• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* libs/pixelflinger/scanline.cpp
2 **
3 ** Copyright 2006-2011, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 
19 #define LOG_TAG "pixelflinger"
20 
21 #include <assert.h>
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <string.h>
25 
26 #include <cutils/memory.h>
27 #include <cutils/log.h>
28 
29 #include "buffer.h"
30 #include "scanline.h"
31 
32 #include "codeflinger/CodeCache.h"
33 #include "codeflinger/GGLAssembler.h"
34 #include "codeflinger/ARMAssembler.h"
35 //#include "codeflinger/ARMAssemblerOptimizer.h"
36 
37 // ----------------------------------------------------------------------------
38 
39 #define ANDROID_CODEGEN_GENERIC     0   // force generic pixel pipeline
40 #define ANDROID_CODEGEN_C           1   // hand-written C, fallback generic
41 #define ANDROID_CODEGEN_ASM         2   // hand-written asm, fallback generic
42 #define ANDROID_CODEGEN_GENERATED   3   // hand-written asm, fallback codegen
43 
44 #ifdef NDEBUG
45 #   define ANDROID_RELEASE
46 #   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
47 #else
48 #   define ANDROID_DEBUG
49 #   define ANDROID_CODEGEN      ANDROID_CODEGEN_GENERATED
50 #endif
51 
52 #if defined(__arm__)
53 #   define ANDROID_ARM_CODEGEN  1
54 #else
55 #   define ANDROID_ARM_CODEGEN  0
56 #endif
57 
58 #define DEBUG__CODEGEN_ONLY     0
59 
60 /* Set to 1 to dump to the log the states that need a new
61  * code-generated scanline callback, i.e. those that don't
62  * have a corresponding shortcut function.
63  */
64 #define DEBUG_NEEDS  0
65 
66 #define ASSEMBLY_SCRATCH_SIZE   2048
67 
68 // ----------------------------------------------------------------------------
69 namespace android {
70 // ----------------------------------------------------------------------------
71 
72 static void init_y(context_t*, int32_t);
73 static void init_y_noop(context_t*, int32_t);
74 static void init_y_packed(context_t*, int32_t);
75 static void init_y_error(context_t*, int32_t);
76 
77 static void step_y__generic(context_t* c);
78 static void step_y__nop(context_t*);
79 static void step_y__smooth(context_t* c);
80 static void step_y__tmu(context_t* c);
81 static void step_y__w(context_t* c);
82 
83 static void scanline(context_t* c);
84 static void scanline_perspective(context_t* c);
85 static void scanline_perspective_single(context_t* c);
86 static void scanline_t32cb16blend(context_t* c);
87 static void scanline_t32cb16blend_dither(context_t* c);
88 static void scanline_t32cb16blend_srca(context_t* c);
89 static void scanline_t32cb16blend_clamp(context_t* c);
90 static void scanline_t32cb16blend_clamp_dither(context_t* c);
91 static void scanline_t32cb16blend_clamp_mod(context_t* c);
92 static void scanline_x32cb16blend_clamp_mod(context_t* c);
93 static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
94 static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
95 static void scanline_t32cb16(context_t* c);
96 static void scanline_t32cb16_dither(context_t* c);
97 static void scanline_t32cb16_clamp(context_t* c);
98 static void scanline_t32cb16_clamp_dither(context_t* c);
99 static void scanline_col32cb16blend(context_t* c);
100 static void scanline_t16cb16_clamp(context_t* c);
101 static void scanline_t16cb16blend_clamp_mod(context_t* c);
102 static void scanline_memcpy(context_t* c);
103 static void scanline_memset8(context_t* c);
104 static void scanline_memset16(context_t* c);
105 static void scanline_memset32(context_t* c);
106 static void scanline_noop(context_t* c);
107 static void scanline_set(context_t* c);
108 static void scanline_clear(context_t* c);
109 
110 static void rect_generic(context_t* c, size_t yc);
111 static void rect_memcpy(context_t* c, size_t yc);
112 
113 extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
114 extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
115 extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct);
116 extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct);
117 
118 // ----------------------------------------------------------------------------
119 
convertAbgr8888ToRgb565(uint32_t pix)120 static inline uint16_t  convertAbgr8888ToRgb565(uint32_t  pix)
121 {
122     return uint16_t( ((pix << 8) & 0xf800) |
123                       ((pix >> 5) & 0x07e0) |
124                       ((pix >> 19) & 0x001f) );
125 }
126 
127 struct shortcut_t {
128     needs_filter_t  filter;
129     const char*     desc;
130     void            (*scanline)(context_t*);
131     void            (*init_y)(context_t*, int32_t);
132 };
133 
134 // Keep in sync with needs
135 
136 /* To understand the values here, have a look at:
137  *     system/core/include/private/pixelflinger/ggl_context.h
138  *
139  * Especially the lines defining and using GGL_RESERVE_NEEDS
140  *
141  * Quick reminders:
142  *   - the last nibble of the first value is the destination buffer format.
143  *   - the last nibble of the third value is the source texture format
144  *   - formats: 4=rgb565 1=abgr8888 2=xbgr8888
145  *
146  * In the descriptions below:
147  *
148  *   SRC      means we copy the source pixels to the destination
149  *
150  *   SRC_OVER means we blend the source pixels to the destination
151  *            with dstFactor = 1-srcA, srcFactor=1  (premultiplied source).
152  *            This mode is otherwise called 'blend'.
153  *
154  *   SRCA_OVER means we blend the source pixels to the destination
155  *             with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
156  *             This mode is otherwise called 'blend_srca'
157  *
158  *   clamp    means we fetch source pixels from a texture with u/v clamping
159  *
160  *   mod      means the source pixels are modulated (multiplied) by the
161  *            a/r/g/b of the current context's color. Typically used for
162  *            fade-in / fade-out.
163  *
164  *   dither   means we dither 32 bit values to 16 bits
165  */
166 static shortcut_t shortcuts[] = {
167     { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
168         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
169         "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
170     { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
171         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
172         "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop  },
173     /* same as first entry, but with dithering */
174     { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
175         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
176         "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
177     /* same as second entry, but with dithering */
178     { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
179         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
180         "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop  },
181     /* this is used during the boot animation - CHEAT: ignore dithering */
182     { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
183         { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
184         "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
185     /* special case for arbitrary texture coordinates (think scaling) */
186     { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
187         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
188         "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
189     { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
190         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
191         "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
192     /* another case used during emulation */
193     { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
194         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
195         "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
196     /* and this */
197     { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
198         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
199         "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
200     { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
201         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
202         "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
203     { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
204         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
205         "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
206     { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
207         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
208         "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
209     { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
210         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
211         "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y  },
212     { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
213         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
214         "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
215     { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
216         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
217         "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y  },
218     { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
219         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
220         "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y  },
221     { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
222         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
223         "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y  },
224     { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
225         { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
226         "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed  },
227     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
228         { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
229         "(nop) alpha test", scanline_noop, init_y_noop },
230     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
231         { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
232         "(nop) depth test", scanline_noop, init_y_noop },
233     { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
234         { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
235         "(nop) logic_op", scanline_noop, init_y_noop },
236     { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
237         { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
238         "(nop) color mask", scanline_noop, init_y_noop },
239     { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
240         { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
241         "(set) logic_op", scanline_set, init_y_noop },
242     { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
243         { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
244         "(clear) logic_op", scanline_clear, init_y_noop },
245     { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
246         { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
247         "(clear) blending 0/0", scanline_clear, init_y_noop },
248     { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
249         { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
250         "(error) invalid color-buffer format", scanline_noop, init_y_error },
251 };
252 static const needs_filter_t noblend1to1 = {
253         // (disregard dithering, see below)
254         { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
255         { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
256 };
257 static  const needs_filter_t fill16noblend = {
258         { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
259         { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
260 };
261 
262 // ----------------------------------------------------------------------------
263 
264 #if ANDROID_ARM_CODEGEN
265 static CodeCache gCodeCache(12 * 1024);
266 
267 class ScanlineAssembly : public Assembly {
268     AssemblyKey<needs_t> mKey;
269 public:
ScanlineAssembly(needs_t needs,size_t size)270     ScanlineAssembly(needs_t needs, size_t size)
271         : Assembly(size), mKey(needs) { }
key() const272     const AssemblyKey<needs_t>& key() const { return mKey; }
273 };
274 #endif
275 
276 // ----------------------------------------------------------------------------
277 
ggl_init_scanline(context_t * c)278 void ggl_init_scanline(context_t* c)
279 {
280     c->init_y = init_y;
281     c->step_y = step_y__generic;
282     c->scanline = scanline;
283 }
284 
ggl_uninit_scanline(context_t * c)285 void ggl_uninit_scanline(context_t* c)
286 {
287     if (c->state.buffers.coverage)
288         free(c->state.buffers.coverage);
289 #if ANDROID_ARM_CODEGEN
290     if (c->scanline_as)
291         c->scanline_as->decStrong(c);
292 #endif
293 }
294 
295 // ----------------------------------------------------------------------------
296 
pick_scanline(context_t * c)297 static void pick_scanline(context_t* c)
298 {
299 #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
300 
301 #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
302     c->init_y = init_y;
303     c->step_y = step_y__generic;
304     c->scanline = scanline;
305     return;
306 #endif
307 
308     //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
309     //    c->state.needs.n, c->state.needs.p,
310     //    c->state.needs.t[0], c->state.needs.t[1]);
311 
312     // first handle the special case that we cannot test with a filter
313     const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
314     if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
315         if (c->state.needs.match(noblend1to1)) {
316             // this will match regardless of dithering state, since both
317             // src and dest have the same format anyway, there is no dithering
318             // to be done.
319             const GGLFormat* f =
320                 &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
321             if ((f->components == GGL_RGB) ||
322                 (f->components == GGL_RGBA) ||
323                 (f->components == GGL_LUMINANCE) ||
324                 (f->components == GGL_LUMINANCE_ALPHA))
325             {
326                 // format must have all of RGB components
327                 // (so the current color doesn't show through)
328                 c->scanline = scanline_memcpy;
329                 c->init_y = init_y_noop;
330                 return;
331             }
332         }
333     }
334 
335     if (c->state.needs.match(fill16noblend)) {
336         c->init_y = init_y_packed;
337         switch (c->formats[cb_format].size) {
338         case 1: c->scanline = scanline_memset8;  return;
339         case 2: c->scanline = scanline_memset16; return;
340         case 4: c->scanline = scanline_memset32; return;
341         }
342     }
343 
344     const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
345     for (int i=0 ; i<numFilters ; i++) {
346         if (c->state.needs.match(shortcuts[i].filter)) {
347             c->scanline = shortcuts[i].scanline;
348             c->init_y = shortcuts[i].init_y;
349             return;
350         }
351     }
352 
353 #if DEBUG_NEEDS
354     ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
355          c->state.needs.n, c->state.needs.p,
356          c->state.needs.t[0], c->state.needs.t[1]);
357 #endif
358 
359 #endif // DEBUG__CODEGEN_ONLY
360 
361     c->init_y = init_y;
362     c->step_y = step_y__generic;
363 
364 #if ANDROID_ARM_CODEGEN
365     // we're going to have to generate some code...
366     // here, generate code for our pixel pipeline
367     const AssemblyKey<needs_t> key(c->state.needs);
368     sp<Assembly> assembly = gCodeCache.lookup(key);
369     if (assembly == 0) {
370         // create a new assembly region
371         sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
372                 ASSEMBLY_SCRATCH_SIZE);
373         // initialize our assembler
374         GGLAssembler assembler( new ARMAssembler(a) );
375         //GGLAssembler assembler(
376         //        new ARMAssemblerOptimizer(new ARMAssembler(a)) );
377         // generate the scanline code for the given needs
378         int err = assembler.scanline(c->state.needs, c);
379         if (ggl_likely(!err)) {
380             // finally, cache this assembly
381             err = gCodeCache.cache(a->key(), a);
382         }
383         if (ggl_unlikely(err)) {
384             ALOGE("error generating or caching assembly. Reverting to NOP.");
385             c->scanline = scanline_noop;
386             c->init_y = init_y_noop;
387             c->step_y = step_y__nop;
388             return;
389         }
390         assembly = a;
391     }
392 
393     // release the previous assembly
394     if (c->scanline_as) {
395         c->scanline_as->decStrong(c);
396     }
397 
398     //ALOGI("using generated pixel-pipeline");
399     c->scanline_as = assembly.get();
400     c->scanline_as->incStrong(c); //  hold on to assembly
401     c->scanline = (void(*)(context_t* c))assembly->base();
402 #else
403 //    ALOGW("using generic (slow) pixel-pipeline");
404     c->scanline = scanline;
405 #endif
406 }
407 
ggl_pick_scanline(context_t * c)408 void ggl_pick_scanline(context_t* c)
409 {
410     pick_scanline(c);
411     if ((c->state.enables & GGL_ENABLE_W) &&
412         (c->state.enables & GGL_ENABLE_TMUS))
413     {
414         c->span = c->scanline;
415         c->scanline = scanline_perspective;
416         if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
417             // only one TMU enabled
418             c->scanline = scanline_perspective_single;
419         }
420     }
421 }
422 
423 // ----------------------------------------------------------------------------
424 
425 static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
426 static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
427         const pixel_t* src, const pixel_t* dst);
428 static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
429 
430 #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
431 
432 // no need to compile the generic-pipeline, it can't be reached
scanline(context_t *)433 void scanline(context_t*)
434 {
435 }
436 
437 #else
438 
rescale(uint32_t & u,uint8_t & su,uint32_t & v,uint8_t & sv)439 void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
440 {
441     if (su && sv) {
442         if (su > sv) {
443             v = ggl_expand(v, sv, su);
444             sv = su;
445         } else if (su < sv) {
446             u = ggl_expand(u, su, sv);
447             su = sv;
448         }
449     }
450 }
451 
blending(context_t * c,pixel_t * fragment,pixel_t * fb)452 void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
453 {
454     rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
455     rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
456     rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
457     rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
458 
459     pixel_t sf, df;
460     blend_factor(c, &sf, c->state.blend.src, fragment, fb);
461     blend_factor(c, &df, c->state.blend.dst, fragment, fb);
462 
463     fragment->c[1] =
464             gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
465     fragment->c[2] =
466             gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
467     fragment->c[3] =
468             gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
469 
470     if (c->state.blend.alpha_separate) {
471         blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
472         blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
473     }
474 
475     fragment->c[0] =
476             gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
477 
478     // clamp to 1.0
479     if (fragment->c[0] >= (1LU<<fragment->s[0]))
480         fragment->c[0] = (1<<fragment->s[0])-1;
481     if (fragment->c[1] >= (1LU<<fragment->s[1]))
482         fragment->c[1] = (1<<fragment->s[1])-1;
483     if (fragment->c[2] >= (1LU<<fragment->s[2]))
484         fragment->c[2] = (1<<fragment->s[2])-1;
485     if (fragment->c[3] >= (1LU<<fragment->s[3]))
486         fragment->c[3] = (1<<fragment->s[3])-1;
487 }
488 
blendfactor(uint32_t x,uint32_t size,uint32_t def=0)489 static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
490 {
491     if (!size)
492         return def;
493 
494     // scale to 16 bits
495     if (size > 16) {
496         x >>= (size - 16);
497     } else if (size < 16) {
498         x = ggl_expand(x, size, 16);
499     }
500     x += x >> 15;
501     return x;
502 }
503 
blend_factor(context_t * c,pixel_t * r,uint32_t factor,const pixel_t * src,const pixel_t * dst)504 void blend_factor(context_t* c, pixel_t* r,
505         uint32_t factor, const pixel_t* src, const pixel_t* dst)
506 {
507     switch (factor) {
508         case GGL_ZERO:
509             r->c[1] =
510             r->c[2] =
511             r->c[3] =
512             r->c[0] = 0;
513             break;
514         case GGL_ONE:
515             r->c[1] =
516             r->c[2] =
517             r->c[3] =
518             r->c[0] = FIXED_ONE;
519             break;
520         case GGL_DST_COLOR:
521             r->c[1] = blendfactor(dst->c[1], dst->s[1]);
522             r->c[2] = blendfactor(dst->c[2], dst->s[2]);
523             r->c[3] = blendfactor(dst->c[3], dst->s[3]);
524             r->c[0] = blendfactor(dst->c[0], dst->s[0]);
525             break;
526         case GGL_SRC_COLOR:
527             r->c[1] = blendfactor(src->c[1], src->s[1]);
528             r->c[2] = blendfactor(src->c[2], src->s[2]);
529             r->c[3] = blendfactor(src->c[3], src->s[3]);
530             r->c[0] = blendfactor(src->c[0], src->s[0]);
531             break;
532         case GGL_ONE_MINUS_DST_COLOR:
533             r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
534             r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
535             r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
536             r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
537             break;
538         case GGL_ONE_MINUS_SRC_COLOR:
539             r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
540             r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
541             r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
542             r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
543             break;
544         case GGL_SRC_ALPHA:
545             r->c[1] =
546             r->c[2] =
547             r->c[3] =
548             r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
549             break;
550         case GGL_ONE_MINUS_SRC_ALPHA:
551             r->c[1] =
552             r->c[2] =
553             r->c[3] =
554             r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
555             break;
556         case GGL_DST_ALPHA:
557             r->c[1] =
558             r->c[2] =
559             r->c[3] =
560             r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
561             break;
562         case GGL_ONE_MINUS_DST_ALPHA:
563             r->c[1] =
564             r->c[2] =
565             r->c[3] =
566             r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
567             break;
568         case GGL_SRC_ALPHA_SATURATE:
569             // XXX: GGL_SRC_ALPHA_SATURATE
570             break;
571     }
572 }
573 
wrapping(int32_t coord,uint32_t size,int tx_wrap)574 static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
575 {
576     GGLfixed d;
577     if (tx_wrap == GGL_REPEAT) {
578         d = (uint32_t(coord)>>16) * size;
579     } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
580         const GGLfixed clamp_min = FIXED_HALF;
581         const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
582         if (coord < clamp_min)     coord = clamp_min;
583         if (coord > clamp_max)     coord = clamp_max;
584         d = coord;
585     } else { // 1:1
586         const GGLfixed clamp_min = 0;
587         const GGLfixed clamp_max = (size << 16);
588         if (coord < clamp_min)     coord = clamp_min;
589         if (coord > clamp_max)     coord = clamp_max;
590         d = coord;
591     }
592     return d;
593 }
594 
595 static inline
ADJUST_COLOR_ITERATOR(GGLcolor v,GGLcolor dvdx,int len)596 GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
597 {
598     const int32_t end = dvdx * (len-1) + v;
599     if (end < 0)
600         v -= end;
601     v &= ~(v>>31);
602     return v;
603 }
604 
scanline(context_t * c)605 void scanline(context_t* c)
606 {
607     const uint32_t enables = c->state.enables;
608     const int xs = c->iterators.xl;
609     const int x1 = c->iterators.xr;
610 	int xc = x1 - xs;
611     const int16_t* covPtr = c->state.buffers.coverage + xs;
612 
613     // All iterated values are sampled at the pixel center
614 
615     // reset iterators for that scanline...
616     GGLcolor r, g, b, a;
617     iterators_t& ci = c->iterators;
618     if (enables & GGL_ENABLE_SMOOTH) {
619         r = (xs * c->shade.drdx) + ci.ydrdy;
620         g = (xs * c->shade.dgdx) + ci.ydgdy;
621         b = (xs * c->shade.dbdx) + ci.ydbdy;
622         a = (xs * c->shade.dadx) + ci.ydady;
623         r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
624         g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
625         b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
626         a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
627     } else {
628         r = ci.ydrdy;
629         g = ci.ydgdy;
630         b = ci.ydbdy;
631         a = ci.ydady;
632     }
633 
634     // z iterators are 1.31
635     GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
636     GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
637 
638     struct {
639         GGLfixed s, t;
640     } tc[GGL_TEXTURE_UNIT_COUNT];
641     if (enables & GGL_ENABLE_TMUS) {
642         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
643             if (c->state.texture[i].enable) {
644                 texture_iterators_t& ti = c->state.texture[i].iterators;
645                 if (enables & GGL_ENABLE_W) {
646                     tc[i].s = ti.ydsdy;
647                     tc[i].t = ti.ydtdy;
648                 } else {
649                     tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
650                     tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
651                 }
652             }
653         }
654     }
655 
656     pixel_t fragment;
657     pixel_t texel;
658     pixel_t fb;
659 
660 	uint32_t x = xs;
661 	uint32_t y = c->iterators.y;
662 
663 	while (xc--) {
664 
665         { // just a scope
666 
667 		// read color (convert to 8 bits by keeping only the integer part)
668         fragment.s[1] = fragment.s[2] =
669         fragment.s[3] = fragment.s[0] = 8;
670         fragment.c[1] = r >> (GGL_COLOR_BITS-8);
671         fragment.c[2] = g >> (GGL_COLOR_BITS-8);
672         fragment.c[3] = b >> (GGL_COLOR_BITS-8);
673         fragment.c[0] = a >> (GGL_COLOR_BITS-8);
674 
675 		// texturing
676         if (enables & GGL_ENABLE_TMUS) {
677             for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
678                 texture_t& tx = c->state.texture[i];
679                 if (!tx.enable)
680                     continue;
681                 texture_iterators_t& ti = tx.iterators;
682                 int32_t u, v;
683 
684                 // s-coordinate
685                 if (tx.s_coord != GGL_ONE_TO_ONE) {
686                     const int w = tx.surface.width;
687                     u = wrapping(tc[i].s, w, tx.s_wrap);
688                     tc[i].s += ti.dsdx;
689                 } else {
690                     u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
691                 }
692 
693                 // t-coordinate
694                 if (tx.t_coord != GGL_ONE_TO_ONE) {
695                     const int h = tx.surface.height;
696                     v = wrapping(tc[i].t, h, tx.t_wrap);
697                     tc[i].t += ti.dtdx;
698                 } else {
699                     v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
700                 }
701 
702                 // read texture
703                 if (tx.mag_filter == GGL_NEAREST &&
704                     tx.min_filter == GGL_NEAREST)
705                 {
706                     u >>= 16;
707                     v >>= 16;
708                     tx.surface.read(&tx.surface, c, u, v, &texel);
709                 } else {
710                     const int w = tx.surface.width;
711                     const int h = tx.surface.height;
712                     u -= FIXED_HALF;
713                     v -= FIXED_HALF;
714                     int u0 = u >> 16;
715                     int v0 = v >> 16;
716                     int u1 = u0 + 1;
717                     int v1 = v0 + 1;
718                     if (tx.s_wrap == GGL_REPEAT) {
719                         if (u0<0)  u0 += w;
720                         if (u1<0)  u1 += w;
721                         if (u0>=w) u0 -= w;
722                         if (u1>=w) u1 -= w;
723                     } else {
724                         if (u0<0)  u0 = 0;
725                         if (u1<0)  u1 = 0;
726                         if (u0>=w) u0 = w-1;
727                         if (u1>=w) u1 = w-1;
728                     }
729                     if (tx.t_wrap == GGL_REPEAT) {
730                         if (v0<0)  v0 += h;
731                         if (v1<0)  v1 += h;
732                         if (v0>=h) v0 -= h;
733                         if (v1>=h) v1 -= h;
734                     } else {
735                         if (v0<0)  v0 = 0;
736                         if (v1<0)  v1 = 0;
737                         if (v0>=h) v0 = h-1;
738                         if (v1>=h) v1 = h-1;
739                     }
740                     pixel_t texels[4];
741                     uint32_t mm[4];
742                     tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
743                     tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
744                     tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
745                     tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
746                     u = (u >> 12) & 0xF;
747                     v = (v >> 12) & 0xF;
748                     u += u>>3;
749                     v += v>>3;
750                     mm[0] = (0x10 - u) * (0x10 - v);
751                     mm[1] = (0x10 - u) * v;
752                     mm[2] = u * (0x10 - v);
753                     mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
754                     for (int j=0 ; j<4 ; j++) {
755                         texel.s[j] = texels[0].s[j];
756                         if (!texel.s[j]) continue;
757                         texel.s[j] += 8;
758                         texel.c[j] =    texels[0].c[j]*mm[0] +
759                                         texels[1].c[j]*mm[1] +
760                                         texels[2].c[j]*mm[2] +
761                                         texels[3].c[j]*mm[3] ;
762                     }
763                 }
764 
765                 // Texture environnement...
766                 for (int j=0 ; j<4 ; j++) {
767                     uint32_t& Cf = fragment.c[j];
768                     uint32_t& Ct = texel.c[j];
769                     uint8_t& sf  = fragment.s[j];
770                     uint8_t& st  = texel.s[j];
771                     uint32_t At = texel.c[0];
772                     uint8_t sat = texel.s[0];
773                     switch (tx.env) {
774                     case GGL_REPLACE:
775                         if (st) {
776                             Cf = Ct;
777                             sf = st;
778                         }
779                         break;
780                     case GGL_MODULATE:
781                         if (st) {
782                             uint32_t factor = Ct + (Ct>>(st-1));
783                             Cf = (Cf * factor) >> st;
784                         }
785                         break;
786                     case GGL_DECAL:
787                         if (sat) {
788                             rescale(Cf, sf, Ct, st);
789                             Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
790                         }
791                         break;
792                     case GGL_BLEND:
793                         if (st) {
794                             uint32_t Cc = tx.env_color[i];
795                             if (sf>8)       Cc = (Cc * ((1<<sf)-1))>>8;
796                             else if (sf<8)  Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
797                             uint32_t factor = Ct + (Ct>>(st-1));
798                             Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
799                         }
800                         break;
801                     case GGL_ADD:
802                         if (st) {
803                             rescale(Cf, sf, Ct, st);
804                             Cf += Ct;
805                         }
806                         break;
807                     }
808                 }
809             }
810 		}
811 
812         // coverage application
813         if (enables & GGL_ENABLE_AA) {
814             int16_t cf = *covPtr++;
815             fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
816         }
817 
818         // alpha-test
819         if (enables & GGL_ENABLE_ALPHA_TEST) {
820             GGLcolor ref = c->state.alpha_test.ref;
821             GGLcolor alpha = (uint64_t(fragment.c[0]) *
822                     ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
823             switch (c->state.alpha_test.func) {
824             case GGL_NEVER:     goto discard;
825             case GGL_LESS:      if (alpha<ref)  break; goto discard;
826             case GGL_EQUAL:     if (alpha==ref) break; goto discard;
827             case GGL_LEQUAL:    if (alpha<=ref) break; goto discard;
828             case GGL_GREATER:   if (alpha>ref)  break; goto discard;
829             case GGL_NOTEQUAL:  if (alpha!=ref) break; goto discard;
830             case GGL_GEQUAL:    if (alpha>=ref) break; goto discard;
831             }
832         }
833 
834         // depth test
835         if (c->state.buffers.depth.format) {
836             if (enables & GGL_ENABLE_DEPTH_TEST) {
837                 surface_t* cb = &(c->state.buffers.depth);
838                 uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
839                 uint16_t zz = uint32_t(z)>>(16);
840                 uint16_t depth = *p;
841                 switch (c->state.depth_test.func) {
842                 case GGL_NEVER:     goto discard;
843                 case GGL_LESS:      if (zz<depth)    break; goto discard;
844                 case GGL_EQUAL:     if (zz==depth)   break; goto discard;
845                 case GGL_LEQUAL:    if (zz<=depth)   break; goto discard;
846                 case GGL_GREATER:   if (zz>depth)    break; goto discard;
847                 case GGL_NOTEQUAL:  if (zz!=depth)   break; goto discard;
848                 case GGL_GEQUAL:    if (zz>=depth)   break; goto discard;
849                 }
850                 // depth buffer is not enabled, if depth-test is not enabled
851 /*
852         fragment.s[1] = fragment.s[2] =
853         fragment.s[3] = fragment.s[0] = 8;
854         fragment.c[1] =
855         fragment.c[2] =
856         fragment.c[3] =
857         fragment.c[0] = 255 - (zz>>8);
858 */
859                 if (c->state.mask.depth) {
860                     *p = zz;
861                 }
862             }
863         }
864 
865         // fog
866         if (enables & GGL_ENABLE_FOG) {
867             for (int i=1 ; i<=3 ; i++) {
868                 GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
869                 uint32_t& c = fragment.c[i];
870                 uint8_t& s  = fragment.s[i];
871                 c = (c * 0x10000) / ((1<<s)-1);
872                 c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
873                 s = 16;
874             }
875         }
876 
877         // blending
878         if (enables & GGL_ENABLE_BLENDING) {
879             fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
880             fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
881             c->state.buffers.color.read(
882                     &(c->state.buffers.color), c, x, y, &fb);
883             blending( c, &fragment, &fb );
884         }
885 
886 		// write
887         c->state.buffers.color.write(
888                 &(c->state.buffers.color), c, x, y, &fragment);
889         }
890 
891 discard:
892 		// iterate...
893         x += 1;
894         if (enables & GGL_ENABLE_SMOOTH) {
895             r += c->shade.drdx;
896             g += c->shade.dgdx;
897             b += c->shade.dbdx;
898             a += c->shade.dadx;
899         }
900         z += c->shade.dzdx;
901         f += c->shade.dfdx;
902 	}
903 }
904 
905 #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
906 
907 // ----------------------------------------------------------------------------
908 #if 0
909 #pragma mark -
910 #pragma mark Scanline
911 #endif
912 
913 /* Used to parse a 32-bit source texture linearly. Usage is:
914  *
915  * horz_iterator32  hi(context);
916  * while (...) {
917  *    uint32_t  src_pixel = hi.get_pixel32();
918  *    ...
919  * }
920  *
921  * Use only for one-to-one texture mapping.
922  */
923 struct horz_iterator32 {
horz_iterator32android::horz_iterator32924     horz_iterator32(context_t* c) {
925         const int x = c->iterators.xl;
926         const int y = c->iterators.y;
927         texture_t& tx = c->state.texture[0];
928         const int32_t u = (tx.shade.is0>>16) + x;
929         const int32_t v = (tx.shade.it0>>16) + y;
930         m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
931     }
get_pixel32android::horz_iterator32932     uint32_t  get_pixel32() {
933         return *m_src++;
934     }
935 protected:
936     uint32_t* m_src;
937 };
938 
939 /* A variant for 16-bit source textures. */
940 struct horz_iterator16 {
horz_iterator16android::horz_iterator16941     horz_iterator16(context_t* c) {
942         const int x = c->iterators.xl;
943         const int y = c->iterators.y;
944         texture_t& tx = c->state.texture[0];
945         const int32_t u = (tx.shade.is0>>16) + x;
946         const int32_t v = (tx.shade.it0>>16) + y;
947         m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
948     }
get_pixel16android::horz_iterator16949     uint16_t  get_pixel16() {
950         return *m_src++;
951     }
952 protected:
953     uint16_t* m_src;
954 };
955 
956 /* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
957  * After initialization, call get_src16() or get_src32() to get the current
958  * texture pixel value.
959  */
960 struct clamp_iterator {
clamp_iteratorandroid::clamp_iterator961     clamp_iterator(context_t* c) {
962         const int xs = c->iterators.xl;
963         texture_t& tx = c->state.texture[0];
964         texture_iterators_t& ti = tx.iterators;
965         m_s = (xs * ti.dsdx) + ti.ydsdy;
966         m_t = (xs * ti.dtdx) + ti.ydtdy;
967         m_ds = ti.dsdx;
968         m_dt = ti.dtdx;
969         m_width_m1 = tx.surface.width - 1;
970         m_height_m1 = tx.surface.height - 1;
971         m_data = tx.surface.data;
972         m_stride = tx.surface.stride;
973     }
get_pixel16android::clamp_iterator974     uint16_t get_pixel16() {
975         int  u, v;
976         get_uv(u, v);
977         uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
978         return src[0];
979     }
get_pixel32android::clamp_iterator980     uint32_t get_pixel32() {
981         int  u, v;
982         get_uv(u, v);
983         uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
984         return src[0];
985     }
986 private:
get_uvandroid::clamp_iterator987     void   get_uv(int& u, int& v) {
988         int  uu = m_s >> 16;
989         int  vv = m_t >> 16;
990         if (uu < 0)
991             uu = 0;
992         if (uu > m_width_m1)
993             uu = m_width_m1;
994         if (vv < 0)
995             vv = 0;
996         if (vv > m_height_m1)
997             vv = m_height_m1;
998         u = uu;
999         v = vv;
1000         m_s += m_ds;
1001         m_t += m_dt;
1002     }
1003 
1004     GGLfixed  m_s, m_t;
1005     GGLfixed  m_ds, m_dt;
1006     int       m_width_m1, m_height_m1;
1007     uint8_t*  m_data;
1008     int       m_stride;
1009 };
1010 
1011 /*
1012  * The 'horizontal clamp iterator' variant corresponds to the case where
1013  * the 'v' coordinate doesn't change. This is useful to avoid one mult and
1014  * extra adds / checks per pixels, if the blending/processing operation after
1015  * this is very fast.
1016  */
is_context_horizontal(const context_t * c)1017 static int is_context_horizontal(const context_t* c) {
1018     return (c->state.texture[0].iterators.dtdx == 0);
1019 }
1020 
1021 struct horz_clamp_iterator {
get_pixel16android::horz_clamp_iterator1022     uint16_t  get_pixel16() {
1023         int  u = m_s >> 16;
1024         m_s += m_ds;
1025         if (u < 0)
1026             u = 0;
1027         if (u > m_width_m1)
1028             u = m_width_m1;
1029         const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
1030         return src[u];
1031     }
get_pixel32android::horz_clamp_iterator1032     uint32_t  get_pixel32() {
1033         int  u = m_s >> 16;
1034         m_s += m_ds;
1035         if (u < 0)
1036             u = 0;
1037         if (u > m_width_m1)
1038             u = m_width_m1;
1039         const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
1040         return src[u];
1041     }
1042 protected:
1043     void init(const context_t* c, int shift);
1044     GGLfixed       m_s;
1045     GGLfixed       m_ds;
1046     int            m_width_m1;
1047     const uint8_t* m_data;
1048 };
1049 
init(const context_t * c,int shift)1050 void horz_clamp_iterator::init(const context_t* c, int shift)
1051 {
1052     const int xs = c->iterators.xl;
1053     const texture_t& tx = c->state.texture[0];
1054     const texture_iterators_t& ti = tx.iterators;
1055     m_s = (xs * ti.dsdx) + ti.ydsdy;
1056     m_ds = ti.dsdx;
1057     m_width_m1 = tx.surface.width-1;
1058     m_data = tx.surface.data;
1059 
1060     GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
1061     int      v = t >> 16;
1062     if (v < 0)
1063         v = 0;
1064     else if (v >= (int)tx.surface.height)
1065         v = (int)tx.surface.height-1;
1066 
1067     m_data += (tx.surface.stride*v) << shift;
1068 }
1069 
1070 struct horz_clamp_iterator16 : horz_clamp_iterator {
horz_clamp_iterator16android::horz_clamp_iterator161071     horz_clamp_iterator16(const context_t* c) {
1072         init(c,1);
1073     };
1074 };
1075 
1076 struct horz_clamp_iterator32 : horz_clamp_iterator {
horz_clamp_iterator32android::horz_clamp_iterator321077     horz_clamp_iterator32(context_t* c) {
1078         init(c,2);
1079     };
1080 };
1081 
1082 /* This is used to perform dithering operations.
1083  */
1084 struct ditherer {
dithererandroid::ditherer1085     ditherer(const context_t* c) {
1086         const int x = c->iterators.xl;
1087         const int y = c->iterators.y;
1088         m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
1089         m_index = x & GGL_DITHER_MASK;
1090     }
stepandroid::ditherer1091     void step(void) {
1092         m_index++;
1093     }
get_valueandroid::ditherer1094     int  get_value(void) {
1095         int ret = m_line[m_index & GGL_DITHER_MASK];
1096         m_index++;
1097         return ret;
1098     }
abgr8888ToRgb565android::ditherer1099     uint16_t abgr8888ToRgb565(uint32_t s) {
1100         uint32_t r = s & 0xff;
1101         uint32_t g = (s >> 8) & 0xff;
1102         uint32_t b = (s >> 16) & 0xff;
1103         return rgb888ToRgb565(r,g,b);
1104     }
1105     /* The following assumes that r/g/b are in the 0..255 range each */
rgb888ToRgb565android::ditherer1106     uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
1107         int threshold = get_value();
1108         /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
1109         r += (threshold >> (GGL_DITHER_BITS-8 +5));
1110         g += (threshold >> (GGL_DITHER_BITS-8 +6));
1111         b += (threshold >> (GGL_DITHER_BITS-8 +5));
1112         if (r > 0xff)
1113             r = 0xff;
1114         if (g > 0xff)
1115             g = 0xff;
1116         if (b > 0xff)
1117             b = 0xff;
1118         return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
1119     }
1120 protected:
1121     const uint8_t* m_line;
1122     int            m_index;
1123 };
1124 
1125 /* This structure is used to blend (SRC_OVER) 32-bit source pixels
1126  * onto 16-bit destination ones. Usage is simply:
1127  *
1128  *   blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
1129  */
1130 struct blender_32to16 {
blender_32to16android::blender_32to161131     blender_32to16(context_t* c) { }
writeandroid::blender_32to161132     void write(uint32_t s, uint16_t* dst) {
1133         if (s == 0)
1134             return;
1135         s = GGL_RGBA_TO_HOST(s);
1136         int sA = (s>>24);
1137         if (sA == 0xff) {
1138             *dst = convertAbgr8888ToRgb565(s);
1139         } else {
1140             int f = 0x100 - (sA + (sA>>7));
1141             int sR = (s >> (   3))&0x1F;
1142             int sG = (s >> ( 8+2))&0x3F;
1143             int sB = (s >> (16+3))&0x1F;
1144             uint16_t d = *dst;
1145             int dR = (d>>11)&0x1f;
1146             int dG = (d>>5)&0x3f;
1147             int dB = (d)&0x1f;
1148             sR += (f*dR)>>8;
1149             sG += (f*dG)>>8;
1150             sB += (f*dB)>>8;
1151             *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1152         }
1153     }
writeandroid::blender_32to161154     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1155         if (s == 0) {
1156             di.step();
1157             return;
1158         }
1159         s = GGL_RGBA_TO_HOST(s);
1160         int sA = (s>>24);
1161         if (sA == 0xff) {
1162             *dst = di.abgr8888ToRgb565(s);
1163         } else {
1164             int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1165             int f = 0x100 - (sA + (sA>>7));
1166             int sR = (s >> (   3))&0x1F;
1167             int sG = (s >> ( 8+2))&0x3F;
1168             int sB = (s >> (16+3))&0x1F;
1169             uint16_t d = *dst;
1170             int dR = (d>>11)&0x1f;
1171             int dG = (d>>5)&0x3f;
1172             int dB = (d)&0x1f;
1173             sR = ((sR << 8) + f*dR + threshold)>>8;
1174             sG = ((sG << 8) + f*dG + threshold)>>8;
1175             sB = ((sB << 8) + f*dB + threshold)>>8;
1176             if (sR > 0x1f) sR = 0x1f;
1177             if (sG > 0x3f) sG = 0x3f;
1178             if (sB > 0x1f) sB = 0x1f;
1179             *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1180         }
1181     }
1182 };
1183 
1184 /* This blender does the same for the 'blend_srca' operation.
1185  * where dstFactor=srcA*(1-srcA) srcFactor=srcA
1186  */
1187 struct blender_32to16_srcA {
blender_32to16_srcAandroid::blender_32to16_srcA1188     blender_32to16_srcA(const context_t* c) { }
writeandroid::blender_32to16_srcA1189     void write(uint32_t s, uint16_t* dst) {
1190         if (!s) {
1191             return;
1192         }
1193         uint16_t d = *dst;
1194         s = GGL_RGBA_TO_HOST(s);
1195         int sR = (s >> (   3))&0x1F;
1196         int sG = (s >> ( 8+2))&0x3F;
1197         int sB = (s >> (16+3))&0x1F;
1198         int sA = (s>>24);
1199         int f1 = (sA + (sA>>7));
1200         int f2 = 0x100-f1;
1201         int dR = (d>>11)&0x1f;
1202         int dG = (d>>5)&0x3f;
1203         int dB = (d)&0x1f;
1204         sR = (f1*sR + f2*dR)>>8;
1205         sG = (f1*sG + f2*dG)>>8;
1206         sB = (f1*sB + f2*dB)>>8;
1207         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1208     }
1209 };
1210 
1211 /* Common init code the modulating blenders */
1212 struct blender_modulate {
initandroid::blender_modulate1213     void init(const context_t* c) {
1214         const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
1215         const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
1216         const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
1217         const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
1218         m_r = r + (r >> 7);
1219         m_g = g + (g >> 7);
1220         m_b = b + (b >> 7);
1221         m_a = a + (a >> 7);
1222     }
1223 protected:
1224     int m_r, m_g, m_b, m_a;
1225 };
1226 
1227 /* This blender does a normal blend after modulation.
1228  */
1229 struct blender_32to16_modulate : blender_modulate {
blender_32to16_modulateandroid::blender_32to16_modulate1230     blender_32to16_modulate(const context_t* c) {
1231         init(c);
1232     }
writeandroid::blender_32to16_modulate1233     void write(uint32_t s, uint16_t* dst) {
1234         // blend source and destination
1235         if (!s) {
1236             return;
1237         }
1238         s = GGL_RGBA_TO_HOST(s);
1239 
1240         /* We need to modulate s */
1241         uint32_t  sA = (s >> 24);
1242         uint32_t  sB = (s >> 16) & 0xff;
1243         uint32_t  sG = (s >> 8) & 0xff;
1244         uint32_t  sR = s & 0xff;
1245 
1246         sA = (sA*m_a) >> 8;
1247         /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1248         sR = (sR*m_r) >> (8 - 5);
1249         sG = (sG*m_g) >> (8 - 6);
1250         sB = (sB*m_b) >> (8 - 5);
1251 
1252         /* Now do a normal blend */
1253         int f = 0x100 - (sA + (sA>>7));
1254         uint16_t d = *dst;
1255         int dR = (d>>11)&0x1f;
1256         int dG = (d>>5)&0x3f;
1257         int dB = (d)&0x1f;
1258         sR = (sR + f*dR)>>8;
1259         sG = (sG + f*dG)>>8;
1260         sB = (sB + f*dB)>>8;
1261         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1262     }
writeandroid::blender_32to16_modulate1263     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1264         // blend source and destination
1265         if (!s) {
1266             di.step();
1267             return;
1268         }
1269         s = GGL_RGBA_TO_HOST(s);
1270 
1271         /* We need to modulate s */
1272         uint32_t  sA = (s >> 24);
1273         uint32_t  sB = (s >> 16) & 0xff;
1274         uint32_t  sG = (s >> 8) & 0xff;
1275         uint32_t  sR = s & 0xff;
1276 
1277         sA = (sA*m_a) >> 8;
1278         /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1279         sR = (sR*m_r) >> (8 - 5);
1280         sG = (sG*m_g) >> (8 - 6);
1281         sB = (sB*m_b) >> (8 - 5);
1282 
1283         /* Scale threshold to 0.8 fixed float format */
1284         int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1285         int f = 0x100 - (sA + (sA>>7));
1286         uint16_t d = *dst;
1287         int dR = (d>>11)&0x1f;
1288         int dG = (d>>5)&0x3f;
1289         int dB = (d)&0x1f;
1290         sR = (sR + f*dR + threshold)>>8;
1291         sG = (sG + f*dG + threshold)>>8;
1292         sB = (sB + f*dB + threshold)>>8;
1293         if (sR > 0x1f) sR = 0x1f;
1294         if (sG > 0x3f) sG = 0x3f;
1295         if (sB > 0x1f) sB = 0x1f;
1296         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1297     }
1298 };
1299 
1300 /* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
1301 struct blender_x32to16_modulate : blender_modulate {
blender_x32to16_modulateandroid::blender_x32to16_modulate1302     blender_x32to16_modulate(const context_t* c) {
1303         init(c);
1304     }
writeandroid::blender_x32to16_modulate1305     void write(uint32_t s, uint16_t* dst) {
1306         s = GGL_RGBA_TO_HOST(s);
1307 
1308         uint32_t  sB = (s >> 16) & 0xff;
1309         uint32_t  sG = (s >> 8) & 0xff;
1310         uint32_t  sR = s & 0xff;
1311 
1312         /* Keep R/G/B in 5.8 or 6.8 format */
1313         sR = (sR*m_r) >> (8 - 5);
1314         sG = (sG*m_g) >> (8 - 6);
1315         sB = (sB*m_b) >> (8 - 5);
1316 
1317         int f = 0x100 - m_a;
1318         uint16_t d = *dst;
1319         int dR = (d>>11)&0x1f;
1320         int dG = (d>>5)&0x3f;
1321         int dB = (d)&0x1f;
1322         sR = (sR + f*dR)>>8;
1323         sG = (sG + f*dG)>>8;
1324         sB = (sB + f*dB)>>8;
1325         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1326     }
writeandroid::blender_x32to16_modulate1327     void write(uint32_t s, uint16_t* dst, ditherer& di) {
1328         s = GGL_RGBA_TO_HOST(s);
1329 
1330         uint32_t  sB = (s >> 16) & 0xff;
1331         uint32_t  sG = (s >> 8) & 0xff;
1332         uint32_t  sR = s & 0xff;
1333 
1334         sR = (sR*m_r) >> (8 - 5);
1335         sG = (sG*m_g) >> (8 - 6);
1336         sB = (sB*m_b) >> (8 - 5);
1337 
1338         /* Now do a normal blend */
1339         int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1340         int f = 0x100 - m_a;
1341         uint16_t d = *dst;
1342         int dR = (d>>11)&0x1f;
1343         int dG = (d>>5)&0x3f;
1344         int dB = (d)&0x1f;
1345         sR = (sR + f*dR + threshold)>>8;
1346         sG = (sG + f*dG + threshold)>>8;
1347         sB = (sB + f*dB + threshold)>>8;
1348         if (sR > 0x1f) sR = 0x1f;
1349         if (sG > 0x3f) sG = 0x3f;
1350         if (sB > 0x1f) sB = 0x1f;
1351         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1352     }
1353 };
1354 
1355 /* Same as above, but source is 16bit rgb565 */
1356 struct blender_16to16_modulate : blender_modulate {
blender_16to16_modulateandroid::blender_16to16_modulate1357     blender_16to16_modulate(const context_t* c) {
1358         init(c);
1359     }
writeandroid::blender_16to16_modulate1360     void write(uint16_t s16, uint16_t* dst) {
1361         uint32_t  s = s16;
1362 
1363         uint32_t  sR = s >> 11;
1364         uint32_t  sG = (s >> 5) & 0x3f;
1365         uint32_t  sB = s & 0x1f;
1366 
1367         sR = (sR*m_r);
1368         sG = (sG*m_g);
1369         sB = (sB*m_b);
1370 
1371         int f = 0x100 - m_a;
1372         uint16_t d = *dst;
1373         int dR = (d>>11)&0x1f;
1374         int dG = (d>>5)&0x3f;
1375         int dB = (d)&0x1f;
1376         sR = (sR + f*dR)>>8;
1377         sG = (sG + f*dG)>>8;
1378         sB = (sB + f*dB)>>8;
1379         *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1380     }
1381 };
1382 
1383 /* This is used to iterate over a 16-bit destination color buffer.
1384  * Usage is:
1385  *
1386  *   dst_iterator16  di(context);
1387  *   while (di.count--) {
1388  *       <do stuff with dest pixel at di.dst>
1389  *       di.dst++;
1390  *   }
1391  */
1392 struct dst_iterator16 {
dst_iterator16android::dst_iterator161393     dst_iterator16(const context_t* c) {
1394         const int x = c->iterators.xl;
1395         const int width = c->iterators.xr - x;
1396         const int32_t y = c->iterators.y;
1397         const surface_t* cb = &(c->state.buffers.color);
1398         count = width;
1399         dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1400     }
1401     int        count;
1402     uint16_t*  dst;
1403 };
1404 
1405 
scanline_t32cb16_clamp(context_t * c)1406 static void scanline_t32cb16_clamp(context_t* c)
1407 {
1408     dst_iterator16  di(c);
1409 
1410     if (is_context_horizontal(c)) {
1411         /* Special case for simple horizontal scaling */
1412         horz_clamp_iterator32 ci(c);
1413         while (di.count--) {
1414             uint32_t s = ci.get_pixel32();
1415             *di.dst++ = convertAbgr8888ToRgb565(s);
1416         }
1417     } else {
1418         /* General case */
1419         clamp_iterator ci(c);
1420         while (di.count--) {
1421             uint32_t s = ci.get_pixel32();
1422             *di.dst++ = convertAbgr8888ToRgb565(s);
1423         }
1424     }
1425 }
1426 
scanline_t32cb16_dither(context_t * c)1427 static void scanline_t32cb16_dither(context_t* c)
1428 {
1429     horz_iterator32 si(c);
1430     dst_iterator16  di(c);
1431     ditherer        dither(c);
1432 
1433     while (di.count--) {
1434         uint32_t s = si.get_pixel32();
1435         *di.dst++ = dither.abgr8888ToRgb565(s);
1436     }
1437 }
1438 
scanline_t32cb16_clamp_dither(context_t * c)1439 static void scanline_t32cb16_clamp_dither(context_t* c)
1440 {
1441     dst_iterator16  di(c);
1442     ditherer        dither(c);
1443 
1444     if (is_context_horizontal(c)) {
1445         /* Special case for simple horizontal scaling */
1446         horz_clamp_iterator32 ci(c);
1447         while (di.count--) {
1448             uint32_t s = ci.get_pixel32();
1449             *di.dst++ = dither.abgr8888ToRgb565(s);
1450         }
1451     } else {
1452         /* General case */
1453         clamp_iterator ci(c);
1454         while (di.count--) {
1455             uint32_t s = ci.get_pixel32();
1456             *di.dst++ = dither.abgr8888ToRgb565(s);
1457         }
1458     }
1459 }
1460 
scanline_t32cb16blend_dither(context_t * c)1461 static void scanline_t32cb16blend_dither(context_t* c)
1462 {
1463     dst_iterator16 di(c);
1464     ditherer       dither(c);
1465     blender_32to16 bl(c);
1466     horz_iterator32  hi(c);
1467     while (di.count--) {
1468         uint32_t s = hi.get_pixel32();
1469         bl.write(s, di.dst, dither);
1470         di.dst++;
1471     }
1472 }
1473 
scanline_t32cb16blend_clamp(context_t * c)1474 static void scanline_t32cb16blend_clamp(context_t* c)
1475 {
1476     dst_iterator16  di(c);
1477     blender_32to16  bl(c);
1478 
1479     if (is_context_horizontal(c)) {
1480         horz_clamp_iterator32 ci(c);
1481         while (di.count--) {
1482             uint32_t s = ci.get_pixel32();
1483             bl.write(s, di.dst);
1484             di.dst++;
1485         }
1486     } else {
1487         clamp_iterator ci(c);
1488         while (di.count--) {
1489             uint32_t s = ci.get_pixel32();
1490             bl.write(s, di.dst);
1491             di.dst++;
1492         }
1493     }
1494 }
1495 
scanline_t32cb16blend_clamp_dither(context_t * c)1496 static void scanline_t32cb16blend_clamp_dither(context_t* c)
1497 {
1498     dst_iterator16 di(c);
1499     ditherer       dither(c);
1500     blender_32to16 bl(c);
1501 
1502     clamp_iterator ci(c);
1503     while (di.count--) {
1504         uint32_t s = ci.get_pixel32();
1505         bl.write(s, di.dst, dither);
1506         di.dst++;
1507     }
1508 }
1509 
scanline_t32cb16blend_clamp_mod(context_t * c)1510 void scanline_t32cb16blend_clamp_mod(context_t* c)
1511 {
1512     dst_iterator16 di(c);
1513     blender_32to16_modulate bl(c);
1514 
1515     clamp_iterator ci(c);
1516     while (di.count--) {
1517         uint32_t s = ci.get_pixel32();
1518         bl.write(s, di.dst);
1519         di.dst++;
1520     }
1521 }
1522 
scanline_t32cb16blend_clamp_mod_dither(context_t * c)1523 void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
1524 {
1525     dst_iterator16 di(c);
1526     blender_32to16_modulate bl(c);
1527     ditherer dither(c);
1528 
1529     clamp_iterator ci(c);
1530     while (di.count--) {
1531         uint32_t s = ci.get_pixel32();
1532         bl.write(s, di.dst, dither);
1533         di.dst++;
1534     }
1535 }
1536 
1537 /* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
scanline_x32cb16blend_clamp_mod(context_t * c)1538 void scanline_x32cb16blend_clamp_mod(context_t* c)
1539 {
1540     dst_iterator16 di(c);
1541     blender_x32to16_modulate  bl(c);
1542 
1543     clamp_iterator ci(c);
1544     while (di.count--) {
1545         uint32_t s = ci.get_pixel32();
1546         bl.write(s, di.dst);
1547         di.dst++;
1548     }
1549 }
1550 
scanline_x32cb16blend_clamp_mod_dither(context_t * c)1551 void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
1552 {
1553     dst_iterator16 di(c);
1554     blender_x32to16_modulate  bl(c);
1555     ditherer dither(c);
1556 
1557     clamp_iterator ci(c);
1558     while (di.count--) {
1559         uint32_t s = ci.get_pixel32();
1560         bl.write(s, di.dst, dither);
1561         di.dst++;
1562     }
1563 }
1564 
scanline_t16cb16_clamp(context_t * c)1565 void scanline_t16cb16_clamp(context_t* c)
1566 {
1567     dst_iterator16  di(c);
1568 
1569     /* Special case for simple horizontal scaling */
1570     if (is_context_horizontal(c)) {
1571         horz_clamp_iterator16 ci(c);
1572         while (di.count--) {
1573             *di.dst++ = ci.get_pixel16();
1574         }
1575     } else {
1576         clamp_iterator ci(c);
1577         while (di.count--) {
1578             *di.dst++ = ci.get_pixel16();
1579         }
1580     }
1581 }
1582 
1583 
1584 
1585 template <typename T, typename U>
1586 static inline __attribute__((const))
interpolate(int y,T v0,U dvdx,U dvdy)1587 T interpolate(int y, T v0, U dvdx, U dvdy) {
1588     // interpolates in pixel's centers
1589     // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
1590     return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
1591 }
1592 
1593 // ----------------------------------------------------------------------------
1594 #if 0
1595 #pragma mark -
1596 #endif
1597 
init_y(context_t * c,int32_t ys)1598 void init_y(context_t* c, int32_t ys)
1599 {
1600     const uint32_t enables = c->state.enables;
1601 
1602     // compute iterators...
1603     iterators_t& ci = c->iterators;
1604 
1605     // sample in the center
1606     ci.y = ys;
1607 
1608     if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
1609         ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
1610         ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
1611         ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
1612     }
1613 
1614     if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
1615         ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
1616         ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
1617         ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
1618         ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
1619         c->step_y = step_y__smooth;
1620     } else {
1621         ci.ydrdy = c->shade.r0;
1622         ci.ydgdy = c->shade.g0;
1623         ci.ydbdy = c->shade.b0;
1624         ci.ydady = c->shade.a0;
1625         // XXX: do only if needed, or make sure this is fast
1626         c->packed = ggl_pack_color(c, c->state.buffers.color.format,
1627                 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1628         c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1629                 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1630     }
1631 
1632     // initialize the variables we need in the shader
1633     generated_vars_t& gen = c->generated_vars;
1634     gen.argb[GGLFormat::ALPHA].c  = ci.ydady;
1635     gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
1636     gen.argb[GGLFormat::RED  ].c  = ci.ydrdy;
1637     gen.argb[GGLFormat::RED  ].dx = c->shade.drdx;
1638     gen.argb[GGLFormat::GREEN].c  = ci.ydgdy;
1639     gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
1640     gen.argb[GGLFormat::BLUE ].c  = ci.ydbdy;
1641     gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
1642     gen.dzdx = c->shade.dzdx;
1643     gen.f    = ci.ydfdy;
1644     gen.dfdx = c->shade.dfdx;
1645 
1646     if (enables & GGL_ENABLE_TMUS) {
1647         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1648             texture_t& t = c->state.texture[i];
1649             if (!t.enable) continue;
1650 
1651             texture_iterators_t& ti = t.iterators;
1652             if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
1653                 // we need to set all of these to 0 because in some cases
1654                 // step_y__generic() or step_y__tmu() will be used and
1655                 // therefore will update dtdy, however, in 1:1 mode
1656                 // this is always done by the scanline rasterizer.
1657                 ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
1658                 ti.ydsdy = t.shade.is0;
1659                 ti.ydtdy = t.shade.it0;
1660             } else {
1661                 const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
1662                 const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
1663                 ti.sscale = t.shade.sscale + adjustSWrap;
1664                 ti.tscale = t.shade.tscale + adjustTWrap;
1665                 if (!(enables & GGL_ENABLE_W)) {
1666                     // S coordinate
1667                     const int32_t sscale = ti.sscale;
1668                     const int32_t sy = interpolate(ys,
1669                             t.shade.is0, t.shade.idsdx, t.shade.idsdy);
1670                     if (sscale>=0) {
1671                         ti.ydsdy= sy            << sscale;
1672                         ti.dsdx = t.shade.idsdx << sscale;
1673                         ti.dsdy = t.shade.idsdy << sscale;
1674                     } else {
1675                         ti.ydsdy= sy            >> -sscale;
1676                         ti.dsdx = t.shade.idsdx >> -sscale;
1677                         ti.dsdy = t.shade.idsdy >> -sscale;
1678                     }
1679                     // T coordinate
1680                     const int32_t tscale = ti.tscale;
1681                     const int32_t ty = interpolate(ys,
1682                             t.shade.it0, t.shade.idtdx, t.shade.idtdy);
1683                     if (tscale>=0) {
1684                         ti.ydtdy= ty            << tscale;
1685                         ti.dtdx = t.shade.idtdx << tscale;
1686                         ti.dtdy = t.shade.idtdy << tscale;
1687                     } else {
1688                         ti.ydtdy= ty            >> -tscale;
1689                         ti.dtdx = t.shade.idtdx >> -tscale;
1690                         ti.dtdy = t.shade.idtdy >> -tscale;
1691                     }
1692                 }
1693             }
1694             // mirror for generated code...
1695             generated_tex_vars_t& gen = c->generated_vars.texture[i];
1696             gen.width   = t.surface.width;
1697             gen.height  = t.surface.height;
1698             gen.stride  = t.surface.stride;
1699             gen.data    = int32_t(t.surface.data);
1700             gen.dsdx = ti.dsdx;
1701             gen.dtdx = ti.dtdx;
1702         }
1703     }
1704 
1705     // choose the y-stepper
1706     c->step_y = step_y__nop;
1707     if (enables & GGL_ENABLE_FOG) {
1708         c->step_y = step_y__generic;
1709     } else if (enables & GGL_ENABLE_TMUS) {
1710         if (enables & GGL_ENABLE_SMOOTH) {
1711             c->step_y = step_y__generic;
1712         } else if (enables & GGL_ENABLE_W) {
1713             c->step_y = step_y__w;
1714         } else {
1715             c->step_y = step_y__tmu;
1716         }
1717     } else {
1718         if (enables & GGL_ENABLE_SMOOTH) {
1719             c->step_y = step_y__smooth;
1720         }
1721     }
1722 
1723     // choose the rectangle blitter
1724     c->rect = rect_generic;
1725     if ((c->step_y == step_y__nop) &&
1726         (c->scanline == scanline_memcpy))
1727     {
1728         c->rect = rect_memcpy;
1729     }
1730 }
1731 
init_y_packed(context_t * c,int32_t y0)1732 void init_y_packed(context_t* c, int32_t y0)
1733 {
1734     uint8_t f = c->state.buffers.color.format;
1735     c->packed = ggl_pack_color(c, f,
1736             c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1737     c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1738             c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1739     c->iterators.y = y0;
1740     c->step_y = step_y__nop;
1741     // choose the rectangle blitter
1742     c->rect = rect_generic;
1743     if (c->scanline == scanline_memcpy) {
1744         c->rect = rect_memcpy;
1745     }
1746 }
1747 
init_y_noop(context_t * c,int32_t y0)1748 void init_y_noop(context_t* c, int32_t y0)
1749 {
1750     c->iterators.y = y0;
1751     c->step_y = step_y__nop;
1752     // choose the rectangle blitter
1753     c->rect = rect_generic;
1754     if (c->scanline == scanline_memcpy) {
1755         c->rect = rect_memcpy;
1756     }
1757 }
1758 
init_y_error(context_t * c,int32_t y0)1759 void init_y_error(context_t* c, int32_t y0)
1760 {
1761     // woooops, shoud never happen,
1762     // fail gracefully (don't display anything)
1763     init_y_noop(c, y0);
1764     ALOGE("color-buffer has an invalid format!");
1765 }
1766 
1767 // ----------------------------------------------------------------------------
1768 #if 0
1769 #pragma mark -
1770 #endif
1771 
step_y__generic(context_t * c)1772 void step_y__generic(context_t* c)
1773 {
1774     const uint32_t enables = c->state.enables;
1775 
1776     // iterate...
1777     iterators_t& ci = c->iterators;
1778     ci.y += 1;
1779 
1780     if (enables & GGL_ENABLE_SMOOTH) {
1781         ci.ydrdy += c->shade.drdy;
1782         ci.ydgdy += c->shade.dgdy;
1783         ci.ydbdy += c->shade.dbdy;
1784         ci.ydady += c->shade.dady;
1785     }
1786 
1787     const uint32_t mask =
1788             GGL_ENABLE_DEPTH_TEST |
1789             GGL_ENABLE_W |
1790             GGL_ENABLE_FOG;
1791     if (enables & mask) {
1792         ci.ydzdy += c->shade.dzdy;
1793         ci.ydwdy += c->shade.dwdy;
1794         ci.ydfdy += c->shade.dfdy;
1795     }
1796 
1797     if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
1798         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1799             if (c->state.texture[i].enable) {
1800                 texture_iterators_t& ti = c->state.texture[i].iterators;
1801                 ti.ydsdy += ti.dsdy;
1802                 ti.ydtdy += ti.dtdy;
1803             }
1804         }
1805     }
1806 }
1807 
step_y__nop(context_t * c)1808 void step_y__nop(context_t* c)
1809 {
1810     c->iterators.y += 1;
1811     c->iterators.ydzdy += c->shade.dzdy;
1812 }
1813 
step_y__smooth(context_t * c)1814 void step_y__smooth(context_t* c)
1815 {
1816     iterators_t& ci = c->iterators;
1817     ci.y += 1;
1818     ci.ydrdy += c->shade.drdy;
1819     ci.ydgdy += c->shade.dgdy;
1820     ci.ydbdy += c->shade.dbdy;
1821     ci.ydady += c->shade.dady;
1822     ci.ydzdy += c->shade.dzdy;
1823 }
1824 
step_y__w(context_t * c)1825 void step_y__w(context_t* c)
1826 {
1827     iterators_t& ci = c->iterators;
1828     ci.y += 1;
1829     ci.ydzdy += c->shade.dzdy;
1830     ci.ydwdy += c->shade.dwdy;
1831 }
1832 
step_y__tmu(context_t * c)1833 void step_y__tmu(context_t* c)
1834 {
1835     iterators_t& ci = c->iterators;
1836     ci.y += 1;
1837     ci.ydzdy += c->shade.dzdy;
1838     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1839         if (c->state.texture[i].enable) {
1840             texture_iterators_t& ti = c->state.texture[i].iterators;
1841             ti.ydsdy += ti.dsdy;
1842             ti.ydtdy += ti.dtdy;
1843         }
1844     }
1845 }
1846 
1847 // ----------------------------------------------------------------------------
1848 #if 0
1849 #pragma mark -
1850 #endif
1851 
scanline_perspective(context_t * c)1852 void scanline_perspective(context_t* c)
1853 {
1854     struct {
1855         union {
1856             struct {
1857                 int32_t s, sq;
1858                 int32_t t, tq;
1859             };
1860             struct {
1861                 int32_t v, q;
1862             } st[2];
1863         };
1864     } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
1865 
1866     // XXX: we should have a special case when dwdx = 0
1867 
1868     // 32 pixels spans works okay. 16 is a lot better,
1869     // but hey, it's a software renderer...
1870     const uint32_t SPAN_BITS = 5;
1871     const uint32_t ys = c->iterators.y;
1872     const uint32_t xs = c->iterators.xl;
1873     const uint32_t x1 = c->iterators.xr;
1874 	const uint32_t xc = x1 - xs;
1875     uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
1876     uint32_t numSpans = xc >> SPAN_BITS;
1877 
1878     const iterators_t& ci = c->iterators;
1879     int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
1880     int32_t q0 = gglRecipQ(w0, 30);
1881     const int iwscale = 32 - gglClz(q0);
1882 
1883     const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
1884     int32_t xl = c->iterators.xl;
1885 
1886     // We process s & t with a loop to reduce the code size
1887     // (and i-cache pressure).
1888 
1889     for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1890         const texture_t& tmu = c->state.texture[i];
1891         if (!tmu.enable) continue;
1892         int32_t s =   tmu.shade.is0 +
1893                      (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1894                      ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1895         int32_t t =   tmu.shade.it0 +
1896                      (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1897                      ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1898         tc[i].s  = s;
1899         tc[i].t  = t;
1900         tc[i].sq = gglMulx(s, q0, iwscale);
1901         tc[i].tq = gglMulx(t, q0, iwscale);
1902     }
1903 
1904     int32_t span = 0;
1905     do {
1906         int32_t w1;
1907         if (ggl_likely(numSpans)) {
1908             w1 = w0 + dwdx;
1909         } else {
1910             if (remainder) {
1911                 // finish off the scanline...
1912                 span = remainder;
1913                 w1 = (c->shade.dwdx * span) + w0;
1914             } else {
1915                 break;
1916             }
1917         }
1918         int32_t q1 = gglRecipQ(w1, 30);
1919         for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1920             texture_t& tmu = c->state.texture[i];
1921             if (!tmu.enable) continue;
1922             texture_iterators_t& ti = tmu.iterators;
1923 
1924             for (int j=0 ; j<2 ; j++) {
1925                 int32_t v = tc[i].st[j].v;
1926                 if (span)   v += (tmu.shade.st[j].dx)*span;
1927                 else        v += (tmu.shade.st[j].dx)<<SPAN_BITS;
1928                 const int32_t v0 = tc[i].st[j].q;
1929                 const int32_t v1 = gglMulx(v, q1, iwscale);
1930                 int32_t dvdx = v1 - v0;
1931                 if (span)   dvdx /= span;
1932                 else        dvdx >>= SPAN_BITS;
1933                 tc[i].st[j].v = v;
1934                 tc[i].st[j].q = v1;
1935 
1936                 const int scale = ti.st[j].scale + (iwscale - 30);
1937                 if (scale >= 0) {
1938                     ti.st[j].ydvdy = v0   << scale;
1939                     ti.st[j].dvdx  = dvdx << scale;
1940                 } else {
1941                     ti.st[j].ydvdy = v0   >> -scale;
1942                     ti.st[j].dvdx  = dvdx >> -scale;
1943                 }
1944             }
1945             generated_tex_vars_t& gen = c->generated_vars.texture[i];
1946             gen.dsdx = ti.st[0].dvdx;
1947             gen.dtdx = ti.st[1].dvdx;
1948         }
1949         c->iterators.xl = xl;
1950         c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
1951         w0 = w1;
1952         q0 = q1;
1953         c->span(c);
1954     } while(numSpans--);
1955 }
1956 
scanline_perspective_single(context_t * c)1957 void scanline_perspective_single(context_t* c)
1958 {
1959     // 32 pixels spans works okay. 16 is a lot better,
1960     // but hey, it's a software renderer...
1961     const uint32_t SPAN_BITS = 5;
1962     const uint32_t ys = c->iterators.y;
1963     const uint32_t xs = c->iterators.xl;
1964     const uint32_t x1 = c->iterators.xr;
1965 	const uint32_t xc = x1 - xs;
1966 
1967     const iterators_t& ci = c->iterators;
1968     int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
1969     int32_t iw = gglRecipQ(w, 30);
1970     const int iwscale = 32 - gglClz(iw);
1971 
1972     const int i = 31 - gglClz(c->state.enabled_tmu);
1973     generated_tex_vars_t& gen = c->generated_vars.texture[i];
1974     texture_t& tmu = c->state.texture[i];
1975     texture_iterators_t& ti = tmu.iterators;
1976     const int sscale = ti.sscale + (iwscale - 30);
1977     const int tscale = ti.tscale + (iwscale - 30);
1978     int32_t s =   tmu.shade.is0 +
1979                  (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1980                  ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1981     int32_t t =   tmu.shade.it0 +
1982                  (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1983                  ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1984     int32_t s0 = gglMulx(s, iw, iwscale);
1985     int32_t t0 = gglMulx(t, iw, iwscale);
1986     int32_t xl = c->iterators.xl;
1987 
1988     int32_t sq, tq, dsdx, dtdx;
1989     int32_t premainder = xc & ((1<<SPAN_BITS)-1);
1990     uint32_t numSpans = xc >> SPAN_BITS;
1991     if (c->shade.dwdx == 0) {
1992         // XXX: we could choose to do this if the error is small enough
1993         numSpans = 0;
1994         premainder = xc;
1995         goto no_perspective;
1996     }
1997 
1998     if (premainder) {
1999         w += c->shade.dwdx   * premainder;
2000         iw = gglRecipQ(w, 30);
2001 no_perspective:
2002         s += tmu.shade.idsdx * premainder;
2003         t += tmu.shade.idtdx * premainder;
2004         sq = gglMulx(s, iw, iwscale);
2005         tq = gglMulx(t, iw, iwscale);
2006         dsdx = (sq - s0) / premainder;
2007         dtdx = (tq - t0) / premainder;
2008         c->iterators.xl = xl;
2009         c->iterators.xr = xl = xl + premainder;
2010         goto finish;
2011     }
2012 
2013     while (numSpans--) {
2014         w += c->shade.dwdx   << SPAN_BITS;
2015         s += tmu.shade.idsdx << SPAN_BITS;
2016         t += tmu.shade.idtdx << SPAN_BITS;
2017         iw = gglRecipQ(w, 30);
2018         sq = gglMulx(s, iw, iwscale);
2019         tq = gglMulx(t, iw, iwscale);
2020         dsdx = (sq - s0) >> SPAN_BITS;
2021         dtdx = (tq - t0) >> SPAN_BITS;
2022         c->iterators.xl = xl;
2023         c->iterators.xr = xl = xl + (1<<SPAN_BITS);
2024 finish:
2025         if (sscale >= 0) {
2026             ti.ydsdy = s0   << sscale;
2027             ti.dsdx  = dsdx << sscale;
2028         } else {
2029             ti.ydsdy = s0   >>-sscale;
2030             ti.dsdx  = dsdx >>-sscale;
2031         }
2032         if (tscale >= 0) {
2033             ti.ydtdy = t0   << tscale;
2034             ti.dtdx  = dtdx << tscale;
2035         } else {
2036             ti.ydtdy = t0   >>-tscale;
2037             ti.dtdx  = dtdx >>-tscale;
2038         }
2039         s0 = sq;
2040         t0 = tq;
2041         gen.dsdx = ti.dsdx;
2042         gen.dtdx = ti.dtdx;
2043         c->span(c);
2044     }
2045 }
2046 
2047 // ----------------------------------------------------------------------------
2048 
scanline_col32cb16blend(context_t * c)2049 void scanline_col32cb16blend(context_t* c)
2050 {
2051     int32_t x = c->iterators.xl;
2052     size_t ct = c->iterators.xr - x;
2053     int32_t y = c->iterators.y;
2054     surface_t* cb = &(c->state.buffers.color);
2055     union {
2056         uint16_t* dst;
2057         uint32_t* dst32;
2058     };
2059     dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2060 
2061 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
2062 #if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2063     scanline_col32cb16blend_neon(dst, &(c->packed8888), ct);
2064 #else  // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2065     scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2066 #endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2067 #else
2068     uint32_t s = GGL_RGBA_TO_HOST(c->packed8888);
2069     int sA = (s>>24);
2070     int f = 0x100 - (sA + (sA>>7));
2071     while (ct--) {
2072         uint16_t d = *dst;
2073         int dR = (d>>11)&0x1f;
2074         int dG = (d>>5)&0x3f;
2075         int dB = (d)&0x1f;
2076         int sR = (s >> (   3))&0x1F;
2077         int sG = (s >> ( 8+2))&0x3F;
2078         int sB = (s >> (16+3))&0x1F;
2079         sR += (f*dR)>>8;
2080         sG += (f*dG)>>8;
2081         sB += (f*dB)>>8;
2082         *dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
2083     }
2084 #endif
2085 
2086 }
2087 
scanline_t32cb16(context_t * c)2088 void scanline_t32cb16(context_t* c)
2089 {
2090     int32_t x = c->iterators.xl;
2091     size_t ct = c->iterators.xr - x;
2092     int32_t y = c->iterators.y;
2093     surface_t* cb = &(c->state.buffers.color);
2094     union {
2095         uint16_t* dst;
2096         uint32_t* dst32;
2097     };
2098     dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2099 
2100     surface_t* tex = &(c->state.texture[0].surface);
2101     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2102     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2103     uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2104     int sR, sG, sB;
2105     uint32_t s, d;
2106 
2107     if (ct==1 || uint32_t(dst)&2) {
2108 last_one:
2109         s = GGL_RGBA_TO_HOST( *src++ );
2110         *dst++ = convertAbgr8888ToRgb565(s);
2111         ct--;
2112     }
2113 
2114     while (ct >= 2) {
2115 #if BYTE_ORDER == BIG_ENDIAN
2116         s = GGL_RGBA_TO_HOST( *src++ );
2117         d = convertAbgr8888ToRgb565_hi16(s);
2118 
2119         s = GGL_RGBA_TO_HOST( *src++ );
2120         d |= convertAbgr8888ToRgb565(s);
2121 #else
2122         s = GGL_RGBA_TO_HOST( *src++ );
2123         d = convertAbgr8888ToRgb565(s);
2124 
2125         s = GGL_RGBA_TO_HOST( *src++ );
2126         d |= convertAbgr8888ToRgb565(s) << 16;
2127 #endif
2128         *dst32++ = d;
2129         ct -= 2;
2130     }
2131 
2132     if (ct > 0) {
2133         goto last_one;
2134     }
2135 }
2136 
scanline_t32cb16blend(context_t * c)2137 void scanline_t32cb16blend(context_t* c)
2138 {
2139 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
2140     int32_t x = c->iterators.xl;
2141     size_t ct = c->iterators.xr - x;
2142     int32_t y = c->iterators.y;
2143     surface_t* cb = &(c->state.buffers.color);
2144     uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2145 
2146     surface_t* tex = &(c->state.texture[0].surface);
2147     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2148     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2149     uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2150 
2151     scanline_t32cb16blend_arm(dst, src, ct);
2152 #else
2153     dst_iterator16  di(c);
2154     horz_iterator32  hi(c);
2155     blender_32to16  bl(c);
2156     while (di.count--) {
2157         uint32_t s = hi.get_pixel32();
2158         bl.write(s, di.dst);
2159         di.dst++;
2160     }
2161 #endif
2162 }
2163 
scanline_t32cb16blend_srca(context_t * c)2164 void scanline_t32cb16blend_srca(context_t* c)
2165 {
2166     dst_iterator16  di(c);
2167     horz_iterator32  hi(c);
2168     blender_32to16_srcA  blender(c);
2169 
2170     while (di.count--) {
2171         uint32_t s = hi.get_pixel32();
2172         blender.write(s,di.dst);
2173         di.dst++;
2174     }
2175 }
2176 
scanline_t16cb16blend_clamp_mod(context_t * c)2177 void scanline_t16cb16blend_clamp_mod(context_t* c)
2178 {
2179     const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
2180     if (a == 0) {
2181         return;
2182     }
2183 
2184     if (a == 255) {
2185         scanline_t16cb16_clamp(c);
2186         return;
2187     }
2188 
2189     dst_iterator16  di(c);
2190     blender_16to16_modulate  blender(c);
2191     clamp_iterator  ci(c);
2192 
2193     while (di.count--) {
2194         uint16_t s = ci.get_pixel16();
2195         blender.write(s, di.dst);
2196         di.dst++;
2197     }
2198 }
2199 
scanline_memcpy(context_t * c)2200 void scanline_memcpy(context_t* c)
2201 {
2202     int32_t x = c->iterators.xl;
2203     size_t ct = c->iterators.xr - x;
2204     int32_t y = c->iterators.y;
2205     surface_t* cb = &(c->state.buffers.color);
2206     const GGLFormat* fp = &(c->formats[cb->format]);
2207     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2208                             (x + (cb->stride * y)) * fp->size;
2209 
2210     surface_t* tex = &(c->state.texture[0].surface);
2211     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2212     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2213     uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2214                             (u + (tex->stride * v)) * fp->size;
2215 
2216     const size_t size = ct * fp->size;
2217     memcpy(dst, src, size);
2218 }
2219 
scanline_memset8(context_t * c)2220 void scanline_memset8(context_t* c)
2221 {
2222     int32_t x = c->iterators.xl;
2223     size_t ct = c->iterators.xr - x;
2224     int32_t y = c->iterators.y;
2225     surface_t* cb = &(c->state.buffers.color);
2226     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
2227     uint32_t packed = c->packed;
2228     memset(dst, packed, ct);
2229 }
2230 
scanline_memset16(context_t * c)2231 void scanline_memset16(context_t* c)
2232 {
2233     int32_t x = c->iterators.xl;
2234     size_t ct = c->iterators.xr - x;
2235     int32_t y = c->iterators.y;
2236     surface_t* cb = &(c->state.buffers.color);
2237     uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2238     uint32_t packed = c->packed;
2239     android_memset16(dst, packed, ct*2);
2240 }
2241 
scanline_memset32(context_t * c)2242 void scanline_memset32(context_t* c)
2243 {
2244     int32_t x = c->iterators.xl;
2245     size_t ct = c->iterators.xr - x;
2246     int32_t y = c->iterators.y;
2247     surface_t* cb = &(c->state.buffers.color);
2248     uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
2249     uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
2250     android_memset32(dst, packed, ct*4);
2251 }
2252 
scanline_clear(context_t * c)2253 void scanline_clear(context_t* c)
2254 {
2255     int32_t x = c->iterators.xl;
2256     size_t ct = c->iterators.xr - x;
2257     int32_t y = c->iterators.y;
2258     surface_t* cb = &(c->state.buffers.color);
2259     const GGLFormat* fp = &(c->formats[cb->format]);
2260     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2261                             (x + (cb->stride * y)) * fp->size;
2262     const size_t size = ct * fp->size;
2263     memset(dst, 0, size);
2264 }
2265 
scanline_set(context_t * c)2266 void scanline_set(context_t* c)
2267 {
2268     int32_t x = c->iterators.xl;
2269     size_t ct = c->iterators.xr - x;
2270     int32_t y = c->iterators.y;
2271     surface_t* cb = &(c->state.buffers.color);
2272     const GGLFormat* fp = &(c->formats[cb->format]);
2273     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2274                             (x + (cb->stride * y)) * fp->size;
2275     const size_t size = ct * fp->size;
2276     memset(dst, 0xFF, size);
2277 }
2278 
scanline_noop(context_t * c)2279 void scanline_noop(context_t* c)
2280 {
2281 }
2282 
rect_generic(context_t * c,size_t yc)2283 void rect_generic(context_t* c, size_t yc)
2284 {
2285     do {
2286         c->scanline(c);
2287         c->step_y(c);
2288     } while (--yc);
2289 }
2290 
rect_memcpy(context_t * c,size_t yc)2291 void rect_memcpy(context_t* c, size_t yc)
2292 {
2293     int32_t x = c->iterators.xl;
2294     size_t ct = c->iterators.xr - x;
2295     int32_t y = c->iterators.y;
2296     surface_t* cb = &(c->state.buffers.color);
2297     const GGLFormat* fp = &(c->formats[cb->format]);
2298     uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2299                             (x + (cb->stride * y)) * fp->size;
2300 
2301     surface_t* tex = &(c->state.texture[0].surface);
2302     const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2303     const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2304     uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2305                             (u + (tex->stride * v)) * fp->size;
2306 
2307     if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
2308         memcpy(dst, src, ct * fp->size * yc);
2309     } else {
2310         const size_t size = ct * fp->size;
2311         const size_t dbpr = cb->stride  * fp->size;
2312         const size_t sbpr = tex->stride * fp->size;
2313         do {
2314             memcpy(dst, src, size);
2315             dst += dbpr;
2316             src += sbpr;
2317         } while (--yc);
2318     }
2319 }
2320 // ----------------------------------------------------------------------------
2321 }; // namespace android
2322 
2323