• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29 
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32 
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35                           struct _mesa_glsl_parse_state *state);
36 
37 static unsigned
process_parameters(exec_list * instructions,exec_list * actual_parameters,exec_list * parameters,struct _mesa_glsl_parse_state * state)38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 		   exec_list *parameters,
40 		   struct _mesa_glsl_parse_state *state)
41 {
42    unsigned count = 0;
43 
44    foreach_list (n, parameters) {
45       ast_node *const ast = exec_node_data(ast_node, n, link);
46       ir_rvalue *result = ast->hir(instructions, state);
47 
48       ir_constant *const constant = result->constant_expression_value();
49       if (constant != NULL)
50 	 result = constant;
51 
52       actual_parameters->push_tail(result);
53       count++;
54    }
55 
56    return count;
57 }
58 
59 
60 /**
61  * Generate a source prototype for a function signature
62  *
63  * \param return_type Return type of the function.  May be \c NULL.
64  * \param name        Name of the function.
65  * \param parameters  Parameter list for the function.  This may be either a
66  *                    formal or actual parameter list.  Only the type is used.
67  *
68  * \return
69  * A hieralloced string representing the prototype of the function.
70  */
71 char *
prototype_string(const glsl_type * return_type,const char * name,exec_list * parameters)72 prototype_string(const glsl_type *return_type, const char *name,
73 		 exec_list *parameters)
74 {
75    char *str = NULL;
76 
77    if (return_type != NULL)
78       str = hieralloc_asprintf(str, "%s ", return_type->name);
79 
80    str = hieralloc_asprintf_append(str, "%s(", name);
81 
82    const char *comma = "";
83    foreach_list(node, parameters) {
84       const ir_instruction *const param = (ir_instruction *) node;
85 
86       str = hieralloc_asprintf_append(str, "%s%s", comma, param->type->name);
87       comma = ", ";
88    }
89 
90    str = hieralloc_strdup_append(str, ")");
91    return str;
92 }
93 
94 
95 static ir_rvalue *
match_function_by_name(exec_list * instructions,const char * name,YYLTYPE * loc,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state)96 match_function_by_name(exec_list *instructions, const char *name,
97 		       YYLTYPE *loc, exec_list *actual_parameters,
98 		       struct _mesa_glsl_parse_state *state)
99 {
100    void *ctx = state;
101    ir_function *f = state->symbols->get_function(name);
102    ir_function_signature *sig;
103 
104    sig = f ? f->matching_signature(actual_parameters) : NULL;
105 
106    /* FINISHME: This doesn't handle the case where shader X contains a
107     * FINISHME: matching signature but shader X + N contains an _exact_
108     * FINISHME: matching signature.
109     */
110    if (sig == NULL && (f == NULL || state->es_shader || !f->has_user_signature()) && state->symbols->get_type(name) == NULL && (state->language_version == 110 || state->symbols->get_variable(name) == NULL)) {
111       /* The current shader doesn't contain a matching function or signature.
112        * Before giving up, look for the prototype in the built-in functions.
113        */
114       for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
115 	 ir_function *builtin;
116 	 builtin = state->builtins_to_link[i]->symbols->get_function(name);
117 	 sig = builtin ? builtin->matching_signature(actual_parameters) : NULL;
118 	 if (sig != NULL) {
119 	    if (f == NULL) {
120 	       f = new(ctx) ir_function(name);
121 	       state->symbols->add_global_function(f);
122 	       emit_function(state, instructions, f);
123 	    }
124 
125 	    f->add_signature(sig->clone_prototype(f, NULL));
126 	    break;
127 	 }
128       }
129    }
130 
131    if (sig != NULL) {
132       /* Verify that 'out' and 'inout' actual parameters are lvalues.  This
133        * isn't done in ir_function::matching_signature because that function
134        * cannot generate the necessary diagnostics.
135        */
136       exec_list_iterator actual_iter = actual_parameters->iterator();
137       exec_list_iterator formal_iter = sig->parameters.iterator();
138 
139       while (actual_iter.has_next()) {
140 	 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
141 	 ir_variable *formal = (ir_variable *) formal_iter.get();
142 
143 	 assert(actual != NULL);
144 	 assert(formal != NULL);
145 
146 	 if ((formal->mode == ir_var_out)
147 	     || (formal->mode == ir_var_inout)) {
148 	    if (! actual->is_lvalue()) {
149 	       /* FINISHME: Log a better diagnostic here.  There is no way
150 		* FINISHME: to tell the user which parameter is invalid.
151 		*/
152 	       _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
153 				(formal->mode == ir_var_out) ? "out" : "inout");
154 	    }
155 	 }
156 
157 	 if (formal->type->is_numeric() || formal->type->is_boolean()) {
158 	    ir_rvalue *converted = convert_component(actual, formal->type);
159 	    actual->replace_with(converted);
160 	 }
161 
162 	 actual_iter.next();
163 	 formal_iter.next();
164       }
165 
166       /* Always insert the call in the instruction stream, and return a deref
167        * of its return val if it returns a value, since we don't know if
168        * the rvalue is going to be assigned to anything or not.
169        */
170       ir_call *call = new(ctx) ir_call(sig, actual_parameters);
171       if (!sig->return_type->is_void()) {
172 	 ir_variable *var;
173 	 ir_dereference_variable *deref;
174 
175 	 var = new(ctx) ir_variable(sig->return_type,
176 				    hieralloc_asprintf(ctx, "%s_retval",
177 						    sig->function_name()),
178 				    ir_var_temporary);
179 	 instructions->push_tail(var);
180 
181 	 deref = new(ctx) ir_dereference_variable(var);
182 	 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
183 	 instructions->push_tail(assign);
184 	 if (state->language_version >= 120)
185 	    var->constant_value = call->constant_expression_value();
186 
187 	 deref = new(ctx) ir_dereference_variable(var);
188 	 return deref;
189       } else {
190 	 instructions->push_tail(call);
191 	 return NULL;
192       }
193    } else {
194       char *str = prototype_string(NULL, name, actual_parameters);
195 
196       _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
197 		       str);
198       hieralloc_free(str);
199 
200       const char *prefix = "candidates are: ";
201 
202       for (int i = -1; i < state->num_builtins_to_link; i++) {
203 	 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
204 					  : state->symbols;
205 	 f = syms->get_function(name);
206 	 if (f == NULL)
207 	    continue;
208 
209 	 foreach_list (node, &f->signatures) {
210 	    ir_function_signature *sig = (ir_function_signature *) node;
211 
212 	    str = prototype_string(sig->return_type, f->name, &sig->parameters);
213 	    _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
214 	    hieralloc_free(str);
215 
216 	    prefix = "                ";
217 	 }
218 
219       }
220 
221       return ir_call::get_error_instruction(ctx);
222    }
223 }
224 
225 
226 /**
227  * Perform automatic type conversion of constructor parameters
228  *
229  * This implements the rules in the "Conversion and Scalar Constructors"
230  * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
231  */
232 static ir_rvalue *
convert_component(ir_rvalue * src,const glsl_type * desired_type)233 convert_component(ir_rvalue *src, const glsl_type *desired_type)
234 {
235    void *ctx = hieralloc_parent(src);
236    const unsigned a = desired_type->base_type;
237    const unsigned b = src->type->base_type;
238    ir_expression *result = NULL;
239 
240    if (src->type->is_error())
241       return src;
242 
243    assert(a <= GLSL_TYPE_BOOL);
244    assert(b <= GLSL_TYPE_BOOL);
245 
246    if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
247       return src;
248 
249    switch (a) {
250    case GLSL_TYPE_UINT:
251    case GLSL_TYPE_INT:
252       if (b == GLSL_TYPE_FLOAT)
253 	 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
254       else {
255 	 assert(b == GLSL_TYPE_BOOL);
256 	 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
257       }
258       break;
259    case GLSL_TYPE_FLOAT:
260       switch (b) {
261       case GLSL_TYPE_UINT:
262 	 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
263 	 break;
264       case GLSL_TYPE_INT:
265 	 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
266 	 break;
267       case GLSL_TYPE_BOOL:
268 	 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
269 	 break;
270       }
271       break;
272    case GLSL_TYPE_BOOL:
273       switch (b) {
274       case GLSL_TYPE_UINT:
275       case GLSL_TYPE_INT:
276 	 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
277 	 break;
278       case GLSL_TYPE_FLOAT:
279 	 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
280 	 break;
281       }
282       break;
283    }
284 
285    assert(result != NULL);
286 
287    /* Try constant folding; it may fold in the conversion we just added. */
288    ir_constant *const constant = result->constant_expression_value();
289    return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
290 }
291 
292 /**
293  * Dereference a specific component from a scalar, vector, or matrix
294  */
295 static ir_rvalue *
dereference_component(ir_rvalue * src,unsigned component)296 dereference_component(ir_rvalue *src, unsigned component)
297 {
298    void *ctx = hieralloc_parent(src);
299    assert(component < src->type->components());
300 
301    /* If the source is a constant, just create a new constant instead of a
302     * dereference of the existing constant.
303     */
304    ir_constant *constant = src->as_constant();
305    if (constant)
306       return new(ctx) ir_constant(constant, component);
307 
308    if (src->type->is_scalar()) {
309       return src;
310    } else if (src->type->is_vector()) {
311       return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
312    } else {
313       assert(src->type->is_matrix());
314 
315       /* Dereference a row of the matrix, then call this function again to get
316        * a specific element from that row.
317        */
318       const int c = component / src->type->column_type()->vector_elements;
319       const int r = component % src->type->column_type()->vector_elements;
320       ir_constant *const col_index = new(ctx) ir_constant(c);
321       ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
322 
323       col->type = src->type->column_type();
324 
325       return dereference_component(col, r);
326    }
327 
328    assert(!"Should not get here.");
329    return NULL;
330 }
331 
332 
333 static ir_rvalue *
process_array_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)334 process_array_constructor(exec_list *instructions,
335 			  const glsl_type *constructor_type,
336 			  YYLTYPE *loc, exec_list *parameters,
337 			  struct _mesa_glsl_parse_state *state)
338 {
339    void *ctx = state;
340    /* Array constructors come in two forms: sized and unsized.  Sized array
341     * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
342     * variables.  In this case the number of parameters must exactly match the
343     * specified size of the array.
344     *
345     * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
346     * are vec4 variables.  In this case the size of the array being constructed
347     * is determined by the number of parameters.
348     *
349     * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
350     *
351     *    "There must be exactly the same number of arguments as the size of
352     *    the array being constructed. If no size is present in the
353     *    constructor, then the array is explicitly sized to the number of
354     *    arguments provided. The arguments are assigned in order, starting at
355     *    element 0, to the elements of the constructed array. Each argument
356     *    must be the same type as the element type of the array, or be a type
357     *    that can be converted to the element type of the array according to
358     *    Section 4.1.10 "Implicit Conversions.""
359     */
360    exec_list actual_parameters;
361    const unsigned parameter_count =
362       process_parameters(instructions, &actual_parameters, parameters, state);
363 
364    if ((parameter_count == 0)
365        || ((constructor_type->length != 0)
366 	   && (constructor_type->length != parameter_count))) {
367       const unsigned min_param = (constructor_type->length == 0)
368 	 ? 1 : constructor_type->length;
369 
370       _mesa_glsl_error(loc, state, "array constructor must have %s %u "
371 		       "parameter%s",
372 		       (constructor_type->length != 0) ? "at least" : "exactly",
373 		       min_param, (min_param <= 1) ? "" : "s");
374       return ir_call::get_error_instruction(ctx);
375    }
376 
377    if (constructor_type->length == 0) {
378       constructor_type =
379 	 glsl_type::get_array_instance(constructor_type->element_type(),
380 				       parameter_count);
381       assert(constructor_type != NULL);
382       assert(constructor_type->length == parameter_count);
383    }
384 
385    bool all_parameters_are_constant = true;
386 
387    /* Type cast each parameter and, if possible, fold constants. */
388    foreach_list_safe(n, &actual_parameters) {
389       ir_rvalue *ir = (ir_rvalue *) n;
390       ir_rvalue *result = ir;
391 
392       /* Apply implicit conversions (not the scalar constructor rules!) */
393       if (constructor_type->element_type()->is_float()) {
394 	 const glsl_type *desired_type =
395 	    glsl_type::get_instance(GLSL_TYPE_FLOAT,
396 				    ir->type->vector_elements,
397 				    ir->type->matrix_columns);
398 	 result = convert_component(ir, desired_type);
399       }
400 
401       if (result->type != constructor_type->element_type()) {
402 	 _mesa_glsl_error(loc, state, "type error in array constructor: "
403 			  "expected: %s, found %s",
404 			  constructor_type->element_type()->name,
405 			  result->type->name);
406       }
407 
408       /* Attempt to convert the parameter to a constant valued expression.
409        * After doing so, track whether or not all the parameters to the
410        * constructor are trivially constant valued expressions.
411        */
412       ir_rvalue *const constant = result->constant_expression_value();
413 
414       if (constant != NULL)
415          result = constant;
416       else
417          all_parameters_are_constant = false;
418 
419       ir->replace_with(result);
420    }
421 
422    if (all_parameters_are_constant)
423       return new(ctx) ir_constant(constructor_type, &actual_parameters);
424 
425    ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
426 					   ir_var_temporary);
427    instructions->push_tail(var);
428 
429    int i = 0;
430    foreach_list(node, &actual_parameters) {
431       ir_rvalue *rhs = (ir_rvalue *) node;
432       ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
433 						     new(ctx) ir_constant(i));
434 
435       ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
436       instructions->push_tail(assignment);
437 
438       i++;
439    }
440 
441    return new(ctx) ir_dereference_variable(var);
442 }
443 
444 
445 /**
446  * Try to convert a record constructor to a constant expression
447  */
448 static ir_constant *
constant_record_constructor(const glsl_type * constructor_type,exec_list * parameters,void * mem_ctx)449 constant_record_constructor(const glsl_type *constructor_type,
450 			    exec_list *parameters, void *mem_ctx)
451 {
452    foreach_list(node, parameters) {
453       ir_constant *constant = ((ir_instruction *) node)->as_constant();
454       if (constant == NULL)
455 	 return NULL;
456       node->replace_with(constant);
457    }
458 
459    return new(mem_ctx) ir_constant(constructor_type, parameters);
460 }
461 
462 
463 /**
464  * Determine if a list consists of a single scalar r-value
465  */
466 bool
single_scalar_parameter(exec_list * parameters)467 single_scalar_parameter(exec_list *parameters)
468 {
469    const ir_rvalue *const p = (ir_rvalue *) parameters->head;
470    assert(((ir_rvalue *)p)->as_rvalue() != NULL);
471 
472    return (p->type->is_scalar() && p->next->is_tail_sentinel());
473 }
474 
475 
476 /**
477  * Generate inline code for a vector constructor
478  *
479  * The generated constructor code will consist of a temporary variable
480  * declaration of the same type as the constructor.  A sequence of assignments
481  * from constructor parameters to the temporary will follow.
482  *
483  * \return
484  * An \c ir_dereference_variable of the temprorary generated in the constructor
485  * body.
486  */
487 ir_rvalue *
emit_inline_vector_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)488 emit_inline_vector_constructor(const glsl_type *type,
489 			       exec_list *instructions,
490 			       exec_list *parameters,
491 			       void *ctx)
492 {
493    assert(!parameters->is_empty());
494 
495    ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
496    instructions->push_tail(var);
497 
498    /* There are two kinds of vector constructors.
499     *
500     *  - Construct a vector from a single scalar by replicating that scalar to
501     *    all components of the vector.
502     *
503     *  - Construct a vector from an arbirary combination of vectors and
504     *    scalars.  The components of the constructor parameters are assigned
505     *    to the vector in order until the vector is full.
506     */
507    const unsigned lhs_components = type->components();
508    if (single_scalar_parameter(parameters)) {
509       ir_rvalue *first_param = (ir_rvalue *)parameters->head;
510       ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
511 					   lhs_components);
512       ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
513       const unsigned mask = (1U << lhs_components) - 1;
514 
515       assert(rhs->type == lhs->type);
516 
517       ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
518       instructions->push_tail(inst);
519    } else {
520       unsigned base_component = 0;
521       unsigned base_lhs_component = 0;
522       ir_constant_data data;
523       unsigned constant_mask = 0, constant_components = 0;
524 
525       memset(&data, 0, sizeof(data));
526 
527       foreach_list(node, parameters) {
528 	 ir_rvalue *param = (ir_rvalue *) node;
529 	 unsigned rhs_components = param->type->components();
530 
531 	 /* Do not try to assign more components to the vector than it has!
532 	  */
533 	 if ((rhs_components + base_lhs_component) > lhs_components) {
534 	    rhs_components = lhs_components - base_lhs_component;
535 	 }
536 
537 	 const ir_constant *const c = param->as_constant();
538 	 if (c != NULL) {
539 	    for (unsigned i = 0; i < rhs_components; i++) {
540 	       switch (c->type->base_type) {
541 	       case GLSL_TYPE_UINT:
542 		  data.u[i + base_component] = c->get_uint_component(i);
543 		  break;
544 	       case GLSL_TYPE_INT:
545 		  data.i[i + base_component] = c->get_int_component(i);
546 		  break;
547 	       case GLSL_TYPE_FLOAT:
548 		  data.f[i + base_component] = c->get_float_component(i);
549 		  break;
550 	       case GLSL_TYPE_BOOL:
551 		  data.b[i + base_component] = c->get_bool_component(i);
552 		  break;
553 	       default:
554 		  assert(!"Should not get here.");
555 		  break;
556 	       }
557 	    }
558 
559 	    /* Mask of fields to be written in the assignment.
560 	     */
561 	    constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
562 	    constant_components += rhs_components;
563 
564 	    base_component += rhs_components;
565 	 }
566 	 /* Advance the component index by the number of components
567 	  * that were just assigned.
568 	  */
569 	 base_lhs_component += rhs_components;
570       }
571 
572       if (constant_mask != 0) {
573 	 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
574 	 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
575 							     constant_components,
576 							     1);
577 	 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
578 
579 	 ir_instruction *inst =
580 	    new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
581 	 instructions->push_tail(inst);
582       }
583 
584       base_component = 0;
585       foreach_list(node, parameters) {
586 	 ir_rvalue *param = (ir_rvalue *) node;
587 	 unsigned rhs_components = param->type->components();
588 
589 	 /* Do not try to assign more components to the vector than it has!
590 	  */
591 	 if ((rhs_components + base_component) > lhs_components) {
592 	    rhs_components = lhs_components - base_component;
593 	 }
594 
595 	 const ir_constant *const c = param->as_constant();
596 	 if (c == NULL) {
597 	    /* Mask of fields to be written in the assignment.
598 	     */
599 	    const unsigned write_mask = ((1U << rhs_components) - 1)
600 	       << base_component;
601 
602 	    ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
603 
604 	    /* Generate a swizzle so that LHS and RHS sizes match.
605 	     */
606 	    ir_rvalue *rhs =
607 	       new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
608 
609 	    ir_instruction *inst =
610 	       new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
611 	    instructions->push_tail(inst);
612 	 }
613 
614 	 /* Advance the component index by the number of components that were
615 	  * just assigned.
616 	  */
617 	 base_component += rhs_components;
618       }
619    }
620    return new(ctx) ir_dereference_variable(var);
621 }
622 
623 
624 /**
625  * Generate assignment of a portion of a vector to a portion of a matrix column
626  *
627  * \param src_base  First component of the source to be used in assignment
628  * \param column    Column of destination to be assiged
629  * \param row_base  First component of the destination column to be assigned
630  * \param count     Number of components to be assigned
631  *
632  * \note
633  * \c src_base + \c count must be less than or equal to the number of components
634  * in the source vector.
635  */
636 ir_instruction *
assign_to_matrix_column(ir_variable * var,unsigned column,unsigned row_base,ir_rvalue * src,unsigned src_base,unsigned count,void * mem_ctx)637 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
638 			ir_rvalue *src, unsigned src_base, unsigned count,
639 			void *mem_ctx)
640 {
641    ir_constant *col_idx = new(mem_ctx) ir_constant(column);
642    ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
643 
644    assert(column_ref->type->components() >= (row_base + count));
645    assert(src->type->components() >= (src_base + count));
646 
647    /* Generate a swizzle that extracts the number of components from the source
648     * that are to be assigned to the column of the matrix.
649     */
650    if (count < src->type->vector_elements) {
651       src = new(mem_ctx) ir_swizzle(src,
652 				    src_base + 0, src_base + 1,
653 				    src_base + 2, src_base + 3,
654 				    count);
655    }
656 
657    /* Mask of fields to be written in the assignment.
658     */
659    const unsigned write_mask = ((1U << count) - 1) << row_base;
660 
661    return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
662 }
663 
664 
665 /**
666  * Generate inline code for a matrix constructor
667  *
668  * The generated constructor code will consist of a temporary variable
669  * declaration of the same type as the constructor.  A sequence of assignments
670  * from constructor parameters to the temporary will follow.
671  *
672  * \return
673  * An \c ir_dereference_variable of the temprorary generated in the constructor
674  * body.
675  */
676 ir_rvalue *
emit_inline_matrix_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)677 emit_inline_matrix_constructor(const glsl_type *type,
678 			       exec_list *instructions,
679 			       exec_list *parameters,
680 			       void *ctx)
681 {
682    assert(!parameters->is_empty());
683 
684    ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
685    instructions->push_tail(var);
686 
687    /* There are three kinds of matrix constructors.
688     *
689     *  - Construct a matrix from a single scalar by replicating that scalar to
690     *    along the diagonal of the matrix and setting all other components to
691     *    zero.
692     *
693     *  - Construct a matrix from an arbirary combination of vectors and
694     *    scalars.  The components of the constructor parameters are assigned
695     *    to the matrix in colum-major order until the matrix is full.
696     *
697     *  - Construct a matrix from a single matrix.  The source matrix is copied
698     *    to the upper left portion of the constructed matrix, and the remaining
699     *    elements take values from the identity matrix.
700     */
701    ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
702    if (single_scalar_parameter(parameters)) {
703       /* Assign the scalar to the X component of a vec4, and fill the remaining
704        * components with zero.
705        */
706       ir_variable *rhs_var =
707 	 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
708 			      ir_var_temporary);
709       instructions->push_tail(rhs_var);
710 
711       ir_constant_data zero;
712       zero.f[0] = 0.0;
713       zero.f[1] = 0.0;
714       zero.f[2] = 0.0;
715       zero.f[3] = 0.0;
716 
717       ir_instruction *inst =
718 	 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
719 				new(ctx) ir_constant(rhs_var->type, &zero),
720 				NULL);
721       instructions->push_tail(inst);
722 
723       ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
724 
725       inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
726       instructions->push_tail(inst);
727 
728       /* Assign the temporary vector to each column of the destination matrix
729        * with a swizzle that puts the X component on the diagonal of the
730        * matrix.  In some cases this may mean that the X component does not
731        * get assigned into the column at all (i.e., when the matrix has more
732        * columns than rows).
733        */
734       static const unsigned rhs_swiz[4][4] = {
735 	 { 0, 1, 1, 1 },
736 	 { 1, 0, 1, 1 },
737 	 { 1, 1, 0, 1 },
738 	 { 1, 1, 1, 0 }
739       };
740 
741       const unsigned cols_to_init = MIN2(type->matrix_columns,
742 					 type->vector_elements);
743       for (unsigned i = 0; i < cols_to_init; i++) {
744 	 ir_constant *const col_idx = new(ctx) ir_constant(i);
745 	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
746 
747 	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
748 	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
749 						    type->vector_elements);
750 
751 	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
752 	 instructions->push_tail(inst);
753       }
754 
755       for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
756 	 ir_constant *const col_idx = new(ctx) ir_constant(i);
757 	 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
758 
759 	 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
760 	 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
761 						    type->vector_elements);
762 
763 	 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
764 	 instructions->push_tail(inst);
765       }
766    } else if (first_param->type->is_matrix()) {
767       /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
768        *
769        *     "If a matrix is constructed from a matrix, then each component
770        *     (column i, row j) in the result that has a corresponding
771        *     component (column i, row j) in the argument will be initialized
772        *     from there. All other components will be initialized to the
773        *     identity matrix. If a matrix argument is given to a matrix
774        *     constructor, it is an error to have any other arguments."
775        */
776       assert(first_param->next->is_tail_sentinel());
777       ir_rvalue *const src_matrix = first_param;
778 
779       /* If the source matrix is smaller, pre-initialize the relavent parts of
780        * the destination matrix to the identity matrix.
781        */
782       if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
783 	  || (src_matrix->type->vector_elements < var->type->vector_elements)) {
784 
785 	 /* If the source matrix has fewer rows, every column of the destination
786 	  * must be initialized.  Otherwise only the columns in the destination
787 	  * that do not exist in the source must be initialized.
788 	  */
789 	 unsigned col =
790 	    (src_matrix->type->vector_elements < var->type->vector_elements)
791 	    ? 0 : src_matrix->type->matrix_columns;
792 
793 	 const glsl_type *const col_type = var->type->column_type();
794 	 for (/* empty */; col < var->type->matrix_columns; col++) {
795 	    ir_constant_data ident;
796 
797 	    ident.f[0] = 0.0;
798 	    ident.f[1] = 0.0;
799 	    ident.f[2] = 0.0;
800 	    ident.f[3] = 0.0;
801 
802 	    ident.f[col] = 1.0;
803 
804 	    ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
805 
806 	    ir_rvalue *const lhs =
807 	       new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
808 
809 	    ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
810 	    instructions->push_tail(inst);
811 	 }
812       }
813 
814       /* Assign columns from the source matrix to the destination matrix.
815        *
816        * Since the parameter will be used in the RHS of multiple assignments,
817        * generate a temporary and copy the paramter there.
818        */
819       ir_variable *const rhs_var =
820 	 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
821 			      ir_var_temporary);
822       instructions->push_tail(rhs_var);
823 
824       ir_dereference *const rhs_var_ref =
825 	 new(ctx) ir_dereference_variable(rhs_var);
826       ir_instruction *const inst =
827 	 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
828       instructions->push_tail(inst);
829 
830       const unsigned last_row = MIN2(src_matrix->type->vector_elements,
831 				     var->type->vector_elements);
832       const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
833 				     var->type->matrix_columns);
834 
835       unsigned swiz[4] = { 0, 0, 0, 0 };
836       for (unsigned i = 1; i < last_row; i++)
837 	 swiz[i] = i;
838 
839       const unsigned write_mask = (1U << last_row) - 1;
840 
841       for (unsigned i = 0; i < last_col; i++) {
842 	 ir_dereference *const lhs =
843 	    new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
844 	 ir_rvalue *const rhs_col =
845 	    new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
846 
847 	 /* If one matrix has columns that are smaller than the columns of the
848 	  * other matrix, wrap the column access of the larger with a swizzle
849 	  * so that the LHS and RHS of the assignment have the same size (and
850 	  * therefore have the same type).
851 	  *
852 	  * It would be perfectly valid to unconditionally generate the
853 	  * swizzles, this this will typically result in a more compact IR tree.
854 	  */
855 	 ir_rvalue *rhs;
856 	 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
857 	    rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
858 	 } else {
859 	    rhs = rhs_col;
860 	 }
861 
862 	 ir_instruction *inst =
863 	    new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
864 	 instructions->push_tail(inst);
865       }
866    } else {
867       const unsigned cols = type->matrix_columns;
868       const unsigned rows = type->vector_elements;
869       unsigned col_idx = 0;
870       unsigned row_idx = 0;
871 
872       foreach_list (node, parameters) {
873 	 ir_rvalue *const rhs = (ir_rvalue *) node;
874 	 const unsigned components_remaining_this_column = rows - row_idx;
875 	 unsigned rhs_components = rhs->type->components();
876 	 unsigned rhs_base = 0;
877 
878 	 /* Since the parameter might be used in the RHS of two assignments,
879 	  * generate a temporary and copy the paramter there.
880 	  */
881 	 ir_variable *rhs_var =
882 	    new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
883 	 instructions->push_tail(rhs_var);
884 
885 	 ir_dereference *rhs_var_ref =
886 	    new(ctx) ir_dereference_variable(rhs_var);
887 	 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
888 	 instructions->push_tail(inst);
889 
890 	 /* Assign the current parameter to as many components of the matrix
891 	  * as it will fill.
892 	  *
893 	  * NOTE: A single vector parameter can span two matrix columns.  A
894 	  * single vec4, for example, can completely fill a mat2.
895 	  */
896 	 if (rhs_components >= components_remaining_this_column) {
897 	    const unsigned count = MIN2(rhs_components,
898 					components_remaining_this_column);
899 
900 	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
901 
902 	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
903 							   row_idx,
904 							   rhs_var_ref, 0,
905 							   count, ctx);
906 	    instructions->push_tail(inst);
907 
908 	    rhs_base = count;
909 
910 	    col_idx++;
911 	    row_idx = 0;
912 	 }
913 
914 	 /* If there is data left in the parameter and components left to be
915 	  * set in the destination, emit another assignment.  It is possible
916 	  * that the assignment could be of a vec4 to the last element of the
917 	  * matrix.  In this case col_idx==cols, but there is still data
918 	  * left in the source parameter.  Obviously, don't emit an assignment
919 	  * to data outside the destination matrix.
920 	  */
921 	 if ((col_idx < cols) && (rhs_base < rhs_components)) {
922 	    const unsigned count = rhs_components - rhs_base;
923 
924 	    rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
925 
926 	    ir_instruction *inst = assign_to_matrix_column(var, col_idx,
927 							   row_idx,
928 							   rhs_var_ref,
929 							   rhs_base,
930 							   count, ctx);
931 	    instructions->push_tail(inst);
932 
933 	    row_idx += count;
934 	 }
935       }
936    }
937 
938    return new(ctx) ir_dereference_variable(var);
939 }
940 
941 
942 ir_rvalue *
emit_inline_record_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * mem_ctx)943 emit_inline_record_constructor(const glsl_type *type,
944 			       exec_list *instructions,
945 			       exec_list *parameters,
946 			       void *mem_ctx)
947 {
948    ir_variable *const var =
949       new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
950    ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
951 
952    instructions->push_tail(var);
953 
954    exec_node *node = parameters->head;
955    for (unsigned i = 0; i < type->length; i++) {
956       assert(!node->is_tail_sentinel());
957 
958       ir_dereference *const lhs =
959 	 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
960 					    type->fields.structure[i].name);
961 
962       ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
963       assert(rhs != NULL);
964 
965       ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
966 
967       instructions->push_tail(assign);
968       node = node->next;
969    }
970 
971    return d;
972 }
973 
974 
975 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)976 ast_function_expression::hir(exec_list *instructions,
977 			     struct _mesa_glsl_parse_state *state)
978 {
979    void *ctx = state;
980    /* There are three sorts of function calls.
981     *
982     * 1. constructors - The first subexpression is an ast_type_specifier.
983     * 2. methods - Only the .length() method of array types.
984     * 3. functions - Calls to regular old functions.
985     *
986     * Method calls are actually detected when the ast_field_selection
987     * expression is handled.
988     */
989    if (is_constructor()) {
990       const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
991       YYLTYPE loc = type->get_location();
992       const char *name;
993 
994       const glsl_type *const constructor_type = type->glsl_type(& name, state);
995 
996 
997       /* Constructors for samplers are illegal.
998        */
999       if (constructor_type->is_sampler()) {
1000 	 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1001 			  constructor_type->name);
1002 	 return ir_call::get_error_instruction(ctx);
1003       }
1004 
1005       if (constructor_type->is_array()) {
1006 	 if (state->language_version <= 110) {
1007 	    _mesa_glsl_error(& loc, state,
1008 			     "array constructors forbidden in GLSL 1.10");
1009 	    return ir_call::get_error_instruction(ctx);
1010 	 }
1011 
1012 	 return process_array_constructor(instructions, constructor_type,
1013 					  & loc, &this->expressions, state);
1014       }
1015 
1016 
1017       /* There are two kinds of constructor call.  Constructors for built-in
1018        * language types, such as mat4 and vec2, are free form.  The only
1019        * requirement is that the parameters must provide enough values of the
1020        * correct scalar type.  Constructors for arrays and structures must
1021        * have the exact number of parameters with matching types in the
1022        * correct order.  These constructors follow essentially the same type
1023        * matching rules as functions.
1024        */
1025       if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1026 	 return ir_call::get_error_instruction(ctx);
1027 
1028       /* Total number of components of the type being constructed. */
1029       const unsigned type_components = constructor_type->components();
1030 
1031       /* Number of components from parameters that have actually been
1032        * consumed.  This is used to perform several kinds of error checking.
1033        */
1034       unsigned components_used = 0;
1035 
1036       unsigned matrix_parameters = 0;
1037       unsigned nonmatrix_parameters = 0;
1038       exec_list actual_parameters;
1039 
1040       foreach_list (n, &this->expressions) {
1041 	 ast_node *ast = exec_node_data(ast_node, n, link);
1042 	 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1043 
1044 	 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1045 	  *
1046 	  *    "It is an error to provide extra arguments beyond this
1047 	  *    last used argument."
1048 	  */
1049 	 if (components_used >= type_components) {
1050 	    _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1051 			     "constructor",
1052 			     constructor_type->name);
1053 	    return ir_call::get_error_instruction(ctx);
1054 	 }
1055 
1056 	 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1057 	    _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1058 			     "non-numeric data type",
1059 			     constructor_type->name);
1060 	    return ir_call::get_error_instruction(ctx);
1061 	 }
1062 
1063 	 /* Count the number of matrix and nonmatrix parameters.  This
1064 	  * is used below to enforce some of the constructor rules.
1065 	  */
1066 	 if (result->type->is_matrix())
1067 	    matrix_parameters++;
1068 	 else
1069 	    nonmatrix_parameters++;
1070 
1071 	 actual_parameters.push_tail(result);
1072 	 components_used += result->type->components();
1073       }
1074 
1075       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1076        *
1077        *    "It is an error to construct matrices from other matrices. This
1078        *    is reserved for future use."
1079        */
1080       if (state->language_version == 110 && matrix_parameters > 0
1081 	  && constructor_type->is_matrix()) {
1082 	 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1083 			  "matrix in GLSL 1.10",
1084 			  constructor_type->name);
1085 	 return ir_call::get_error_instruction(ctx);
1086       }
1087 
1088       /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1089        *
1090        *    "If a matrix argument is given to a matrix constructor, it is
1091        *    an error to have any other arguments."
1092        */
1093       if ((matrix_parameters > 0)
1094 	  && ((matrix_parameters + nonmatrix_parameters) > 1)
1095 	  && constructor_type->is_matrix()) {
1096 	 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1097 			  "matrix must be only parameter",
1098 			  constructor_type->name);
1099 	 return ir_call::get_error_instruction(ctx);
1100       }
1101 
1102       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1103        *
1104        *    "In these cases, there must be enough components provided in the
1105        *    arguments to provide an initializer for every component in the
1106        *    constructed value."
1107        */
1108       if (components_used < type_components && components_used != 1
1109 	  && matrix_parameters == 0) {
1110 	 _mesa_glsl_error(& loc, state, "too few components to construct "
1111 			  "`%s'",
1112 			  constructor_type->name);
1113 	 return ir_call::get_error_instruction(ctx);
1114       }
1115 
1116       /* Later, we cast each parameter to the same base type as the
1117        * constructor.  Since there are no non-floating point matrices, we
1118        * need to break them up into a series of column vectors.
1119        */
1120       if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1121 	 foreach_list_safe(n, &actual_parameters) {
1122 	    ir_rvalue *matrix = (ir_rvalue *) n;
1123 
1124 	    if (!matrix->type->is_matrix())
1125 	       continue;
1126 
1127 	    /* Create a temporary containing the matrix. */
1128 	    ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1129 						    ir_var_temporary);
1130 	    instructions->push_tail(var);
1131 	    instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1132 	       ir_dereference_variable(var), matrix, NULL));
1133 	    var->constant_value = matrix->constant_expression_value();
1134 
1135 	    /* Replace the matrix with dereferences of its columns. */
1136 	    for (int i = 0; i < matrix->type->matrix_columns; i++) {
1137 	       matrix->insert_before(new (ctx) ir_dereference_array(var,
1138 		  new(ctx) ir_constant(i)));
1139 	    }
1140 	    matrix->remove();
1141 	 }
1142       }
1143 
1144       bool all_parameters_are_constant = true;
1145 
1146       /* Type cast each parameter and, if possible, fold constants.*/
1147       foreach_list_safe(n, &actual_parameters) {
1148 	 ir_rvalue *ir = (ir_rvalue *) n;
1149 
1150 	 const glsl_type *desired_type =
1151 	    glsl_type::get_instance(constructor_type->base_type,
1152 				    ir->type->vector_elements,
1153 				    ir->type->matrix_columns);
1154 	 ir_rvalue *result = convert_component(ir, desired_type);
1155 
1156 	 /* Attempt to convert the parameter to a constant valued expression.
1157 	  * After doing so, track whether or not all the parameters to the
1158 	  * constructor are trivially constant valued expressions.
1159 	  */
1160 	 ir_rvalue *const constant = result->constant_expression_value();
1161 
1162 	 if (constant != NULL)
1163 	    result = constant;
1164 	 else
1165 	    all_parameters_are_constant = false;
1166 
1167 	 if (result != ir) {
1168 	    ir->replace_with(result);
1169 	 }
1170       }
1171 
1172       /* If all of the parameters are trivially constant, create a
1173        * constant representing the complete collection of parameters.
1174        */
1175       if (all_parameters_are_constant) {
1176 	 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1177       } else if (constructor_type->is_scalar()) {
1178 	 return dereference_component((ir_rvalue *) actual_parameters.head,
1179 				      0);
1180       } else if (constructor_type->is_vector()) {
1181 	 return emit_inline_vector_constructor(constructor_type,
1182 					       instructions,
1183 					       &actual_parameters,
1184 					       ctx);
1185       } else {
1186 	 assert(constructor_type->is_matrix());
1187 	 return emit_inline_matrix_constructor(constructor_type,
1188 					       instructions,
1189 					       &actual_parameters,
1190 					       ctx);
1191       }
1192    } else {
1193       const ast_expression *id = subexpressions[0];
1194       YYLTYPE loc = id->get_location();
1195       exec_list actual_parameters;
1196 
1197       process_parameters(instructions, &actual_parameters, &this->expressions,
1198 			 state);
1199 
1200       const glsl_type *const type =
1201 	 state->symbols->get_type(id->primary_expression.identifier);
1202 
1203       if ((type != NULL) && type->is_record()) {
1204 	 exec_node *node = actual_parameters.head;
1205 	 for (unsigned i = 0; i < type->length; i++) {
1206 	    ir_rvalue *ir = (ir_rvalue *) node;
1207 
1208 	    if (node->is_tail_sentinel()) {
1209 	       _mesa_glsl_error(&loc, state,
1210 				"insufficient parameters to constructor "
1211 				"for `%s'",
1212 				type->name);
1213 	       return ir_call::get_error_instruction(ctx);
1214 	    }
1215 
1216 	    if (apply_implicit_conversion(type->fields.structure[i].type, ir,
1217 					  state)) {
1218 	       node->replace_with(ir);
1219 	    } else {
1220 	       _mesa_glsl_error(&loc, state,
1221 				"parameter type mismatch in constructor "
1222 				"for `%s.%s' (%s vs %s)",
1223 				type->name,
1224 				type->fields.structure[i].name,
1225 				ir->type->name,
1226 				type->fields.structure[i].type->name);
1227 	       return ir_call::get_error_instruction(ctx);;
1228 	    }
1229 
1230 	    node = node->next;
1231 	 }
1232 
1233 	 if (!node->is_tail_sentinel()) {
1234 	    _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1235 			     "for `%s'", type->name);
1236 	    return ir_call::get_error_instruction(ctx);
1237 	 }
1238 
1239 	 ir_rvalue *const constant =
1240 	    constant_record_constructor(type, &actual_parameters, state);
1241 
1242 	 return (constant != NULL)
1243 	    ? constant
1244 	    : emit_inline_record_constructor(type, instructions,
1245 					     &actual_parameters, state);
1246       }
1247 
1248       return match_function_by_name(instructions,
1249 				    id->primary_expression.identifier, & loc,
1250 				    &actual_parameters, state);
1251    }
1252 
1253    return ir_call::get_error_instruction(ctx);
1254 }
1255