1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66 #include <cstddef>
67 #include <cstdlib>
68 #include <cstdio>
69 #include <cstdarg>
70 #include <climits>
71
72 #include <pixelflinger2/pixelflinger2_interface.h>
73
74 extern "C" {
75 #include <hieralloc.h>
76 }
77
78 #include "main/core.h"
79 #include "glsl_symbol_table.h"
80 #include "ir.h"
81 #include "program.h"
82 #include "program/hash_table.h"
83 #include "linker.h"
84 #include "ir_optimization.h"
85
86 #include "main/shaderobj.h"
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
find_assignment_visitor(const char * name)93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
visit_enter(ir_assignment * ir)99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 using ir_hierarchical_visitor::visit_enter;
visit_enter(ir_call * ir)112 virtual ir_visitor_status visit_enter(ir_call *ir)
113 {
114 exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
115 foreach_iter(exec_list_iterator, iter, *ir) {
116 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
117 ir_variable *sig_param = (ir_variable *)sig_iter.get();
118
119 if (sig_param->mode == ir_var_out ||
120 sig_param->mode == ir_var_inout) {
121 ir_variable *var = param_rval->variable_referenced();
122 if (var && strcmp(name, var->name) == 0) {
123 found = true;
124 return visit_stop;
125 }
126 }
127 sig_iter.next();
128 }
129
130 return visit_continue_with_parent;
131 }
132
variable_found()133 bool variable_found()
134 {
135 return found;
136 }
137
138 private:
139 const char *name; /**< Find writes to a variable with this name. */
140 bool found; /**< Was a write to the variable found? */
141 };
142
143
144 /**
145 * Visitor that determines whether or not a variable is ever read.
146 */
147 class find_deref_visitor : public ir_hierarchical_visitor {
148 public:
find_deref_visitor(const char * name)149 find_deref_visitor(const char *name)
150 : name(name), found(false)
151 {
152 /* empty */
153 }
154
155 using ir_hierarchical_visitor::visit;
visit(ir_dereference_variable * ir)156 virtual ir_visitor_status visit(ir_dereference_variable *ir)
157 {
158 if (strcmp(this->name, ir->var->name) == 0) {
159 this->found = true;
160 return visit_stop;
161 }
162
163 return visit_continue;
164 }
165
variable_found() const166 bool variable_found() const
167 {
168 return this->found;
169 }
170
171 private:
172 const char *name; /**< Find writes to a variable with this name. */
173 bool found; /**< Was a write to the variable found? */
174 };
175
176
177 void
linker_error_printf(gl_shader_program * prog,const char * fmt,...)178 linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
179 {
180 va_list ap;
181
182 prog->InfoLog = hieralloc_strdup_append(prog->InfoLog, "error: ");
183 va_start(ap, fmt);
184 prog->InfoLog = hieralloc_vasprintf_append(prog->InfoLog, fmt, ap);
185 va_end(ap);
186 }
187
188
189 void
invalidate_variable_locations(gl_shader * sh,enum ir_variable_mode mode,int generic_base)190 invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
191 int generic_base)
192 {
193 foreach_list(node, sh->ir) {
194 ir_variable *const var = ((ir_instruction *) node)->as_variable();
195
196 if ((var == NULL) || (var->mode != (unsigned) mode))
197 continue;
198
199 /* Only assign locations for generic attributes / varyings / etc.
200 */
201 if ((var->location >= generic_base) && !var->explicit_location)
202 var->location = -1;
203 }
204 }
205
206
207 /**
208 * Determine the number of attribute slots required for a particular type
209 *
210 * This code is here because it implements the language rules of a specific
211 * GLSL version. Since it's a property of the language and not a property of
212 * types in general, it doesn't really belong in glsl_type.
213 */
214 unsigned
count_attribute_slots(const glsl_type * t)215 count_attribute_slots(const glsl_type *t)
216 {
217 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
218 *
219 * "A scalar input counts the same amount against this limit as a vec4,
220 * so applications may want to consider packing groups of four
221 * unrelated float inputs together into a vector to better utilize the
222 * capabilities of the underlying hardware. A matrix input will use up
223 * multiple locations. The number of locations used will equal the
224 * number of columns in the matrix."
225 *
226 * The spec does not explicitly say how arrays are counted. However, it
227 * should be safe to assume the total number of slots consumed by an array
228 * is the number of entries in the array multiplied by the number of slots
229 * consumed by a single element of the array.
230 */
231
232 if (t->is_array())
233 return t->array_size() * count_attribute_slots(t->element_type());
234
235 if (t->is_matrix())
236 return t->matrix_columns;
237
238 return 1;
239 }
240
241
242 /**
243 * Verify that a vertex shader executable meets all semantic requirements
244 *
245 * \param shader Vertex shader executable to be verified
246 */
247 bool
validate_vertex_shader_executable(struct gl_shader_program * prog,struct gl_shader * shader)248 validate_vertex_shader_executable(struct gl_shader_program *prog,
249 struct gl_shader *shader)
250 {
251 if (shader == NULL)
252 return true;
253
254 find_assignment_visitor find("gl_Position");
255 find.run(shader->ir);
256 if (!find.variable_found()) {
257 linker_error_printf(prog,
258 "vertex shader does not write to `gl_Position'\n");
259 return false;
260 }
261
262 return true;
263 }
264
265
266 /**
267 * Verify that a fragment shader executable meets all semantic requirements
268 *
269 * \param shader Fragment shader executable to be verified
270 */
271 bool
validate_fragment_shader_executable(struct gl_shader_program * prog,struct gl_shader * shader)272 validate_fragment_shader_executable(struct gl_shader_program *prog,
273 struct gl_shader *shader)
274 {
275 if (shader == NULL)
276 return true;
277
278 find_assignment_visitor frag_color("gl_FragColor");
279 find_assignment_visitor frag_data("gl_FragData");
280
281 frag_color.run(shader->ir);
282 frag_data.run(shader->ir);
283
284 if (frag_color.variable_found() && frag_data.variable_found()) {
285 linker_error_printf(prog, "fragment shader writes to both "
286 "`gl_FragColor' and `gl_FragData'\n");
287 return false;
288 }
289
290 return true;
291 }
292
293
294 /**
295 * Generate a string describing the mode of a variable
296 */
297 static const char *
mode_string(const ir_variable * var)298 mode_string(const ir_variable *var)
299 {
300 switch (var->mode) {
301 case ir_var_auto:
302 return (var->read_only) ? "global constant" : "global variable";
303
304 case ir_var_uniform: return "uniform";
305 case ir_var_in: return "shader input";
306 case ir_var_out: return "shader output";
307 case ir_var_inout: return "shader inout";
308
309 case ir_var_temporary:
310 default:
311 assert(!"Should not get here.");
312 return "invalid variable";
313 }
314 }
315
316
317 /**
318 * Perform validation of global variables used across multiple shaders
319 */
320 bool
cross_validate_globals(struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders,bool uniforms_only)321 cross_validate_globals(struct gl_shader_program *prog,
322 struct gl_shader **shader_list,
323 unsigned num_shaders,
324 bool uniforms_only)
325 {
326 /* Examine all of the uniforms in all of the shaders and cross validate
327 * them.
328 */
329 glsl_symbol_table variables(prog);
330 for (unsigned i = 0; i < num_shaders; i++) {
331 if (shader_list[i] == NULL)
332 continue;
333
334 foreach_list(node, shader_list[i]->ir) {
335 ir_variable *const var = ((ir_instruction *) node)->as_variable();
336
337 if (var == NULL)
338 continue;
339
340 if (uniforms_only && (var->mode != ir_var_uniform))
341 continue;
342
343 /* Don't cross validate temporaries that are at global scope. These
344 * will eventually get pulled into the shaders 'main'.
345 */
346 if (var->mode == ir_var_temporary)
347 continue;
348
349 /* If a global with this name has already been seen, verify that the
350 * new instance has the same type. In addition, if the globals have
351 * initializers, the values of the initializers must be the same.
352 */
353 ir_variable *const existing = variables.get_variable(var->name);
354 if (existing != NULL) {
355 if (var->type != existing->type) {
356 /* Consider the types to be "the same" if both types are arrays
357 * of the same type and one of the arrays is implicitly sized.
358 * In addition, set the type of the linked variable to the
359 * explicitly sized array.
360 */
361 if (var->type->is_array()
362 && existing->type->is_array()
363 && (var->type->fields.array == existing->type->fields.array)
364 && ((var->type->length == 0)
365 || (existing->type->length == 0))) {
366 if (existing->type->length == 0) {
367 existing->type = var->type;
368 existing->max_array_access =
369 MAX2(existing->max_array_access,
370 var->max_array_access);
371 }
372 } else {
373 linker_error_printf(prog, "%s `%s' declared as type "
374 "`%s' and type `%s'\n",
375 mode_string(var),
376 var->name, var->type->name,
377 existing->type->name);
378 return false;
379 }
380 }
381
382 if (var->explicit_location) {
383 if (existing->explicit_location
384 && (var->location != existing->location)) {
385 linker_error_printf(prog, "explicit locations for %s "
386 "`%s' have differing values\n",
387 mode_string(var), var->name);
388 return false;
389 }
390
391 existing->location = var->location;
392 existing->explicit_location = true;
393 }
394
395 /* FINISHME: Handle non-constant initializers.
396 */
397 if (var->constant_value != NULL) {
398 if (existing->constant_value != NULL) {
399 if (!var->constant_value->has_value(existing->constant_value)) {
400 linker_error_printf(prog, "initializers for %s "
401 "`%s' have differing values\n",
402 mode_string(var), var->name);
403 return false;
404 }
405 } else
406 /* If the first-seen instance of a particular uniform did not
407 * have an initializer but a later instance does, copy the
408 * initializer to the version stored in the symbol table.
409 */
410 /* FINISHME: This is wrong. The constant_value field should
411 * FINISHME: not be modified! Imagine a case where a shader
412 * FINISHME: without an initializer is linked in two different
413 * FINISHME: programs with shaders that have differing
414 * FINISHME: initializers. Linking with the first will
415 * FINISHME: modify the shader, and linking with the second
416 * FINISHME: will fail.
417 */
418 existing->constant_value =
419 var->constant_value->clone(hieralloc_parent(existing), NULL);
420 }
421
422 if (existing->invariant != var->invariant) {
423 linker_error_printf(prog, "declarations for %s `%s' have "
424 "mismatching invariant qualifiers\n",
425 mode_string(var), var->name);
426 return false;
427 }
428 } else
429 variables.add_variable(var);
430 }
431 }
432
433 return true;
434 }
435
436
437 /**
438 * Perform validation of uniforms used across multiple shader stages
439 */
440 bool
cross_validate_uniforms(struct gl_shader_program * prog)441 cross_validate_uniforms(struct gl_shader_program *prog)
442 {
443 return cross_validate_globals(prog, prog->_LinkedShaders,
444 MESA_SHADER_TYPES, true);
445 }
446
447
448 /**
449 * Validate that outputs from one stage match inputs of another
450 */
451 bool
cross_validate_outputs_to_inputs(struct gl_shader_program * prog,gl_shader * producer,gl_shader * consumer)452 cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
453 gl_shader *producer, gl_shader *consumer)
454 {
455 glsl_symbol_table parameters(prog);
456 /* FINISHME: Figure these out dynamically. */
457 const char *const producer_stage = "vertex";
458 const char *const consumer_stage = "fragment";
459
460 /* Find all shader outputs in the "producer" stage.
461 */
462 foreach_list(node, producer->ir) {
463 ir_variable *const var = ((ir_instruction *) node)->as_variable();
464
465 /* FINISHME: For geometry shaders, this should also look for inout
466 * FINISHME: variables.
467 */
468 if ((var == NULL) || (var->mode != ir_var_out))
469 continue;
470
471 parameters.add_variable(var);
472 }
473
474
475 /* Find all shader inputs in the "consumer" stage. Any variables that have
476 * matching outputs already in the symbol table must have the same type and
477 * qualifiers.
478 */
479 foreach_list(node, consumer->ir) {
480 ir_variable *const input = ((ir_instruction *) node)->as_variable();
481
482 /* FINISHME: For geometry shaders, this should also look for inout
483 * FINISHME: variables.
484 */
485 if ((input == NULL) || (input->mode != ir_var_in))
486 continue;
487
488 ir_variable *const output = parameters.get_variable(input->name);
489 if (output != NULL) {
490 /* Check that the types match between stages.
491 */
492 if (input->type != output->type) {
493 /* There is a bit of a special case for gl_TexCoord. This
494 * built-in is unsized by default. Appliations that variable
495 * access it must redeclare it with a size. There is some
496 * language in the GLSL spec that implies the fragment shader
497 * and vertex shader do not have to agree on this size. Other
498 * driver behave this way, and one or two applications seem to
499 * rely on it.
500 *
501 * Neither declaration needs to be modified here because the array
502 * sizes are fixed later when update_array_sizes is called.
503 *
504 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
505 *
506 * "Unlike user-defined varying variables, the built-in
507 * varying variables don't have a strict one-to-one
508 * correspondence between the vertex language and the
509 * fragment language."
510 */
511 if (!output->type->is_array()
512 || (strncmp("gl_", output->name, 3) != 0)) {
513 linker_error_printf(prog,
514 "%s shader output `%s' declared as "
515 "type `%s', but %s shader input declared "
516 "as type `%s'\n",
517 producer_stage, output->name,
518 output->type->name,
519 consumer_stage, input->type->name);
520 return false;
521 }
522 }
523
524 /* Check that all of the qualifiers match between stages.
525 */
526 if (input->centroid != output->centroid) {
527 linker_error_printf(prog,
528 "%s shader output `%s' %s centroid qualifier, "
529 "but %s shader input %s centroid qualifier\n",
530 producer_stage,
531 output->name,
532 (output->centroid) ? "has" : "lacks",
533 consumer_stage,
534 (input->centroid) ? "has" : "lacks");
535 return false;
536 }
537
538 if (input->invariant != output->invariant) {
539 linker_error_printf(prog,
540 "%s shader output `%s' %s invariant qualifier, "
541 "but %s shader input %s invariant qualifier\n",
542 producer_stage,
543 output->name,
544 (output->invariant) ? "has" : "lacks",
545 consumer_stage,
546 (input->invariant) ? "has" : "lacks");
547 return false;
548 }
549
550 if (input->interpolation != output->interpolation) {
551 linker_error_printf(prog,
552 "%s shader output `%s' specifies %s "
553 "interpolation qualifier, "
554 "but %s shader input specifies %s "
555 "interpolation qualifier\n",
556 producer_stage,
557 output->name,
558 output->interpolation_string(),
559 consumer_stage,
560 input->interpolation_string());
561 return false;
562 }
563 }
564 }
565
566 return true;
567 }
568
569
570 /**
571 * Populates a shaders symbol table with all global declarations
572 */
573 static void
populate_symbol_table(gl_shader * sh)574 populate_symbol_table(gl_shader *sh)
575 {
576 sh->symbols = new(sh) glsl_symbol_table(sh);
577
578 foreach_list(node, sh->ir) {
579 ir_instruction *const inst = (ir_instruction *) node;
580 ir_variable *var;
581 ir_function *func;
582
583 if ((func = inst->as_function()) != NULL) {
584 sh->symbols->add_function(func);
585 } else if ((var = inst->as_variable()) != NULL) {
586 sh->symbols->add_variable(var);
587 }
588 }
589 }
590
591
592 /**
593 * Remap variables referenced in an instruction tree
594 *
595 * This is used when instruction trees are cloned from one shader and placed in
596 * another. These trees will contain references to \c ir_variable nodes that
597 * do not exist in the target shader. This function finds these \c ir_variable
598 * references and replaces the references with matching variables in the target
599 * shader.
600 *
601 * If there is no matching variable in the target shader, a clone of the
602 * \c ir_variable is made and added to the target shader. The new variable is
603 * added to \b both the instruction stream and the symbol table.
604 *
605 * \param inst IR tree that is to be processed.
606 * \param symbols Symbol table containing global scope symbols in the
607 * linked shader.
608 * \param instructions Instruction stream where new variable declarations
609 * should be added.
610 */
611 void
remap_variables(ir_instruction * inst,struct gl_shader * target,hash_table * temps)612 remap_variables(ir_instruction *inst, struct gl_shader *target,
613 hash_table *temps)
614 {
615 class remap_visitor : public ir_hierarchical_visitor {
616 public:
617 remap_visitor(struct gl_shader *target,
618 hash_table *temps)
619 {
620 this->target = target;
621 this->symbols = target->symbols;
622 this->instructions = target->ir;
623 this->temps = temps;
624 }
625
626 using ir_hierarchical_visitor::visit;
627 virtual ir_visitor_status visit(ir_dereference_variable *ir)
628 {
629 if (ir->var->mode == ir_var_temporary) {
630 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
631
632 assert(var != NULL);
633 ir->var = var;
634 return visit_continue;
635 }
636
637 ir_variable *const existing =
638 this->symbols->get_variable(ir->var->name);
639 if (existing != NULL)
640 ir->var = existing;
641 else {
642 ir_variable *copy = ir->var->clone(this->target, NULL);
643
644 this->symbols->add_variable(copy);
645 this->instructions->push_head(copy);
646 ir->var = copy;
647 }
648
649 return visit_continue;
650 }
651
652 private:
653 struct gl_shader *target;
654 glsl_symbol_table *symbols;
655 exec_list *instructions;
656 hash_table *temps;
657 };
658
659 remap_visitor v(target, temps);
660
661 inst->accept(&v);
662 }
663
664
665 /**
666 * Move non-declarations from one instruction stream to another
667 *
668 * The intended usage pattern of this function is to pass the pointer to the
669 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
670 * pointer) for \c last and \c false for \c make_copies on the first
671 * call. Successive calls pass the return value of the previous call for
672 * \c last and \c true for \c make_copies.
673 *
674 * \param instructions Source instruction stream
675 * \param last Instruction after which new instructions should be
676 * inserted in the target instruction stream
677 * \param make_copies Flag selecting whether instructions in \c instructions
678 * should be copied (via \c ir_instruction::clone) into the
679 * target list or moved.
680 *
681 * \return
682 * The new "last" instruction in the target instruction stream. This pointer
683 * is suitable for use as the \c last parameter of a later call to this
684 * function.
685 */
686 exec_node *
move_non_declarations(exec_list * instructions,exec_node * last,bool make_copies,gl_shader * target)687 move_non_declarations(exec_list *instructions, exec_node *last,
688 bool make_copies, gl_shader *target)
689 {
690 hash_table *temps = NULL;
691
692 if (make_copies)
693 temps = hash_table_ctor(0, hash_table_pointer_hash,
694 hash_table_pointer_compare);
695
696 foreach_list_safe(node, instructions) {
697 ir_instruction *inst = (ir_instruction *) node;
698
699 if (inst->as_function())
700 continue;
701
702 ir_variable *var = inst->as_variable();
703 if ((var != NULL) && (var->mode != ir_var_temporary))
704 continue;
705
706 assert(inst->as_assignment()
707 || ((var != NULL) && (var->mode == ir_var_temporary)));
708
709 if (make_copies) {
710 inst = inst->clone(target, NULL);
711
712 if (var != NULL)
713 hash_table_insert(temps, inst, var);
714 else
715 remap_variables(inst, target, temps);
716 } else {
717 inst->remove();
718 }
719
720 last->insert_after(inst);
721 last = inst;
722 }
723
724 if (make_copies)
725 hash_table_dtor(temps);
726
727 return last;
728 }
729
730 /**
731 * Get the function signature for main from a shader
732 */
733 static ir_function_signature *
get_main_function_signature(gl_shader * sh)734 get_main_function_signature(gl_shader *sh)
735 {
736 ir_function *const f = sh->symbols->get_function("main");
737 if (f != NULL) {
738 exec_list void_parameters;
739
740 /* Look for the 'void main()' signature and ensure that it's defined.
741 * This keeps the linker from accidentally pick a shader that just
742 * contains a prototype for main.
743 *
744 * We don't have to check for multiple definitions of main (in multiple
745 * shaders) because that would have already been caught above.
746 */
747 ir_function_signature *sig = f->matching_signature(&void_parameters);
748 if ((sig != NULL) && sig->is_defined) {
749 return sig;
750 }
751 }
752
753 return NULL;
754 }
755
756
757 /**
758 * Combine a group of shaders for a single stage to generate a linked shader
759 *
760 * \note
761 * If this function is supplied a single shader, it is cloned, and the new
762 * shader is returned.
763 */
764 static struct gl_shader *
link_intrastage_shaders(void * mem_ctx,const struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)765 link_intrastage_shaders(void *mem_ctx,
766 const struct gl_context *ctx,
767 struct gl_shader_program *prog,
768 struct gl_shader **shader_list,
769 unsigned num_shaders)
770 {
771 /* Check that global variables defined in multiple shaders are consistent.
772 */
773 if (!cross_validate_globals(prog, shader_list, num_shaders, false))
774 return NULL;
775
776 /* Check that there is only a single definition of each function signature
777 * across all shaders.
778 */
779 for (unsigned i = 0; i < (num_shaders - 1); i++) {
780 foreach_list(node, shader_list[i]->ir) {
781 ir_function *const f = ((ir_instruction *) node)->as_function();
782
783 if (f == NULL)
784 continue;
785
786 for (unsigned j = i + 1; j < num_shaders; j++) {
787 ir_function *const other =
788 shader_list[j]->symbols->get_function(f->name);
789
790 /* If the other shader has no function (and therefore no function
791 * signatures) with the same name, skip to the next shader.
792 */
793 if (other == NULL)
794 continue;
795
796 foreach_iter (exec_list_iterator, iter, *f) {
797 ir_function_signature *sig =
798 (ir_function_signature *) iter.get();
799
800 if (!sig->is_defined || sig->is_builtin)
801 continue;
802
803 ir_function_signature *other_sig =
804 other->exact_matching_signature(& sig->parameters);
805
806 if ((other_sig != NULL) && other_sig->is_defined
807 && !other_sig->is_builtin) {
808 linker_error_printf(prog,
809 "function `%s' is multiply defined",
810 f->name);
811 return NULL;
812 }
813 }
814 }
815 }
816 }
817
818 /* Find the shader that defines main, and make a clone of it.
819 *
820 * Starting with the clone, search for undefined references. If one is
821 * found, find the shader that defines it. Clone the reference and add
822 * it to the shader. Repeat until there are no undefined references or
823 * until a reference cannot be resolved.
824 */
825 gl_shader *main = NULL;
826 for (unsigned i = 0; i < num_shaders; i++) {
827 if (get_main_function_signature(shader_list[i]) != NULL) {
828 main = shader_list[i];
829 break;
830 }
831 }
832
833 if (main == NULL) {
834 linker_error_printf(prog, "%s shader lacks `main'\n",
835 (shader_list[0]->Type == GL_VERTEX_SHADER)
836 ? "vertex" : "fragment");
837 return NULL;
838 }
839
840 gl_shader *linked = _mesa_new_shader(prog, 0, main->Type);
841 linked->ir = new(linked) exec_list;
842 clone_ir_list(mem_ctx, linked->ir, main->ir);
843
844 populate_symbol_table(linked);
845
846 /* The a pointer to the main function in the final linked shader (i.e., the
847 * copy of the original shader that contained the main function).
848 */
849 ir_function_signature *const main_sig = get_main_function_signature(linked);
850
851 /* Move any instructions other than variable declarations or function
852 * declarations into main.
853 */
854 exec_node *insertion_point =
855 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
856 linked);
857
858 for (unsigned i = 0; i < num_shaders; i++) {
859 if (shader_list[i] == main)
860 continue;
861
862 insertion_point = move_non_declarations(shader_list[i]->ir,
863 insertion_point, true, linked);
864 }
865
866 /* Resolve initializers for global variables in the linked shader.
867 */
868 unsigned num_linking_shaders = num_shaders;
869 for (unsigned i = 0; i < num_shaders; i++)
870 num_linking_shaders += shader_list[i]->num_builtins_to_link;
871
872 gl_shader **linking_shaders =
873 (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
874
875 memcpy(linking_shaders, shader_list,
876 sizeof(linking_shaders[0]) * num_shaders);
877
878 unsigned idx = num_shaders;
879 for (unsigned i = 0; i < num_shaders; i++) {
880 memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
881 sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
882 idx += shader_list[i]->num_builtins_to_link;
883 }
884
885 assert(idx == num_linking_shaders);
886
887 if (!link_function_calls(prog, linked, linking_shaders,
888 num_linking_shaders)) {
889 _mesa_delete_shader(ctx, linked);
890 linked = NULL;
891 }
892
893 free(linking_shaders);
894
895 /* Make a pass over all global variables to ensure that arrays with
896 * unspecified sizes have a size specified. The size is inferred from the
897 * max_array_access field.
898 */
899 if (linked != NULL) {
900 foreach_list(node, linked->ir) {
901 ir_variable *const var = ((ir_instruction *) node)->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if ((var->mode != ir_var_auto) && (var->mode != ir_var_temporary))
907 continue;
908
909 if (!var->type->is_array() || (var->type->length != 0))
910 continue;
911
912 const glsl_type *type =
913 glsl_type::get_array_instance(var->type->fields.array,
914 var->max_array_access);
915
916 assert(type != NULL);
917 var->type = type;
918 }
919 }
920
921 return linked;
922 }
923
924
925 struct uniform_node {
926 exec_node link;
927 struct gl_uniform *u;
928 unsigned slots;
929 };
930
931 /**
932 * Update the sizes of linked shader uniform arrays to the maximum
933 * array index used.
934 *
935 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
936 *
937 * If one or more elements of an array are active,
938 * GetActiveUniform will return the name of the array in name,
939 * subject to the restrictions listed above. The type of the array
940 * is returned in type. The size parameter contains the highest
941 * array element index used, plus one. The compiler or linker
942 * determines the highest index used. There will be only one
943 * active uniform reported by the GL per uniform array.
944
945 */
946 static void
update_array_sizes(struct gl_shader_program * prog)947 update_array_sizes(struct gl_shader_program *prog)
948 {
949 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
950 if (prog->_LinkedShaders[i] == NULL)
951 continue;
952
953 foreach_list(node, prog->_LinkedShaders[i]->ir) {
954 ir_variable *const var = ((ir_instruction *) node)->as_variable();
955
956 if ((var == NULL) || (var->mode != ir_var_uniform &&
957 var->mode != ir_var_in &&
958 var->mode != ir_var_out) ||
959 !var->type->is_array())
960 continue;
961
962 unsigned int size = var->max_array_access;
963 for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
964 if (prog->_LinkedShaders[j] == NULL)
965 continue;
966
967 foreach_list(node2, prog->_LinkedShaders[j]->ir) {
968 ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
969 if (!other_var)
970 continue;
971
972 if (strcmp(var->name, other_var->name) == 0 &&
973 other_var->max_array_access > size) {
974 size = other_var->max_array_access;
975 }
976 }
977 }
978
979 if (size + 1 != var->type->fields.array->length) {
980 var->type = glsl_type::get_array_instance(var->type->fields.array,
981 size + 1);
982 /* FINISHME: We should update the types of array
983 * dereferences of this variable now.
984 */
985 }
986 }
987 }
988 }
989
990 static int // returns location assigned
add_uniform(void * mem_ctx,exec_list * uniforms,struct hash_table * ht,const char * name,const glsl_type * type,GLenum shader_type,unsigned * next_shader_pos,unsigned * total_uniforms,unsigned * next_sampler_pos,unsigned * samplers_used)991 add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
992 const char *name, const glsl_type *type, GLenum shader_type,
993 unsigned *next_shader_pos, unsigned *total_uniforms, unsigned *next_sampler_pos, unsigned * samplers_used)
994 {
995 int index = -1;
996 if (type->is_record()) {
997 for (unsigned int i = 0; i < type->length; i++) {
998 const glsl_type *field_type = type->fields.structure[i].type;
999 char *field_name = hieralloc_asprintf(mem_ctx, "%s.%s", name,
1000 type->fields.structure[i].name);
1001
1002 int firstIndex = add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
1003 shader_type, next_shader_pos, total_uniforms, next_sampler_pos, samplers_used);
1004 if (i == 0)
1005 index = firstIndex;
1006 }
1007 } else {
1008 uniform_node *n = (uniform_node *) hash_table_find(ht, name);
1009 unsigned int vec4_slots;
1010 const glsl_type *array_elem_type = NULL;
1011
1012 if (type->is_array()) {
1013 array_elem_type = type->fields.array;
1014 /* Array of structures. */
1015 if (array_elem_type->is_record()) {
1016 for (unsigned int i = 0; i < type->length; i++) {
1017 char *elem_name = hieralloc_asprintf(mem_ctx, "%s[%d]", name, i);
1018 int firstIndex = add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
1019 shader_type, next_shader_pos, total_uniforms, next_sampler_pos, samplers_used);
1020 if (i == 0)
1021 index = firstIndex;
1022 }
1023 return index;
1024 }
1025 }
1026
1027 /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
1028 * vectors to vec4 slots.
1029 */
1030 if (type->is_array()) {
1031 if (array_elem_type->is_sampler())
1032 vec4_slots = type->length;
1033 else
1034 vec4_slots = type->length * array_elem_type->matrix_columns;
1035 } else if (type->is_sampler())
1036 vec4_slots = 1;
1037 else
1038 vec4_slots = type->matrix_columns;
1039
1040 if (n == NULL) {
1041 n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
1042 n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
1043 n->slots = vec4_slots;
1044
1045 n->u->Name = strdup(name);
1046 n->u->Type = type;
1047 n->u->Pos = *next_shader_pos;
1048 (*total_uniforms)++;
1049
1050 if (type->is_sampler() || (array_elem_type && array_elem_type->is_sampler()))
1051 {
1052 n->u->Pos = *next_sampler_pos;
1053 *next_sampler_pos += vec4_slots;
1054 }
1055 else
1056 (*next_shader_pos) += vec4_slots;
1057 hash_table_insert(ht, n, name);
1058 uniforms->push_tail(&n->link);
1059 }
1060
1061 if (type->is_sampler() || (array_elem_type && array_elem_type->is_sampler()))
1062 (*samplers_used) |= 1 << n->u->Pos;
1063 index = n->u->Pos;
1064 }
1065 return index;
1066 }
1067
1068 void
assign_uniform_locations(struct gl_shader_program * prog)1069 assign_uniform_locations(struct gl_shader_program *prog)
1070 {
1071 /* */
1072 exec_list uniforms;
1073 unsigned total_uniforms = 0;
1074 unsigned next_sampler_pos = 0; // all shaders in prog share same sampler location
1075 hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
1076 hash_table_string_compare);
1077 void *mem_ctx = hieralloc_new(prog);
1078
1079 unsigned next_position = 0; // also number of slots for uniforms
1080
1081 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1082 if (prog->_LinkedShaders[i] == NULL)
1083 continue;
1084
1085 prog->_LinkedShaders[i]->SamplersUsed = 0;
1086 foreach_list(node, prog->_LinkedShaders[i]->ir) {
1087 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1088
1089 if ((var == NULL) || (var->mode != ir_var_uniform))
1090 continue;
1091
1092 if (strncmp(var->name, "gl_", 3) == 0) {
1093 /* At the moment, we don't allocate uniform locations for
1094 * builtin uniforms. It's permitted by spec, and we'll
1095 * likely switch to doing that at some point, but not yet.
1096 */
1097 continue;
1098 }
1099
1100 var->location = add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
1101 prog->_LinkedShaders[i]->Type,
1102 &next_position, &total_uniforms, &next_sampler_pos, &prog->_LinkedShaders[i]->SamplersUsed);
1103 }
1104 }
1105
1106 gl_uniform_list *ul = hieralloc_zero(prog, gl_uniform_list);
1107
1108 ul->Size = total_uniforms;
1109 ul->NumUniforms = total_uniforms;
1110 ul->Uniforms = (gl_uniform *)hieralloc_zero_size(ul, total_uniforms * sizeof(gl_uniform));
1111
1112 unsigned idx = 0;
1113 uniform_node *next;
1114 for (uniform_node *node = (uniform_node *) uniforms.head
1115 ; node->link.next != NULL
1116 ; node = next) {
1117 next = (uniform_node *) node->link.next;
1118
1119 node->link.remove();
1120 memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
1121 idx++;
1122
1123 free(node->u);
1124 free(node);
1125 }
1126
1127 hash_table_dtor(ht);
1128
1129 prog->Uniforms = ul;
1130 prog->Uniforms->Slots = next_position;
1131 prog->Uniforms->SamplerSlots = next_sampler_pos;
1132
1133 hieralloc_free(mem_ctx);
1134 }
1135
1136
1137 /**
1138 * Find a contiguous set of available bits in a bitmask
1139 *
1140 * \param used_mask Bits representing used (1) and unused (0) locations
1141 * \param needed_count Number of contiguous bits needed.
1142 *
1143 * \return
1144 * Base location of the available bits on success or -1 on failure.
1145 */
1146 int
find_available_slots(unsigned used_mask,unsigned needed_count)1147 find_available_slots(unsigned used_mask, unsigned needed_count)
1148 {
1149 unsigned needed_mask = (1 << needed_count) - 1;
1150 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1151
1152 /* The comparison to 32 is redundant, but without it GCC emits "warning:
1153 * cannot optimize possibly infinite loops" for the loop below.
1154 */
1155 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1156 return -1;
1157
1158 for (int i = 0; i <= max_bit_to_test; i++) {
1159 if ((needed_mask & ~used_mask) == needed_mask)
1160 return i;
1161
1162 needed_mask <<= 1;
1163 }
1164
1165 return -1;
1166 }
1167
1168
1169 bool
assign_attribute_locations(gl_shader_program * prog,unsigned max_attribute_index)1170 assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
1171 {
1172 /* Mark invalid attribute locations as being used.
1173 */
1174 unsigned used_locations = (max_attribute_index >= 32)
1175 ? ~0 : ~((1 << max_attribute_index) - 1);
1176
1177 gl_shader *const sh = prog->_LinkedShaders[0];
1178 assert(sh->Type == GL_VERTEX_SHADER);
1179 prog->VaryingSlots = 0;
1180 /* Operate in a total of four passes.
1181 *
1182 * 1. Invalidate the location assignments for all vertex shader inputs,
1183 * except for explicit_location and glBindAttribLocation
1184 *
1185 * 2. Assign locations for inputs that have user-defined (via
1186 * glBindVertexAttribLocation) locatoins.
1187 *
1188 * 3. Sort the attributes without assigned locations by number of slots
1189 * required in decreasing order. Fragmentation caused by attribute
1190 * locations assigned by the application may prevent large attributes
1191 * from having enough contiguous space.
1192 *
1193 * 4. Assign locations to any inputs without assigned locations.
1194 */
1195 if (prog->Attributes != NULL) {
1196 // declare attributes if they haven't been already by BindAttribLocation
1197 gl_program_parameter_list * attributes = prog->Attributes;
1198 foreach_list(node, sh->ir) {
1199 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1200 if ((var == NULL) || (var->mode != ir_var_in))
1201 continue;
1202 if (_mesa_get_parameter(attributes, var->name) < 0)
1203 _mesa_add_parameter(attributes, var->name);
1204 }
1205
1206 for (unsigned i = 0; i < attributes->NumParameters; i++) {
1207 gl_program_parameter * param = attributes->Parameters + i;
1208 ir_variable * const var = sh->symbols->get_variable(param->Name);
1209 if (!var || ir_var_in != var->mode)
1210 continue;
1211
1212 if (param->BindLocation >= 0 && !var->explicit_location)
1213 var->location = param->Location = param->BindLocation;
1214 else if (var->explicit_location)
1215 param->Location = var->location;
1216 else
1217 var->location = -1;
1218 const unsigned slots = count_attribute_slots(var->type);
1219 param->Slots = slots;
1220 if (0 > var->location)
1221 continue;
1222 /* From page 61 of the OpenGL 4.0 spec:
1223 *
1224 * "LinkProgram will fail if the attribute bindings assigned by
1225 * BindAttribLocation do not leave not enough space to assign a
1226 * location for an active matrix attribute or an active attribute
1227 * array, both of which require multiple contiguous generic
1228 * attributes."
1229 *
1230 * Previous versions of the spec contain similar language but omit the
1231 * bit about attribute arrays.
1232 *
1233 * Page 61 of the OpenGL 4.0 spec also says:
1234 *
1235 * "It is possible for an application to bind more than one
1236 * attribute name to the same location. This is referred to as
1237 * aliasing. This will only work if only one of the aliased
1238 * attributes is active in the executable program, or if no path
1239 * through the shader consumes more than one attribute of a set
1240 * of attributes aliased to the same location. A link error can
1241 * occur if the linker determines that every path through the
1242 * shader consumes multiple aliased attributes, but
1243 * implementations are not required to generate an error in this
1244 * case."
1245 *
1246 * These two paragraphs are either somewhat contradictory, or I don't
1247 * fully understand one or both of them.
1248 */
1249 /* FINISHME: The code as currently written does not support attribute
1250 * FINISHME: location aliasing (see comment above).
1251 */
1252 const int attr = param->Location;
1253 /* Mask representing the contiguous slots that will be used by this
1254 * attribute.
1255 */
1256 const unsigned use_mask = (1 << slots) - 1;
1257 /* Generate a link error if the set of bits requested for this
1258 * attribute overlaps any previously allocated bits.
1259 */
1260 if ((use_mask << attr) & used_locations) {
1261 linker_error_printf(prog,
1262 "insufficient contiguous attribute locations "
1263 "available for vertex shader input `%s'",
1264 var->name);
1265 return false;
1266 }
1267
1268 used_locations |= (use_mask << attr);
1269 }
1270 }
1271
1272 /* Temporary storage for the set of attributes that need locations assigned.
1273 */
1274 struct temp_attr {
1275 unsigned slots;
1276 ir_variable *var;
1277
1278 /* Used below in the call to qsort. */
1279 static int compare(const void *a, const void *b)
1280 {
1281 const temp_attr *const l = (const temp_attr *) a;
1282 const temp_attr *const r = (const temp_attr *) b;
1283
1284 /* Reversed because we want a descending order sort below. */
1285 return r->slots - l->slots;
1286 }
1287 } to_assign[16];
1288
1289 unsigned num_attr = 0;
1290
1291 foreach_list(node, sh->ir) {
1292 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1293 if ((var == NULL) || (var->mode != ir_var_in))
1294 continue;
1295 if (var->explicit_location) {
1296 const unsigned slots = count_attribute_slots(var->type);
1297 const unsigned use_mask = (1 << slots) - 1;
1298 const int attr = var->location/* - VERT_ATTRIB_GENERIC0*/;
1299
1300 if ((var->location >= (int)(max_attribute_index/* + VERT_ATTRIB_GENERIC0*/))
1301 || (var->location < 0)) {
1302 linker_error_printf(prog,
1303 "invalid explicit location %d specified for "
1304 "`%s'\n",
1305 (var->location < 0) ? var->location : attr,
1306 var->name);
1307 return false;
1308 } else if (var->location >= 0/*VERT_ATTRIB_GENERIC0*/) {
1309 used_locations |= (use_mask << attr);
1310 }
1311 }
1312
1313 /* The location was explicitly assigned, nothing to do here.
1314 */
1315 if (var->location != -1)
1316 continue;
1317
1318 to_assign[num_attr].slots = count_attribute_slots(var->type);
1319 to_assign[num_attr].var = var;
1320 num_attr++;
1321 }
1322
1323 /* If all of the attributes were assigned locations by the application (or
1324 * are built-in attributes with fixed locations), return early. This should
1325 * be the common case.
1326 */
1327 if (num_attr == 0)
1328 return true;
1329
1330 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1331
1332 /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only
1333 * be explicitly assigned by via glBindAttribLocation. Mark it as reserved
1334 * to prevent it from being automatically allocated below.
1335 */
1336 find_deref_visitor find("gl_Vertex");
1337 find.run(sh->ir);
1338 if (find.variable_found())
1339 used_locations |= (1 << 0);
1340
1341 for (unsigned i = 0; i < num_attr; i++) {
1342 /* Mask representing the contiguous slots that will be used by this
1343 * attribute.
1344 */
1345 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1346
1347 int location = find_available_slots(used_locations, to_assign[i].slots);
1348
1349 if (location < 0) {
1350 linker_error_printf(prog,
1351 "insufficient contiguous attribute locations "
1352 "available for vertex shader input `%s'",
1353 to_assign[i].var->name);
1354 return false;
1355 }
1356
1357 to_assign[i].var->location = /*VERT_ATTRIB_GENERIC0 +*/ location;
1358 used_locations |= (use_mask << location);
1359 int paramIndex = _mesa_get_parameter(prog->Attributes, to_assign[i].var->name);
1360 if (0 <= paramIndex)
1361 prog->Attributes->Parameters[paramIndex].Location = location;
1362 }
1363
1364 return true;
1365 }
1366
1367
1368 /**
1369 * Demote shader inputs and outputs that are not used in other stages
1370 */
1371 void
demote_shader_inputs_and_outputs(gl_shader * sh,enum ir_variable_mode mode)1372 demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
1373 {
1374 foreach_list(node, sh->ir) {
1375 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1376
1377 if ((var == NULL) || (var->mode != int(mode)))
1378 continue;
1379
1380 /* A shader 'in' or 'out' variable is only really an input or output if
1381 * its value is used by other shader stages. This will cause the variable
1382 * to have a location assigned.
1383 */
1384 if (var->location == -1) {
1385 var->mode = ir_var_auto;
1386 }
1387 }
1388 }
1389
1390 void
assign_varying_locations(struct gl_shader_program * prog,gl_shader * producer,gl_shader * consumer)1391 assign_varying_locations(struct gl_shader_program *prog,
1392 gl_shader *producer, gl_shader *consumer)
1393 {
1394 prog->VaryingSlots = 0;
1395 prog->UsesFragCoord = false;
1396 prog->UsesPointCoord = false;
1397 /* FINISHME: Set dynamically when geometry shader support is added. */
1398 unsigned output_index = offsetof(VertexOutput,varyings) / sizeof(Vector4); /*VERT_RESULT_VAR0*/;
1399 unsigned input_index = offsetof(VertexOutput,varyings) / sizeof(Vector4);
1400
1401 /* Operate in a total of three passes.
1402 *
1403 * 1. Assign locations for any matching inputs and outputs.
1404 *
1405 * 2. Mark output variables in the producer that do not have locations as
1406 * not being outputs. This lets the optimizer eliminate them.
1407 *
1408 * 3. Mark input variables in the consumer that do not have locations as
1409 * not being inputs. This lets the optimizer eliminate them.
1410 */
1411 foreach_list(node, producer->ir) {
1412 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1413 if (!var || ir_var_out != var->mode)
1414 continue;
1415 if (!strcmp("gl_Position", var->name))
1416 var->location = offsetof(VertexOutput,position) / sizeof(Vector4);
1417 else if (!strcmp("gl_PointSize", var->name))
1418 var->location = offsetof(VertexOutput,pointSize) / sizeof(Vector4);
1419 else
1420 var->location = -1;
1421 }
1422 foreach_list(node, consumer->ir) {
1423 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1424 if (!var || ir_var_in != var->mode)
1425 continue;
1426 if (!strcmp("gl_FragCoord", var->name))
1427 {
1428 var->location = offsetof(VertexOutput,position)/sizeof(Vector4);
1429 prog->UsesFragCoord = true;
1430 }
1431 else if (!strcmp("gl_FrontFacing", var->name))
1432 var->location = offsetof(VertexOutput,frontFacingPointCoord)/sizeof(Vector4);
1433 else if (!strcmp("gl_PointCoord", var->name))
1434 {
1435 var->location = offsetof(VertexOutput,frontFacingPointCoord)/sizeof(Vector4);
1436 prog->UsesPointCoord = true;
1437 }
1438 else
1439 var->location = -1;
1440 }
1441
1442 foreach_list(node, producer->ir) {
1443 ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1444
1445 if ((output_var == NULL) || (output_var->mode != ir_var_out))
1446 continue;
1447 int paramIndex = _mesa_get_parameter(prog->Varying, output_var->name);
1448 if (paramIndex < 0)
1449 paramIndex = _mesa_add_parameter(prog->Varying, output_var->name);
1450 gl_program_parameter * param = prog->Varying->Parameters + paramIndex;
1451 if (output_var->location != -1)
1452 {
1453 param->BindLocation = output_var->location;
1454 continue;
1455 }
1456
1457 ir_variable *const input_var =
1458 consumer->symbols->get_variable(output_var->name);
1459
1460 if ((input_var == NULL) || (input_var->mode != ir_var_in))
1461 continue;
1462
1463 assert(input_var->location == -1);
1464
1465 param->BindLocation = output_var->location = output_index;
1466 param->Location = input_var->location = input_index;
1467
1468 /* FINISHME: Support for "varying" records in GLSL 1.50. */
1469 assert(!output_var->type->is_record());
1470
1471 if (output_var->type->is_array()) {
1472 const unsigned slots = output_var->type->length
1473 * output_var->type->fields.array->matrix_columns;
1474
1475 output_index += slots;
1476 input_index += slots;
1477 prog->VaryingSlots += slots;
1478 } else {
1479 const unsigned slots = output_var->type->matrix_columns;
1480
1481 output_index += slots;
1482 input_index += slots;
1483 prog->VaryingSlots += slots;
1484 }
1485 }
1486
1487 foreach_list(node, consumer->ir) {
1488 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1489
1490 if ((var == NULL) || (var->mode != ir_var_in))
1491 continue;
1492 int paramIndex = _mesa_get_parameter(prog->Varying, var->name);
1493 if (paramIndex < 0)
1494 paramIndex = _mesa_add_parameter(prog->Varying, var->name);
1495 gl_program_parameter * param = prog->Varying->Parameters + paramIndex;
1496
1497 if (var->location == -1) {
1498 if (prog->Version <= 120) {
1499 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1500 *
1501 * Only those varying variables used (i.e. read) in
1502 * the fragment shader executable must be written to
1503 * by the vertex shader executable; declaring
1504 * superfluous varying variables in a vertex shader is
1505 * permissible.
1506 *
1507 * We interpret this text as meaning that the VS must
1508 * write the variable for the FS to read it. See
1509 * "glsl1-varying read but not written" in piglit.
1510 */
1511
1512 linker_error_printf(prog, "fragment shader varying %s not written "
1513 "by vertex shader\n.", var->name);
1514 prog->LinkStatus = false;
1515 }
1516
1517 /* An 'in' variable is only really a shader input if its
1518 * value is written by the previous stage.
1519 */
1520 var->mode = ir_var_auto;
1521 }
1522 else
1523 param->Location = var->location;
1524 }
1525 }
1526
1527
1528 void
link_shaders(const struct gl_context * ctx,struct gl_shader_program * prog)1529 link_shaders(const struct gl_context *ctx, struct gl_shader_program *prog)
1530 {
1531 //void *mem_ctx = hieralloc_init("temporary linker context");
1532 void * mem_ctx = prog; // need linked & cloned ir to persist
1533
1534 prog->LinkStatus = false;
1535 prog->Validated = false;
1536 prog->_Used = false;
1537
1538 if (prog->InfoLog != NULL)
1539 hieralloc_free(prog->InfoLog);
1540
1541 prog->InfoLog = hieralloc_strdup(prog, "");
1542
1543 /* Separate the shaders into groups based on their type.
1544 */
1545 struct gl_shader **vert_shader_list;
1546 unsigned num_vert_shaders = 0;
1547 struct gl_shader **frag_shader_list;
1548 unsigned num_frag_shaders = 0;
1549
1550 vert_shader_list = (struct gl_shader **)
1551 calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1552 frag_shader_list = &vert_shader_list[prog->NumShaders];
1553
1554 unsigned min_version = UINT_MAX;
1555 unsigned max_version = 0;
1556 for (unsigned i = 0; i < prog->NumShaders; i++) {
1557 min_version = MIN2(min_version, prog->Shaders[i]->Version);
1558 max_version = MAX2(max_version, prog->Shaders[i]->Version);
1559
1560 switch (prog->Shaders[i]->Type) {
1561 case GL_VERTEX_SHADER:
1562 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1563 num_vert_shaders++;
1564 break;
1565 case GL_FRAGMENT_SHADER:
1566 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1567 num_frag_shaders++;
1568 break;
1569 case GL_GEOMETRY_SHADER:
1570 /* FINISHME: Support geometry shaders. */
1571 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1572 break;
1573 }
1574 }
1575
1576 /* Previous to GLSL version 1.30, different compilation units could mix and
1577 * match shading language versions. With GLSL 1.30 and later, the versions
1578 * of all shaders must match.
1579 */
1580 assert(min_version >= 100);
1581 assert(max_version <= 130);
1582 if ((max_version >= 130 || min_version == 100)
1583 && min_version != max_version) {
1584 linker_error_printf(prog, "all shaders must use same shading "
1585 "language version\n");
1586 goto done;
1587 }
1588
1589 prog->Version = max_version;
1590
1591 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
1592 if (prog->_LinkedShaders[i] != NULL)
1593 _mesa_delete_shader(ctx, prog->_LinkedShaders[i]);
1594
1595 prog->_LinkedShaders[i] = NULL;
1596 }
1597
1598 /* Link all shaders for a particular stage and validate the result.
1599 */
1600 if (num_vert_shaders > 0) {
1601 gl_shader *const sh =
1602 link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
1603 num_vert_shaders);
1604
1605 if (sh == NULL)
1606 goto done;
1607
1608 if (!validate_vertex_shader_executable(prog, sh))
1609 goto done;
1610
1611 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
1612 sh);
1613 }
1614
1615 if (num_frag_shaders > 0) {
1616 gl_shader *const sh =
1617 link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
1618 num_frag_shaders);
1619
1620 if (sh == NULL)
1621 goto done;
1622
1623 if (!validate_fragment_shader_executable(prog, sh))
1624 goto done;
1625
1626 _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
1627 sh);
1628 }
1629
1630 /* Here begins the inter-stage linking phase. Some initial validation is
1631 * performed, then locations are assigned for uniforms, attributes, and
1632 * varyings.
1633 */
1634 if (cross_validate_uniforms(prog)) {
1635 unsigned prev;
1636
1637 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1638 if (prog->_LinkedShaders[prev] != NULL)
1639 break;
1640 }
1641
1642 /* Validate the inputs of each stage with the output of the preceeding
1643 * stage.
1644 */
1645 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1646 if (prog->_LinkedShaders[i] == NULL)
1647 continue;
1648
1649 if (!cross_validate_outputs_to_inputs(prog,
1650 prog->_LinkedShaders[prev],
1651 prog->_LinkedShaders[i]))
1652 goto done;
1653
1654 prev = i;
1655 }
1656
1657 prog->LinkStatus = true;
1658 }
1659
1660 /* Do common optimization before assigning storage for attributes,
1661 * uniforms, and varyings. Later optimization could possibly make
1662 * some of that unused.
1663 */
1664 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1665 if (prog->_LinkedShaders[i] == NULL)
1666 continue;
1667
1668 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
1669 ;
1670 }
1671
1672 update_array_sizes(prog);
1673
1674 assign_uniform_locations(prog);
1675
1676 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1677 /* FINISHME: The value of the max_attribute_index parameter is
1678 * FINISHME: implementation dependent based on the value of
1679 * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
1680 * FINISHME: at least 16, so hardcode 16 for now.
1681 */
1682 if (!assign_attribute_locations(prog, 16)) {
1683 prog->LinkStatus = false;
1684 goto done;
1685 }
1686 prog->AttributeSlots = 0;
1687 for (unsigned i = 0; i < prog->Attributes->NumParameters; i++)
1688 {
1689 const gl_program_parameter & param = prog->Attributes->Parameters[i];
1690 if (param.Location + param.Slots > prog->AttributeSlots)
1691 prog->AttributeSlots = param.Location + param.Slots;
1692 }
1693 }
1694
1695 unsigned prev;
1696 for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
1697 if (prog->_LinkedShaders[prev] != NULL)
1698 break;
1699 }
1700
1701 for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
1702 if (prog->_LinkedShaders[i] == NULL)
1703 continue;
1704
1705 assign_varying_locations(prog,
1706 prog->_LinkedShaders[prev],
1707 prog->_LinkedShaders[i]);
1708 prev = i;
1709 }
1710
1711 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
1712 demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
1713 ir_var_out);
1714 }
1715
1716 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
1717 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
1718
1719 demote_shader_inputs_and_outputs(sh, ir_var_in);
1720 demote_shader_inputs_and_outputs(sh, ir_var_inout);
1721 demote_shader_inputs_and_outputs(sh, ir_var_out);
1722 }
1723
1724 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
1725 gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1726
1727 demote_shader_inputs_and_outputs(sh, ir_var_in);
1728
1729 foreach_list(node, sh->ir) {
1730 ir_variable *const var = ((ir_instruction *) node)->as_variable();
1731 if (!var || ir_var_out != var->mode)
1732 continue;
1733 if (!strcmp("gl_FragColor", var->name) || !strcmp("gl_FragData", var->name))
1734 {
1735 int paramIndex = _mesa_get_parameter(prog->Varying, var->name);
1736 if (0 > paramIndex)
1737 paramIndex = _mesa_add_parameter(prog->Varying, var->name);
1738 var->location= offsetof(VertexOutput,fragColor)/sizeof(Vector4);
1739 prog->Varying->Parameters[paramIndex].Location = var->location;
1740 }
1741 else
1742 assert(0);
1743 }
1744 }
1745
1746 //prog->InputOuputBase = malloc(1024 * 8);
1747 //memset(prog->InputOuputBase, 0xdd, 1024 * 8);
1748 prog->InputOuputBase = hieralloc_realloc(prog, prog->InputOuputBase, char,
1749 (prog->Uniforms->Slots + prog->Uniforms->SamplerSlots) * sizeof(float) * 4 + sizeof(VertexInput) + sizeof(VertexOutput) + 16);
1750 prog->ValuesVertexInput = (float (*)[4])((((unsigned long)prog->InputOuputBase) + 15L) & (~15L));
1751 prog->ValuesVertexOutput = (float (*)[4])((unsigned long)prog->ValuesVertexInput + sizeof(VertexInput));
1752 prog->ValuesUniform = (float (*)[4])((unsigned long)prog->ValuesVertexOutput + sizeof(VertexOutput));
1753
1754 // initialize uniforms to zero after link
1755 memset(prog->ValuesUniform, 0, sizeof(float) * 4 * (prog->Uniforms->Slots + prog->Uniforms->SamplerSlots));
1756
1757 done:
1758 free(vert_shader_list);
1759
1760 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
1761 if (prog->_LinkedShaders[i] == NULL)
1762 continue;
1763
1764 /* Retain any live IR, but trash the rest. */
1765 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
1766 }
1767
1768 //hieralloc_free(mem_ctx);
1769 }
1770