1
2 //
3 // file: rbbiscan.cpp
4 //
5 // Copyright (C) 2002-2011, International Business Machines Corporation and others.
6 // All Rights Reserved.
7 //
8 // This file contains the Rule Based Break Iterator Rule Builder functions for
9 // scanning the rules and assembling a parse tree. This is the first phase
10 // of compiling the rules.
11 //
12 // The overall of the rules is managed by class RBBIRuleBuilder, which will
13 // create and use an instance of this class as part of the process.
14 //
15
16 #include "unicode/utypes.h"
17
18 #if !UCONFIG_NO_BREAK_ITERATION
19
20 #include "unicode/unistr.h"
21 #include "unicode/uniset.h"
22 #include "unicode/uchar.h"
23 #include "unicode/uchriter.h"
24 #include "unicode/parsepos.h"
25 #include "unicode/parseerr.h"
26 #include "util.h"
27 #include "cmemory.h"
28 #include "cstring.h"
29
30 #include "rbbirpt.h" // Contains state table for the rbbi rules parser.
31 // generated by a Perl script.
32 #include "rbbirb.h"
33 #include "rbbinode.h"
34 #include "rbbiscan.h"
35 #include "rbbitblb.h"
36
37 #include "uassert.h"
38
39
40 //------------------------------------------------------------------------------
41 //
42 // Unicode Set init strings for each of the character classes needed for parsing a rule file.
43 // (Initialized with hex values for portability to EBCDIC based machines.
44 // Really ugly, but there's no good way to avoid it.)
45 //
46 // The sets are referred to by name in the rbbirpt.txt, which is the
47 // source form of the state transition table for the RBBI rule parser.
48 //
49 //------------------------------------------------------------------------------
50 static const UChar gRuleSet_rule_char_pattern[] = {
51 // [ ^ [ \ p { Z } \ u 0 0 2 0
52 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
53 // - \ u 0 0 7 f ] - [ \ p
54 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
55 // { L } ] - [ \ p { N } ] ]
56 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
57
58 static const UChar gRuleSet_name_char_pattern[] = {
59 // [ _ \ p { L } \ p { N } ]
60 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
61
62 static const UChar gRuleSet_digit_char_pattern[] = {
63 // [ 0 - 9 ]
64 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
65
66 static const UChar gRuleSet_name_start_char_pattern[] = {
67 // [ _ \ p { L } ]
68 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
69
70 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any"
71
72
73 U_CDECL_BEGIN
RBBISetTable_deleter(void * p)74 static void U_CALLCONV RBBISetTable_deleter(void *p) {
75 U_NAMESPACE_QUALIFIER RBBISetTableEl *px = (U_NAMESPACE_QUALIFIER RBBISetTableEl *)p;
76 delete px->key;
77 // Note: px->val is owned by the linked list "fSetsListHead" in scanner.
78 // Don't delete the value nodes here.
79 uprv_free(px);
80 }
81 U_CDECL_END
82
83 U_NAMESPACE_BEGIN
84
85 //------------------------------------------------------------------------------
86 //
87 // Constructor.
88 //
89 //------------------------------------------------------------------------------
RBBIRuleScanner(RBBIRuleBuilder * rb)90 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
91 {
92 fRB = rb;
93 fStackPtr = 0;
94 fStack[fStackPtr] = 0;
95 fNodeStackPtr = 0;
96 fRuleNum = 0;
97 fNodeStack[0] = NULL;
98
99 fSymbolTable = NULL;
100 fSetTable = NULL;
101
102 fScanIndex = 0;
103 fNextIndex = 0;
104
105 fReverseRule = FALSE;
106 fLookAheadRule = FALSE;
107
108 fLineNum = 1;
109 fCharNum = 0;
110 fQuoteMode = FALSE;
111
112 // Do not check status until after all critical fields are sufficiently initialized
113 // that the destructor can run cleanly.
114 if (U_FAILURE(*rb->fStatus)) {
115 return;
116 }
117
118 //
119 // Set up the constant Unicode Sets.
120 // Note: These could be made static, lazily initialized, and shared among
121 // all instances of RBBIRuleScanners. BUT this is quite a bit simpler,
122 // and the time to build these few sets should be small compared to a
123 // full break iterator build.
124 fRuleSets[kRuleSet_rule_char-128] = UnicodeSet(gRuleSet_rule_char_pattern, *rb->fStatus);
125 UnicodeSet *whitespaceSet = uprv_openPatternWhiteSpaceSet(rb->fStatus);
126 if (U_FAILURE(*rb->fStatus)) {
127 return;
128 }
129 fRuleSets[kRuleSet_white_space-128] = *whitespaceSet;
130 delete whitespaceSet;
131 fRuleSets[kRuleSet_name_char-128] = UnicodeSet(gRuleSet_name_char_pattern, *rb->fStatus);
132 fRuleSets[kRuleSet_name_start_char-128] = UnicodeSet(gRuleSet_name_start_char_pattern, *rb->fStatus);
133 fRuleSets[kRuleSet_digit_char-128] = UnicodeSet(gRuleSet_digit_char_pattern, *rb->fStatus);
134 if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
135 // This case happens if ICU's data is missing. UnicodeSet tries to look up property
136 // names from the init string, can't find them, and claims an illegal arguement.
137 // Change the error so that the actual problem will be clearer to users.
138 *rb->fStatus = U_BRK_INIT_ERROR;
139 }
140 if (U_FAILURE(*rb->fStatus)) {
141 return;
142 }
143
144 fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
145 if (fSymbolTable == NULL) {
146 *rb->fStatus = U_MEMORY_ALLOCATION_ERROR;
147 return;
148 }
149 fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
150 if (U_FAILURE(*rb->fStatus)) {
151 return;
152 }
153 uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
154 }
155
156
157
158 //------------------------------------------------------------------------------
159 //
160 // Destructor
161 //
162 //------------------------------------------------------------------------------
~RBBIRuleScanner()163 RBBIRuleScanner::~RBBIRuleScanner() {
164 delete fSymbolTable;
165 if (fSetTable != NULL) {
166 uhash_close(fSetTable);
167 fSetTable = NULL;
168
169 }
170
171
172 // Node Stack.
173 // Normally has one entry, which is the entire parse tree for the rules.
174 // If errors occured, there may be additional subtrees left on the stack.
175 while (fNodeStackPtr > 0) {
176 delete fNodeStack[fNodeStackPtr];
177 fNodeStackPtr--;
178 }
179
180 }
181
182 //------------------------------------------------------------------------------
183 //
184 // doParseAction Do some action during rule parsing.
185 // Called by the parse state machine.
186 // Actions build the parse tree and Unicode Sets,
187 // and maintain the parse stack for nested expressions.
188 //
189 // TODO: unify EParseAction and RBBI_RuleParseAction enum types.
190 // They represent exactly the same thing. They're separate
191 // only to work around enum forward declaration restrictions
192 // in some compilers, while at the same time avoiding multiple
193 // definitions problems. I'm sure that there's a better way.
194 //
195 //------------------------------------------------------------------------------
doParseActions(int32_t action)196 UBool RBBIRuleScanner::doParseActions(int32_t action)
197 {
198 RBBINode *n = NULL;
199
200 UBool returnVal = TRUE;
201
202 switch (action) {
203
204 case doExprStart:
205 pushNewNode(RBBINode::opStart);
206 fRuleNum++;
207 break;
208
209
210 case doExprOrOperator:
211 {
212 fixOpStack(RBBINode::precOpCat);
213 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
214 RBBINode *orNode = pushNewNode(RBBINode::opOr);
215 orNode->fLeftChild = operandNode;
216 operandNode->fParent = orNode;
217 }
218 break;
219
220 case doExprCatOperator:
221 // concatenation operator.
222 // For the implicit concatenation of adjacent terms in an expression that are
223 // not separated by any other operator. Action is invoked between the
224 // actions for the two terms.
225 {
226 fixOpStack(RBBINode::precOpCat);
227 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
228 RBBINode *catNode = pushNewNode(RBBINode::opCat);
229 catNode->fLeftChild = operandNode;
230 operandNode->fParent = catNode;
231 }
232 break;
233
234 case doLParen:
235 // Open Paren.
236 // The openParen node is a dummy operation type with a low precedence,
237 // which has the affect of ensuring that any real binary op that
238 // follows within the parens binds more tightly to the operands than
239 // stuff outside of the parens.
240 pushNewNode(RBBINode::opLParen);
241 break;
242
243 case doExprRParen:
244 fixOpStack(RBBINode::precLParen);
245 break;
246
247 case doNOP:
248 break;
249
250 case doStartAssign:
251 // We've just scanned "$variable = "
252 // The top of the node stack has the $variable ref node.
253
254 // Save the start position of the RHS text in the StartExpression node
255 // that precedes the $variableReference node on the stack.
256 // This will eventually be used when saving the full $variable replacement
257 // text as a string.
258 n = fNodeStack[fNodeStackPtr-1];
259 n->fFirstPos = fNextIndex; // move past the '='
260
261 // Push a new start-of-expression node; needed to keep parse of the
262 // RHS expression happy.
263 pushNewNode(RBBINode::opStart);
264 break;
265
266
267
268
269 case doEndAssign:
270 {
271 // We have reached the end of an assignement statement.
272 // Current scan char is the ';' that terminates the assignment.
273
274 // Terminate expression, leaves expression parse tree rooted in TOS node.
275 fixOpStack(RBBINode::precStart);
276
277 RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2];
278 RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1];
279 RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr];
280
281 // Save original text of right side of assignment, excluding the terminating ';'
282 // in the root of the node for the right-hand-side expression.
283 RHSExprNode->fFirstPos = startExprNode->fFirstPos;
284 RHSExprNode->fLastPos = fScanIndex;
285 fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
286
287 // Expression parse tree becomes l. child of the $variable reference node.
288 varRefNode->fLeftChild = RHSExprNode;
289 RHSExprNode->fParent = varRefNode;
290
291 // Make a symbol table entry for the $variableRef node.
292 fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
293 if (U_FAILURE(*fRB->fStatus)) {
294 // This is a round-about way to get the parse position set
295 // so that duplicate symbols error messages include a line number.
296 UErrorCode t = *fRB->fStatus;
297 *fRB->fStatus = U_ZERO_ERROR;
298 error(t);
299 }
300
301 // Clean up the stack.
302 delete startExprNode;
303 fNodeStackPtr-=3;
304 break;
305 }
306
307 case doEndOfRule:
308 {
309 fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression
310 if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node.
311 break;
312 }
313 #ifdef RBBI_DEBUG
314 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
315 #endif
316 U_ASSERT(fNodeStackPtr == 1);
317
318 // If this rule includes a look-ahead '/', add a endMark node to the
319 // expression tree.
320 if (fLookAheadRule) {
321 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
322 RBBINode *endNode = pushNewNode(RBBINode::endMark);
323 RBBINode *catNode = pushNewNode(RBBINode::opCat);
324 fNodeStackPtr -= 2;
325 catNode->fLeftChild = thisRule;
326 catNode->fRightChild = endNode;
327 fNodeStack[fNodeStackPtr] = catNode;
328 endNode->fVal = fRuleNum;
329 endNode->fLookAheadEnd = TRUE;
330 }
331
332 // All rule expressions are ORed together.
333 // The ';' that terminates an expression really just functions as a '|' with
334 // a low operator prededence.
335 //
336 // Each of the four sets of rules are collected separately.
337 // (forward, reverse, safe_forward, safe_reverse)
338 // OR this rule into the appropriate group of them.
339 //
340 RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree);
341
342 if (*destRules != NULL) {
343 // This is not the first rule encounted.
344 // OR previous stuff (from *destRules)
345 // with the current rule expression (on the Node Stack)
346 // with the resulting OR expression going to *destRules
347 //
348 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
349 RBBINode *prevRules = *destRules;
350 RBBINode *orNode = pushNewNode(RBBINode::opOr);
351 orNode->fLeftChild = prevRules;
352 prevRules->fParent = orNode;
353 orNode->fRightChild = thisRule;
354 thisRule->fParent = orNode;
355 *destRules = orNode;
356 }
357 else
358 {
359 // This is the first rule encountered (for this direction).
360 // Just move its parse tree from the stack to *destRules.
361 *destRules = fNodeStack[fNodeStackPtr];
362 }
363 fReverseRule = FALSE; // in preparation for the next rule.
364 fLookAheadRule = FALSE;
365 fNodeStackPtr = 0;
366 }
367 break;
368
369
370 case doRuleError:
371 error(U_BRK_RULE_SYNTAX);
372 returnVal = FALSE;
373 break;
374
375
376 case doVariableNameExpectedErr:
377 error(U_BRK_RULE_SYNTAX);
378 break;
379
380
381 //
382 // Unary operands + ? *
383 // These all appear after the operand to which they apply.
384 // When we hit one, the operand (may be a whole sub expression)
385 // will be on the top of the stack.
386 // Unary Operator becomes TOS, with the old TOS as its one child.
387 case doUnaryOpPlus:
388 {
389 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
390 RBBINode *plusNode = pushNewNode(RBBINode::opPlus);
391 plusNode->fLeftChild = operandNode;
392 operandNode->fParent = plusNode;
393 }
394 break;
395
396 case doUnaryOpQuestion:
397 {
398 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
399 RBBINode *qNode = pushNewNode(RBBINode::opQuestion);
400 qNode->fLeftChild = operandNode;
401 operandNode->fParent = qNode;
402 }
403 break;
404
405 case doUnaryOpStar:
406 {
407 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
408 RBBINode *starNode = pushNewNode(RBBINode::opStar);
409 starNode->fLeftChild = operandNode;
410 operandNode->fParent = starNode;
411 }
412 break;
413
414 case doRuleChar:
415 // A "Rule Character" is any single character that is a literal part
416 // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]"
417 // These are pretty uncommon in break rules; the terms are more commonly
418 // sets. To keep things uniform, treat these characters like as
419 // sets that just happen to contain only one character.
420 {
421 n = pushNewNode(RBBINode::setRef);
422 findSetFor(fC.fChar, n);
423 n->fFirstPos = fScanIndex;
424 n->fLastPos = fNextIndex;
425 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
426 break;
427 }
428
429 case doDotAny:
430 // scanned a ".", meaning match any single character.
431 {
432 n = pushNewNode(RBBINode::setRef);
433 findSetFor(kAny, n);
434 n->fFirstPos = fScanIndex;
435 n->fLastPos = fNextIndex;
436 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
437 break;
438 }
439
440 case doSlash:
441 // Scanned a '/', which identifies a look-ahead break position in a rule.
442 n = pushNewNode(RBBINode::lookAhead);
443 n->fVal = fRuleNum;
444 n->fFirstPos = fScanIndex;
445 n->fLastPos = fNextIndex;
446 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
447 fLookAheadRule = TRUE;
448 break;
449
450
451 case doStartTagValue:
452 // Scanned a '{', the opening delimiter for a tag value within a rule.
453 n = pushNewNode(RBBINode::tag);
454 n->fVal = 0;
455 n->fFirstPos = fScanIndex;
456 n->fLastPos = fNextIndex;
457 break;
458
459 case doTagDigit:
460 // Just scanned a decimal digit that's part of a tag value
461 {
462 n = fNodeStack[fNodeStackPtr];
463 uint32_t v = u_charDigitValue(fC.fChar);
464 U_ASSERT(v < 10);
465 n->fVal = n->fVal*10 + v;
466 break;
467 }
468
469 case doTagValue:
470 n = fNodeStack[fNodeStackPtr];
471 n->fLastPos = fNextIndex;
472 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
473 break;
474
475 case doTagExpectedError:
476 error(U_BRK_MALFORMED_RULE_TAG);
477 returnVal = FALSE;
478 break;
479
480 case doOptionStart:
481 // Scanning a !!option. At the start of string.
482 fOptionStart = fScanIndex;
483 break;
484
485 case doOptionEnd:
486 {
487 UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
488 if (opt == UNICODE_STRING("chain", 5)) {
489 fRB->fChainRules = TRUE;
490 } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
491 fRB->fLBCMNoChain = TRUE;
492 } else if (opt == UNICODE_STRING("forward", 7)) {
493 fRB->fDefaultTree = &fRB->fForwardTree;
494 } else if (opt == UNICODE_STRING("reverse", 7)) {
495 fRB->fDefaultTree = &fRB->fReverseTree;
496 } else if (opt == UNICODE_STRING("safe_forward", 12)) {
497 fRB->fDefaultTree = &fRB->fSafeFwdTree;
498 } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
499 fRB->fDefaultTree = &fRB->fSafeRevTree;
500 } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
501 fRB->fLookAheadHardBreak = TRUE;
502 } else {
503 error(U_BRK_UNRECOGNIZED_OPTION);
504 }
505 }
506 break;
507
508 case doReverseDir:
509 fReverseRule = TRUE;
510 break;
511
512 case doStartVariableName:
513 n = pushNewNode(RBBINode::varRef);
514 if (U_FAILURE(*fRB->fStatus)) {
515 break;
516 }
517 n->fFirstPos = fScanIndex;
518 break;
519
520 case doEndVariableName:
521 n = fNodeStack[fNodeStackPtr];
522 if (n==NULL || n->fType != RBBINode::varRef) {
523 error(U_BRK_INTERNAL_ERROR);
524 break;
525 }
526 n->fLastPos = fScanIndex;
527 fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
528 // Look the newly scanned name up in the symbol table
529 // If there's an entry, set the l. child of the var ref to the replacement expression.
530 // (We also pass through here when scanning assignments, but no harm is done, other
531 // than a slight wasted effort that seems hard to avoid. Lookup will be null)
532 n->fLeftChild = fSymbolTable->lookupNode(n->fText);
533 break;
534
535 case doCheckVarDef:
536 n = fNodeStack[fNodeStackPtr];
537 if (n->fLeftChild == NULL) {
538 error(U_BRK_UNDEFINED_VARIABLE);
539 returnVal = FALSE;
540 }
541 break;
542
543 case doExprFinished:
544 break;
545
546 case doRuleErrorAssignExpr:
547 error(U_BRK_ASSIGN_ERROR);
548 returnVal = FALSE;
549 break;
550
551 case doExit:
552 returnVal = FALSE;
553 break;
554
555 case doScanUnicodeSet:
556 scanSet();
557 break;
558
559 default:
560 error(U_BRK_INTERNAL_ERROR);
561 returnVal = FALSE;
562 break;
563 }
564 return returnVal;
565 }
566
567
568
569
570 //------------------------------------------------------------------------------
571 //
572 // Error Report a rule parse error.
573 // Only report it if no previous error has been recorded.
574 //
575 //------------------------------------------------------------------------------
error(UErrorCode e)576 void RBBIRuleScanner::error(UErrorCode e) {
577 if (U_SUCCESS(*fRB->fStatus)) {
578 *fRB->fStatus = e;
579 if (fRB->fParseError) {
580 fRB->fParseError->line = fLineNum;
581 fRB->fParseError->offset = fCharNum;
582 fRB->fParseError->preContext[0] = 0;
583 fRB->fParseError->preContext[0] = 0;
584 }
585 }
586 }
587
588
589
590
591 //------------------------------------------------------------------------------
592 //
593 // fixOpStack The parse stack holds partially assembled chunks of the parse tree.
594 // An entry on the stack may be as small as a single setRef node,
595 // or as large as the parse tree
596 // for an entire expression (this will be the one item left on the stack
597 // when the parsing of an RBBI rule completes.
598 //
599 // This function is called when a binary operator is encountered.
600 // It looks back up the stack for operators that are not yet associated
601 // with a right operand, and if the precedence of the stacked operator >=
602 // the precedence of the current operator, binds the operand left,
603 // to the previously encountered operator.
604 //
605 //------------------------------------------------------------------------------
fixOpStack(RBBINode::OpPrecedence p)606 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
607 RBBINode *n;
608 // printNodeStack("entering fixOpStack()");
609 for (;;) {
610 n = fNodeStack[fNodeStackPtr-1]; // an operator node
611 if (n->fPrecedence == 0) {
612 RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
613 error(U_BRK_INTERNAL_ERROR);
614 return;
615 }
616
617 if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
618 // The most recent operand goes with the current operator,
619 // not with the previously stacked one.
620 break;
621 }
622 // Stack operator is a binary op ( '|' or concatenation)
623 // TOS operand becomes right child of this operator.
624 // Resulting subexpression becomes the TOS operand.
625 n->fRightChild = fNodeStack[fNodeStackPtr];
626 fNodeStack[fNodeStackPtr]->fParent = n;
627 fNodeStackPtr--;
628 // printNodeStack("looping in fixOpStack() ");
629 }
630
631 if (p <= RBBINode::precLParen) {
632 // Scan is at a right paren or end of expression.
633 // The scanned item must match the stack, or else there was an error.
634 // Discard the left paren (or start expr) node from the stack,
635 // leaving the completed (sub)expression as TOS.
636 if (n->fPrecedence != p) {
637 // Right paren encountered matched start of expression node, or
638 // end of expression matched with a left paren node.
639 error(U_BRK_MISMATCHED_PAREN);
640 }
641 fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
642 fNodeStackPtr--;
643 // Delete the now-discarded LParen or Start node.
644 delete n;
645 }
646 // printNodeStack("leaving fixOpStack()");
647 }
648
649
650
651
652 //------------------------------------------------------------------------------
653 //
654 // findSetFor given a UnicodeString,
655 // - find the corresponding Unicode Set (uset node)
656 // (create one if necessary)
657 // - Set fLeftChild of the caller's node (should be a setRef node)
658 // to the uset node
659 // Maintain a hash table of uset nodes, so the same one is always used
660 // for the same string.
661 // If a "to adopt" set is provided and we haven't seen this key before,
662 // add the provided set to the hash table.
663 // If the string is one (32 bit) char in length, the set contains
664 // just one element which is the char in question.
665 // If the string is "any", return a set containing all chars.
666 //
667 //------------------------------------------------------------------------------
findSetFor(const UnicodeString & s,RBBINode * node,UnicodeSet * setToAdopt)668 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
669
670 RBBISetTableEl *el;
671
672 // First check whether we've already cached a set for this string.
673 // If so, just use the cached set in the new node.
674 // delete any set provided by the caller, since we own it.
675 el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
676 if (el != NULL) {
677 delete setToAdopt;
678 node->fLeftChild = el->val;
679 U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
680 return;
681 }
682
683 // Haven't seen this set before.
684 // If the caller didn't provide us with a prebuilt set,
685 // create a new UnicodeSet now.
686 if (setToAdopt == NULL) {
687 if (s.compare(kAny, -1) == 0) {
688 setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
689 } else {
690 UChar32 c;
691 c = s.char32At(0);
692 setToAdopt = new UnicodeSet(c, c);
693 }
694 }
695
696 //
697 // Make a new uset node to refer to this UnicodeSet
698 // This new uset node becomes the child of the caller's setReference node.
699 //
700 RBBINode *usetNode = new RBBINode(RBBINode::uset);
701 if (usetNode == NULL) {
702 error(U_MEMORY_ALLOCATION_ERROR);
703 return;
704 }
705 usetNode->fInputSet = setToAdopt;
706 usetNode->fParent = node;
707 node->fLeftChild = usetNode;
708 usetNode->fText = s;
709
710
711 //
712 // Add the new uset node to the list of all uset nodes.
713 //
714 fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
715
716
717 //
718 // Add the new set to the set hash table.
719 //
720 el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
721 UnicodeString *tkey = new UnicodeString(s);
722 if (tkey == NULL || el == NULL || setToAdopt == NULL) {
723 // Delete to avoid memory leak
724 delete tkey;
725 tkey = NULL;
726 uprv_free(el);
727 el = NULL;
728 delete setToAdopt;
729 setToAdopt = NULL;
730
731 error(U_MEMORY_ALLOCATION_ERROR);
732 return;
733 }
734 el->key = tkey;
735 el->val = usetNode;
736 uhash_put(fSetTable, el->key, el, fRB->fStatus);
737
738 return;
739 }
740
741
742
743 //
744 // Assorted Unicode character constants.
745 // Numeric because there is no portable way to enter them as literals.
746 // (Think EBCDIC).
747 //
748 static const UChar chCR = 0x0d; // New lines, for terminating comments.
749 static const UChar chLF = 0x0a;
750 static const UChar chNEL = 0x85; // NEL newline variant
751 static const UChar chLS = 0x2028; // Unicode Line Separator
752 static const UChar chApos = 0x27; // single quote, for quoted chars.
753 static const UChar chPound = 0x23; // '#', introduces a comment.
754 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
755 static const UChar chLParen = 0x28;
756 static const UChar chRParen = 0x29;
757
758
759 //------------------------------------------------------------------------------
760 //
761 // stripRules Return a rules string without unnecessary
762 // characters.
763 //
764 //------------------------------------------------------------------------------
stripRules(const UnicodeString & rules)765 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
766 UnicodeString strippedRules;
767 int rulesLength = rules.length();
768 for (int idx = 0; idx < rulesLength; ) {
769 UChar ch = rules[idx++];
770 if (ch == chPound) {
771 while (idx < rulesLength
772 && ch != chCR && ch != chLF && ch != chNEL)
773 {
774 ch = rules[idx++];
775 }
776 }
777 if (!u_isISOControl(ch)) {
778 strippedRules.append(ch);
779 }
780 }
781 // strippedRules = strippedRules.unescape();
782 return strippedRules;
783 }
784
785
786 //------------------------------------------------------------------------------
787 //
788 // nextCharLL Low Level Next Char from rule input source.
789 // Get a char from the input character iterator,
790 // keep track of input position for error reporting.
791 //
792 //------------------------------------------------------------------------------
nextCharLL()793 UChar32 RBBIRuleScanner::nextCharLL() {
794 UChar32 ch;
795
796 if (fNextIndex >= fRB->fRules.length()) {
797 return (UChar32)-1;
798 }
799 ch = fRB->fRules.char32At(fNextIndex);
800 fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
801
802 if (ch == chCR ||
803 ch == chNEL ||
804 ch == chLS ||
805 (ch == chLF && fLastChar != chCR)) {
806 // Character is starting a new line. Bump up the line number, and
807 // reset the column to 0.
808 fLineNum++;
809 fCharNum=0;
810 if (fQuoteMode) {
811 error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
812 fQuoteMode = FALSE;
813 }
814 }
815 else {
816 // Character is not starting a new line. Except in the case of a
817 // LF following a CR, increment the column position.
818 if (ch != chLF) {
819 fCharNum++;
820 }
821 }
822 fLastChar = ch;
823 return ch;
824 }
825
826
827 //------------------------------------------------------------------------------
828 //
829 // nextChar for rules scanning. At this level, we handle stripping
830 // out comments and processing backslash character escapes.
831 // The rest of the rules grammar is handled at the next level up.
832 //
833 //------------------------------------------------------------------------------
nextChar(RBBIRuleChar & c)834 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
835
836 // Unicode Character constants needed for the processing done by nextChar(),
837 // in hex because literals wont work on EBCDIC machines.
838
839 fScanIndex = fNextIndex;
840 c.fChar = nextCharLL();
841 c.fEscaped = FALSE;
842
843 //
844 // check for '' sequence.
845 // These are recognized in all contexts, whether in quoted text or not.
846 //
847 if (c.fChar == chApos) {
848 if (fRB->fRules.char32At(fNextIndex) == chApos) {
849 c.fChar = nextCharLL(); // get nextChar officially so character counts
850 c.fEscaped = TRUE; // stay correct.
851 }
852 else
853 {
854 // Single quote, by itself.
855 // Toggle quoting mode.
856 // Return either '(' or ')', because quotes cause a grouping of the quoted text.
857 fQuoteMode = !fQuoteMode;
858 if (fQuoteMode == TRUE) {
859 c.fChar = chLParen;
860 } else {
861 c.fChar = chRParen;
862 }
863 c.fEscaped = FALSE; // The paren that we return is not escaped.
864 return;
865 }
866 }
867
868 if (fQuoteMode) {
869 c.fEscaped = TRUE;
870 }
871 else
872 {
873 // We are not in a 'quoted region' of the source.
874 //
875 if (c.fChar == chPound) {
876 // Start of a comment. Consume the rest of it.
877 // The new-line char that terminates the comment is always returned.
878 // It will be treated as white-space, and serves to break up anything
879 // that might otherwise incorrectly clump together with a comment in
880 // the middle (a variable name, for example.)
881 for (;;) {
882 c.fChar = nextCharLL();
883 if (c.fChar == (UChar32)-1 || // EOF
884 c.fChar == chCR ||
885 c.fChar == chLF ||
886 c.fChar == chNEL ||
887 c.fChar == chLS) {break;}
888 }
889 }
890 if (c.fChar == (UChar32)-1) {
891 return;
892 }
893
894 //
895 // check for backslash escaped characters.
896 // Use UnicodeString::unescapeAt() to handle them.
897 //
898 if (c.fChar == chBackSlash) {
899 c.fEscaped = TRUE;
900 int32_t startX = fNextIndex;
901 c.fChar = fRB->fRules.unescapeAt(fNextIndex);
902 if (fNextIndex == startX) {
903 error(U_BRK_HEX_DIGITS_EXPECTED);
904 }
905 fCharNum += fNextIndex-startX;
906 }
907 }
908 // putc(c.fChar, stdout);
909 }
910
911 //------------------------------------------------------------------------------
912 //
913 // Parse RBBI rules. The state machine for rules parsing is here.
914 // The state tables are hand-written in the file rbbirpt.txt,
915 // and converted to the form used here by a perl
916 // script rbbicst.pl
917 //
918 //------------------------------------------------------------------------------
parse()919 void RBBIRuleScanner::parse() {
920 uint16_t state;
921 const RBBIRuleTableEl *tableEl;
922
923 if (U_FAILURE(*fRB->fStatus)) {
924 return;
925 }
926
927 state = 1;
928 nextChar(fC);
929 //
930 // Main loop for the rule parsing state machine.
931 // Runs once per state transition.
932 // Each time through optionally performs, depending on the state table,
933 // - an advance to the the next input char
934 // - an action to be performed.
935 // - pushing or popping a state to/from the local state return stack.
936 //
937 for (;;) {
938 // Bail out if anything has gone wrong.
939 // RBBI rule file parsing stops on the first error encountered.
940 if (U_FAILURE(*fRB->fStatus)) {
941 break;
942 }
943
944 // Quit if state == 0. This is the normal way to exit the state machine.
945 //
946 if (state == 0) {
947 break;
948 }
949
950 // Find the state table element that matches the input char from the rule, or the
951 // class of the input character. Start with the first table row for this
952 // state, then linearly scan forward until we find a row that matches the
953 // character. The last row for each state always matches all characters, so
954 // the search will stop there, if not before.
955 //
956 tableEl = &gRuleParseStateTable[state];
957 #ifdef RBBI_DEBUG
958 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
959 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ",
960 fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
961 }
962 #endif
963
964 for (;;) {
965 #ifdef RBBI_DEBUG
966 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");}
967 #endif
968 if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) {
969 // Table row specified an individual character, not a set, and
970 // the input character is not escaped, and
971 // the input character matched it.
972 break;
973 }
974 if (tableEl->fCharClass == 255) {
975 // Table row specified default, match anything character class.
976 break;
977 }
978 if (tableEl->fCharClass == 254 && fC.fEscaped) {
979 // Table row specified "escaped" and the char was escaped.
980 break;
981 }
982 if (tableEl->fCharClass == 253 && fC.fEscaped &&
983 (fC.fChar == 0x50 || fC.fChar == 0x70 )) {
984 // Table row specified "escaped P" and the char is either 'p' or 'P'.
985 break;
986 }
987 if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) {
988 // Table row specified eof and we hit eof on the input.
989 break;
990 }
991
992 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
993 fC.fEscaped == FALSE && // char is not escaped &&
994 fC.fChar != (UChar32)-1) { // char is not EOF
995 if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
996 // Table row specified a character class, or set of characters,
997 // and the current char matches it.
998 break;
999 }
1000 }
1001
1002 // No match on this row, advance to the next row for this state,
1003 tableEl++;
1004 }
1005 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}
1006
1007 //
1008 // We've found the row of the state table that matches the current input
1009 // character from the rules string.
1010 // Perform any action specified by this row in the state table.
1011 if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
1012 // Break out of the state machine loop if the
1013 // the action signalled some kind of error, or
1014 // the action was to exit, occurs on normal end-of-rules-input.
1015 break;
1016 }
1017
1018 if (tableEl->fPushState != 0) {
1019 fStackPtr++;
1020 if (fStackPtr >= kStackSize) {
1021 error(U_BRK_INTERNAL_ERROR);
1022 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
1023 fStackPtr--;
1024 }
1025 fStack[fStackPtr] = tableEl->fPushState;
1026 }
1027
1028 if (tableEl->fNextChar) {
1029 nextChar(fC);
1030 }
1031
1032 // Get the next state from the table entry, or from the
1033 // state stack if the next state was specified as "pop".
1034 if (tableEl->fNextState != 255) {
1035 state = tableEl->fNextState;
1036 } else {
1037 state = fStack[fStackPtr];
1038 fStackPtr--;
1039 if (fStackPtr < 0) {
1040 error(U_BRK_INTERNAL_ERROR);
1041 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
1042 fStackPtr++;
1043 }
1044 }
1045
1046 }
1047
1048 //
1049 // If there were NO user specified reverse rules, set up the equivalent of ".*;"
1050 //
1051 if (fRB->fReverseTree == NULL) {
1052 fRB->fReverseTree = pushNewNode(RBBINode::opStar);
1053 RBBINode *operand = pushNewNode(RBBINode::setRef);
1054 findSetFor(kAny, operand);
1055 fRB->fReverseTree->fLeftChild = operand;
1056 operand->fParent = fRB->fReverseTree;
1057 fNodeStackPtr -= 2;
1058 }
1059
1060
1061 //
1062 // Parsing of the input RBBI rules is complete.
1063 // We now have a parse tree for the rule expressions
1064 // and a list of all UnicodeSets that are referenced.
1065 //
1066 #ifdef RBBI_DEBUG
1067 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
1068 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree"))
1069 {
1070 RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
1071 fRB->fForwardTree->printTree(TRUE);
1072 RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
1073 fRB->fReverseTree->printTree(TRUE);
1074 RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
1075 fRB->fSafeFwdTree->printTree(TRUE);
1076 RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
1077 fRB->fSafeRevTree->printTree(TRUE);
1078 }
1079 #endif
1080 }
1081
1082
1083 //------------------------------------------------------------------------------
1084 //
1085 // printNodeStack for debugging...
1086 //
1087 //------------------------------------------------------------------------------
1088 #ifdef RBBI_DEBUG
printNodeStack(const char * title)1089 void RBBIRuleScanner::printNodeStack(const char *title) {
1090 int i;
1091 RBBIDebugPrintf("%s. Dumping node stack...\n", title);
1092 for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);}
1093 }
1094 #endif
1095
1096
1097
1098
1099 //------------------------------------------------------------------------------
1100 //
1101 // pushNewNode create a new RBBINode of the specified type and push it
1102 // onto the stack of nodes.
1103 //
1104 //------------------------------------------------------------------------------
pushNewNode(RBBINode::NodeType t)1105 RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) {
1106 fNodeStackPtr++;
1107 if (fNodeStackPtr >= kStackSize) {
1108 error(U_BRK_INTERNAL_ERROR);
1109 RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
1110 *fRB->fStatus = U_BRK_INTERNAL_ERROR;
1111 return NULL;
1112 }
1113 fNodeStack[fNodeStackPtr] = new RBBINode(t);
1114 if (fNodeStack[fNodeStackPtr] == NULL) {
1115 *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
1116 }
1117 return fNodeStack[fNodeStackPtr];
1118 }
1119
1120
1121
1122 //------------------------------------------------------------------------------
1123 //
1124 // scanSet Construct a UnicodeSet from the text at the current scan
1125 // position. Advance the scan position to the first character
1126 // after the set.
1127 //
1128 // A new RBBI setref node referring to the set is pushed onto the node
1129 // stack.
1130 //
1131 // The scan position is normally under the control of the state machine
1132 // that controls rule parsing. UnicodeSets, however, are parsed by
1133 // the UnicodeSet constructor, not by the RBBI rule parser.
1134 //
1135 //------------------------------------------------------------------------------
scanSet()1136 void RBBIRuleScanner::scanSet() {
1137 UnicodeSet *uset;
1138 ParsePosition pos;
1139 int startPos;
1140 int i;
1141
1142 if (U_FAILURE(*fRB->fStatus)) {
1143 return;
1144 }
1145
1146 pos.setIndex(fScanIndex);
1147 startPos = fScanIndex;
1148 UErrorCode localStatus = U_ZERO_ERROR;
1149 uset = new UnicodeSet(fRB->fRules, pos, USET_IGNORE_SPACE,
1150 fSymbolTable,
1151 localStatus);
1152 if (uset == NULL) {
1153 localStatus = U_MEMORY_ALLOCATION_ERROR;
1154 }
1155 if (U_FAILURE(localStatus)) {
1156 // TODO: Get more accurate position of the error from UnicodeSet's return info.
1157 // UnicodeSet appears to not be reporting correctly at this time.
1158 #ifdef RBBI_DEBUG
1159 RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
1160 #endif
1161 error(localStatus);
1162 delete uset;
1163 return;
1164 }
1165
1166 // Verify that the set contains at least one code point.
1167 //
1168 if (uset->isEmpty()) {
1169 // This set is empty.
1170 // Make it an error, because it almost certainly is not what the user wanted.
1171 // Also, avoids having to think about corner cases in the tree manipulation code
1172 // that occurs later on.
1173 error(U_BRK_RULE_EMPTY_SET);
1174 delete uset;
1175 return;
1176 }
1177
1178
1179 // Advance the RBBI parse postion over the UnicodeSet pattern.
1180 // Don't just set fScanIndex because the line/char positions maintained
1181 // for error reporting would be thrown off.
1182 i = pos.getIndex();
1183 for (;;) {
1184 if (fNextIndex >= i) {
1185 break;
1186 }
1187 nextCharLL();
1188 }
1189
1190 if (U_SUCCESS(*fRB->fStatus)) {
1191 RBBINode *n;
1192
1193 n = pushNewNode(RBBINode::setRef);
1194 n->fFirstPos = startPos;
1195 n->fLastPos = fNextIndex;
1196 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
1197 // findSetFor() serves several purposes here:
1198 // - Adopts storage for the UnicodeSet, will be responsible for deleting.
1199 // - Mantains collection of all sets in use, needed later for establishing
1200 // character categories for run time engine.
1201 // - Eliminates mulitiple instances of the same set.
1202 // - Creates a new uset node if necessary (if this isn't a duplicate.)
1203 findSetFor(n->fText, n, uset);
1204 }
1205
1206 }
1207
1208 U_NAMESPACE_END
1209
1210 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1211