• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  i386 execution defines
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19  */
20 #include "config.h"
21 #include "dyngen-exec.h"
22 
23 /* XXX: factorize this mess */
24 #ifdef TARGET_X86_64
25 #define TARGET_LONG_BITS 64
26 #else
27 #define TARGET_LONG_BITS 32
28 #endif
29 
30 #include "cpu-defs.h"
31 
32 register struct CPUX86State *env asm(AREG0);
33 
34 #include "qemu-common.h"
35 #include "qemu-log.h"
36 
37 #define EAX (env->regs[R_EAX])
38 #define ECX (env->regs[R_ECX])
39 #define EDX (env->regs[R_EDX])
40 #define EBX (env->regs[R_EBX])
41 #define ESP (env->regs[R_ESP])
42 #define EBP (env->regs[R_EBP])
43 #define ESI (env->regs[R_ESI])
44 #define EDI (env->regs[R_EDI])
45 #define EIP (env->eip)
46 #define DF  (env->df)
47 
48 #define CC_SRC (env->cc_src)
49 #define CC_DST (env->cc_dst)
50 #define CC_OP  (env->cc_op)
51 
52 /* float macros */
53 #define FT0    (env->ft0)
54 #define ST0    (env->fpregs[env->fpstt].d)
55 #define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
56 #define ST1    ST(1)
57 
58 #include "cpu.h"
59 #include "exec-all.h"
60 
61 /* op_helper.c */
62 void do_interrupt(int intno, int is_int, int error_code,
63                   target_ulong next_eip, int is_hw);
64 void do_interrupt_user(int intno, int is_int, int error_code,
65                        target_ulong next_eip);
66 void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
67 void QEMU_NORETURN raise_exception(int exception_index);
68 void do_smm_enter(void);
69 
70 /* n must be a constant to be efficient */
lshift(target_long x,int n)71 static inline target_long lshift(target_long x, int n)
72 {
73     if (n >= 0)
74         return x << n;
75     else
76         return x >> (-n);
77 }
78 
79 #include "helper.h"
80 
svm_check_intercept(uint32_t type)81 static inline void svm_check_intercept(uint32_t type)
82 {
83     helper_svm_check_intercept_param(type, 0);
84 }
85 
86 #if !defined(CONFIG_USER_ONLY)
87 
88 #include "softmmu_exec.h"
89 
90 #endif /* !defined(CONFIG_USER_ONLY) */
91 
92 #ifdef USE_X86LDOUBLE
93 /* use long double functions */
94 #define floatx_to_int32 floatx80_to_int32
95 #define floatx_to_int64 floatx80_to_int64
96 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
97 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
98 #define int32_to_floatx int32_to_floatx80
99 #define int64_to_floatx int64_to_floatx80
100 #define float32_to_floatx float32_to_floatx80
101 #define float64_to_floatx float64_to_floatx80
102 #define floatx_to_float32 floatx80_to_float32
103 #define floatx_to_float64 floatx80_to_float64
104 #define floatx_abs floatx80_abs
105 #define floatx_chs floatx80_chs
106 #define floatx_round_to_int floatx80_round_to_int
107 #define floatx_compare floatx80_compare
108 #define floatx_compare_quiet floatx80_compare_quiet
109 #else
110 #define floatx_to_int32 float64_to_int32
111 #define floatx_to_int64 float64_to_int64
112 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
113 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
114 #define int32_to_floatx int32_to_float64
115 #define int64_to_floatx int64_to_float64
116 #define float32_to_floatx float32_to_float64
117 #define float64_to_floatx(x, e) (x)
118 #define floatx_to_float32 float64_to_float32
119 #define floatx_to_float64(x, e) (x)
120 #define floatx_abs float64_abs
121 #define floatx_chs float64_chs
122 #define floatx_round_to_int float64_round_to_int
123 #define floatx_compare float64_compare
124 #define floatx_compare_quiet float64_compare_quiet
125 #endif
126 
127 #define RC_MASK         0xc00
128 #define RC_NEAR		0x000
129 #define RC_DOWN		0x400
130 #define RC_UP		0x800
131 #define RC_CHOP		0xc00
132 
133 #define MAXTAN 9223372036854775808.0
134 
135 #ifdef USE_X86LDOUBLE
136 
137 /* only for x86 */
138 typedef union {
139     long double d;
140     struct {
141         unsigned long long lower;
142         unsigned short upper;
143     } l;
144 } CPU86_LDoubleU;
145 
146 /* the following deal with x86 long double-precision numbers */
147 #define MAXEXPD 0x7fff
148 #define EXPBIAS 16383
149 #define EXPD(fp)	(fp.l.upper & 0x7fff)
150 #define SIGND(fp)	((fp.l.upper) & 0x8000)
151 #define MANTD(fp)       (fp.l.lower)
152 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
153 
154 #else
155 
156 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
157 typedef union {
158     double d;
159 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
160     struct {
161         uint32_t lower;
162         int32_t upper;
163     } l;
164 #else
165     struct {
166         int32_t upper;
167         uint32_t lower;
168     } l;
169 #endif
170 #ifndef __arm__
171     int64_t ll;
172 #endif
173 } CPU86_LDoubleU;
174 
175 /* the following deal with IEEE double-precision numbers */
176 #define MAXEXPD 0x7ff
177 #define EXPBIAS 1023
178 #define EXPD(fp)	(((fp.l.upper) >> 20) & 0x7FF)
179 #define SIGND(fp)	((fp.l.upper) & 0x80000000)
180 #ifdef __arm__
181 #define MANTD(fp)	(fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
182 #else
183 #define MANTD(fp)	(fp.ll & ((1LL << 52) - 1))
184 #endif
185 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
186 #endif
187 
fpush(void)188 static inline void fpush(void)
189 {
190     env->fpstt = (env->fpstt - 1) & 7;
191     env->fptags[env->fpstt] = 0; /* validate stack entry */
192 }
193 
fpop(void)194 static inline void fpop(void)
195 {
196     env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
197     env->fpstt = (env->fpstt + 1) & 7;
198 }
199 
200 #ifndef USE_X86LDOUBLE
helper_fldt(target_ulong ptr)201 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
202 {
203     CPU86_LDoubleU temp;
204     int upper, e;
205     uint64_t ll;
206 
207     /* mantissa */
208     upper = lduw(ptr + 8);
209     /* XXX: handle overflow ? */
210     e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
211     e |= (upper >> 4) & 0x800; /* sign */
212     ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
213 #ifdef __arm__
214     temp.l.upper = (e << 20) | (ll >> 32);
215     temp.l.lower = ll;
216 #else
217     temp.ll = ll | ((uint64_t)e << 52);
218 #endif
219     return temp.d;
220 }
221 
helper_fstt(CPU86_LDouble f,target_ulong ptr)222 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
223 {
224     CPU86_LDoubleU temp;
225     int e;
226 
227     temp.d = f;
228     /* mantissa */
229     stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
230     /* exponent + sign */
231     e = EXPD(temp) - EXPBIAS + 16383;
232     e |= SIGND(temp) >> 16;
233     stw(ptr + 8, e);
234 }
235 #else
236 
237 /* we use memory access macros */
238 
helper_fldt(target_ulong ptr)239 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
240 {
241     CPU86_LDoubleU temp;
242 
243     temp.l.lower = ldq(ptr);
244     temp.l.upper = lduw(ptr + 8);
245     return temp.d;
246 }
247 
helper_fstt(CPU86_LDouble f,target_ulong ptr)248 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
249 {
250     CPU86_LDoubleU temp;
251 
252     temp.d = f;
253     stq(ptr, temp.l.lower);
254     stw(ptr + 8, temp.l.upper);
255 }
256 
257 #endif /* USE_X86LDOUBLE */
258 
259 #define FPUS_IE (1 << 0)
260 #define FPUS_DE (1 << 1)
261 #define FPUS_ZE (1 << 2)
262 #define FPUS_OE (1 << 3)
263 #define FPUS_UE (1 << 4)
264 #define FPUS_PE (1 << 5)
265 #define FPUS_SF (1 << 6)
266 #define FPUS_SE (1 << 7)
267 #define FPUS_B  (1 << 15)
268 
269 #define FPUC_EM 0x3f
270 
compute_eflags(void)271 static inline uint32_t compute_eflags(void)
272 {
273     return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
274 }
275 
276 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
load_eflags(int eflags,int update_mask)277 static inline void load_eflags(int eflags, int update_mask)
278 {
279     CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
280     DF = 1 - (2 * ((eflags >> 10) & 1));
281     env->eflags = (env->eflags & ~update_mask) |
282         (eflags & update_mask) | 0x2;
283 }
284 
env_to_regs(void)285 static inline void env_to_regs(void)
286 {
287 #ifdef reg_EAX
288     EAX = env->regs[R_EAX];
289 #endif
290 #ifdef reg_ECX
291     ECX = env->regs[R_ECX];
292 #endif
293 #ifdef reg_EDX
294     EDX = env->regs[R_EDX];
295 #endif
296 #ifdef reg_EBX
297     EBX = env->regs[R_EBX];
298 #endif
299 #ifdef reg_ESP
300     ESP = env->regs[R_ESP];
301 #endif
302 #ifdef reg_EBP
303     EBP = env->regs[R_EBP];
304 #endif
305 #ifdef reg_ESI
306     ESI = env->regs[R_ESI];
307 #endif
308 #ifdef reg_EDI
309     EDI = env->regs[R_EDI];
310 #endif
311 }
312 
regs_to_env(void)313 static inline void regs_to_env(void)
314 {
315 #ifdef reg_EAX
316     env->regs[R_EAX] = EAX;
317 #endif
318 #ifdef reg_ECX
319     env->regs[R_ECX] = ECX;
320 #endif
321 #ifdef reg_EDX
322     env->regs[R_EDX] = EDX;
323 #endif
324 #ifdef reg_EBX
325     env->regs[R_EBX] = EBX;
326 #endif
327 #ifdef reg_ESP
328     env->regs[R_ESP] = ESP;
329 #endif
330 #ifdef reg_EBP
331     env->regs[R_EBP] = EBP;
332 #endif
333 #ifdef reg_ESI
334     env->regs[R_ESI] = ESI;
335 #endif
336 #ifdef reg_EDI
337     env->regs[R_EDI] = EDI;
338 #endif
339 }
340 
cpu_has_work(CPUState * env)341 static inline int cpu_has_work(CPUState *env)
342 {
343     int work;
344 
345     work = (env->interrupt_request & CPU_INTERRUPT_HARD) &&
346            (env->eflags & IF_MASK);
347     work |= env->interrupt_request & CPU_INTERRUPT_NMI;
348     work |= env->interrupt_request & CPU_INTERRUPT_INIT;
349     work |= env->interrupt_request & CPU_INTERRUPT_SIPI;
350 
351     return work;
352 }
353 
cpu_halted(CPUState * env)354 static inline int cpu_halted(CPUState *env) {
355     /* handle exit of HALTED state */
356     if (!env->halted)
357         return 0;
358     /* disable halt condition */
359     if (cpu_has_work(env)) {
360         env->halted = 0;
361         return 0;
362     }
363     return EXCP_HALTED;
364 }
365 
366 /* load efer and update the corresponding hflags. XXX: do consistency
367    checks with cpuid bits ? */
cpu_load_efer(CPUState * env,uint64_t val)368 static inline void cpu_load_efer(CPUState *env, uint64_t val)
369 {
370     env->efer = val;
371     env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
372     if (env->efer & MSR_EFER_LMA)
373         env->hflags |= HF_LMA_MASK;
374     if (env->efer & MSR_EFER_SVME)
375         env->hflags |= HF_SVME_MASK;
376 }
377