//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements C++ name mangling according to the Itanium C++ ABI, // which is used in GCC 3.2 and newer (and many compilers that are // ABI-compatible with GCC): // // http://www.codesourcery.com/public/cxx-abi/abi.html // //===----------------------------------------------------------------------===// #include "clang/AST/Mangle.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/ABI.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/ErrorHandling.h" #define MANGLE_CHECKER 0 #if MANGLE_CHECKER #include #endif using namespace clang; namespace { /// \brief Retrieve the declaration context that should be used when mangling /// the given declaration. static const DeclContext *getEffectiveDeclContext(const Decl *D) { // The ABI assumes that lambda closure types that occur within // default arguments live in the context of the function. However, due to // the way in which Clang parses and creates function declarations, this is // not the case: the lambda closure type ends up living in the context // where the function itself resides, because the function declaration itself // had not yet been created. Fix the context here. if (const CXXRecordDecl *RD = dyn_cast(D)) { if (RD->isLambda()) if (ParmVarDecl *ContextParam = dyn_cast_or_null(RD->getLambdaContextDecl())) return ContextParam->getDeclContext(); } return D->getDeclContext(); } static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { return getEffectiveDeclContext(cast(DC)); } static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) { const DeclContext *DC = dyn_cast(ND); if (!DC) DC = getEffectiveDeclContext(ND); while (!DC->isNamespace() && !DC->isTranslationUnit()) { const DeclContext *Parent = getEffectiveDeclContext(cast(DC)); if (isa(Parent)) return dyn_cast(DC); DC = Parent; } return 0; } static const FunctionDecl *getStructor(const FunctionDecl *fn) { if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) return ftd->getTemplatedDecl(); return fn; } static const NamedDecl *getStructor(const NamedDecl *decl) { const FunctionDecl *fn = dyn_cast_or_null(decl); return (fn ? getStructor(fn) : decl); } static const unsigned UnknownArity = ~0U; class ItaniumMangleContext : public MangleContext { llvm::DenseMap AnonStructIds; unsigned Discriminator; llvm::DenseMap Uniquifier; public: explicit ItaniumMangleContext(ASTContext &Context, DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { } uint64_t getAnonymousStructId(const TagDecl *TD) { std::pair::iterator, bool> Result = AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size())); return Result.first->second; } void startNewFunction() { MangleContext::startNewFunction(); mangleInitDiscriminator(); } /// @name Mangler Entry Points /// @{ bool shouldMangleDeclName(const NamedDecl *D); void mangleName(const NamedDecl *D, raw_ostream &); void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, raw_ostream &); void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, const ThisAdjustment &ThisAdjustment, raw_ostream &); void mangleReferenceTemporary(const VarDecl *D, raw_ostream &); void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &); void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &); void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, const CXXRecordDecl *Type, raw_ostream &); void mangleCXXRTTI(QualType T, raw_ostream &); void mangleCXXRTTIName(QualType T, raw_ostream &); void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, raw_ostream &); void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, raw_ostream &); void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &); void mangleInitDiscriminator() { Discriminator = 0; } bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { // Lambda closure types with external linkage (indicated by a // non-zero lambda mangling number) have their own numbering scheme, so // they do not need a discriminator. if (const CXXRecordDecl *RD = dyn_cast(ND)) if (RD->isLambda() && RD->getLambdaManglingNumber() > 0) return false; unsigned &discriminator = Uniquifier[ND]; if (!discriminator) discriminator = ++Discriminator; if (discriminator == 1) return false; disc = discriminator-2; return true; } /// @} }; /// CXXNameMangler - Manage the mangling of a single name. class CXXNameMangler { ItaniumMangleContext &Context; raw_ostream &Out; /// The "structor" is the top-level declaration being mangled, if /// that's not a template specialization; otherwise it's the pattern /// for that specialization. const NamedDecl *Structor; unsigned StructorType; /// SeqID - The next subsitution sequence number. unsigned SeqID; class FunctionTypeDepthState { unsigned Bits; enum { InResultTypeMask = 1 }; public: FunctionTypeDepthState() : Bits(0) {} /// The number of function types we're inside. unsigned getDepth() const { return Bits >> 1; } /// True if we're in the return type of the innermost function type. bool isInResultType() const { return Bits & InResultTypeMask; } FunctionTypeDepthState push() { FunctionTypeDepthState tmp = *this; Bits = (Bits & ~InResultTypeMask) + 2; return tmp; } void enterResultType() { Bits |= InResultTypeMask; } void leaveResultType() { Bits &= ~InResultTypeMask; } void pop(FunctionTypeDepthState saved) { assert(getDepth() == saved.getDepth() + 1); Bits = saved.Bits; } } FunctionTypeDepth; llvm::DenseMap Substitutions; ASTContext &getASTContext() const { return Context.getASTContext(); } public: CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, const NamedDecl *D = 0) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0), SeqID(0) { // These can't be mangled without a ctor type or dtor type. assert(!D || (!isa(D) && !isa(D))); } CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, const CXXConstructorDecl *D, CXXCtorType Type) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), SeqID(0) { } CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, const CXXDestructorDecl *D, CXXDtorType Type) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), SeqID(0) { } #if MANGLE_CHECKER ~CXXNameMangler() { if (Out.str()[0] == '\01') return; int status = 0; char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); assert(status == 0 && "Could not demangle mangled name!"); free(result); } #endif raw_ostream &getStream() { return Out; } void mangle(const NamedDecl *D, StringRef Prefix = "_Z"); void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); void mangleNumber(const llvm::APSInt &I); void mangleNumber(int64_t Number); void mangleFloat(const llvm::APFloat &F); void mangleFunctionEncoding(const FunctionDecl *FD); void mangleName(const NamedDecl *ND); void mangleType(QualType T); void mangleNameOrStandardSubstitution(const NamedDecl *ND); private: bool mangleSubstitution(const NamedDecl *ND); bool mangleSubstitution(QualType T); bool mangleSubstitution(TemplateName Template); bool mangleSubstitution(uintptr_t Ptr); void mangleExistingSubstitution(QualType type); void mangleExistingSubstitution(TemplateName name); bool mangleStandardSubstitution(const NamedDecl *ND); void addSubstitution(const NamedDecl *ND) { ND = cast(ND->getCanonicalDecl()); addSubstitution(reinterpret_cast(ND)); } void addSubstitution(QualType T); void addSubstitution(TemplateName Template); void addSubstitution(uintptr_t Ptr); void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, bool recursive = false); void mangleUnresolvedName(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName name, unsigned KnownArity = UnknownArity); void mangleName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleUnqualifiedName(const NamedDecl *ND) { mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity); } void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, unsigned KnownArity); void mangleUnscopedName(const NamedDecl *ND); void mangleUnscopedTemplateName(const TemplateDecl *ND); void mangleUnscopedTemplateName(TemplateName); void mangleSourceName(const IdentifierInfo *II); void mangleLocalName(const NamedDecl *ND); void mangleLambda(const CXXRecordDecl *Lambda); void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, bool NoFunction=false); void mangleNestedName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void manglePrefix(NestedNameSpecifier *qualifier); void manglePrefix(const DeclContext *DC, bool NoFunction=false); void manglePrefix(QualType type); void mangleTemplatePrefix(const TemplateDecl *ND); void mangleTemplatePrefix(TemplateName Template); void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); void mangleQualifiers(Qualifiers Quals); void mangleRefQualifier(RefQualifierKind RefQualifier); void mangleObjCMethodName(const ObjCMethodDecl *MD); // Declare manglers for every type class. #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); #include "clang/AST/TypeNodes.def" void mangleType(const TagType*); void mangleType(TemplateName); void mangleBareFunctionType(const FunctionType *T, bool MangleReturnType); void mangleNeonVectorType(const VectorType *T); void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); void mangleMemberExpr(const Expr *base, bool isArrow, NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName name, unsigned knownArity); void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); void mangleCXXCtorType(CXXCtorType T); void mangleCXXDtorType(CXXDtorType T); void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs); void mangleTemplateArgs(TemplateName Template, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleTemplateArgs(const TemplateParameterList &PL, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleTemplateArgs(const TemplateParameterList &PL, const TemplateArgumentList &AL); void mangleTemplateArg(const NamedDecl *P, TemplateArgument A); void mangleUnresolvedTemplateArgs(const TemplateArgument *args, unsigned numArgs); void mangleTemplateParameter(unsigned Index); void mangleFunctionParam(const ParmVarDecl *parm); }; } static bool isInCLinkageSpecification(const Decl *D) { D = D->getCanonicalDecl(); for (const DeclContext *DC = getEffectiveDeclContext(D); !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) { if (const LinkageSpecDecl *Linkage = dyn_cast(DC)) return Linkage->getLanguage() == LinkageSpecDecl::lang_c; } return false; } bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) { // In C, functions with no attributes never need to be mangled. Fastpath them. if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs()) return false; // Any decl can be declared with __asm("foo") on it, and this takes precedence // over all other naming in the .o file. if (D->hasAttr()) return true; // Clang's "overloadable" attribute extension to C/C++ implies name mangling // (always) as does passing a C++ member function and a function // whose name is not a simple identifier. const FunctionDecl *FD = dyn_cast(D); if (FD && (FD->hasAttr() || isa(FD) || !FD->getDeclName().isIdentifier())) return true; // Otherwise, no mangling is done outside C++ mode. if (!getASTContext().getLangOpts().CPlusPlus) return false; // Variables at global scope with non-internal linkage are not mangled if (!FD) { const DeclContext *DC = getEffectiveDeclContext(D); // Check for extern variable declared locally. if (DC->isFunctionOrMethod() && D->hasLinkage()) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = getEffectiveParentContext(DC); if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage) return false; } // Class members are always mangled. if (getEffectiveDeclContext(D)->isRecord()) return true; // C functions and "main" are not mangled. if ((FD && FD->isMain()) || isInCLinkageSpecification(D)) return false; return true; } void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { // Any decl can be declared with __asm("foo") on it, and this takes precedence // over all other naming in the .o file. if (const AsmLabelAttr *ALA = D->getAttr()) { // If we have an asm name, then we use it as the mangling. // Adding the prefix can cause problems when one file has a "foo" and // another has a "\01foo". That is known to happen on ELF with the // tricks normally used for producing aliases (PR9177). Fortunately the // llvm mangler on ELF is a nop, so we can just avoid adding the \01 // marker. We also avoid adding the marker if this is an alias for an // LLVM intrinsic. StringRef UserLabelPrefix = getASTContext().getTargetInfo().getUserLabelPrefix(); if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm.")) Out << '\01'; // LLVM IR Marker for __asm("foo") Out << ALA->getLabel(); return; } // ::= _Z // ::= // ::= Out << Prefix; if (const FunctionDecl *FD = dyn_cast(D)) mangleFunctionEncoding(FD); else if (const VarDecl *VD = dyn_cast(D)) mangleName(VD); else mangleName(cast(D)); } void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { // ::= mangleName(FD); // Don't mangle in the type if this isn't a decl we should typically mangle. if (!Context.shouldMangleDeclName(FD)) return; // Whether the mangling of a function type includes the return type depends on // the context and the nature of the function. The rules for deciding whether // the return type is included are: // // 1. Template functions (names or types) have return types encoded, with // the exceptions listed below. // 2. Function types not appearing as part of a function name mangling, // e.g. parameters, pointer types, etc., have return type encoded, with the // exceptions listed below. // 3. Non-template function names do not have return types encoded. // // The exceptions mentioned in (1) and (2) above, for which the return type is // never included, are // 1. Constructors. // 2. Destructors. // 3. Conversion operator functions, e.g. operator int. bool MangleReturnType = false; if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { if (!(isa(FD) || isa(FD) || isa(FD))) MangleReturnType = true; // Mangle the type of the primary template. FD = PrimaryTemplate->getTemplatedDecl(); } mangleBareFunctionType(FD->getType()->getAs(), MangleReturnType); } static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { while (isa(DC)) { DC = getEffectiveParentContext(DC); } return DC; } /// isStd - Return whether a given namespace is the 'std' namespace. static bool isStd(const NamespaceDecl *NS) { if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) ->isTranslationUnit()) return false; const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); return II && II->isStr("std"); } // isStdNamespace - Return whether a given decl context is a toplevel 'std' // namespace. static bool isStdNamespace(const DeclContext *DC) { if (!DC->isNamespace()) return false; return isStd(cast(DC)); } static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { // Check if we have a function template. if (const FunctionDecl *FD = dyn_cast(ND)){ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { TemplateArgs = FD->getTemplateSpecializationArgs(); return TD; } } // Check if we have a class template. if (const ClassTemplateSpecializationDecl *Spec = dyn_cast(ND)) { TemplateArgs = &Spec->getTemplateArgs(); return Spec->getSpecializedTemplate(); } return 0; } static bool isLambda(const NamedDecl *ND) { const CXXRecordDecl *Record = dyn_cast(ND); if (!Record) return false; return Record->isLambda(); } void CXXNameMangler::mangleName(const NamedDecl *ND) { // ::= // ::= // ::= // ::= // const DeclContext *DC = getEffectiveDeclContext(ND); // If this is an extern variable declared locally, the relevant DeclContext // is that of the containing namespace, or the translation unit. // FIXME: This is a hack; extern variables declared locally should have // a proper semantic declaration context! if (isa(DC) && ND->hasLinkage() && !isLambda(ND)) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = getEffectiveParentContext(DC); else if (GetLocalClassDecl(ND)) { mangleLocalName(ND); return; } DC = IgnoreLinkageSpecDecls(DC); if (DC->isTranslationUnit() || isStdNamespace(DC)) { // Check if we have a template. const TemplateArgumentList *TemplateArgs = 0; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleUnscopedTemplateName(TD); TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); mangleTemplateArgs(*TemplateParameters, *TemplateArgs); return; } mangleUnscopedName(ND); return; } if (isa(DC) || isa(DC)) { mangleLocalName(ND); return; } mangleNestedName(ND, DC); } void CXXNameMangler::mangleName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); if (DC->isTranslationUnit() || isStdNamespace(DC)) { mangleUnscopedTemplateName(TD); TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs); } else { mangleNestedName(TD, TemplateArgs, NumTemplateArgs); } } void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) { // ::= // ::= St # ::std:: if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) Out << "St"; mangleUnqualifiedName(ND); } void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) { // ::= // ::= if (mangleSubstitution(ND)) return; // ::= if (const TemplateTemplateParmDecl *TTP = dyn_cast(ND)) { mangleTemplateParameter(TTP->getIndex()); return; } mangleUnscopedName(ND->getTemplatedDecl()); addSubstitution(ND); } void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) { // ::= // ::= if (TemplateDecl *TD = Template.getAsTemplateDecl()) return mangleUnscopedTemplateName(TD); if (mangleSubstitution(Template)) return; DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); assert(Dependent && "Not a dependent template name?"); if (const IdentifierInfo *Id = Dependent->getIdentifier()) mangleSourceName(Id); else mangleOperatorName(Dependent->getOperator(), UnknownArity); addSubstitution(Template); } void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { // ABI: // Floating-point literals are encoded using a fixed-length // lowercase hexadecimal string corresponding to the internal // representation (IEEE on Itanium), high-order bytes first, // without leading zeroes. For example: "Lf bf800000 E" is -1.0f // on Itanium. // The 'without leading zeroes' thing seems to be an editorial // mistake; see the discussion on cxx-abi-dev beginning on // 2012-01-16. // Our requirements here are just barely weird enough to justify // using a custom algorithm instead of post-processing APInt::toString(). llvm::APInt valueBits = f.bitcastToAPInt(); unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; assert(numCharacters != 0); // Allocate a buffer of the right number of characters. llvm::SmallVector buffer; buffer.set_size(numCharacters); // Fill the buffer left-to-right. for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { // The bit-index of the next hex digit. unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); // Project out 4 bits starting at 'digitIndex'. llvm::integerPart hexDigit = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth]; hexDigit >>= (digitBitIndex % llvm::integerPartWidth); hexDigit &= 0xF; // Map that over to a lowercase hex digit. static const char charForHex[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; buffer[stringIndex] = charForHex[hexDigit]; } Out.write(buffer.data(), numCharacters); } void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { if (Value.isSigned() && Value.isNegative()) { Out << 'n'; Value.abs().print(Out, /*signed*/ false); } else { Value.print(Out, /*signed*/ false); } } void CXXNameMangler::mangleNumber(int64_t Number) { // ::= [n] if (Number < 0) { Out << 'n'; Number = -Number; } Out << Number; } void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { // ::= h _ // ::= v _ // ::= # non-virtual base override // ::= _ // # virtual base override, with vcall offset if (!Virtual) { Out << 'h'; mangleNumber(NonVirtual); Out << '_'; return; } Out << 'v'; mangleNumber(NonVirtual); Out << '_'; mangleNumber(Virtual); Out << '_'; } void CXXNameMangler::manglePrefix(QualType type) { if (const TemplateSpecializationType *TST = type->getAs()) { if (!mangleSubstitution(QualType(TST, 0))) { mangleTemplatePrefix(TST->getTemplateName()); // FIXME: GCC does not appear to mangle the template arguments when // the template in question is a dependent template name. Should we // emulate that badness? mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(), TST->getNumArgs()); addSubstitution(QualType(TST, 0)); } } else if (const DependentTemplateSpecializationType *DTST = type->getAs()) { TemplateName Template = getASTContext().getDependentTemplateName(DTST->getQualifier(), DTST->getIdentifier()); mangleTemplatePrefix(Template); // FIXME: GCC does not appear to mangle the template arguments when // the template in question is a dependent template name. Should we // emulate that badness? mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); } else { // We use the QualType mangle type variant here because it handles // substitutions. mangleType(type); } } /// Mangle everything prior to the base-unresolved-name in an unresolved-name. /// /// \param firstQualifierLookup - the entity found by unqualified lookup /// for the first name in the qualifier, if this is for a member expression /// \param recursive - true if this is being called recursively, /// i.e. if there is more prefix "to the right". void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, bool recursive) { // x, ::x // ::= [gs] // T::x / decltype(p)::x // ::= sr // T::N::x /decltype(p)::N::x // ::= srN + E // // A::x, N::y, A::z; "gs" means leading "::" // ::= [gs] sr + E // switch (qualifier->getKind()) { case NestedNameSpecifier::Global: Out << "gs"; // We want an 'sr' unless this is the entire NNS. if (recursive) Out << "sr"; // We never want an 'E' here. return; case NestedNameSpecifier::Namespace: if (qualifier->getPrefix()) mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); else Out << "sr"; mangleSourceName(qualifier->getAsNamespace()->getIdentifier()); break; case NestedNameSpecifier::NamespaceAlias: if (qualifier->getPrefix()) mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); else Out << "sr"; mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier()); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { const Type *type = qualifier->getAsType(); // We only want to use an unresolved-type encoding if this is one of: // - a decltype // - a template type parameter // - a template template parameter with arguments // In all of these cases, we should have no prefix. if (qualifier->getPrefix()) { mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); } else { // Otherwise, all the cases want this. Out << "sr"; } // Only certain other types are valid as prefixes; enumerate them. switch (type->getTypeClass()) { case Type::Builtin: case Type::Complex: case Type::Pointer: case Type::BlockPointer: case Type::LValueReference: case Type::RValueReference: case Type::MemberPointer: case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: case Type::DependentSizedArray: case Type::DependentSizedExtVector: case Type::Vector: case Type::ExtVector: case Type::FunctionProto: case Type::FunctionNoProto: case Type::Enum: case Type::Paren: case Type::Elaborated: case Type::Attributed: case Type::Auto: case Type::PackExpansion: case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: case Type::Atomic: llvm_unreachable("type is illegal as a nested name specifier"); case Type::SubstTemplateTypeParmPack: // FIXME: not clear how to mangle this! // template class A { // template void foo(decltype(T::foo(U())) x...); // }; Out << "_SUBSTPACK_"; break; // ::= // ::= // ::= // (this last is not official yet) case Type::TypeOfExpr: case Type::TypeOf: case Type::Decltype: case Type::TemplateTypeParm: case Type::UnaryTransform: case Type::SubstTemplateTypeParm: unresolvedType: assert(!qualifier->getPrefix()); // We only get here recursively if we're followed by identifiers. if (recursive) Out << 'N'; // This seems to do everything we want. It's not really // sanctioned for a substituted template parameter, though. mangleType(QualType(type, 0)); // We never want to print 'E' directly after an unresolved-type, // so we return directly. return; case Type::Typedef: mangleSourceName(cast(type)->getDecl()->getIdentifier()); break; case Type::UnresolvedUsing: mangleSourceName(cast(type)->getDecl() ->getIdentifier()); break; case Type::Record: mangleSourceName(cast(type)->getDecl()->getIdentifier()); break; case Type::TemplateSpecialization: { const TemplateSpecializationType *tst = cast(type); TemplateName name = tst->getTemplateName(); switch (name.getKind()) { case TemplateName::Template: case TemplateName::QualifiedTemplate: { TemplateDecl *temp = name.getAsTemplateDecl(); // If the base is a template template parameter, this is an // unresolved type. assert(temp && "no template for template specialization type"); if (isa(temp)) goto unresolvedType; mangleSourceName(temp->getIdentifier()); break; } case TemplateName::OverloadedTemplate: case TemplateName::DependentTemplate: llvm_unreachable("invalid base for a template specialization type"); case TemplateName::SubstTemplateTemplateParm: { SubstTemplateTemplateParmStorage *subst = name.getAsSubstTemplateTemplateParm(); mangleExistingSubstitution(subst->getReplacement()); break; } case TemplateName::SubstTemplateTemplateParmPack: { // FIXME: not clear how to mangle this! // template