• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_SORTED_VECTOR_H
18 #define ANDROID_SORTED_VECTOR_H
19 
20 #include <assert.h>
21 #include <stdint.h>
22 #include <sys/types.h>
23 
24 #include <utils/Vector.h>
25 #include <utils/VectorImpl.h>
26 #include <utils/TypeHelpers.h>
27 
28 // ---------------------------------------------------------------------------
29 
30 namespace android {
31 
32 template <class TYPE>
33 class SortedVector : private SortedVectorImpl
34 {
35     friend class Vector<TYPE>;
36 
37 public:
38             typedef TYPE    value_type;
39 
40     /*!
41      * Constructors and destructors
42      */
43 
44                             SortedVector();
45                             SortedVector(const SortedVector<TYPE>& rhs);
46     virtual                 ~SortedVector();
47 
48     /*! copy operator */
49     const SortedVector<TYPE>&   operator = (const SortedVector<TYPE>& rhs) const;
50     SortedVector<TYPE>&         operator = (const SortedVector<TYPE>& rhs);
51 
52     /*
53      * empty the vector
54      */
55 
clear()56     inline  void            clear()             { VectorImpl::clear(); }
57 
58     /*!
59      * vector stats
60      */
61 
62     //! returns number of items in the vector
size()63     inline  size_t          size() const                { return VectorImpl::size(); }
64     //! returns wether or not the vector is empty
isEmpty()65     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
66     //! returns how many items can be stored without reallocating the backing store
capacity()67     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
68     //! setst the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)69     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
70 
71     /*!
72      * C-style array access
73      */
74 
75     //! read-only C-style access
76     inline  const TYPE*     array() const;
77 
78     //! read-write C-style access. BE VERY CAREFUL when modifying the array
79     //! you ust keep it sorted! You usually don't use this function.
80             TYPE*           editArray();
81 
82             //! finds the index of an item
83             ssize_t         indexOf(const TYPE& item) const;
84 
85             //! finds where this item should be inserted
86             size_t          orderOf(const TYPE& item) const;
87 
88 
89     /*!
90      * accessors
91      */
92 
93     //! read-only access to an item at a given index
94     inline  const TYPE&     operator [] (size_t index) const;
95     //! alternate name for operator []
96     inline  const TYPE&     itemAt(size_t index) const;
97     //! stack-usage of the vector. returns the top of the stack (last element)
98             const TYPE&     top() const;
99     //! same as operator [], but allows to access the vector backward (from the end) with a negative index
100             const TYPE&     mirrorItemAt(ssize_t index) const;
101 
102     /*!
103      * modifing the array
104      */
105 
106             //! add an item in the right place (and replace the one that is there)
107             ssize_t         add(const TYPE& item);
108 
109             //! editItemAt() MUST NOT change the order of this item
editItemAt(size_t index)110             TYPE&           editItemAt(size_t index) {
111                 return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
112             }
113 
114             //! merges a vector into this one
115             ssize_t         merge(const Vector<TYPE>& vector);
116             ssize_t         merge(const SortedVector<TYPE>& vector);
117 
118             //! removes an item
119             ssize_t         remove(const TYPE&);
120 
121     //! remove several items
122     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
123     //! remove one item
removeAt(size_t index)124     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
125 
126 protected:
127     virtual void    do_construct(void* storage, size_t num) const;
128     virtual void    do_destroy(void* storage, size_t num) const;
129     virtual void    do_copy(void* dest, const void* from, size_t num) const;
130     virtual void    do_splat(void* dest, const void* item, size_t num) const;
131     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
132     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
133     virtual int     do_compare(const void* lhs, const void* rhs) const;
134 };
135 
136 // SortedVector<T> can be trivially moved using memcpy() because moving does not
137 // require any change to the underlying SharedBuffer contents or reference count.
138 template<typename T> struct trait_trivial_move<SortedVector<T> > { enum { value = true }; };
139 
140 // ---------------------------------------------------------------------------
141 // No user serviceable parts from here...
142 // ---------------------------------------------------------------------------
143 
144 template<class TYPE> inline
145 SortedVector<TYPE>::SortedVector()
146     : SortedVectorImpl(sizeof(TYPE),
147                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
148                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
149                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
150                 )
151 {
152 }
153 
154 template<class TYPE> inline
155 SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
156     : SortedVectorImpl(rhs) {
157 }
158 
159 template<class TYPE> inline
160 SortedVector<TYPE>::~SortedVector() {
161     finish_vector();
162 }
163 
164 template<class TYPE> inline
165 SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
166     SortedVectorImpl::operator = (rhs);
167     return *this;
168 }
169 
170 template<class TYPE> inline
171 const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
172     SortedVectorImpl::operator = (rhs);
173     return *this;
174 }
175 
176 template<class TYPE> inline
177 const TYPE* SortedVector<TYPE>::array() const {
178     return static_cast<const TYPE *>(arrayImpl());
179 }
180 
181 template<class TYPE> inline
182 TYPE* SortedVector<TYPE>::editArray() {
183     return static_cast<TYPE *>(editArrayImpl());
184 }
185 
186 
187 template<class TYPE> inline
188 const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
189     assert( index<size() );
190     return *(array() + index);
191 }
192 
193 template<class TYPE> inline
194 const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
195     return operator[](index);
196 }
197 
198 template<class TYPE> inline
199 const TYPE& SortedVector<TYPE>::mirrorItemAt(ssize_t index) const {
200     assert( (index>0 ? index : -index)<size() );
201     return *(array() + ((index<0) ? (size()-index) : index));
202 }
203 
204 template<class TYPE> inline
205 const TYPE& SortedVector<TYPE>::top() const {
206     return *(array() + size() - 1);
207 }
208 
209 template<class TYPE> inline
210 ssize_t SortedVector<TYPE>::add(const TYPE& item) {
211     return SortedVectorImpl::add(&item);
212 }
213 
214 template<class TYPE> inline
215 ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
216     return SortedVectorImpl::indexOf(&item);
217 }
218 
219 template<class TYPE> inline
220 size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
221     return SortedVectorImpl::orderOf(&item);
222 }
223 
224 template<class TYPE> inline
225 ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
226     return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
227 }
228 
229 template<class TYPE> inline
230 ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
231     return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
232 }
233 
234 template<class TYPE> inline
235 ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
236     return SortedVectorImpl::remove(&item);
237 }
238 
239 template<class TYPE> inline
240 ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
241     return VectorImpl::removeItemsAt(index, count);
242 }
243 
244 // ---------------------------------------------------------------------------
245 
246 template<class TYPE>
247 void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
248     construct_type( reinterpret_cast<TYPE*>(storage), num );
249 }
250 
251 template<class TYPE>
252 void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
253     destroy_type( reinterpret_cast<TYPE*>(storage), num );
254 }
255 
256 template<class TYPE>
257 void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
258     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
259 }
260 
261 template<class TYPE>
262 void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
263     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
264 }
265 
266 template<class TYPE>
267 void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
268     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
269 }
270 
271 template<class TYPE>
272 void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
273     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
274 }
275 
276 template<class TYPE>
277 int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
278     return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
279 }
280 
281 }; // namespace android
282 
283 
284 // ---------------------------------------------------------------------------
285 
286 #endif // ANDROID_SORTED_VECTOR_H
287