
177 ArrayRef<Constant*> VectorValue(TempValues);
178 return ConstantVector::get(VectorValue);
179 }
180
181 return UndefValue::get(Tp);
182 }
183
184 /// Return a random value of any pointer type.
getRandomPointerValueModifier185 Value *getRandomPointerValue() {
186 unsigned index = Ran->Rand();
187 for (unsigned i=0; i<PT->size(); ++i) {
188 Value *V = PT->at((index + i) % PT->size());
189 if (V->getType()->isPointerTy())
190 return V;
191 }
192 return UndefValue::get(pickPointerType());
193 }
194
195 /// Return a random value of any vector type.
getRandomVectorValueModifier196 Value *getRandomVectorValue() {
197 unsigned index = Ran->Rand();
198 for (unsigned i=0; i<PT->size(); ++i) {
199 Value *V = PT->at((index + i) % PT->size());
200 if (V->getType()->isVectorTy())
201 return V;
202 }
203 return UndefValue::get(pickVectorType());
204 }
205
206 /// Pick a random type.
pickTypeModifier207 Type *pickType() {
208 return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType());
209 }
210
211 /// Pick a random pointer type.
pickPointerTypeModifier212 Type *pickPointerType() {
213 Type *Ty = pickType();
214 return PointerType::get(Ty, 0);
215 }
216
217 /// Pick a random vector type.
pickVectorTypeModifier218 Type *pickVectorType(unsigned len = (unsigned)-1) {
219 // Pick a random vector width in the range 2**0 to 2**4.
220 // by adding two randoms we are generating a normal-like distribution
221 // around 2**3.
222 unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3));
223 Type *Ty;
224
225 // Vectors of x86mmx are illegal; keep trying till we get something else.
226 do {
227 Ty = pickScalarType();
228 } while (Ty->isX86_MMXTy());
229
230 if (len != (unsigned)-1)
231 width = len;
232 return VectorType::get(Ty, width);
233 }
234
235 /// Pick a random scalar type.
pickScalarTypeModifier236 Type *pickScalarType() {
237 Type *t = 0;
238 do {
239 switch (Ran->Rand() % 30) {
240 case 0: t = Type::getInt1Ty(Context); break;
241 case 1: t = Type::getInt8Ty(Context); break;
242 case 2: t = Type::getInt16Ty(Context); break;
243 case 3: case 4:
244 case 5: t = Type::getFloatTy(Context); break;
245 case 6: case 7:
246 case 8: t = Type::getDoubleTy(Context); break;
247 case 9: case 10:
248 case 11: t = Type::getInt32Ty(Context); break;
249 case 12: case 13:
250 case 14: t = Type::getInt64Ty(Context); break;
251 case 15: case 16:
252 case 17: if (GenHalfFloat) t = Type::getHalfTy(Context); break;
253 case 18: case 19:
254 case 20: if (GenX86FP80) t = Type::getX86_FP80Ty(Context); break;
255 case 21: case 22:
256 case 23: if (GenFP128) t = Type::getFP128Ty(Context); break;
257 case 24: case 25:
258 case 26: if (GenPPCFP128) t = Type::getPPC_FP128Ty(Context); break;
259 case 27: case 28:
260 case 29: if (GenX86MMX) t = Type::getX86_MMXTy(Context); break;
261 default: llvm_unreachable("Invalid scalar value");
262 }
263 } while (t == 0);
264
265 return t;
266 }
267
268 /// Basic block to populate
269 BasicBlock *BB;
270 /// Value table
271 PieceTable *PT;
272 /// Random number generator
273 Random *Ran;
274 /// Context
275 LLVMContext &Context;
276 };
277
278 struct LoadModifier: public Modifier {
LoadModifierLoadModifier279 LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
ActLoadModifier280 virtual void Act() {
281 // Try to use predefined pointers. If non exist, use undef pointer value;
282 Value *Ptr = getRandomPointerValue();
283 Value *V = new LoadInst(Ptr, "L", BB->getTerminator());
284 PT->push_back(V);
285 }
286 };
287
288 struct StoreModifier: public Modifier {
StoreModifierStoreModifier289 StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
ActStoreModifier290 virtual void Act() {
291 // Try to use predefined pointers. If non exist, use undef pointer value;
292 Value *Ptr = getRandomPointerValue();
293 Type *Tp = Ptr->getType();
294 Value *Val = getRandomValue(Tp->getContainedType(0));
295 Type *ValTy = Val->getType();
296
297 // Do not store vectors of i1s because they are unsupported
298 // by the codegen.
299 if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
300 return;
301
302 new StoreInst(Val, Ptr, BB->getTerminator());
303 }
304 };
305
306 struct BinModifier: public Modifier {
BinModifierBinModifier307 BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
308
ActBinModifier309 virtual void Act() {
310 Value *Val0 = getRandomVal();
311 Value *Val1 = getRandomValue(Val0->getType());
312
313 // Don't handle pointer types.
314 if (Val0->getType()->isPointerTy() ||
315 Val1->getType()->isPointerTy())
316 return;
317
318 // Don't handle i1 types.
319 if (Val0->getType()->getScalarSizeInBits() == 1)
320 return;
321
322
323 bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
324 Instruction* Term = BB->getTerminator();
325 unsigned R = Ran->Rand() % (isFloat ? 7 : 13);
326 Instruction::BinaryOps Op;
327
328 switch (R) {
329 default: llvm_unreachable("Invalid BinOp");
330 case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
331 case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
332 case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
333 case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
334 case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
335 case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
336 case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
337 case 7: {Op = Instruction::Shl; break; }
338 case 8: {Op = Instruction::LShr; break; }
339 case 9: {Op = Instruction::AShr; break; }
340 case 10:{Op = Instruction::And; break; }
341 case 11:{Op = Instruction::Or; break; }
342 case 12:{Op = Instruction::Xor; break; }
343 }
344
345 PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
346 }
347 };
348
349 /// Generate constant values.
350 struct ConstModifier: public Modifier {
ConstModifierConstModifier351 ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
ActConstModifier352 virtual void Act() {
353 Type *Ty = pickType();
354
355 if (Ty->isVectorTy()) {
356 switch (Ran->Rand() % 2) {
357 case 0: if (Ty->getScalarType()->isIntegerTy())
358 return PT->push_back(ConstantVector::getAllOnesValue(Ty));
359 case 1: if (Ty->getScalarType()->isIntegerTy())
360 return PT->push_back(ConstantVector::getNullValue(Ty));
361 }
362 }
363
364 if (Ty->isFloatingPointTy()) {
365 // Generate 128 random bits, the size of the (currently)
366 // largest floating-point types.
367 uint64_t RandomBits[2];
368 for (unsigned i = 0; i < 2; ++i)
369 RandomBits[i] = Ran->Rand64();
370
371 APInt RandomInt(Ty->getPrimitiveSizeInBits(), makeArrayRef(RandomBits));
372
373 bool isIEEE = !Ty->isX86_FP80Ty() && !Ty->isPPC_FP128Ty();
374 APFloat RandomFloat(RandomInt, isIEEE);
375
376 if (Ran->Rand() & 1)
377 return PT->push_back(ConstantFP::getNullValue(Ty));
378 return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat));
379 }
380
381 if (Ty->isIntegerTy()) {
382 switch (Ran->Rand() % 7) {
383 case 0: if (Ty->isIntegerTy())
384 return PT->push_back(ConstantInt::get(Ty,
385 APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits())));
386 case 1: if (Ty->isIntegerTy())
387 return PT->push_back(ConstantInt::get(Ty,
388 APInt::getNullValue(Ty->getPrimitiveSizeInBits())));
389 case 2: case 3: case 4: case 5:
390 case 6: if (Ty->isIntegerTy())
391 PT->push_back(ConstantInt::get(Ty, Ran->Rand()));
392 }
393 }
394
395 }
396 };
397
398 struct AllocaModifier: public Modifier {
AllocaModifierAllocaModifier399 AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){}
400
ActAllocaModifier401 virtual void Act() {
402 Type *Tp = pickType();
403 PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI()));
404 }
405 };
406
407 struct ExtractElementModifier: public Modifier {
ExtractElementModifierExtractElementModifier408 ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
409 Modifier(BB, PT, R) {}
410
ActExtractElementModifier411 virtual void Act() {
412 Value *Val0 = getRandomVectorValue();
413 Value *V = ExtractElementInst::Create(Val0,
414 ConstantInt::get(Type::getInt32Ty(BB->getContext()),
415 Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
416 "E", BB->getTerminator());
417 return PT->push_back(V);
418 }
419 };
420
421 struct ShuffModifier: public Modifier {
ShuffModifierShuffModifier422 ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
ActShuffModifier423 virtual void Act() {
424
425 Value *Val0 = getRandomVectorValue();
426 Value *Val1 = getRandomValue(Val0->getType());
427
428 unsigned Width = cast<VectorType>(Val0->getType())->getNumElements();
429 std::vector<Constant*> Idxs;
430
431 Type *I32 = Type::getInt32Ty(BB->getContext());
432 for (unsigned i=0; i<Width; ++i) {
433 Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2));
434 // Pick some undef values.
435 if (!(Ran->Rand() % 5))
436 CI = UndefValue::get(I32);
437 Idxs.push_back(CI);
438 }
439
440 Constant *Mask = ConstantVector::get(Idxs);
441
442 Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
443 BB->getTerminator());
444 PT->push_back(V);
445 }
446 };
447
448 struct InsertElementModifier: public Modifier {
InsertElementModifierInsertElementModifier449 InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
450 Modifier(BB, PT, R) {}
451
ActInsertElementModifier452 virtual void Act() {
453 Value *Val0 = getRandomVectorValue();
454 Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
455
456 Value *V = InsertElementInst::Create(Val0, Val1,
457 ConstantInt::get(Type::getInt32Ty(BB->getContext()),
458 Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
459 "I", BB->getTerminator());
460 return PT->push_back(V);
461 }
462
463 };
464
465 struct CastModifier: public Modifier {
CastModifierCastModifier466 CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
ActCastModifier467 virtual void Act() {
468
469 Value *V = getRandomVal();
470 Type *VTy = V->getType();
471 Type *DestTy = pickScalarType();
472
473 // Handle vector casts vectors.
474 if (VTy->isVectorTy()) {
475 VectorType *VecTy = cast<VectorType>(VTy);
476 DestTy = pickVectorType(VecTy->getNumElements());
477 }
478
479 // no need to cast.
480 if (VTy == DestTy) return;
481
482 // Pointers:
483 if (VTy->isPointerTy()) {
484 if (!DestTy->isPointerTy())
485 DestTy = PointerType::get(DestTy, 0);
486 return PT->push_back(
487 new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
488 }
489
490 unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits();
491 unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits();
492
493 // Generate lots of bitcasts.
494 if ((Ran->Rand() & 1) && VSize == DestSize) {
495 return PT->push_back(
496 new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
497 }
498
499 // Both types are integers:
500 if (VTy->getScalarType()->isIntegerTy() &&
501 DestTy->getScalarType()->isIntegerTy()) {
502 if (VSize > DestSize) {
503 return PT->push_back(
504 new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
505 } else {
506 assert(VSize < DestSize && "Different int types with the same size?");
507 if (Ran->Rand() & 1)
508 return PT->push_back(
509 new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
510 return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
511 }
512 }
513
514 // Fp to int.
515 if (VTy->getScalarType()->isFloatingPointTy() &&
516 DestTy->getScalarType()->isIntegerTy()) {
517 if (Ran->Rand() & 1)
518 return PT->push_back(
519 new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
520 return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
521 }
522
523 // Int to fp.
524 if (VTy->getScalarType()->isIntegerTy() &&
525 DestTy->getScalarType()->isFloatingPointTy()) {
526 if (Ran->Rand() & 1)
527 return PT->push_back(
528 new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
529 return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
530
531 }
532
533 // Both floats.
534 if (VTy->getScalarType()->isFloatingPointTy() &&
535 DestTy->getScalarType()->isFloatingPointTy()) {
536 if (VSize > DestSize) {
537 return PT->push_back(
538 new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
539 } else if (VSize < DestSize) {
540 return PT->push_back(
541 new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
542 }
543 // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
544 // for which there is no defined conversion. So do nothing.
545 }
546 }
547
548 };
549
550 struct SelectModifier: public Modifier {
SelectModifierSelectModifier551 SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R):
552 Modifier(BB, PT, R) {}
553
ActSelectModifier554 virtual void Act() {
555 // Try a bunch of different select configuration until a valid one is found.
556 Value *Val0 = getRandomVal();
557 Value *Val1 = getRandomValue(Val0->getType());
558
559 Type *CondTy = Type::getInt1Ty(Context);
560
561 // If the value type is a vector, and we allow vector select, then in 50%
562 // of the cases generate a vector select.
563 if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) {
564 unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements();
565 CondTy = VectorType::get(CondTy, NumElem);
566 }
567
568 Value *Cond = getRandomValue(CondTy);
569 Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
570 return PT->push_back(V);
571 }
572 };
573
574
575 struct CmpModifier: public Modifier {
CmpModifierCmpModifier576 CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
ActCmpModifier577 virtual void Act() {
578
579 Value *Val0 = getRandomVal();
580 Value *Val1 = getRandomValue(Val0->getType());
581
582 if (Val0->getType()->isPointerTy()) return;
583 bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
584
585 int op;
586 if (fp) {
587 op = Ran->Rand() %
588 (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
589 CmpInst::FIRST_FCMP_PREDICATE;
590 } else {
591 op = Ran->Rand() %
592 (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
593 CmpInst::FIRST_ICMP_PREDICATE;
594 }
595
596 Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
597 op, Val0, Val1, "Cmp", BB->getTerminator());
598 return PT->push_back(V);
599 }
600 };
601
FillFunction(Function * F)602 void FillFunction(Function *F) {
603 // Create a legal entry block.
604 BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
605 ReturnInst::Create(F->getContext(), BB);
606
607 // Create the value table.
608 Modifier::PieceTable PT;
609 // Pick an initial seed value
610 Random R(SeedCL);
611
612 // Consider arguments as legal values.
613 for (Function::arg_iterator it = F->arg_begin(), e = F->arg_end();
614 it != e; ++it)
615 PT.push_back(it);
616
617 // List of modifiers which add new random instructions.
618 std::vector<Modifier*> Modifiers;
619 std::auto_ptr<Modifier> LM(new LoadModifier(BB, &PT, &R));
620 std::auto_ptr<Modifier> SM(new StoreModifier(BB, &PT, &R));
621 std::auto_ptr<Modifier> EE(new ExtractElementModifier(BB, &PT, &R));
622 std::auto_ptr<Modifier> SHM(new ShuffModifier(BB, &PT, &R));
623 std::auto_ptr<Modifier> IE(new InsertElementModifier(BB, &PT, &R));
624 std::auto_ptr<Modifier> BM(new BinModifier(BB, &PT, &R));
625 std::auto_ptr<Modifier> CM(new CastModifier(BB, &PT, &R));
626 std::auto_ptr<Modifier> SLM(new SelectModifier(BB, &PT, &R));
627 std::auto_ptr<Modifier> PM(new CmpModifier(BB, &PT, &R));
628 Modifiers.push_back(LM.get());
629 Modifiers.push_back(SM.get());
630 Modifiers.push_back(EE.get());
631 Modifiers.push_back(SHM.get());
632 Modifiers.push_back(IE.get());
633 Modifiers.push_back(BM.get());
634 Modifiers.push_back(CM.get());
635 Modifiers.push_back(SLM.get());
636 Modifiers.push_back(PM.get());
637
638 // Generate the random instructions
639 AllocaModifier AM(BB, &PT, &R); AM.ActN(5); // Throw in a few allocas
640 ConstModifier COM(BB, &PT, &R); COM.ActN(40); // Throw in a few constants
641
642 for (unsigned i=0; i< SizeCL / Modifiers.size(); ++i)
643 for (std::vector<Modifier*>::iterator it = Modifiers.begin(),
644 e = Modifiers.end(); it != e; ++it) {
645 (*it)->Act();
646 }
647
648 SM->ActN(5); // Throw in a few stores.
649 }
650
IntroduceControlFlow(Function * F)651 void IntroduceControlFlow(Function *F) {
652 std::set<Instruction*> BoolInst;
653 for (BasicBlock::iterator it = F->begin()->begin(),
654 e = F->begin()->end(); it != e; ++it) {
655 if (it->getType() == IntegerType::getInt1Ty(F->getContext()))
656 BoolInst.insert(it);
657 }
658
659 for (std::set<Instruction*>::iterator it = BoolInst.begin(),
660 e = BoolInst.end(); it != e; ++it) {
661 Instruction *Instr = *it;
662 BasicBlock *Curr = Instr->getParent();
663 BasicBlock::iterator Loc= Instr;
664 BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
665 Instr->moveBefore(Curr->getTerminator());
666 if (Curr != &F->getEntryBlock()) {
667 BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
668 Curr->getTerminator()->eraseFromParent();
669 }
670 }
671 }
672
main(int argc,char ** argv)673 int main(int argc, char **argv) {
674 // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
675 llvm::PrettyStackTraceProgram X(argc, argv);
676 cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
677 llvm_shutdown_obj Y;
678
679 std::auto_ptr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext()));
680 Function *F = GenEmptyFunction(M.get());
681 FillFunction(F);
682 IntroduceControlFlow(F);
683
684 // Figure out what stream we are supposed to write to...
685 OwningPtr<tool_output_file> Out;
686 // Default to standard output.
687 if (OutputFilename.empty())
688 OutputFilename = "-";
689
690 std::string ErrorInfo;
691 Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
692 raw_fd_ostream::F_Binary));
693 if (!ErrorInfo.empty()) {
694 errs() << ErrorInfo << '\n';
695 return 1;
696 }
697
698 PassManager Passes;
699 Passes.add(createVerifierPass());
700 Passes.add(createPrintModulePass(&Out->os()));
701 Passes.run(*M.get());
702 Out->keep();
703
704 return 0;
705 }
706