/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_NDEBUG 0 #define LOG_TAG "WhiteBalanceTest" #include #include #include #include #include "vec2.h" #include "vec3.h" #include "whitebalancetest.h" // White point in XYZ color space under 5200k illumination. const Vec3f kDaylightWhitePoint(0.9781f, 1.f, 0.9021f); // Process the data of checker colors collected under different white balance. // Assuming the Daylight CCT is set to 5200k, compute the CCT of other white // balance modes. void WhiteBalanceTest::processData() { ALOGV("Start Processing White Balance Test Data!"); int numPatches = mCheckerColors.size(); ALOGV("Processing %d tests with %d patches", 2, numPatches); std::vector xyzColors(numPatches); for (int j = 0; j < numPatches; ++j) { Vec3f xyzCheckerColor = initializeFromRGB(mCheckerColors[j]); xyzColors[j] = xyzCheckerColor; ALOGV("XYZ coordinate is %f, %f, %f", xyzCheckerColor.r(), xyzCheckerColor.g(), xyzCheckerColor.b()); } Vec3f meanScale(0.f, 0.f, 0.f); if (mMode == "daylight") { mXyzColorsDaylight = xyzColors; // For testing the auto white balance mode. Compute a CCT that would // map the gray checkers to a white point. for (int j = 1; j < numPatches; ++j) { meanScale = meanScale + (mXyzColorsDaylight[j] / kDaylightWhitePoint); } } else { for (int j = 1; j < numPatches; ++j) { meanScale = meanScale + (mXyzColorsDaylight[j] / xyzColors[j]); } } meanScale = meanScale / (numPatches - 1); ALOGV("Scale: %f, %f, %f", meanScale.r(), meanScale.g(), meanScale.b()); Vec3f whitePoint; whitePoint = meanScale * kDaylightWhitePoint; ALOGV("White point is %f, %f, %f", whitePoint.r(), whitePoint.g(), whitePoint.b()); mCorrelatedColorTemp = findCorrelatedColorTemp(whitePoint); ALOGV("CCT is %d", mCorrelatedColorTemp); } // Given a white point, find the correlated color temperature. // Formula taken from the paper "Calculating Correlated Color Temperatures // Across the Entire Gamut of Daylight and Skylight Chromaticities" by Hernandez // Andres et al. in 1999. The numbers are fitting parameters. int WhiteBalanceTest::findCorrelatedColorTemp(const Vec3f &whitePoint) { Vec2f chromaOfWhitePoint( whitePoint.r() / (whitePoint.r() + whitePoint.g() + whitePoint.b()), whitePoint.g() / (whitePoint.r() + whitePoint.g() + whitePoint.b())); float n = (chromaOfWhitePoint.x() - 0.3366f) / (chromaOfWhitePoint.y() - 0.1735f); float y = -949.86315f + 6253.80338f * exp(-n / 0.92159f) + 28.70599f * exp(-n / 0.20039f) + 0.00004f * exp(-n / 0.07125f); return static_cast(y); } // Converts a RGB pixel value to XYZ color space. Vec3f WhiteBalanceTest::initializeFromRGB(const Vec3f &rgb) { float linearRed = convertToLinear(rgb.r()); float linearGreen = convertToLinear(rgb.g()); float linearBlue = convertToLinear(rgb.b()); float x = 0.4124f * linearRed + 0.3576f * linearGreen + 0.1805f * linearBlue; float y = 0.2126f * linearRed + 0.7152f * linearGreen + 0.0722f * linearBlue; float z = 0.0193f * linearRed + 0.1192f * linearGreen + 0.9505f * linearBlue; return Vec3f(x, y, z); } float WhiteBalanceTest::convertToLinear(float color) { float norm = color/ 255.0f; float linearColor; // Convert from sRGB space to linear RGB value if (norm > 0.04045f) { linearColor = pow(((norm + 0.055f) / 1.055f), 2.4f); } else { linearColor = norm / 12.92f; } return linearColor; }