• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2011 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "GrGLProgram.h"
11 
12 #include "../GrAllocator.h"
13 #include "GrGLShaderVar.h"
14 #include "SkTrace.h"
15 #include "SkXfermode.h"
16 
17 namespace {
18 
19 enum {
20     /// Used to mark a StageUniLocation field that should be bound
21     /// to a uniform during getUniformLocationsAndInitCache().
22     kUseUniform = 2000
23 };
24 
25 }  // namespace
26 
27 #define PRINT_SHADERS 0
28 
29 typedef GrTAllocator<GrGLShaderVar> VarArray;
30 
31 // number of each input/output type in a single allocation block
32 static const int gVarsPerBlock = 8;
33 // except FS outputs where we expect 2 at most.
34 static const int gMaxFSOutputs = 2;
35 
36 struct ShaderCodeSegments {
ShaderCodeSegmentsShaderCodeSegments37     ShaderCodeSegments()
38     : fVSUnis(gVarsPerBlock)
39     , fVSAttrs(gVarsPerBlock)
40     , fVSOutputs(gVarsPerBlock)
41     , fGSInputs(gVarsPerBlock)
42     , fGSOutputs(gVarsPerBlock)
43     , fFSInputs(gVarsPerBlock)
44     , fFSUnis(gVarsPerBlock)
45     , fFSOutputs(gMaxFSOutputs)
46     , fUsesGS(false) {}
47     GrStringBuilder fHeader; // VS+FS, GLSL version, etc
48     VarArray        fVSUnis;
49     VarArray        fVSAttrs;
50     VarArray        fVSOutputs;
51     VarArray        fGSInputs;
52     VarArray        fGSOutputs;
53     VarArray        fFSInputs;
54     GrStringBuilder fGSHeader; // layout qualifiers specific to GS
55     VarArray        fFSUnis;
56     VarArray        fFSOutputs;
57     GrStringBuilder fFSFunctions;
58     GrStringBuilder fVSCode;
59     GrStringBuilder fGSCode;
60     GrStringBuilder fFSCode;
61 
62     bool            fUsesGS;
63 };
64 
65 typedef GrGLProgram::ProgramDesc::StageDesc StageDesc;
66 
67 #if GR_GL_ATTRIBUTE_MATRICES
68     #define VIEW_MATRIX_NAME "aViewM"
69 #else
70     #define VIEW_MATRIX_NAME "uViewM"
71 #endif
72 
73 #define POS_ATTR_NAME "aPosition"
74 #define COL_ATTR_NAME "aColor"
75 #define COV_ATTR_NAME "aCoverage"
76 #define EDGE_ATTR_NAME "aEdge"
77 #define COL_UNI_NAME "uColor"
78 #define COV_UNI_NAME "uCoverage"
79 #define EDGES_UNI_NAME "uEdges"
80 #define COL_FILTER_UNI_NAME "uColorFilter"
81 #define COL_MATRIX_UNI_NAME "uColorMatrix"
82 #define COL_MATRIX_VEC_UNI_NAME "uColorMatrixVec"
83 
84 namespace {
tex_attr_name(int coordIdx,GrStringBuilder * s)85 inline void tex_attr_name(int coordIdx, GrStringBuilder* s) {
86     *s = "aTexCoord";
87     s->appendS32(coordIdx);
88 }
89 
float_vector_type(int count)90 inline GrGLShaderVar::Type float_vector_type(int count) {
91     GR_STATIC_ASSERT(GrGLShaderVar::kFloat_Type == 0);
92     GR_STATIC_ASSERT(GrGLShaderVar::kVec2f_Type == 1);
93     GR_STATIC_ASSERT(GrGLShaderVar::kVec3f_Type == 2);
94     GR_STATIC_ASSERT(GrGLShaderVar::kVec4f_Type == 3);
95     GrAssert(count > 0 && count <= 4);
96     return (GrGLShaderVar::Type)(count - 1);
97 }
98 
float_vector_type_str(int count)99 inline const char* float_vector_type_str(int count) {
100     return GrGLShaderVar::TypeString(float_vector_type(count));
101 }
102 
vector_homog_coord(int count)103 inline const char* vector_homog_coord(int count) {
104     static const char* HOMOGS[] = {"ERROR", "", ".y", ".z", ".w"};
105     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(HOMOGS));
106     return HOMOGS[count];
107 }
108 
vector_nonhomog_coords(int count)109 inline const char* vector_nonhomog_coords(int count) {
110     static const char* NONHOMOGS[] = {"ERROR", "", ".x", ".xy", ".xyz"};
111     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(NONHOMOGS));
112     return NONHOMOGS[count];
113 }
114 
vector_all_coords(int count)115 inline const char* vector_all_coords(int count) {
116     static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
117     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
118     return ALL[count];
119 }
120 
all_ones_vec(int count)121 inline const char* all_ones_vec(int count) {
122     static const char* ONESVEC[] = {"ERROR", "1.0", "vec2(1,1)",
123                                     "vec3(1,1,1)", "vec4(1,1,1,1)"};
124     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ONESVEC));
125     return ONESVEC[count];
126 }
127 
all_zeros_vec(int count)128 inline const char* all_zeros_vec(int count) {
129     static const char* ZEROSVEC[] = {"ERROR", "0.0", "vec2(0,0)",
130                                     "vec3(0,0,0)", "vec4(0,0,0,0)"};
131     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ZEROSVEC));
132     return ZEROSVEC[count];
133 }
134 
declared_color_output_name()135 inline const char* declared_color_output_name() { return "fsColorOut"; }
dual_source_output_name()136 inline const char* dual_source_output_name() { return "dualSourceOut"; }
137 
tex_matrix_name(int stage,GrStringBuilder * s)138 inline void tex_matrix_name(int stage, GrStringBuilder* s) {
139 #if GR_GL_ATTRIBUTE_MATRICES
140     *s = "aTexM";
141 #else
142     *s = "uTexM";
143 #endif
144     s->appendS32(stage);
145 }
146 
normalized_texel_size_name(int stage,GrStringBuilder * s)147 inline void normalized_texel_size_name(int stage, GrStringBuilder* s) {
148     *s = "uTexelSize";
149     s->appendS32(stage);
150 }
151 
sampler_name(int stage,GrStringBuilder * s)152 inline void sampler_name(int stage, GrStringBuilder* s) {
153     *s = "uSampler";
154     s->appendS32(stage);
155 }
156 
radial2_param_name(int stage,GrStringBuilder * s)157 inline void radial2_param_name(int stage, GrStringBuilder* s) {
158     *s = "uRadial2Params";
159     s->appendS32(stage);
160 }
161 
convolve_param_names(int stage,GrStringBuilder * k,GrStringBuilder * i)162 inline void convolve_param_names(int stage, GrStringBuilder* k, GrStringBuilder* i) {
163     *k = "uKernel";
164     k->appendS32(stage);
165     *i = "uImageIncrement";
166     i->appendS32(stage);
167 }
168 
image_increment_param_name(int stage,GrStringBuilder * i)169 inline void image_increment_param_name(int stage, GrStringBuilder* i) {
170     *i = "uImageIncrement";
171     i->appendS32(stage);
172 }
173 
tex_domain_name(int stage,GrStringBuilder * s)174 inline void tex_domain_name(int stage, GrStringBuilder* s) {
175     *s = "uTexDom";
176     s->appendS32(stage);
177 }
178 }
179 
GrGLProgram()180 GrGLProgram::GrGLProgram() {
181 }
182 
~GrGLProgram()183 GrGLProgram::~GrGLProgram() {
184 }
185 
overrideBlend(GrBlendCoeff * srcCoeff,GrBlendCoeff * dstCoeff) const186 void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
187                                 GrBlendCoeff* dstCoeff) const {
188     switch (fProgramDesc.fDualSrcOutput) {
189         case ProgramDesc::kNone_DualSrcOutput:
190             break;
191         // the prog will write a coverage value to the secondary
192         // output and the dst is blended by one minus that value.
193         case ProgramDesc::kCoverage_DualSrcOutput:
194         case ProgramDesc::kCoverageISA_DualSrcOutput:
195         case ProgramDesc::kCoverageISC_DualSrcOutput:
196         *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_BlendCoeff;
197         break;
198         default:
199             GrCrash("Unexpected dual source blend output");
200             break;
201     }
202 }
203 
204 // assigns modulation of two vars to an output var
205 // vars can be vec4s or floats (or one of each)
206 // result is always vec4
207 // if either var is "" then assign to the other var
208 // if both are "" then assign all ones
modulate_helper(const char * outputVar,const char * var0,const char * var1,GrStringBuilder * code)209 static inline void modulate_helper(const char* outputVar,
210                                    const char* var0,
211                                    const char* var1,
212                                    GrStringBuilder* code) {
213     GrAssert(NULL != outputVar);
214     GrAssert(NULL != var0);
215     GrAssert(NULL != var1);
216     GrAssert(NULL != code);
217 
218     bool has0 = '\0' != *var0;
219     bool has1 = '\0' != *var1;
220 
221     if (!has0 && !has1) {
222         code->appendf("\t%s = %s;\n", outputVar, all_ones_vec(4));
223     } else if (!has0) {
224         code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
225     } else if (!has1) {
226         code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
227     } else {
228         code->appendf("\t%s = vec4(%s * %s);\n", outputVar, var0, var1);
229     }
230 }
231 
232 // assigns addition of two vars to an output var
233 // vars can be vec4s or floats (or one of each)
234 // result is always vec4
235 // if either var is "" then assign to the other var
236 // if both are "" then assign all zeros
add_helper(const char * outputVar,const char * var0,const char * var1,GrStringBuilder * code)237 static inline void add_helper(const char* outputVar,
238                               const char* var0,
239                               const char* var1,
240                               GrStringBuilder* code) {
241     GrAssert(NULL != outputVar);
242     GrAssert(NULL != var0);
243     GrAssert(NULL != var1);
244     GrAssert(NULL != code);
245 
246     bool has0 = '\0' != *var0;
247     bool has1 = '\0' != *var1;
248 
249     if (!has0 && !has1) {
250         code->appendf("\t%s = %s;\n", outputVar, all_zeros_vec(4));
251     } else if (!has0) {
252         code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
253     } else if (!has1) {
254         code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
255     } else {
256         code->appendf("\t%s = vec4(%s + %s);\n", outputVar, var0, var1);
257     }
258 }
259 
260 // given two blend coeffecients determine whether the src
261 // and/or dst computation can be omitted.
needBlendInputs(SkXfermode::Coeff srcCoeff,SkXfermode::Coeff dstCoeff,bool * needSrcValue,bool * needDstValue)262 static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
263                                    SkXfermode::Coeff dstCoeff,
264                                    bool* needSrcValue,
265                                    bool* needDstValue) {
266     if (SkXfermode::kZero_Coeff == srcCoeff) {
267         switch (dstCoeff) {
268             // these all read the src
269             case SkXfermode::kSC_Coeff:
270             case SkXfermode::kISC_Coeff:
271             case SkXfermode::kSA_Coeff:
272             case SkXfermode::kISA_Coeff:
273                 *needSrcValue = true;
274                 break;
275             default:
276                 *needSrcValue = false;
277                 break;
278         }
279     } else {
280         *needSrcValue = true;
281     }
282     if (SkXfermode::kZero_Coeff == dstCoeff) {
283         switch (srcCoeff) {
284             // these all read the dst
285             case SkXfermode::kDC_Coeff:
286             case SkXfermode::kIDC_Coeff:
287             case SkXfermode::kDA_Coeff:
288             case SkXfermode::kIDA_Coeff:
289                 *needDstValue = true;
290                 break;
291             default:
292                 *needDstValue = false;
293                 break;
294         }
295     } else {
296         *needDstValue = true;
297     }
298 }
299 
300 /**
301  * Create a blend_coeff * value string to be used in shader code. Sets empty
302  * string if result is trivially zero.
303  */
blendTermString(GrStringBuilder * str,SkXfermode::Coeff coeff,const char * src,const char * dst,const char * value)304 static void blendTermString(GrStringBuilder* str, SkXfermode::Coeff coeff,
305                              const char* src, const char* dst,
306                              const char* value) {
307     switch (coeff) {
308     case SkXfermode::kZero_Coeff:    /** 0 */
309         *str = "";
310         break;
311     case SkXfermode::kOne_Coeff:     /** 1 */
312         *str = value;
313         break;
314     case SkXfermode::kSC_Coeff:
315         str->printf("(%s * %s)", src, value);
316         break;
317     case SkXfermode::kISC_Coeff:
318         str->printf("((%s - %s) * %s)", all_ones_vec(4), src, value);
319         break;
320     case SkXfermode::kDC_Coeff:
321         str->printf("(%s * %s)", dst, value);
322         break;
323     case SkXfermode::kIDC_Coeff:
324         str->printf("((%s - %s) * %s)", all_ones_vec(4), dst, value);
325         break;
326     case SkXfermode::kSA_Coeff:      /** src alpha */
327         str->printf("(%s.a * %s)", src, value);
328         break;
329     case SkXfermode::kISA_Coeff:     /** inverse src alpha (i.e. 1 - sa) */
330         str->printf("((1.0 - %s.a) * %s)", src, value);
331         break;
332     case SkXfermode::kDA_Coeff:      /** dst alpha */
333         str->printf("(%s.a * %s)", dst, value);
334         break;
335     case SkXfermode::kIDA_Coeff:     /** inverse dst alpha (i.e. 1 - da) */
336         str->printf("((1.0 - %s.a) * %s)", dst, value);
337         break;
338     default:
339         GrCrash("Unexpected xfer coeff.");
340         break;
341     }
342 }
343 /**
344  * Adds a line to the fragment shader code which modifies the color by
345  * the specified color filter.
346  */
addColorFilter(GrStringBuilder * fsCode,const char * outputVar,SkXfermode::Coeff uniformCoeff,SkXfermode::Coeff colorCoeff,const char * inColor)347 static void addColorFilter(GrStringBuilder* fsCode, const char * outputVar,
348                            SkXfermode::Coeff uniformCoeff,
349                            SkXfermode::Coeff colorCoeff,
350                            const char* inColor) {
351     GrStringBuilder colorStr, constStr;
352     blendTermString(&colorStr, colorCoeff, COL_FILTER_UNI_NAME,
353                     inColor, inColor);
354     blendTermString(&constStr, uniformCoeff, COL_FILTER_UNI_NAME,
355                     inColor, COL_FILTER_UNI_NAME);
356 
357     add_helper(outputVar, colorStr.c_str(), constStr.c_str(), fsCode);
358 }
359 /**
360  * Adds code to the fragment shader code which modifies the color by
361  * the specified color matrix.
362  */
addColorMatrix(GrStringBuilder * fsCode,const char * outputVar,const char * inColor)363 static void addColorMatrix(GrStringBuilder* fsCode, const char * outputVar,
364                            const char* inColor) {
365     fsCode->appendf("\t%s = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n", outputVar, COL_MATRIX_UNI_NAME, inColor, inColor, inColor, COL_MATRIX_VEC_UNI_NAME);
366     fsCode->appendf("\t%s.rgb *= %s.a;\n", outputVar, outputVar);
367 }
368 
369 namespace {
370 
371 // Adds a var that is computed in the VS and read in FS.
372 // If there is a GS it will just pass it through.
append_varying(GrGLShaderVar::Type type,const char * name,ShaderCodeSegments * segments,const char ** vsOutName=NULL,const char ** fsInName=NULL)373 void append_varying(GrGLShaderVar::Type type,
374                     const char* name,
375                     ShaderCodeSegments* segments,
376                     const char** vsOutName = NULL,
377                     const char** fsInName = NULL) {
378     segments->fVSOutputs.push_back();
379     segments->fVSOutputs.back().setType(type);
380     segments->fVSOutputs.back().setTypeModifier(
381         GrGLShaderVar::kOut_TypeModifier);
382     segments->fVSOutputs.back().accessName()->printf("v%s", name);
383     if (vsOutName) {
384         *vsOutName = segments->fVSOutputs.back().getName().c_str();
385     }
386     // input to FS comes either from VS or GS
387     const GrStringBuilder* fsName;
388     if (segments->fUsesGS) {
389         // if we have a GS take each varying in as an array
390         // and output as non-array.
391         segments->fGSInputs.push_back();
392         segments->fGSInputs.back().setType(type);
393         segments->fGSInputs.back().setTypeModifier(
394             GrGLShaderVar::kIn_TypeModifier);
395         segments->fGSInputs.back().setUnsizedArray();
396         *segments->fGSInputs.back().accessName() =
397             segments->fVSOutputs.back().getName();
398         segments->fGSOutputs.push_back();
399         segments->fGSOutputs.back().setType(type);
400         segments->fGSOutputs.back().setTypeModifier(
401             GrGLShaderVar::kOut_TypeModifier);
402         segments->fGSOutputs.back().accessName()->printf("g%s", name);
403         fsName = segments->fGSOutputs.back().accessName();
404     } else {
405         fsName = segments->fVSOutputs.back().accessName();
406     }
407     segments->fFSInputs.push_back();
408     segments->fFSInputs.back().setType(type);
409     segments->fFSInputs.back().setTypeModifier(
410         GrGLShaderVar::kIn_TypeModifier);
411     segments->fFSInputs.back().setName(*fsName);
412     if (fsInName) {
413         *fsInName = fsName->c_str();
414     }
415 }
416 
417 // version of above that adds a stage number to the
418 // the var name (for uniqueness)
append_varying(GrGLShaderVar::Type type,const char * name,int stageNum,ShaderCodeSegments * segments,const char ** vsOutName=NULL,const char ** fsInName=NULL)419 void append_varying(GrGLShaderVar::Type type,
420                     const char* name,
421                     int stageNum,
422                     ShaderCodeSegments* segments,
423                     const char** vsOutName = NULL,
424                     const char** fsInName = NULL) {
425     GrStringBuilder nameWithStage(name);
426     nameWithStage.appendS32(stageNum);
427     append_varying(type, nameWithStage.c_str(), segments, vsOutName, fsInName);
428 }
429 }
430 
genEdgeCoverage(const GrGLContextInfo & gl,GrVertexLayout layout,CachedData * programData,GrStringBuilder * coverageVar,ShaderCodeSegments * segments) const431 void GrGLProgram::genEdgeCoverage(const GrGLContextInfo& gl,
432                                   GrVertexLayout layout,
433                                   CachedData* programData,
434                                   GrStringBuilder* coverageVar,
435                                   ShaderCodeSegments* segments) const {
436     if (fProgramDesc.fEdgeAANumEdges > 0) {
437         segments->fFSUnis.push_back().set(GrGLShaderVar::kVec3f_Type,
438                                           GrGLShaderVar::kUniform_TypeModifier,
439                                           EDGES_UNI_NAME,
440                                           fProgramDesc.fEdgeAANumEdges);
441         programData->fUniLocations.fEdgesUni = kUseUniform;
442         int count = fProgramDesc.fEdgeAANumEdges;
443         segments->fFSCode.append(
444             "\tvec3 pos = vec3(gl_FragCoord.xy, 1);\n");
445         for (int i = 0; i < count; i++) {
446             segments->fFSCode.append("\tfloat a");
447             segments->fFSCode.appendS32(i);
448             segments->fFSCode.append(" = clamp(dot(" EDGES_UNI_NAME "[");
449             segments->fFSCode.appendS32(i);
450             segments->fFSCode.append("], pos), 0.0, 1.0);\n");
451         }
452         if (fProgramDesc.fEdgeAAConcave && (count & 0x01) == 0) {
453             // For concave polys, we consider the edges in pairs.
454             segments->fFSFunctions.append("float cross2(vec2 a, vec2 b) {\n");
455             segments->fFSFunctions.append("\treturn dot(a, vec2(b.y, -b.x));\n");
456             segments->fFSFunctions.append("}\n");
457             for (int i = 0; i < count; i += 2) {
458                 segments->fFSCode.appendf("\tfloat eb%d;\n", i / 2);
459                 segments->fFSCode.appendf("\tif (cross2(" EDGES_UNI_NAME "[%d].xy, " EDGES_UNI_NAME "[%d].xy) < 0.0) {\n", i, i + 1);
460                 segments->fFSCode.appendf("\t\teb%d = a%d * a%d;\n", i / 2, i, i + 1);
461                 segments->fFSCode.append("\t} else {\n");
462                 segments->fFSCode.appendf("\t\teb%d = a%d + a%d - a%d * a%d;\n", i / 2, i, i + 1, i, i + 1);
463                 segments->fFSCode.append("\t}\n");
464             }
465             segments->fFSCode.append("\tfloat edgeAlpha = ");
466             for (int i = 0; i < count / 2 - 1; i++) {
467                 segments->fFSCode.appendf("min(eb%d, ", i);
468             }
469             segments->fFSCode.appendf("eb%d", count / 2 - 1);
470             for (int i = 0; i < count / 2 - 1; i++) {
471                 segments->fFSCode.append(")");
472             }
473             segments->fFSCode.append(";\n");
474         } else {
475             segments->fFSCode.append("\tfloat edgeAlpha = ");
476             for (int i = 0; i < count - 1; i++) {
477                 segments->fFSCode.appendf("min(a%d * a%d, ", i, i + 1);
478             }
479             segments->fFSCode.appendf("a%d * a0", count - 1);
480             for (int i = 0; i < count - 1; i++) {
481                 segments->fFSCode.append(")");
482             }
483             segments->fFSCode.append(";\n");
484         }
485         *coverageVar = "edgeAlpha";
486     } else  if (layout & GrDrawTarget::kEdge_VertexLayoutBit) {
487         const char *vsName, *fsName;
488         append_varying(GrGLShaderVar::kVec4f_Type, "Edge", segments,
489             &vsName, &fsName);
490         segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
491             GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME);
492         segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
493         if (GrDrawState::kHairLine_EdgeType == fProgramDesc.fVertexEdgeType) {
494             segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName);
495             segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
496         } else if (GrDrawState::kQuad_EdgeType == fProgramDesc.fVertexEdgeType) {
497             segments->fFSCode.append("\tfloat edgeAlpha;\n");
498             // keep the derivative instructions outside the conditional
499             segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
500             segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
501             segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
502             // today we know z and w are in device space. We could use derivatives
503             segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
504             segments->fFSCode.append ("\t} else {\n");
505             segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
506                                       "\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
507                                       fsName, fsName);
508             segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
509             segments->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
510                                       "\t}\n");
511             if (kES2_GrGLBinding == gl.binding()) {
512                 segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
513             }
514         } else {
515             GrAssert(GrDrawState::kHairQuad_EdgeType == fProgramDesc.fVertexEdgeType);
516             segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
517             segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
518             segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
519                                       "\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
520                                       fsName, fsName);
521             segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
522             segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
523             segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
524             if (kES2_GrGLBinding == gl.binding()) {
525                 segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
526             }
527         }
528         *coverageVar = "edgeAlpha";
529     } else {
530         coverageVar->reset();
531     }
532 }
533 
534 namespace {
535 
genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput,GrGLProgram::CachedData * programData,ShaderCodeSegments * segments,GrStringBuilder * inColor)536 void genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput,
537                    GrGLProgram::CachedData* programData,
538                    ShaderCodeSegments* segments,
539                    GrStringBuilder* inColor) {
540     switch (colorInput) {
541         case GrGLProgram::ProgramDesc::kAttribute_ColorInput: {
542             segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
543                 GrGLShaderVar::kAttribute_TypeModifier,
544                 COL_ATTR_NAME);
545             const char *vsName, *fsName;
546             append_varying(GrGLShaderVar::kVec4f_Type, "Color", segments, &vsName, &fsName);
547             segments->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
548             *inColor = fsName;
549             } break;
550         case GrGLProgram::ProgramDesc::kUniform_ColorInput:
551             segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
552                 GrGLShaderVar::kUniform_TypeModifier,
553                 COL_UNI_NAME);
554             programData->fUniLocations.fColorUni = kUseUniform;
555             *inColor = COL_UNI_NAME;
556             break;
557         case GrGLProgram::ProgramDesc::kTransBlack_ColorInput:
558             GrAssert(!"needComputedColor should be false.");
559             break;
560         case GrGLProgram::ProgramDesc::kSolidWhite_ColorInput:
561             break;
562         default:
563             GrCrash("Unknown color type.");
564             break;
565     }
566 }
567 
genAttributeCoverage(ShaderCodeSegments * segments,GrStringBuilder * inOutCoverage)568 void genAttributeCoverage(ShaderCodeSegments* segments,
569                           GrStringBuilder* inOutCoverage) {
570     segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
571                                        GrGLShaderVar::kAttribute_TypeModifier,
572                                        COV_ATTR_NAME);
573     const char *vsName, *fsName;
574     append_varying(GrGLShaderVar::kVec4f_Type, "Coverage",
575                    segments, &vsName, &fsName);
576     segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
577     if (inOutCoverage->size()) {
578         segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
579                                   fsName, inOutCoverage->c_str());
580         *inOutCoverage = "attrCoverage";
581     } else {
582         *inOutCoverage = fsName;
583     }
584 }
585 
genUniformCoverage(ShaderCodeSegments * segments,GrGLProgram::CachedData * programData,GrStringBuilder * inOutCoverage)586 void genUniformCoverage(ShaderCodeSegments* segments,
587                         GrGLProgram::CachedData* programData,
588                         GrStringBuilder* inOutCoverage) {
589     segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
590                                       GrGLShaderVar::kUniform_TypeModifier,
591                                       COV_UNI_NAME);
592     programData->fUniLocations.fCoverageUni = kUseUniform;
593     if (inOutCoverage->size()) {
594         segments->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
595                                   COV_UNI_NAME, inOutCoverage->c_str());
596         *inOutCoverage = "uniCoverage";
597     } else {
598         *inOutCoverage = COV_UNI_NAME;
599     }
600 }
601 
602 }
603 
genGeometryShader(const GrGLContextInfo & gl,ShaderCodeSegments * segments) const604 void GrGLProgram::genGeometryShader(const GrGLContextInfo& gl,
605                                     ShaderCodeSegments* segments) const {
606 #if GR_GL_EXPERIMENTAL_GS
607     if (fProgramDesc.fExperimentalGS) {
608         GrAssert(gl.glslGeneration() >= k150_GrGLSLGeneration);
609         segments->fGSHeader.append("layout(triangles) in;\n"
610                                    "layout(triangle_strip, max_vertices = 6) out;\n");
611         segments->fGSCode.append("void main() {\n"
612                                  "\tfor (int i = 0; i < 3; ++i) {\n"
613                                   "\t\tgl_Position = gl_in[i].gl_Position;\n");
614         if (this->fProgramDesc.fEmitsPointSize) {
615             segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
616         }
617         GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
618         int count = segments->fGSInputs.count();
619         for (int i = 0; i < count; ++i) {
620             segments->fGSCode.appendf("\t\t%s = %s[i];\n",
621                                       segments->fGSOutputs[i].getName().c_str(),
622                                       segments->fGSInputs[i].getName().c_str());
623         }
624         segments->fGSCode.append("\t\tEmitVertex();\n"
625                                  "\t}\n"
626                                  "\tEndPrimitive();\n"
627                                  "}\n");
628     }
629 #endif
630 }
631 
adjustInColor(const GrStringBuilder & inColor) const632 const char* GrGLProgram::adjustInColor(const GrStringBuilder& inColor) const {
633     if (inColor.size()) {
634           return inColor.c_str();
635     } else {
636         if (ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput) {
637             return all_ones_vec(4);
638         } else {
639             return all_zeros_vec(4);
640         }
641     }
642 }
643 
644 
genProgram(const GrGLContextInfo & gl,GrGLProgram::CachedData * programData) const645 bool GrGLProgram::genProgram(const GrGLContextInfo& gl,
646                              GrGLProgram::CachedData* programData) const {
647 
648     ShaderCodeSegments segments;
649     const uint32_t& layout = fProgramDesc.fVertexLayout;
650 
651     programData->fUniLocations.reset();
652 
653 #if GR_GL_EXPERIMENTAL_GS
654     segments.fUsesGS = fProgramDesc.fExperimentalGS;
655 #endif
656 
657     SkXfermode::Coeff colorCoeff, uniformCoeff;
658     bool applyColorMatrix = SkToBool(fProgramDesc.fColorMatrixEnabled);
659     // The rest of transfer mode color filters have not been implemented
660     if (fProgramDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
661         GR_DEBUGCODE(bool success =)
662             SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
663                                     (fProgramDesc.fColorFilterXfermode),
664                                     &uniformCoeff, &colorCoeff);
665         GR_DEBUGASSERT(success);
666     } else {
667         colorCoeff = SkXfermode::kOne_Coeff;
668         uniformCoeff = SkXfermode::kZero_Coeff;
669     }
670 
671     // no need to do the color filter / matrix at all if coverage is 0. The
672     // output color is scaled by the coverage. All the dual source outputs are
673     // scaled by the coverage as well.
674     if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fCoverageInput) {
675         colorCoeff = SkXfermode::kZero_Coeff;
676         uniformCoeff = SkXfermode::kZero_Coeff;
677         applyColorMatrix = false;
678     }
679 
680     // If we know the final color is going to be all zeros then we can
681     // simplify the color filter coeffecients. needComputedColor will then
682     // come out false below.
683     if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fColorInput) {
684         colorCoeff = SkXfermode::kZero_Coeff;
685         if (SkXfermode::kDC_Coeff == uniformCoeff ||
686             SkXfermode::kDA_Coeff == uniformCoeff) {
687             uniformCoeff = SkXfermode::kZero_Coeff;
688         } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
689                    SkXfermode::kIDA_Coeff == uniformCoeff) {
690             uniformCoeff = SkXfermode::kOne_Coeff;
691         }
692     }
693 
694     bool needColorFilterUniform;
695     bool needComputedColor;
696     needBlendInputs(uniformCoeff, colorCoeff,
697                     &needColorFilterUniform, &needComputedColor);
698 
699     // the dual source output has no canonical var name, have to
700     // declare an output, which is incompatible with gl_FragColor/gl_FragData.
701     bool dualSourceOutputWritten = false;
702     segments.fHeader.printf(GrGetGLSLVersionDecl(gl.binding(),
703                                                  gl.glslGeneration()));
704 
705     GrGLShaderVar colorOutput;
706     bool isColorDeclared = GrGLSLSetupFSColorOuput(gl.glslGeneration(),
707                                                    declared_color_output_name(),
708                                                    &colorOutput);
709     if (isColorDeclared) {
710         segments.fFSOutputs.push_back(colorOutput);
711     }
712 
713 #if GR_GL_ATTRIBUTE_MATRICES
714     segments.fVSAttrs.push_back().set(GrGLShaderVar::kMat33f_Type,
715         GrGLShaderVar::kAttribute_TypeModifier, VIEW_MATRIX_NAME);
716     programData->fUniLocations.fViewMatrixUni = kSetAsAttribute;
717 #else
718     segments.fVSUnis.push_back().set(GrGLShaderVar::kMat33f_Type,
719         GrGLShaderVar::kUniform_TypeModifier, VIEW_MATRIX_NAME);
720     programData->fUniLocations.fViewMatrixUni = kUseUniform;
721 #endif
722     segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
723         GrGLShaderVar::kAttribute_TypeModifier, POS_ATTR_NAME);
724 
725     segments.fVSCode.append(
726         "void main() {\n"
727             "\tvec3 pos3 = " VIEW_MATRIX_NAME " * vec3("POS_ATTR_NAME", 1);\n"
728             "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n");
729 
730     // incoming color to current stage being processed.
731     GrStringBuilder inColor;
732 
733     if (needComputedColor) {
734         genInputColor((ProgramDesc::ColorInput) fProgramDesc.fColorInput,
735                       programData, &segments, &inColor);
736     }
737 
738     // we output point size in the GS if present
739     if (fProgramDesc.fEmitsPointSize && !segments.fUsesGS){
740         segments.fVSCode.append("\tgl_PointSize = 1.0;\n");
741     }
742 
743     segments.fFSCode.append("void main() {\n");
744 
745     // add texture coordinates that are used to the list of vertex attr decls
746     GrStringBuilder texCoordAttrs[GrDrawState::kMaxTexCoords];
747     for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
748         if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
749             tex_attr_name(t, texCoordAttrs + t);
750             segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
751                 GrGLShaderVar::kAttribute_TypeModifier,
752                 texCoordAttrs[t].c_str());
753         }
754     }
755 
756     ///////////////////////////////////////////////////////////////////////////
757     // compute the final color
758 
759     // if we have color stages string them together, feeding the output color
760     // of each to the next and generating code for each stage.
761     if (needComputedColor) {
762         GrStringBuilder outColor;
763         for (int s = 0; s < fProgramDesc.fFirstCoverageStage; ++s) {
764             if (fProgramDesc.fStages[s].isEnabled()) {
765                 // create var to hold stage result
766                 outColor = "color";
767                 outColor.appendS32(s);
768                 segments.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
769 
770                 const char* inCoords;
771                 // figure out what our input coords are
772                 if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
773                     layout) {
774                     inCoords = POS_ATTR_NAME;
775                 } else {
776                     int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
777                      // we better have input tex coordinates if stage is enabled.
778                     GrAssert(tcIdx >= 0);
779                     GrAssert(texCoordAttrs[tcIdx].size());
780                     inCoords = texCoordAttrs[tcIdx].c_str();
781                 }
782 
783                 this->genStageCode(gl,
784                                    s,
785                                    fProgramDesc.fStages[s],
786                                    inColor.size() ? inColor.c_str() : NULL,
787                                    outColor.c_str(),
788                                    inCoords,
789                                    &segments,
790                                    &programData->fUniLocations.fStages[s]);
791                 inColor = outColor;
792             }
793         }
794     }
795 
796     // if have all ones or zeros for the "dst" input to the color filter then we
797     // may be able to make additional optimizations.
798     if (needColorFilterUniform && needComputedColor && !inColor.size()) {
799         GrAssert(ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput);
800         bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
801                                   SkXfermode::kIDA_Coeff == uniformCoeff;
802         if (uniformCoeffIsZero) {
803             uniformCoeff = SkXfermode::kZero_Coeff;
804             bool bogus;
805             needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
806                             &needColorFilterUniform, &bogus);
807         }
808     }
809     if (needColorFilterUniform) {
810         segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
811                                          GrGLShaderVar::kUniform_TypeModifier,
812                                          COL_FILTER_UNI_NAME);
813         programData->fUniLocations.fColorFilterUni = kUseUniform;
814     }
815     bool wroteFragColorZero = false;
816     if (SkXfermode::kZero_Coeff == uniformCoeff &&
817         SkXfermode::kZero_Coeff == colorCoeff &&
818         !applyColorMatrix) {
819         segments.fFSCode.appendf("\t%s = %s;\n",
820                                  colorOutput.getName().c_str(),
821                                  all_zeros_vec(4));
822         wroteFragColorZero = true;
823     } else if (SkXfermode::kDst_Mode != fProgramDesc.fColorFilterXfermode) {
824         segments.fFSCode.append("\tvec4 filteredColor;\n");
825         const char* color = adjustInColor(inColor);
826         addColorFilter(&segments.fFSCode, "filteredColor", uniformCoeff,
827                        colorCoeff, color);
828         inColor = "filteredColor";
829     }
830     if (applyColorMatrix) {
831         segments.fFSUnis.push_back().set(GrGLShaderVar::kMat44f_Type,
832                                          GrGLShaderVar::kUniform_TypeModifier,
833                                          COL_MATRIX_UNI_NAME);
834         segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
835                                          GrGLShaderVar::kUniform_TypeModifier,
836                                          COL_MATRIX_VEC_UNI_NAME);
837         programData->fUniLocations.fColorMatrixUni = kUseUniform;
838         programData->fUniLocations.fColorMatrixVecUni = kUseUniform;
839         segments.fFSCode.append("\tvec4 matrixedColor;\n");
840         const char* color = adjustInColor(inColor);
841         addColorMatrix(&segments.fFSCode, "matrixedColor", color);
842         inColor = "matrixedColor";
843     }
844 
845     ///////////////////////////////////////////////////////////////////////////
846     // compute the partial coverage (coverage stages and edge aa)
847 
848     GrStringBuilder inCoverage;
849     bool coverageIsZero = ProgramDesc::kTransBlack_ColorInput ==
850                           fProgramDesc.fCoverageInput;
851     // we don't need to compute coverage at all if we know the final shader
852     // output will be zero and we don't have a dual src blend output.
853     if (!wroteFragColorZero ||
854         ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
855 
856         if (!coverageIsZero) {
857             this->genEdgeCoverage(gl,
858                                   layout,
859                                   programData,
860                                   &inCoverage,
861                                   &segments);
862 
863             switch (fProgramDesc.fCoverageInput) {
864                 case ProgramDesc::kSolidWhite_ColorInput:
865                     // empty string implies solid white
866                     break;
867                 case ProgramDesc::kAttribute_ColorInput:
868                     genAttributeCoverage(&segments, &inCoverage);
869                     break;
870                 case ProgramDesc::kUniform_ColorInput:
871                     genUniformCoverage(&segments, programData, &inCoverage);
872                     break;
873                 default:
874                     GrCrash("Unexpected input coverage.");
875             }
876 
877             GrStringBuilder outCoverage;
878             const int& startStage = fProgramDesc.fFirstCoverageStage;
879             for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
880                 if (fProgramDesc.fStages[s].isEnabled()) {
881                     // create var to hold stage output
882                     outCoverage = "coverage";
883                     outCoverage.appendS32(s);
884                     segments.fFSCode.appendf("\tvec4 %s;\n",
885                                              outCoverage.c_str());
886 
887                     const char* inCoords;
888                     // figure out what our input coords are
889                     if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
890                         layout) {
891                         inCoords = POS_ATTR_NAME;
892                     } else {
893                         int tcIdx =
894                             GrDrawTarget::VertexTexCoordsForStage(s, layout);
895                         // we better have input tex coordinates if stage is
896                         // enabled.
897                         GrAssert(tcIdx >= 0);
898                         GrAssert(texCoordAttrs[tcIdx].size());
899                         inCoords = texCoordAttrs[tcIdx].c_str();
900                     }
901 
902                     genStageCode(gl, s,
903                                  fProgramDesc.fStages[s],
904                                  inCoverage.size() ? inCoverage.c_str() : NULL,
905                                  outCoverage.c_str(),
906                                  inCoords,
907                                  &segments,
908                                  &programData->fUniLocations.fStages[s]);
909                     inCoverage = outCoverage;
910                 }
911             }
912         }
913         if (ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
914             segments.fFSOutputs.push_back().set(GrGLShaderVar::kVec4f_Type,
915                 GrGLShaderVar::kOut_TypeModifier,
916                 dual_source_output_name());
917             bool outputIsZero = coverageIsZero;
918             GrStringBuilder coeff;
919             if (!outputIsZero &&
920                 ProgramDesc::kCoverage_DualSrcOutput !=
921                 fProgramDesc.fDualSrcOutput && !wroteFragColorZero) {
922                 if (!inColor.size()) {
923                     outputIsZero = true;
924                 } else {
925                     if (fProgramDesc.fDualSrcOutput ==
926                         ProgramDesc::kCoverageISA_DualSrcOutput) {
927                         coeff.printf("(1 - %s.a)", inColor.c_str());
928                     } else {
929                         coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
930                     }
931                 }
932             }
933             if (outputIsZero) {
934                 segments.fFSCode.appendf("\t%s = %s;\n",
935                                          dual_source_output_name(),
936                                          all_zeros_vec(4));
937             } else {
938                 modulate_helper(dual_source_output_name(),
939                                 coeff.c_str(),
940                                 inCoverage.c_str(),
941                                 &segments.fFSCode);
942             }
943             dualSourceOutputWritten = true;
944         }
945     }
946 
947     ///////////////////////////////////////////////////////////////////////////
948     // combine color and coverage as frag color
949 
950     if (!wroteFragColorZero) {
951         if (coverageIsZero) {
952             segments.fFSCode.appendf("\t%s = %s;\n",
953                                      colorOutput.getName().c_str(),
954                                      all_zeros_vec(4));
955         } else {
956             modulate_helper(colorOutput.getName().c_str(),
957                             inColor.c_str(),
958                             inCoverage.c_str(),
959                             &segments.fFSCode);
960         }
961         if (ProgramDesc::kUnpremultiplied_RoundDown_OutputConfig ==
962             fProgramDesc.fOutputConfig) {
963             segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0)/255.0, %s.a);\n",
964                                         colorOutput.getName().c_str(),
965                                         colorOutput.getName().c_str(),
966                                         colorOutput.getName().c_str(),
967                                         colorOutput.getName().c_str(),
968                                         colorOutput.getName().c_str());
969         } else if (ProgramDesc::kUnpremultiplied_RoundUp_OutputConfig ==
970                    fProgramDesc.fOutputConfig) {
971             segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0)/255.0, %s.a);\n",
972                                         colorOutput.getName().c_str(),
973                                         colorOutput.getName().c_str(),
974                                         colorOutput.getName().c_str(),
975                                         colorOutput.getName().c_str(),
976                                         colorOutput.getName().c_str());
977         }
978     }
979 
980     segments.fVSCode.append("}\n");
981     segments.fFSCode.append("}\n");
982 
983     ///////////////////////////////////////////////////////////////////////////
984     // insert GS
985 #if GR_DEBUG
986     this->genGeometryShader(gl, &segments);
987 #endif
988 
989     ///////////////////////////////////////////////////////////////////////////
990     // compile and setup attribs and unis
991 
992     if (!CompileShaders(gl, segments, programData)) {
993         return false;
994     }
995 
996     if (!this->bindOutputsAttribsAndLinkProgram(gl, texCoordAttrs,
997                                                 isColorDeclared,
998                                                 dualSourceOutputWritten,
999                                                 programData)) {
1000         return false;
1001     }
1002 
1003     this->getUniformLocationsAndInitCache(gl, programData);
1004 
1005     return true;
1006 }
1007 
1008 namespace {
1009 
expand_decls(const VarArray & vars,const GrGLContextInfo & gl,GrStringBuilder * string)1010 inline void expand_decls(const VarArray& vars,
1011                          const GrGLContextInfo& gl,
1012                          GrStringBuilder* string) {
1013     const int count = vars.count();
1014     for (int i = 0; i < count; ++i) {
1015         vars[i].appendDecl(gl, string);
1016     }
1017 }
1018 
print_shader(int stringCnt,const char ** strings,int * stringLengths)1019 inline void print_shader(int stringCnt,
1020                          const char** strings,
1021                          int* stringLengths) {
1022     for (int i = 0; i < stringCnt; ++i) {
1023         if (NULL == stringLengths || stringLengths[i] < 0) {
1024             GrPrintf(strings[i]);
1025         } else {
1026             GrPrintf("%.*s", stringLengths[i], strings[i]);
1027         }
1028     }
1029 }
1030 
1031 typedef SkTArray<const char*, true>         StrArray;
1032 #define PREALLOC_STR_ARRAY(N) SkSTArray<(N), const char*, true>
1033 
1034 typedef SkTArray<int, true>                 LengthArray;
1035 #define PREALLOC_LENGTH_ARRAY(N) SkSTArray<(N), int, true>
1036 
1037 // these shouldn't relocate
1038 typedef GrTAllocator<GrStringBuilder>       TempArray;
1039 #define PREALLOC_TEMP_ARRAY(N) GrSTAllocator<(N), GrStringBuilder>
1040 
append_string(const GrStringBuilder & str,StrArray * strings,LengthArray * lengths)1041 inline void append_string(const GrStringBuilder& str,
1042                           StrArray* strings,
1043                           LengthArray* lengths) {
1044     int length = (int) str.size();
1045     if (length) {
1046         strings->push_back(str.c_str());
1047         lengths->push_back(length);
1048     }
1049     GrAssert(strings->count() == lengths->count());
1050 }
1051 
append_decls(const VarArray & vars,const GrGLContextInfo & gl,StrArray * strings,LengthArray * lengths,TempArray * temp)1052 inline void append_decls(const VarArray& vars,
1053                          const GrGLContextInfo& gl,
1054                          StrArray* strings,
1055                          LengthArray* lengths,
1056                          TempArray* temp) {
1057     expand_decls(vars, gl, &temp->push_back());
1058     append_string(temp->back(), strings, lengths);
1059 }
1060 
1061 }
1062 
CompileShaders(const GrGLContextInfo & gl,const ShaderCodeSegments & segments,CachedData * programData)1063 bool GrGLProgram::CompileShaders(const GrGLContextInfo& gl,
1064                                  const ShaderCodeSegments& segments,
1065                                  CachedData* programData) {
1066     enum { kPreAllocStringCnt = 8 };
1067 
1068     PREALLOC_STR_ARRAY(kPreAllocStringCnt)    strs;
1069     PREALLOC_LENGTH_ARRAY(kPreAllocStringCnt) lengths;
1070     PREALLOC_TEMP_ARRAY(kPreAllocStringCnt)   temps;
1071 
1072     GrStringBuilder unis;
1073     GrStringBuilder inputs;
1074     GrStringBuilder outputs;
1075 
1076     append_string(segments.fHeader, &strs, &lengths);
1077     append_decls(segments.fVSUnis, gl, &strs, &lengths, &temps);
1078     append_decls(segments.fVSAttrs, gl, &strs, &lengths, &temps);
1079     append_decls(segments.fVSOutputs, gl, &strs, &lengths, &temps);
1080     append_string(segments.fVSCode, &strs, &lengths);
1081 
1082 #if PRINT_SHADERS
1083     print_shader(strs.count(), &strs[0], &lengths[0]);
1084     GrPrintf("\n");
1085 #endif
1086 
1087     programData->fVShaderID =
1088         CompileShader(gl, GR_GL_VERTEX_SHADER, strs.count(),
1089                       &strs[0], &lengths[0]);
1090 
1091     if (!programData->fVShaderID) {
1092         return false;
1093     }
1094     if (segments.fUsesGS) {
1095         strs.reset();
1096         lengths.reset();
1097         temps.reset();
1098         append_string(segments.fHeader, &strs, &lengths);
1099         append_string(segments.fGSHeader, &strs, &lengths);
1100         append_decls(segments.fGSInputs, gl, &strs, &lengths, &temps);
1101         append_decls(segments.fGSOutputs, gl, &strs, &lengths, &temps);
1102         append_string(segments.fGSCode, &strs, &lengths);
1103 #if PRINT_SHADERS
1104         print_shader(strs.count(), &strs[0], &lengths[0]);
1105         GrPrintf("\n");
1106 #endif
1107         programData->fGShaderID =
1108             CompileShader(gl, GR_GL_GEOMETRY_SHADER, strs.count(),
1109                           &strs[0], &lengths[0]);
1110     } else {
1111         programData->fGShaderID = 0;
1112     }
1113 
1114     strs.reset();
1115     lengths.reset();
1116     temps.reset();
1117 
1118     append_string(segments.fHeader, &strs, &lengths);
1119     GrStringBuilder precisionStr(GrGetGLSLShaderPrecisionDecl(gl.binding()));
1120     append_string(precisionStr, &strs, &lengths);
1121     append_decls(segments.fFSUnis, gl, &strs, &lengths, &temps);
1122     append_decls(segments.fFSInputs, gl, &strs, &lengths, &temps);
1123     // We shouldn't have declared outputs on 1.10
1124     GrAssert(k110_GrGLSLGeneration != gl.glslGeneration() ||
1125              segments.fFSOutputs.empty());
1126     append_decls(segments.fFSOutputs, gl, &strs, &lengths, &temps);
1127     append_string(segments.fFSFunctions, &strs, &lengths);
1128     append_string(segments.fFSCode, &strs, &lengths);
1129 
1130 #if PRINT_SHADERS
1131     print_shader(strs.count(), &strs[0], &lengths[0]);
1132     GrPrintf("\n");
1133 #endif
1134 
1135     programData->fFShaderID =
1136         CompileShader(gl, GR_GL_FRAGMENT_SHADER, strs.count(),
1137                       &strs[0], &lengths[0]);
1138 
1139     if (!programData->fFShaderID) {
1140         return false;
1141     }
1142 
1143     return true;
1144 }
1145 
1146 #define GL_CALL(X) GR_GL_CALL(gl.interface(), X)
1147 #define GL_CALL_RET(R, X) GR_GL_CALL_RET(gl.interface(), R, X)
1148 
CompileShader(const GrGLContextInfo & gl,GrGLenum type,int stringCnt,const char ** strings,int * stringLengths)1149 GrGLuint GrGLProgram::CompileShader(const GrGLContextInfo& gl,
1150                                     GrGLenum type,
1151                                     int stringCnt,
1152                                     const char** strings,
1153                                     int* stringLengths) {
1154     SK_TRACE_EVENT1("GrGLProgram::CompileShader",
1155                     "stringCount", SkStringPrintf("%i", stringCnt).c_str());
1156 
1157     GrGLuint shader;
1158     GL_CALL_RET(shader, CreateShader(type));
1159     if (0 == shader) {
1160         return 0;
1161     }
1162 
1163     GrGLint compiled = GR_GL_INIT_ZERO;
1164     GL_CALL(ShaderSource(shader, stringCnt, strings, stringLengths));
1165     GL_CALL(CompileShader(shader));
1166     GL_CALL(GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
1167 
1168     if (!compiled) {
1169         GrGLint infoLen = GR_GL_INIT_ZERO;
1170         GL_CALL(GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
1171         SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
1172         if (infoLen > 0) {
1173             // retrieve length even though we don't need it to workaround
1174             // bug in chrome cmd buffer param validation.
1175             GrGLsizei length = GR_GL_INIT_ZERO;
1176             GL_CALL(GetShaderInfoLog(shader, infoLen+1,
1177                                          &length, (char*)log.get()));
1178             print_shader(stringCnt, strings, stringLengths);
1179             GrPrintf("\n%s", log.get());
1180         }
1181         GrAssert(!"Shader compilation failed!");
1182         GL_CALL(DeleteShader(shader));
1183         return 0;
1184     }
1185     return shader;
1186 }
1187 
bindOutputsAttribsAndLinkProgram(const GrGLContextInfo & gl,GrStringBuilder texCoordAttrNames[],bool bindColorOut,bool bindDualSrcOut,CachedData * programData) const1188 bool GrGLProgram::bindOutputsAttribsAndLinkProgram(
1189                                         const GrGLContextInfo& gl,
1190                                         GrStringBuilder texCoordAttrNames[],
1191                                         bool bindColorOut,
1192                                         bool bindDualSrcOut,
1193                                         CachedData* programData) const {
1194     GL_CALL_RET(programData->fProgramID, CreateProgram());
1195     if (!programData->fProgramID) {
1196         return false;
1197     }
1198     const GrGLint& progID = programData->fProgramID;
1199 
1200     GL_CALL(AttachShader(progID, programData->fVShaderID));
1201     if (programData->fGShaderID) {
1202         GL_CALL(AttachShader(progID, programData->fGShaderID));
1203     }
1204     GL_CALL(AttachShader(progID, programData->fFShaderID));
1205 
1206     if (bindColorOut) {
1207         GL_CALL(BindFragDataLocation(programData->fProgramID,
1208                                      0, declared_color_output_name()));
1209     }
1210     if (bindDualSrcOut) {
1211         GL_CALL(BindFragDataLocationIndexed(programData->fProgramID,
1212                                             0, 1, dual_source_output_name()));
1213     }
1214 
1215     // Bind the attrib locations to same values for all shaders
1216     GL_CALL(BindAttribLocation(progID, PositionAttributeIdx(), POS_ATTR_NAME));
1217     for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
1218         if (texCoordAttrNames[t].size()) {
1219             GL_CALL(BindAttribLocation(progID,
1220                                        TexCoordAttributeIdx(t),
1221                                        texCoordAttrNames[t].c_str()));
1222         }
1223     }
1224 
1225     if (kSetAsAttribute == programData->fUniLocations.fViewMatrixUni) {
1226         GL_CALL(BindAttribLocation(progID,
1227                                    ViewMatrixAttributeIdx(),
1228                                    VIEW_MATRIX_NAME));
1229     }
1230 
1231     for (int s = 0; s < GrDrawState::kNumStages; ++s) {
1232         const StageUniLocations& unis = programData->fUniLocations.fStages[s];
1233         if (kSetAsAttribute == unis.fTextureMatrixUni) {
1234             GrStringBuilder matName;
1235             tex_matrix_name(s, &matName);
1236             GL_CALL(BindAttribLocation(progID,
1237                                        TextureMatrixAttributeIdx(s),
1238                                        matName.c_str()));
1239         }
1240     }
1241 
1242     GL_CALL(BindAttribLocation(progID, ColorAttributeIdx(), COL_ATTR_NAME));
1243     GL_CALL(BindAttribLocation(progID, CoverageAttributeIdx(), COV_ATTR_NAME));
1244     GL_CALL(BindAttribLocation(progID, EdgeAttributeIdx(), EDGE_ATTR_NAME));
1245 
1246     GL_CALL(LinkProgram(progID));
1247 
1248     GrGLint linked = GR_GL_INIT_ZERO;
1249     GL_CALL(GetProgramiv(progID, GR_GL_LINK_STATUS, &linked));
1250     if (!linked) {
1251         GrGLint infoLen = GR_GL_INIT_ZERO;
1252         GL_CALL(GetProgramiv(progID, GR_GL_INFO_LOG_LENGTH, &infoLen));
1253         SkAutoMalloc log(sizeof(char)*(infoLen+1));  // outside if for debugger
1254         if (infoLen > 0) {
1255             // retrieve length even though we don't need it to workaround
1256             // bug in chrome cmd buffer param validation.
1257             GrGLsizei length = GR_GL_INIT_ZERO;
1258             GL_CALL(GetProgramInfoLog(progID,
1259                                       infoLen+1,
1260                                       &length,
1261                                       (char*)log.get()));
1262             GrPrintf((char*)log.get());
1263         }
1264         GrAssert(!"Error linking program");
1265         GL_CALL(DeleteProgram(progID));
1266         programData->fProgramID = 0;
1267         return false;
1268     }
1269     return true;
1270 }
1271 
getUniformLocationsAndInitCache(const GrGLContextInfo & gl,CachedData * programData) const1272 void GrGLProgram::getUniformLocationsAndInitCache(const GrGLContextInfo& gl,
1273                                                   CachedData* programData) const {
1274     const GrGLint& progID = programData->fProgramID;
1275 
1276     if (kUseUniform == programData->fUniLocations.fViewMatrixUni) {
1277         GL_CALL_RET(programData->fUniLocations.fViewMatrixUni,
1278                     GetUniformLocation(progID, VIEW_MATRIX_NAME));
1279         GrAssert(kUnusedUniform != programData->fUniLocations.fViewMatrixUni);
1280     }
1281     if (kUseUniform == programData->fUniLocations.fColorUni) {
1282         GL_CALL_RET(programData->fUniLocations.fColorUni,
1283                     GetUniformLocation(progID, COL_UNI_NAME));
1284         GrAssert(kUnusedUniform != programData->fUniLocations.fColorUni);
1285     }
1286     if (kUseUniform == programData->fUniLocations.fColorFilterUni) {
1287         GL_CALL_RET(programData->fUniLocations.fColorFilterUni,
1288                     GetUniformLocation(progID, COL_FILTER_UNI_NAME));
1289         GrAssert(kUnusedUniform != programData->fUniLocations.fColorFilterUni);
1290     }
1291 
1292     if (kUseUniform == programData->fUniLocations.fColorMatrixUni) {
1293         GL_CALL_RET(programData->fUniLocations.fColorMatrixUni,
1294                     GetUniformLocation(progID, COL_MATRIX_UNI_NAME));
1295     }
1296 
1297     if (kUseUniform == programData->fUniLocations.fColorMatrixVecUni) {
1298         GL_CALL_RET(programData->fUniLocations.fColorMatrixVecUni,
1299                     GetUniformLocation(progID, COL_MATRIX_VEC_UNI_NAME));
1300     }
1301     if (kUseUniform == programData->fUniLocations.fCoverageUni) {
1302         GL_CALL_RET(programData->fUniLocations.fCoverageUni,
1303                     GetUniformLocation(progID, COV_UNI_NAME));
1304         GrAssert(kUnusedUniform != programData->fUniLocations.fCoverageUni);
1305     }
1306 
1307     if (kUseUniform == programData->fUniLocations.fEdgesUni) {
1308         GL_CALL_RET(programData->fUniLocations.fEdgesUni,
1309                     GetUniformLocation(progID, EDGES_UNI_NAME));
1310         GrAssert(kUnusedUniform != programData->fUniLocations.fEdgesUni);
1311     } else {
1312         programData->fUniLocations.fEdgesUni = kUnusedUniform;
1313     }
1314 
1315     for (int s = 0; s < GrDrawState::kNumStages; ++s) {
1316         StageUniLocations& locations = programData->fUniLocations.fStages[s];
1317         if (fProgramDesc.fStages[s].isEnabled()) {
1318             if (kUseUniform == locations.fTextureMatrixUni) {
1319                 GrStringBuilder texMName;
1320                 tex_matrix_name(s, &texMName);
1321                 GL_CALL_RET(locations.fTextureMatrixUni,
1322                             GetUniformLocation(progID, texMName.c_str()));
1323                 GrAssert(kUnusedUniform != locations.fTextureMatrixUni);
1324             }
1325 
1326             if (kUseUniform == locations.fSamplerUni) {
1327                 GrStringBuilder samplerName;
1328                 sampler_name(s, &samplerName);
1329                 GL_CALL_RET(locations.fSamplerUni,
1330                             GetUniformLocation(progID,samplerName.c_str()));
1331                 GrAssert(kUnusedUniform != locations.fSamplerUni);
1332             }
1333 
1334             if (kUseUniform == locations.fNormalizedTexelSizeUni) {
1335                 GrStringBuilder texelSizeName;
1336                 normalized_texel_size_name(s, &texelSizeName);
1337                 GL_CALL_RET(locations.fNormalizedTexelSizeUni,
1338                             GetUniformLocation(progID, texelSizeName.c_str()));
1339                 GrAssert(kUnusedUniform != locations.fNormalizedTexelSizeUni);
1340             }
1341 
1342             if (kUseUniform == locations.fRadial2Uni) {
1343                 GrStringBuilder radial2ParamName;
1344                 radial2_param_name(s, &radial2ParamName);
1345                 GL_CALL_RET(locations.fRadial2Uni,
1346                             GetUniformLocation(progID, radial2ParamName.c_str()));
1347                 GrAssert(kUnusedUniform != locations.fRadial2Uni);
1348             }
1349 
1350             if (kUseUniform == locations.fTexDomUni) {
1351                 GrStringBuilder texDomName;
1352                 tex_domain_name(s, &texDomName);
1353                 GL_CALL_RET(locations.fTexDomUni,
1354                             GetUniformLocation(progID, texDomName.c_str()));
1355                 GrAssert(kUnusedUniform != locations.fTexDomUni);
1356             }
1357 
1358             GrStringBuilder kernelName, imageIncrementName;
1359             convolve_param_names(s, &kernelName, &imageIncrementName);
1360             if (kUseUniform == locations.fKernelUni) {
1361                 GL_CALL_RET(locations.fKernelUni,
1362                             GetUniformLocation(progID, kernelName.c_str()));
1363                 GrAssert(kUnusedUniform != locations.fKernelUni);
1364             }
1365 
1366             if (kUseUniform == locations.fImageIncrementUni) {
1367                 GL_CALL_RET(locations.fImageIncrementUni,
1368                             GetUniformLocation(progID,
1369                                                imageIncrementName.c_str()));
1370                 GrAssert(kUnusedUniform != locations.fImageIncrementUni);
1371             }
1372         }
1373     }
1374     GL_CALL(UseProgram(progID));
1375 
1376     // init sampler unis and set bogus values for state tracking
1377     for (int s = 0; s < GrDrawState::kNumStages; ++s) {
1378         if (kUnusedUniform != programData->fUniLocations.fStages[s].fSamplerUni) {
1379             GL_CALL(Uniform1i(programData->fUniLocations.fStages[s].fSamplerUni, s));
1380         }
1381         programData->fTextureMatrices[s] = GrMatrix::InvalidMatrix();
1382         programData->fRadial2CenterX1[s] = GR_ScalarMax;
1383         programData->fRadial2Radius0[s] = -GR_ScalarMax;
1384         programData->fTextureWidth[s] = -1;
1385         programData->fTextureHeight[s] = -1;
1386     }
1387     programData->fViewMatrix = GrMatrix::InvalidMatrix();
1388     programData->fColor = GrColor_ILLEGAL;
1389     programData->fColorFilterColor = GrColor_ILLEGAL;
1390 }
1391 
1392 //============================================================================
1393 // Stage code generation
1394 //============================================================================
1395 
1396 namespace {
1397 
isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping)1398 bool isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping) {
1399     return
1400        (GrGLProgram::StageDesc::kRadial2Gradient_CoordMapping == mapping ||
1401         GrGLProgram::StageDesc::kRadial2GradientDegenerate_CoordMapping == mapping);
1402 }
1403 
genRadialVS(int stageNum,ShaderCodeSegments * segments,GrGLProgram::StageUniLocations * locations,const char ** radial2VaryingVSName,const char ** radial2VaryingFSName,const char * varyingVSName,int varyingDims,int coordDims)1404 GrGLShaderVar* genRadialVS(int stageNum,
1405                         ShaderCodeSegments* segments,
1406                         GrGLProgram::StageUniLocations* locations,
1407                         const char** radial2VaryingVSName,
1408                         const char** radial2VaryingFSName,
1409                         const char* varyingVSName,
1410                         int varyingDims, int coordDims) {
1411 
1412     GrGLShaderVar* radial2FSParams = &segments->fFSUnis.push_back();
1413     radial2FSParams->setType(GrGLShaderVar::kFloat_Type);
1414     radial2FSParams->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1415     radial2FSParams->setArrayCount(6);
1416     radial2_param_name(stageNum, radial2FSParams->accessName());
1417     segments->fVSUnis.push_back(*radial2FSParams).setEmitPrecision(true);
1418 
1419     locations->fRadial2Uni = kUseUniform;
1420 
1421     // for radial grads without perspective we can pass the linear
1422     // part of the quadratic as a varying.
1423     if (varyingDims == coordDims) {
1424         GrAssert(2 == coordDims);
1425         append_varying(GrGLShaderVar::kFloat_Type,
1426                        "Radial2BCoeff",
1427                        stageNum,
1428                        segments,
1429                        radial2VaryingVSName,
1430                        radial2VaryingFSName);
1431 
1432         GrStringBuilder radial2p2;
1433         GrStringBuilder radial2p3;
1434         radial2FSParams->appendArrayAccess(2, &radial2p2);
1435         radial2FSParams->appendArrayAccess(3, &radial2p3);
1436 
1437         // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
1438         const char* r2ParamName = radial2FSParams->getName().c_str();
1439         segments->fVSCode.appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
1440                                   *radial2VaryingVSName, radial2p2.c_str(),
1441                                   varyingVSName, radial2p3.c_str());
1442     }
1443 
1444     return radial2FSParams;
1445 }
1446 
genRadial2GradientCoordMapping(int stageNum,ShaderCodeSegments * segments,const char * radial2VaryingFSName,GrGLShaderVar * radial2Params,GrStringBuilder & sampleCoords,GrStringBuilder & fsCoordName,int varyingDims,int coordDims)1447 bool genRadial2GradientCoordMapping(int stageNum,
1448                                     ShaderCodeSegments* segments,
1449                                     const char* radial2VaryingFSName,
1450                                     GrGLShaderVar* radial2Params,
1451                                     GrStringBuilder& sampleCoords,
1452                                     GrStringBuilder& fsCoordName,
1453                                     int varyingDims,
1454                                     int coordDims) {
1455     GrStringBuilder cName("c");
1456     GrStringBuilder ac4Name("ac4");
1457     GrStringBuilder rootName("root");
1458 
1459     cName.appendS32(stageNum);
1460     ac4Name.appendS32(stageNum);
1461     rootName.appendS32(stageNum);
1462 
1463     GrStringBuilder radial2p0;
1464     GrStringBuilder radial2p1;
1465     GrStringBuilder radial2p2;
1466     GrStringBuilder radial2p3;
1467     GrStringBuilder radial2p4;
1468     GrStringBuilder radial2p5;
1469     radial2Params->appendArrayAccess(0, &radial2p0);
1470     radial2Params->appendArrayAccess(1, &radial2p1);
1471     radial2Params->appendArrayAccess(2, &radial2p2);
1472     radial2Params->appendArrayAccess(3, &radial2p3);
1473     radial2Params->appendArrayAccess(4, &radial2p4);
1474     radial2Params->appendArrayAccess(5, &radial2p5);
1475 
1476     // if we were able to interpolate the linear component bVar is the varying
1477     // otherwise compute it
1478     GrStringBuilder bVar;
1479     if (coordDims == varyingDims) {
1480         bVar = radial2VaryingFSName;
1481         GrAssert(2 == varyingDims);
1482     } else {
1483         GrAssert(3 == varyingDims);
1484         bVar = "b";
1485         bVar.appendS32(stageNum);
1486         segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
1487                                     bVar.c_str(), radial2p2.c_str(),
1488                                     fsCoordName.c_str(), radial2p3.c_str());
1489     }
1490 
1491     // c = (x^2)+(y^2) - params[4]
1492     segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
1493                               cName.c_str(), fsCoordName.c_str(),
1494                               fsCoordName.c_str(),
1495                               radial2p4.c_str());
1496     // ac4 = 4.0 * params[0] * c
1497     segments->fFSCode.appendf("\tfloat %s = %s * 4.0 * %s;\n",
1498                               ac4Name.c_str(), radial2p0.c_str(),
1499                               cName.c_str());
1500 
1501     // root = sqrt(b^2-4ac)
1502     // (abs to avoid exception due to fp precision)
1503     segments->fFSCode.appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
1504                               rootName.c_str(), bVar.c_str(), bVar.c_str(),
1505                               ac4Name.c_str());
1506 
1507     // x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
1508     // y coord is 0.5 (texture is effectively 1D)
1509     sampleCoords.printf("vec2((-%s + %s * %s) * %s, 0.5)",
1510                         bVar.c_str(), radial2p5.c_str(),
1511                         rootName.c_str(), radial2p1.c_str());
1512     return true;
1513 }
1514 
genRadial2GradientDegenerateCoordMapping(int stageNum,ShaderCodeSegments * segments,const char * radial2VaryingFSName,GrGLShaderVar * radial2Params,GrStringBuilder & sampleCoords,GrStringBuilder & fsCoordName,int varyingDims,int coordDims)1515 bool genRadial2GradientDegenerateCoordMapping(int stageNum,
1516                                               ShaderCodeSegments* segments,
1517                                               const char* radial2VaryingFSName,
1518                                               GrGLShaderVar* radial2Params,
1519                                               GrStringBuilder& sampleCoords,
1520                                               GrStringBuilder& fsCoordName,
1521                                               int varyingDims,
1522                                               int coordDims) {
1523     GrStringBuilder cName("c");
1524 
1525     cName.appendS32(stageNum);
1526 
1527     GrStringBuilder radial2p2;
1528     GrStringBuilder radial2p3;
1529     GrStringBuilder radial2p4;
1530     radial2Params->appendArrayAccess(2, &radial2p2);
1531     radial2Params->appendArrayAccess(3, &radial2p3);
1532     radial2Params->appendArrayAccess(4, &radial2p4);
1533 
1534     // if we were able to interpolate the linear component bVar is the varying
1535     // otherwise compute it
1536     GrStringBuilder bVar;
1537     if (coordDims == varyingDims) {
1538         bVar = radial2VaryingFSName;
1539         GrAssert(2 == varyingDims);
1540     } else {
1541         GrAssert(3 == varyingDims);
1542         bVar = "b";
1543         bVar.appendS32(stageNum);
1544         segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
1545                                     bVar.c_str(), radial2p2.c_str(),
1546                                     fsCoordName.c_str(), radial2p3.c_str());
1547     }
1548 
1549     // c = (x^2)+(y^2) - params[4]
1550     segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
1551                               cName.c_str(), fsCoordName.c_str(),
1552                               fsCoordName.c_str(),
1553                               radial2p4.c_str());
1554 
1555     // x coord is: -c/b
1556     // y coord is 0.5 (texture is effectively 1D)
1557     sampleCoords.printf("vec2((-%s / %s), 0.5)", cName.c_str(), bVar.c_str());
1558     return true;
1559 }
1560 
gen2x2FS(int stageNum,ShaderCodeSegments * segments,GrGLProgram::StageUniLocations * locations,GrStringBuilder * sampleCoords,const char * samplerName,const char * texelSizeName,const char * swizzle,const char * fsOutColor,GrStringBuilder & texFunc,GrStringBuilder & modulate,bool complexCoord,int coordDims)1561 void gen2x2FS(int stageNum,
1562               ShaderCodeSegments* segments,
1563               GrGLProgram::StageUniLocations* locations,
1564               GrStringBuilder* sampleCoords,
1565               const char* samplerName,
1566               const char* texelSizeName,
1567               const char* swizzle,
1568               const char* fsOutColor,
1569               GrStringBuilder& texFunc,
1570               GrStringBuilder& modulate,
1571               bool complexCoord,
1572               int coordDims) {
1573     locations->fNormalizedTexelSizeUni = kUseUniform;
1574     if (complexCoord) {
1575         // assign the coord to a var rather than compute 4x.
1576         GrStringBuilder coordVar("tCoord");
1577         coordVar.appendS32(stageNum);
1578         segments->fFSCode.appendf("\t%s %s = %s;\n",
1579                             float_vector_type_str(coordDims),
1580                             coordVar.c_str(), sampleCoords->c_str());
1581         *sampleCoords = coordVar;
1582     }
1583     GrAssert(2 == coordDims);
1584     GrStringBuilder accumVar("accum");
1585     accumVar.appendS32(stageNum);
1586     segments->fFSCode.appendf("\tvec4 %s  = %s(%s, %s + vec2(-%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
1587     segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
1588     segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(-%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
1589     segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
1590     segments->fFSCode.appendf("\t%s = .25 * %s%s;\n", fsOutColor, accumVar.c_str(), modulate.c_str());
1591 
1592 }
1593 
genConvolutionVS(int stageNum,const StageDesc & desc,ShaderCodeSegments * segments,GrGLProgram::StageUniLocations * locations,GrGLShaderVar ** kernel,const char ** imageIncrementName,const char * varyingVSName)1594 void genConvolutionVS(int stageNum,
1595                       const StageDesc& desc,
1596                       ShaderCodeSegments* segments,
1597                       GrGLProgram::StageUniLocations* locations,
1598                       GrGLShaderVar** kernel,
1599                       const char** imageIncrementName,
1600                       const char* varyingVSName) {
1601     //GrGLShaderVar* kernel = &segments->fFSUnis.push_back();
1602     *kernel = &segments->fFSUnis.push_back();
1603     (*kernel)->setType(GrGLShaderVar::kFloat_Type);
1604     (*kernel)->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1605     (*kernel)->setArrayCount(desc.fKernelWidth);
1606     GrGLShaderVar* imgInc = &segments->fFSUnis.push_back();
1607     imgInc->setType(GrGLShaderVar::kVec2f_Type);
1608     imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1609 
1610     convolve_param_names(stageNum,
1611                          (*kernel)->accessName(),
1612                          imgInc->accessName());
1613     *imageIncrementName = imgInc->getName().c_str();
1614 
1615     // need image increment in both VS and FS
1616     segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true);
1617 
1618     locations->fKernelUni = kUseUniform;
1619     locations->fImageIncrementUni = kUseUniform;
1620     float scale = (desc.fKernelWidth - 1) * 0.5f;
1621     segments->fVSCode.appendf("\t%s -= vec2(%g, %g) * %s;\n",
1622                                   varyingVSName, scale, scale,
1623                                   *imageIncrementName);
1624 }
1625 
genConvolutionFS(int stageNum,const StageDesc & desc,ShaderCodeSegments * segments,const char * samplerName,GrGLShaderVar * kernel,const char * swizzle,const char * imageIncrementName,const char * fsOutColor,GrStringBuilder & sampleCoords,GrStringBuilder & texFunc,GrStringBuilder & modulate)1626 void genConvolutionFS(int stageNum,
1627                       const StageDesc& desc,
1628                       ShaderCodeSegments* segments,
1629                       const char* samplerName,
1630                       GrGLShaderVar* kernel,
1631                       const char* swizzle,
1632                       const char* imageIncrementName,
1633                       const char* fsOutColor,
1634                       GrStringBuilder& sampleCoords,
1635                       GrStringBuilder& texFunc,
1636                       GrStringBuilder& modulate) {
1637     GrStringBuilder sumVar("sum");
1638     sumVar.appendS32(stageNum);
1639     GrStringBuilder coordVar("coord");
1640     coordVar.appendS32(stageNum);
1641 
1642     GrStringBuilder kernelIndex;
1643     kernel->appendArrayAccess("i", &kernelIndex);
1644 
1645     segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n",
1646                               sumVar.c_str());
1647     segments->fFSCode.appendf("\tvec2 %s = %s;\n",
1648                               coordVar.c_str(),
1649                               sampleCoords.c_str());
1650     segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n",
1651                               desc.fKernelWidth);
1652     segments->fFSCode.appendf("\t\t%s += %s(%s, %s)%s * %s;\n",
1653                               sumVar.c_str(), texFunc.c_str(),
1654                               samplerName, coordVar.c_str(), swizzle,
1655                               kernelIndex.c_str());
1656     segments->fFSCode.appendf("\t\t%s += %s;\n",
1657                               coordVar.c_str(),
1658                               imageIncrementName);
1659     segments->fFSCode.append("\t}\n");
1660     segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor,
1661                               sumVar.c_str(), modulate.c_str());
1662 }
1663 
genMorphologyVS(int stageNum,const StageDesc & desc,ShaderCodeSegments * segments,GrGLProgram::StageUniLocations * locations,const char ** imageIncrementName,const char * varyingVSName)1664 void genMorphologyVS(int stageNum,
1665                      const StageDesc& desc,
1666                      ShaderCodeSegments* segments,
1667                      GrGLProgram::StageUniLocations* locations,
1668                      const char** imageIncrementName,
1669                      const char* varyingVSName) {
1670     GrGLShaderVar* imgInc = &segments->fFSUnis.push_back();
1671     imgInc->setType(GrGLShaderVar::kVec2f_Type);
1672     imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1673 
1674     image_increment_param_name(stageNum, imgInc->accessName());
1675     *imageIncrementName = imgInc->getName().c_str();
1676 
1677     // need image increment in both VS and FS
1678     segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true);
1679 
1680     locations->fImageIncrementUni = kUseUniform;
1681     segments->fVSCode.appendf("\t%s -= vec2(%d, %d) * %s;\n",
1682                                   varyingVSName, desc.fKernelWidth,
1683                                   desc.fKernelWidth, *imageIncrementName);
1684 }
1685 
genMorphologyFS(int stageNum,const StageDesc & desc,ShaderCodeSegments * segments,const char * samplerName,const char * swizzle,const char * imageIncrementName,const char * fsOutColor,GrStringBuilder & sampleCoords,GrStringBuilder & texFunc,GrStringBuilder & modulate)1686 void genMorphologyFS(int stageNum,
1687                      const StageDesc& desc,
1688                      ShaderCodeSegments* segments,
1689                      const char* samplerName,
1690                      const char* swizzle,
1691                      const char* imageIncrementName,
1692                      const char* fsOutColor,
1693                      GrStringBuilder& sampleCoords,
1694                      GrStringBuilder& texFunc,
1695                      GrStringBuilder& modulate) {
1696     GrStringBuilder valueVar("value");
1697     valueVar.appendS32(stageNum);
1698     GrStringBuilder coordVar("coord");
1699     coordVar.appendS32(stageNum);
1700     bool isDilate = StageDesc::kDilate_FetchMode == desc.fFetchMode;
1701 
1702    if (isDilate) {
1703         segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n",
1704                                   valueVar.c_str());
1705     } else {
1706         segments->fFSCode.appendf("\tvec4 %s = vec4(1, 1, 1, 1);\n",
1707                                   valueVar.c_str());
1708     }
1709     segments->fFSCode.appendf("\tvec2 %s = %s;\n",
1710                               coordVar.c_str(),
1711                               sampleCoords.c_str());
1712     segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n",
1713                               desc.fKernelWidth * 2 + 1);
1714     segments->fFSCode.appendf("\t\t%s = %s(%s, %s(%s, %s)%s);\n",
1715                               valueVar.c_str(), isDilate ? "max" : "min",
1716                               valueVar.c_str(), texFunc.c_str(),
1717                               samplerName, coordVar.c_str(), swizzle);
1718     segments->fFSCode.appendf("\t\t%s += %s;\n",
1719                               coordVar.c_str(),
1720                               imageIncrementName);
1721     segments->fFSCode.appendf("\t}\n");
1722     segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor,
1723                               valueVar.c_str(), modulate.c_str());
1724 }
1725 
1726 }
1727 
genStageCode(const GrGLContextInfo & gl,int stageNum,const GrGLProgram::StageDesc & desc,const char * fsInColor,const char * fsOutColor,const char * vsInCoord,ShaderCodeSegments * segments,StageUniLocations * locations) const1728 void GrGLProgram::genStageCode(const GrGLContextInfo& gl,
1729                                int stageNum,
1730                                const GrGLProgram::StageDesc& desc,
1731                                const char* fsInColor, // NULL means no incoming color
1732                                const char* fsOutColor,
1733                                const char* vsInCoord,
1734                                ShaderCodeSegments* segments,
1735                                StageUniLocations* locations) const {
1736 
1737     GrAssert(stageNum >= 0 && stageNum <= GrDrawState::kNumStages);
1738     GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) ==
1739              desc.fInConfigFlags);
1740 
1741     // First decide how many coords are needed to access the texture
1742     // Right now it's always 2 but we could start using 1D textures for
1743     // gradients.
1744     static const int coordDims = 2;
1745     int varyingDims;
1746     /// Vertex Shader Stuff
1747 
1748     // decide whether we need a matrix to transform texture coords
1749     // and whether the varying needs a perspective coord.
1750     const char* matName = NULL;
1751     if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) {
1752         varyingDims = coordDims;
1753     } else {
1754         GrGLShaderVar* mat;
1755     #if GR_GL_ATTRIBUTE_MATRICES
1756         mat = &segments->fVSAttrs.push_back();
1757         mat->setTypeModifier(GrGLShaderVar::kAttribute_TypeModifier);
1758         locations->fTextureMatrixUni = kSetAsAttribute;
1759     #else
1760         mat = &segments->fVSUnis.push_back();
1761         mat->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
1762         locations->fTextureMatrixUni = kUseUniform;
1763     #endif
1764         tex_matrix_name(stageNum, mat->accessName());
1765         mat->setType(GrGLShaderVar::kMat33f_Type);
1766         matName = mat->getName().c_str();
1767 
1768         if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) {
1769             varyingDims = coordDims;
1770         } else {
1771             varyingDims = coordDims + 1;
1772         }
1773     }
1774 
1775     segments->fFSUnis.push_back().set(GrGLShaderVar::kSampler2D_Type,
1776         GrGLShaderVar::kUniform_TypeModifier, "");
1777     sampler_name(stageNum, segments->fFSUnis.back().accessName());
1778     locations->fSamplerUni = kUseUniform;
1779     const char* samplerName = segments->fFSUnis.back().getName().c_str();
1780 
1781     const char* texelSizeName = NULL;
1782     if (StageDesc::k2x2_FetchMode == desc.fFetchMode) {
1783         segments->fFSUnis.push_back().set(GrGLShaderVar::kVec2f_Type,
1784             GrGLShaderVar::kUniform_TypeModifier, "");
1785         normalized_texel_size_name(stageNum, segments->fFSUnis.back().accessName());
1786         texelSizeName = segments->fFSUnis.back().getName().c_str();
1787     }
1788 
1789     const char *varyingVSName, *varyingFSName;
1790     append_varying(float_vector_type(varyingDims),
1791                     "Stage",
1792                    stageNum,
1793                    segments,
1794                    &varyingVSName,
1795                    &varyingFSName);
1796 
1797     if (!matName) {
1798         GrAssert(varyingDims == coordDims);
1799         segments->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord);
1800     } else {
1801         // varying = texMatrix * texCoord
1802         segments->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n",
1803                                   varyingVSName, matName, vsInCoord,
1804                                   vector_all_coords(varyingDims));
1805     }
1806 
1807     GrGLShaderVar* radial2Params = NULL;
1808     const char* radial2VaryingVSName = NULL;
1809     const char* radial2VaryingFSName = NULL;
1810 
1811     if (isRadialMapping((StageDesc::CoordMapping) desc.fCoordMapping)) {
1812         radial2Params = genRadialVS(stageNum, segments,
1813                                     locations,
1814                                     &radial2VaryingVSName,
1815                                     &radial2VaryingFSName,
1816                                     varyingVSName,
1817                                     varyingDims, coordDims);
1818     }
1819 
1820     GrGLShaderVar* kernel = NULL;
1821     const char* imageIncrementName = NULL;
1822     if (StageDesc::kConvolution_FetchMode == desc.fFetchMode) {
1823         genConvolutionVS(stageNum, desc, segments, locations,
1824                          &kernel, &imageIncrementName, varyingVSName);
1825     } else if (StageDesc::kDilate_FetchMode == desc.fFetchMode ||
1826                StageDesc::kErode_FetchMode == desc.fFetchMode) {
1827         genMorphologyVS(stageNum, desc, segments, locations,
1828                         &imageIncrementName, varyingVSName);
1829     }
1830 
1831     /// Fragment Shader Stuff
1832     GrStringBuilder fsCoordName;
1833     // function used to access the shader, may be made projective
1834     GrStringBuilder texFunc("texture2D");
1835     if (desc.fOptFlags & (StageDesc::kIdentityMatrix_OptFlagBit |
1836                           StageDesc::kNoPerspective_OptFlagBit)) {
1837         GrAssert(varyingDims == coordDims);
1838         fsCoordName = varyingFSName;
1839     } else {
1840         // if we have to do some special op on the varyings to get
1841         // our final tex coords then when in perspective we have to
1842         // do an explicit divide. Otherwise, we can use a Proj func.
1843         if  (StageDesc::kIdentity_CoordMapping == desc.fCoordMapping &&
1844              StageDesc::kSingle_FetchMode == desc.fFetchMode) {
1845             texFunc.append("Proj");
1846             fsCoordName = varyingFSName;
1847         } else {
1848             fsCoordName = "inCoord";
1849             fsCoordName.appendS32(stageNum);
1850             segments->fFSCode.appendf("\t%s %s = %s%s / %s%s;\n",
1851                                 GrGLShaderVar::TypeString(float_vector_type(coordDims)),
1852                                 fsCoordName.c_str(),
1853                                 varyingFSName,
1854                                 vector_nonhomog_coords(varyingDims),
1855                                 varyingFSName,
1856                                 vector_homog_coord(varyingDims));
1857         }
1858     }
1859 
1860     GrStringBuilder sampleCoords;
1861     bool complexCoord = false;
1862     switch (desc.fCoordMapping) {
1863     case StageDesc::kIdentity_CoordMapping:
1864         sampleCoords = fsCoordName;
1865         break;
1866     case StageDesc::kSweepGradient_CoordMapping:
1867         sampleCoords.printf("vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)", fsCoordName.c_str(), fsCoordName.c_str());
1868         complexCoord = true;
1869         break;
1870     case StageDesc::kRadialGradient_CoordMapping:
1871         sampleCoords.printf("vec2(length(%s.xy), 0.5)", fsCoordName.c_str());
1872         complexCoord = true;
1873         break;
1874     case StageDesc::kRadial2Gradient_CoordMapping:
1875         complexCoord = genRadial2GradientCoordMapping(
1876                            stageNum, segments,
1877                            radial2VaryingFSName, radial2Params,
1878                            sampleCoords, fsCoordName,
1879                            varyingDims, coordDims);
1880 
1881         break;
1882     case StageDesc::kRadial2GradientDegenerate_CoordMapping:
1883         complexCoord = genRadial2GradientDegenerateCoordMapping(
1884                            stageNum, segments,
1885                            radial2VaryingFSName, radial2Params,
1886                            sampleCoords, fsCoordName,
1887                            varyingDims, coordDims);
1888         break;
1889 
1890     };
1891 
1892     static const uint32_t kMulByAlphaMask =
1893         (StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag |
1894          StageDesc::kMulRGBByAlpha_RoundDown_InConfigFlag);
1895 
1896     const char* swizzle = "";
1897     if (desc.fInConfigFlags & StageDesc::kSwapRAndB_InConfigFlag) {
1898         GrAssert(!(desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag));
1899         swizzle = ".bgra";
1900     } else if (desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag) {
1901         GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
1902         swizzle = ".aaaa";
1903     }
1904 
1905     GrStringBuilder modulate;
1906     if (NULL != fsInColor) {
1907         modulate.printf(" * %s", fsInColor);
1908     }
1909 
1910     if (desc.fOptFlags &
1911         StageDesc::kCustomTextureDomain_OptFlagBit) {
1912         GrStringBuilder texDomainName;
1913         tex_domain_name(stageNum, &texDomainName);
1914         segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
1915             GrGLShaderVar::kUniform_TypeModifier, texDomainName);
1916         GrStringBuilder coordVar("clampCoord");
1917         segments->fFSCode.appendf("\t%s %s = clamp(%s, %s.xy, %s.zw);\n",
1918                                   float_vector_type_str(coordDims),
1919                                   coordVar.c_str(),
1920                                   sampleCoords.c_str(),
1921                                   texDomainName.c_str(),
1922                                   texDomainName.c_str());
1923         sampleCoords = coordVar;
1924         locations->fTexDomUni = kUseUniform;
1925     }
1926 
1927     switch (desc.fFetchMode) {
1928     case StageDesc::k2x2_FetchMode:
1929         GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
1930         gen2x2FS(stageNum, segments, locations, &sampleCoords,
1931             samplerName, texelSizeName, swizzle, fsOutColor,
1932             texFunc, modulate, complexCoord, coordDims);
1933         break;
1934     case StageDesc::kConvolution_FetchMode:
1935         GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
1936         genConvolutionFS(stageNum, desc, segments,
1937             samplerName, kernel, swizzle, imageIncrementName, fsOutColor,
1938             sampleCoords, texFunc, modulate);
1939         break;
1940     case StageDesc::kDilate_FetchMode:
1941     case StageDesc::kErode_FetchMode:
1942         GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
1943         genMorphologyFS(stageNum, desc, segments,
1944             samplerName, swizzle, imageIncrementName, fsOutColor,
1945             sampleCoords, texFunc, modulate);
1946         break;
1947     default:
1948         if (desc.fInConfigFlags & kMulByAlphaMask) {
1949             // only one of the mul by alpha flags should be set
1950             GrAssert(GrIsPow2(kMulByAlphaMask & desc.fInConfigFlags));
1951             GrAssert(!(desc.fInConfigFlags &
1952                        StageDesc::kSmearAlpha_InConfigFlag));
1953             segments->fFSCode.appendf("\t%s = %s(%s, %s)%s;\n",
1954                                       fsOutColor, texFunc.c_str(),
1955                                       samplerName, sampleCoords.c_str(),
1956                                       swizzle);
1957             if (desc.fInConfigFlags &
1958                 StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag) {
1959                 segments->fFSCode.appendf("\t%s = vec4(ceil(%s.rgb*%s.a*255.0)/255.0,%s.a)%s;\n",
1960                                           fsOutColor, fsOutColor, fsOutColor,
1961                                           fsOutColor, modulate.c_str());
1962             } else {
1963                 segments->fFSCode.appendf("\t%s = vec4(floor(%s.rgb*%s.a*255.0)/255.0,%s.a)%s;\n",
1964                                           fsOutColor, fsOutColor, fsOutColor,
1965                                           fsOutColor, modulate.c_str());
1966             }
1967         } else {
1968             segments->fFSCode.appendf("\t%s = %s(%s, %s)%s%s;\n",
1969                                       fsOutColor, texFunc.c_str(),
1970                                       samplerName, sampleCoords.c_str(),
1971                                       swizzle, modulate.c_str());
1972         }
1973     }
1974 }
1975 
1976 
1977