/* Portions are Copyright (C) 2011 Google Inc */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the Netscape Portable Runtime (NSPR). * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998-2000 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * prtime.cc -- * NOTE: The original nspr file name is prtime.c * * NSPR date and time functions * * CVS revision 3.37 */ /* * The following functions were copied from the NSPR prtime.c file. * PR_ParseTimeString * We inlined the new PR_ParseTimeStringToExplodedTime function to avoid * copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime * and PR_ImplodeTime calls cancel each other out.) * PR_NormalizeTime * PR_GMTParameters * PR_ImplodeTime * This was modified to use the Win32 SYSTEMTIME/FILETIME structures * and the timezone offsets are applied to the FILETIME structure. * All types and macros are defined in the base/third_party/prtime.h file. * These have been copied from the following nspr files. We have only copied * over the types we need. * 1. prtime.h * 2. prtypes.h * 3. prlong.h */ #include "base/logging.h" #include "base/third_party/nspr/prtime.h" #include "build/build_config.h" #if defined(OS_WIN) #include #elif defined(OS_MACOSX) #include #endif #include /* for EINVAL */ #include /* Implements the Unix localtime_r() function for windows */ #if defined(OS_WIN) static void localtime_r(const time_t* secs, struct tm* time) { (void) localtime_s(time, secs); } #endif /* *------------------------------------------------------------------------ * * PR_ImplodeTime -- * * Cf. time_t mktime(struct tm *tp) * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. * *------------------------------------------------------------------------ */ PRTime PR_ImplodeTime(const PRExplodedTime *exploded) { // This is important, we want to make sure multiplications are // done with the correct precision. static const PRTime kSecondsToMicroseconds = static_cast(1000000); #if defined(OS_WIN) // Create the system struct representing our exploded time. SYSTEMTIME st = {0}; FILETIME ft = {0}; ULARGE_INTEGER uli = {0}; st.wYear = exploded->tm_year; st.wMonth = exploded->tm_month + 1; st.wDayOfWeek = exploded->tm_wday; st.wDay = exploded->tm_mday; st.wHour = exploded->tm_hour; st.wMinute = exploded->tm_min; st.wSecond = exploded->tm_sec; st.wMilliseconds = exploded->tm_usec/1000; // Convert to FILETIME. if (!SystemTimeToFileTime(&st, &ft)) { NOTREACHED() << "Unable to convert time"; return 0; } // Apply offsets. uli.LowPart = ft.dwLowDateTime; uli.HighPart = ft.dwHighDateTime; // Convert from Windows epoch to NSPR epoch, and 100-nanoseconds units // to microsecond units. PRTime result = static_cast((uli.QuadPart / 10) - 11644473600000000i64); // Adjust for time zone and dst. Convert from seconds to microseconds. result -= (exploded->tm_params.tp_gmt_offset + exploded->tm_params.tp_dst_offset) * kSecondsToMicroseconds; return result; #elif defined(OS_MACOSX) // Create the system struct representing our exploded time. CFGregorianDate gregorian_date; gregorian_date.year = exploded->tm_year; gregorian_date.month = exploded->tm_month + 1; gregorian_date.day = exploded->tm_mday; gregorian_date.hour = exploded->tm_hour; gregorian_date.minute = exploded->tm_min; gregorian_date.second = exploded->tm_sec; // Compute |absolute_time| in seconds, correct for gmt and dst // (note the combined offset will be negative when we need to add it), then // convert to microseconds which is what PRTime expects. CFAbsoluteTime absolute_time = CFGregorianDateGetAbsoluteTime(gregorian_date, NULL); PRTime result = static_cast(absolute_time); result -= exploded->tm_params.tp_gmt_offset + exploded->tm_params.tp_dst_offset; result += kCFAbsoluteTimeIntervalSince1970; // PRTime epoch is 1970 result *= kSecondsToMicroseconds; result += exploded->tm_usec; return result; #elif defined(OS_POSIX) struct tm exp_tm = {0}; exp_tm.tm_sec = exploded->tm_sec; exp_tm.tm_min = exploded->tm_min; exp_tm.tm_hour = exploded->tm_hour; exp_tm.tm_mday = exploded->tm_mday; exp_tm.tm_mon = exploded->tm_month; exp_tm.tm_year = exploded->tm_year - 1900; time_t absolute_time = timegm(&exp_tm); // If timegm returned -1. Since we don't pass it a time zone, the only // valid case of returning -1 is 1 second before Epoch (Dec 31, 1969). if (absolute_time == -1 && !(exploded->tm_year == 1969 && exploded->tm_month == 11 && exploded->tm_mday == 31 && exploded->tm_hour == 23 && exploded->tm_min == 59 && exploded->tm_sec == 59)) { // If we get here, time_t must be 32 bits. // Date was possibly too far in the future and would overflow. Return // the most future date possible (year 2038). if (exploded->tm_year >= 1970) return INT_MAX * kSecondsToMicroseconds; // Date was possibly too far in the past and would underflow. Return // the most past date possible (year 1901). return INT_MIN * kSecondsToMicroseconds; } PRTime result = static_cast(absolute_time); result -= exploded->tm_params.tp_gmt_offset + exploded->tm_params.tp_dst_offset; result *= kSecondsToMicroseconds; result += exploded->tm_usec; return result; #else #error No PR_ImplodeTime implemented on your platform. #endif } /* * The COUNT_LEAPS macro counts the number of leap years passed by * till the start of the given year Y. At the start of the year 4 * A.D. the number of leap years passed by is 0, while at the start of * the year 5 A.D. this count is 1. The number of years divisible by * 100 but not divisible by 400 (the non-leap years) is deducted from * the count to get the correct number of leap years. * * The COUNT_DAYS macro counts the number of days since 01/01/01 till the * start of the given year Y. The number of days at the start of the year * 1 is 0 while the number of days at the start of the year 2 is 365 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 * midnight 00:00:00. */ #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 ) #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) ) #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A)) /* * Static variables used by functions in this file */ /* * The following array contains the day of year for the last day of * each month, where index 1 is January, and day 0 is January 1. */ static const int lastDayOfMonth[2][13] = { {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365} }; /* * The number of days in a month */ static const PRInt8 nDays[2][12] = { {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} }; /* *------------------------------------------------------------------------- * * IsLeapYear -- * * Returns 1 if the year is a leap year, 0 otherwise. * *------------------------------------------------------------------------- */ static int IsLeapYear(PRInt16 year) { if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) return 1; else return 0; } /* * 'secOffset' should be less than 86400 (i.e., a day). * 'time' should point to a normalized PRExplodedTime. */ static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset) { time->tm_sec += secOffset; /* Note that in this implementation we do not count leap seconds */ if (time->tm_sec < 0 || time->tm_sec >= 60) { time->tm_min += time->tm_sec / 60; time->tm_sec %= 60; if (time->tm_sec < 0) { time->tm_sec += 60; time->tm_min--; } } if (time->tm_min < 0 || time->tm_min >= 60) { time->tm_hour += time->tm_min / 60; time->tm_min %= 60; if (time->tm_min < 0) { time->tm_min += 60; time->tm_hour--; } } if (time->tm_hour < 0) { /* Decrement mday, yday, and wday */ time->tm_hour += 24; time->tm_mday--; time->tm_yday--; if (time->tm_mday < 1) { time->tm_month--; if (time->tm_month < 0) { time->tm_month = 11; time->tm_year--; if (IsLeapYear(time->tm_year)) time->tm_yday = 365; else time->tm_yday = 364; } time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; } time->tm_wday--; if (time->tm_wday < 0) time->tm_wday = 6; } else if (time->tm_hour > 23) { /* Increment mday, yday, and wday */ time->tm_hour -= 24; time->tm_mday++; time->tm_yday++; if (time->tm_mday > nDays[IsLeapYear(time->tm_year)][time->tm_month]) { time->tm_mday = 1; time->tm_month++; if (time->tm_month > 11) { time->tm_month = 0; time->tm_year++; time->tm_yday = 0; } } time->tm_wday++; if (time->tm_wday > 6) time->tm_wday = 0; } } void PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params) { int daysInMonth; PRInt32 numDays; /* Get back to GMT */ time->tm_sec -= time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset; time->tm_params.tp_gmt_offset = 0; time->tm_params.tp_dst_offset = 0; /* Now normalize GMT */ if (time->tm_usec < 0 || time->tm_usec >= 1000000) { time->tm_sec += time->tm_usec / 1000000; time->tm_usec %= 1000000; if (time->tm_usec < 0) { time->tm_usec += 1000000; time->tm_sec--; } } /* Note that we do not count leap seconds in this implementation */ if (time->tm_sec < 0 || time->tm_sec >= 60) { time->tm_min += time->tm_sec / 60; time->tm_sec %= 60; if (time->tm_sec < 0) { time->tm_sec += 60; time->tm_min--; } } if (time->tm_min < 0 || time->tm_min >= 60) { time->tm_hour += time->tm_min / 60; time->tm_min %= 60; if (time->tm_min < 0) { time->tm_min += 60; time->tm_hour--; } } if (time->tm_hour < 0 || time->tm_hour >= 24) { time->tm_mday += time->tm_hour / 24; time->tm_hour %= 24; if (time->tm_hour < 0) { time->tm_hour += 24; time->tm_mday--; } } /* Normalize month and year before mday */ if (time->tm_month < 0 || time->tm_month >= 12) { time->tm_year += time->tm_month / 12; time->tm_month %= 12; if (time->tm_month < 0) { time->tm_month += 12; time->tm_year--; } } /* Now that month and year are in proper range, normalize mday */ if (time->tm_mday < 1) { /* mday too small */ do { /* the previous month */ time->tm_month--; if (time->tm_month < 0) { time->tm_month = 11; time->tm_year--; } time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; } while (time->tm_mday < 1); } else { daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; while (time->tm_mday > daysInMonth) { /* mday too large */ time->tm_mday -= daysInMonth; time->tm_month++; if (time->tm_month > 11) { time->tm_month = 0; time->tm_year++; } daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; } } /* Recompute yday and wday */ time->tm_yday = time->tm_mday + lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]; numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday; time->tm_wday = (numDays + 4) % 7; if (time->tm_wday < 0) { time->tm_wday += 7; } /* Recompute time parameters */ time->tm_params = params(time); ApplySecOffset(time, time->tm_params.tp_gmt_offset + time->tm_params.tp_dst_offset); } /* *------------------------------------------------------------------------ * * PR_GMTParameters -- * * Returns the PRTimeParameters for Greenwich Mean Time. * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. * *------------------------------------------------------------------------ */ PRTimeParameters PR_GMTParameters(const PRExplodedTime *gmt) { #if defined(XP_MAC) #pragma unused (gmt) #endif PRTimeParameters retVal = { 0, 0 }; return retVal; } /* * The following code implements PR_ParseTimeString(). It is based on * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski . */ /* * We only recognize the abbreviations of a small subset of time zones * in North America, Europe, and Japan. * * PST/PDT: Pacific Standard/Daylight Time * MST/MDT: Mountain Standard/Daylight Time * CST/CDT: Central Standard/Daylight Time * EST/EDT: Eastern Standard/Daylight Time * AST: Atlantic Standard Time * NST: Newfoundland Standard Time * GMT: Greenwich Mean Time * BST: British Summer Time * MET: Middle Europe Time * EET: Eastern Europe Time * JST: Japan Standard Time */ typedef enum { TT_UNKNOWN, TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT, TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN, TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC, TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT, TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST } TIME_TOKEN; /* * This parses a time/date string into a PRTime * (microseconds after "1-Jan-1970 00:00:00 GMT"). * It returns PR_SUCCESS on success, and PR_FAILURE * if the time/date string can't be parsed. * * Many formats are handled, including: * * 14 Apr 89 03:20:12 * 14 Apr 89 03:20 GMT * Fri, 17 Mar 89 4:01:33 * Fri, 17 Mar 89 4:01 GMT * Mon Jan 16 16:12 PDT 1989 * Mon Jan 16 16:12 +0130 1989 * 6 May 1992 16:41-JST (Wednesday) * 22-AUG-1993 10:59:12.82 * 22-AUG-1993 10:59pm * 22-AUG-1993 12:59am * 22-AUG-1993 12:59 PM * Friday, August 04, 1995 3:54 PM * 06/21/95 04:24:34 PM * 20/06/95 21:07 * 95-06-08 19:32:48 EDT * * If the input string doesn't contain a description of the timezone, * we consult the `default_to_gmt' to decide whether the string should * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). * The correct value for this argument depends on what standard specified * the time string which you are parsing. */ PRStatus PR_ParseTimeString( const char *string, PRBool default_to_gmt, PRTime *result_imploded) { PRExplodedTime tm; PRExplodedTime *result = &tm; TIME_TOKEN dotw = TT_UNKNOWN; TIME_TOKEN month = TT_UNKNOWN; TIME_TOKEN zone = TT_UNKNOWN; int zone_offset = -1; int dst_offset = 0; int date = -1; PRInt32 year = -1; int hour = -1; int min = -1; int sec = -1; const char *rest = string; int iterations = 0; PR_ASSERT(string && result); if (!string || !result) return PR_FAILURE; while (*rest) { if (iterations++ > 1000) { return PR_FAILURE; } switch (*rest) { case 'a': case 'A': if (month == TT_UNKNOWN && (rest[1] == 'p' || rest[1] == 'P') && (rest[2] == 'r' || rest[2] == 'R')) month = TT_APR; else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_AST; else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'g' || rest[2] == 'G')) month = TT_AUG; break; case 'b': case 'B': if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_BST; break; case 'c': case 'C': if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_CDT; else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_CST; break; case 'd': case 'D': if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 'c' || rest[2] == 'C')) month = TT_DEC; break; case 'e': case 'E': if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_EDT; else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_EET; else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_EST; break; case 'f': case 'F': if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 'b' || rest[2] == 'B')) month = TT_FEB; else if (dotw == TT_UNKNOWN && (rest[1] == 'r' || rest[1] == 'R') && (rest[2] == 'i' || rest[2] == 'I')) dotw = TT_FRI; break; case 'g': case 'G': if (zone == TT_UNKNOWN && (rest[1] == 'm' || rest[1] == 'M') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_GMT; break; case 'j': case 'J': if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && (rest[2] == 'n' || rest[2] == 'N')) month = TT_JAN; else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_JST; else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'l' || rest[2] == 'L')) month = TT_JUL; else if (month == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'n' || rest[2] == 'N')) month = TT_JUN; break; case 'm': case 'M': if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && (rest[2] == 'r' || rest[2] == 'R')) month = TT_MAR; else if (month == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && (rest[2] == 'y' || rest[2] == 'Y')) month = TT_MAY; else if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_MDT; else if (zone == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_MET; else if (dotw == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') && (rest[2] == 'n' || rest[2] == 'N')) dotw = TT_MON; else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_MST; break; case 'n': case 'N': if (month == TT_UNKNOWN && (rest[1] == 'o' || rest[1] == 'O') && (rest[2] == 'v' || rest[2] == 'V')) month = TT_NOV; else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_NST; break; case 'o': case 'O': if (month == TT_UNKNOWN && (rest[1] == 'c' || rest[1] == 'C') && (rest[2] == 't' || rest[2] == 'T')) month = TT_OCT; break; case 'p': case 'P': if (zone == TT_UNKNOWN && (rest[1] == 'd' || rest[1] == 'D') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_PDT; else if (zone == TT_UNKNOWN && (rest[1] == 's' || rest[1] == 'S') && (rest[2] == 't' || rest[2] == 'T')) zone = TT_PST; break; case 's': case 'S': if (dotw == TT_UNKNOWN && (rest[1] == 'a' || rest[1] == 'A') && (rest[2] == 't' || rest[2] == 'T')) dotw = TT_SAT; else if (month == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 'p' || rest[2] == 'P')) month = TT_SEP; else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'n' || rest[2] == 'N')) dotw = TT_SUN; break; case 't': case 'T': if (dotw == TT_UNKNOWN && (rest[1] == 'h' || rest[1] == 'H') && (rest[2] == 'u' || rest[2] == 'U')) dotw = TT_THU; else if (dotw == TT_UNKNOWN && (rest[1] == 'u' || rest[1] == 'U') && (rest[2] == 'e' || rest[2] == 'E')) dotw = TT_TUE; break; case 'u': case 'U': if (zone == TT_UNKNOWN && (rest[1] == 't' || rest[1] == 'T') && !(rest[2] >= 'A' && rest[2] <= 'Z') && !(rest[2] >= 'a' && rest[2] <= 'z')) /* UT is the same as GMT but UTx is not. */ zone = TT_GMT; break; case 'w': case 'W': if (dotw == TT_UNKNOWN && (rest[1] == 'e' || rest[1] == 'E') && (rest[2] == 'd' || rest[2] == 'D')) dotw = TT_WED; break; case '+': case '-': { const char *end; int sign; if (zone_offset != -1) { /* already got one... */ rest++; break; } if (zone != TT_UNKNOWN && zone != TT_GMT) { /* GMT+0300 is legal, but PST+0300 is not. */ rest++; break; } sign = ((*rest == '+') ? 1 : -1); rest++; /* move over sign */ end = rest; while (*end >= '0' && *end <= '9') end++; if (rest == end) /* no digits here */ break; if ((end - rest) == 4) /* offset in HHMM */ zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) + (((rest[2]-'0')*10) + (rest[3]-'0'))); else if ((end - rest) == 2) /* offset in hours */ zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60; else if ((end - rest) == 1) /* offset in hours */ zone_offset = (rest[0]-'0') * 60; else /* 3 or >4 */ break; zone_offset *= sign; zone = TT_GMT; break; } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { int tmp_hour = -1; int tmp_min = -1; int tmp_sec = -1; const char *end = rest + 1; while (*end >= '0' && *end <= '9') end++; /* end is now the first character after a range of digits. */ if (*end == ':') { if (hour >= 0 && min >= 0) /* already got it */ break; /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ if ((end - rest) > 2) /* it is [0-9][0-9][0-9]+: */ break; else if ((end - rest) == 2) tmp_hour = ((rest[0]-'0')*10 + (rest[1]-'0')); else tmp_hour = (rest[0]-'0'); /* move over the colon, and parse minutes */ rest = ++end; while (*end >= '0' && *end <= '9') end++; if (end == rest) /* no digits after first colon? */ break; else if ((end - rest) > 2) /* it is [0-9][0-9][0-9]+: */ break; else if ((end - rest) == 2) tmp_min = ((rest[0]-'0')*10 + (rest[1]-'0')); else tmp_min = (rest[0]-'0'); /* now go for seconds */ rest = end; if (*rest == ':') rest++; end = rest; while (*end >= '0' && *end <= '9') end++; if (end == rest) /* no digits after second colon - that's ok. */ ; else if ((end - rest) > 2) /* it is [0-9][0-9][0-9]+: */ break; else if ((end - rest) == 2) tmp_sec = ((rest[0]-'0')*10 + (rest[1]-'0')); else tmp_sec = (rest[0]-'0'); /* If we made it here, we've parsed hour and min, and possibly sec, so it worked as a unit. */ /* skip over whitespace and see if there's an AM or PM directly following the time. */ if (tmp_hour <= 12) { const char *s = end; while (*s && (*s == ' ' || *s == '\t')) s++; if ((s[0] == 'p' || s[0] == 'P') && (s[1] == 'm' || s[1] == 'M')) /* 10:05pm == 22:05, and 12:05pm == 12:05 */ tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); else if (tmp_hour == 12 && (s[0] == 'a' || s[0] == 'A') && (s[1] == 'm' || s[1] == 'M')) /* 12:05am == 00:05 */ tmp_hour = 0; } hour = tmp_hour; min = tmp_min; sec = tmp_sec; rest = end; break; } else if ((*end == '/' || *end == '-') && end[1] >= '0' && end[1] <= '9') { /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 or even 95-06-05... #### But it doesn't handle 1995-06-22. */ int n1, n2, n3; const char *s; if (month != TT_UNKNOWN) /* if we saw a month name, this can't be. */ break; s = rest; n1 = (*s++ - '0'); /* first 1 or 2 digits */ if (*s >= '0' && *s <= '9') n1 = n1*10 + (*s++ - '0'); if (*s != '/' && *s != '-') /* slash */ break; s++; if (*s < '0' || *s > '9') /* second 1 or 2 digits */ break; n2 = (*s++ - '0'); if (*s >= '0' && *s <= '9') n2 = n2*10 + (*s++ - '0'); if (*s != '/' && *s != '-') /* slash */ break; s++; if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */ break; n3 = (*s++ - '0'); if (*s >= '0' && *s <= '9') n3 = n3*10 + (*s++ - '0'); if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ { n3 = n3*10 + (*s++ - '0'); if (*s < '0' || *s > '9') break; n3 = n3*10 + (*s++ - '0'); if (*s >= '0' && *s <= '9') n3 = n3*10 + (*s++ - '0'); } if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */ (*s >= 'A' && *s <= 'Z') || (*s >= 'a' && *s <= 'z')) break; /* Ok, we parsed three 1-2 digit numbers, with / or - between them. Now decide what the hell they are (DD/MM/YY or MM/DD/YY or YY/MM/DD.) */ if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */ { if (n2 > 12) break; if (n3 > 31) break; year = n1; if (year < 70) year += 2000; else if (year < 100) year += 1900; month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); date = n3; rest = s; break; } if (n1 > 12 && n2 > 12) /* illegal */ { rest = s; break; } if (n3 < 70) n3 += 2000; else if (n3 < 100) n3 += 1900; if (n1 > 12) /* must be DD/MM/YY */ { date = n1; month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); year = n3; } else /* assume MM/DD/YY */ { /* #### In the ambiguous case, should we consult the locale to find out the local default? */ month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); date = n2; year = n3; } rest = s; } else if ((*end >= 'A' && *end <= 'Z') || (*end >= 'a' && *end <= 'z')) /* Digits followed by non-punctuation - what's that? */ ; else if ((end - rest) == 5) /* five digits is a year */ year = (year < 0 ? ((rest[0]-'0')*10000L + (rest[1]-'0')*1000L + (rest[2]-'0')*100L + (rest[3]-'0')*10L + (rest[4]-'0')) : year); else if ((end - rest) == 4) /* four digits is a year */ year = (year < 0 ? ((rest[0]-'0')*1000L + (rest[1]-'0')*100L + (rest[2]-'0')*10L + (rest[3]-'0')) : year); else if ((end - rest) == 2) /* two digits - date or year */ { int n = ((rest[0]-'0')*10 + (rest[1]-'0')); /* If we don't have a date (day of the month) and we see a number less than 32, then assume that is the date. Otherwise, if we have a date and not a year, assume this is the year. If it is less than 70, then assume it refers to the 21st century. If it is two digits (>= 70), assume it refers to this century. Otherwise, assume it refers to an unambiguous year. The world will surely end soon. */ if (date < 0 && n < 32) date = n; else if (year < 0) { if (n < 70) year = 2000 + n; else if (n < 100) year = 1900 + n; else year = n; } /* else what the hell is this. */ } else if ((end - rest) == 1) /* one digit - date */ date = (date < 0 ? (rest[0]-'0') : date); /* else, three or more than five digits - what's that? */ break; } } /* Skip to the end of this token, whether we parsed it or not. Tokens are delimited by whitespace, or ,;-/ But explicitly not :+-. */ while (*rest && *rest != ' ' && *rest != '\t' && *rest != ',' && *rest != ';' && *rest != '-' && *rest != '+' && *rest != '/' && *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') rest++; /* skip over uninteresting chars. */ SKIP_MORE: while (*rest && (*rest == ' ' || *rest == '\t' || *rest == ',' || *rest == ';' || *rest == '/' || *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')) rest++; /* "-" is ignored at the beginning of a token if we have not yet parsed a year (e.g., the second "-" in "30-AUG-1966"), or if the character after the dash is not a digit. */ if (*rest == '-' && ((rest > string && isalpha(rest[-1]) && year < 0) || rest[1] < '0' || rest[1] > '9')) { rest++; goto SKIP_MORE; } } if (zone != TT_UNKNOWN && zone_offset == -1) { switch (zone) { case TT_PST: zone_offset = -8 * 60; break; case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break; case TT_MST: zone_offset = -7 * 60; break; case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break; case TT_CST: zone_offset = -6 * 60; break; case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break; case TT_EST: zone_offset = -5 * 60; break; case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break; case TT_AST: zone_offset = -4 * 60; break; case TT_NST: zone_offset = -3 * 60 - 30; break; case TT_GMT: zone_offset = 0 * 60; break; case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break; case TT_MET: zone_offset = 1 * 60; break; case TT_EET: zone_offset = 2 * 60; break; case TT_JST: zone_offset = 9 * 60; break; default: PR_ASSERT (0); break; } } /* If we didn't find a year, month, or day-of-the-month, we can't possibly parse this, and in fact, mktime() will do something random (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt a numerologically significant date... */ if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) return PR_FAILURE; memset(result, 0, sizeof(*result)); if (sec != -1) result->tm_sec = sec; if (min != -1) result->tm_min = min; if (hour != -1) result->tm_hour = hour; if (date != -1) result->tm_mday = date; if (month != TT_UNKNOWN) result->tm_month = (((int)month) - ((int)TT_JAN)); if (year != -1) result->tm_year = year; if (dotw != TT_UNKNOWN) result->tm_wday = (((int)dotw) - ((int)TT_SUN)); /* * Mainly to compute wday and yday, but normalized time is also required * by the check below that works around a Visual C++ 2005 mktime problem. */ PR_NormalizeTime(result, PR_GMTParameters); /* The remaining work is to set the gmt and dst offsets in tm_params. */ if (zone == TT_UNKNOWN && default_to_gmt) { /* No zone was specified, so pretend the zone was GMT. */ zone = TT_GMT; zone_offset = 0; } if (zone_offset == -1) { /* no zone was specified, and we're to assume that everything is local. */ struct tm localTime; time_t secs; PR_ASSERT(result->tm_month > -1 && result->tm_mday > 0 && result->tm_hour > -1 && result->tm_min > -1 && result->tm_sec > -1); /* * To obtain time_t from a tm structure representing the local * time, we call mktime(). However, we need to see if we are * on 1-Jan-1970 or before. If we are, we can't call mktime() * because mktime() will crash on win16. In that case, we * calculate zone_offset based on the zone offset at * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the * date we are parsing to transform the date to GMT. We also * do so if mktime() returns (time_t) -1 (time out of range). */ /* month, day, hours, mins and secs are always non-negative so we dont need to worry about them. */ if(result->tm_year >= 1970) { PRInt64 usec_per_sec; localTime.tm_sec = result->tm_sec; localTime.tm_min = result->tm_min; localTime.tm_hour = result->tm_hour; localTime.tm_mday = result->tm_mday; localTime.tm_mon = result->tm_month; localTime.tm_year = result->tm_year - 1900; /* Set this to -1 to tell mktime "I don't care". If you set it to 0 or 1, you are making assertions about whether the date you are handing it is in daylight savings mode or not; and if you're wrong, it will "fix" it for you. */ localTime.tm_isdst = -1; #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ /* * mktime will return (time_t) -1 if the input is a date * after 23:59:59, December 31, 3000, US Pacific Time (not * UTC as documented): * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx * But if the year is 3001, mktime also invokes the invalid * parameter handler, causing the application to crash. This * problem has been reported in * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. * We avoid this crash by not calling mktime if the date is * out of range. To use a simple test that works in any time * zone, we consider year 3000 out of range as well. (See * bug 480740.) */ if (result->tm_year >= 3000) { /* Emulate what mktime would have done. */ errno = EINVAL; secs = (time_t) -1; } else { secs = mktime(&localTime); } #else secs = mktime(&localTime); #endif if (secs != (time_t) -1) { PRTime usecs64; LL_I2L(usecs64, secs); LL_I2L(usec_per_sec, PR_USEC_PER_SEC); LL_MUL(usecs64, usecs64, usec_per_sec); *result_imploded = usecs64; return PR_SUCCESS; } } /* So mktime() can't handle this case. We assume the zone_offset for the date we are parsing is the same as the zone offset on 00:00:00 2 Jan 1970 GMT. */ secs = 86400; localtime_r(&secs, &localTime); zone_offset = localTime.tm_min + 60 * localTime.tm_hour + 1440 * (localTime.tm_mday - 2); } result->tm_params.tp_gmt_offset = zone_offset * 60; result->tm_params.tp_dst_offset = dst_offset * 60; *result_imploded = PR_ImplodeTime(result); return PR_SUCCESS; }