//===--- ParseExpr.cpp - Expression Parsing -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief Provides the Expression parsing implementation. /// /// Expressions in C99 basically consist of a bunch of binary operators with /// unary operators and other random stuff at the leaves. /// /// In the C99 grammar, these unary operators bind tightest and are represented /// as the 'cast-expression' production. Everything else is either a binary /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are /// handled by ParseCastExpression, the higher level pieces are handled by /// ParseBinaryExpression. /// //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/TypoCorrection.h" #include "clang/Basic/PrettyStackTrace.h" #include "RAIIObjectsForParser.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallString.h" using namespace clang; /// \brief Return the precedence of the specified binary operator token. static prec::Level getBinOpPrecedence(tok::TokenKind Kind, bool GreaterThanIsOperator, bool CPlusPlus0x) { switch (Kind) { case tok::greater: // C++ [temp.names]p3: // [...] When parsing a template-argument-list, the first // non-nested > is taken as the ending delimiter rather than a // greater-than operator. [...] if (GreaterThanIsOperator) return prec::Relational; return prec::Unknown; case tok::greatergreater: // C++0x [temp.names]p3: // // [...] Similarly, the first non-nested >> is treated as two // consecutive but distinct > tokens, the first of which is // taken as the end of the template-argument-list and completes // the template-id. [...] if (GreaterThanIsOperator || !CPlusPlus0x) return prec::Shift; return prec::Unknown; default: return prec::Unknown; case tok::comma: return prec::Comma; case tok::equal: case tok::starequal: case tok::slashequal: case tok::percentequal: case tok::plusequal: case tok::minusequal: case tok::lesslessequal: case tok::greatergreaterequal: case tok::ampequal: case tok::caretequal: case tok::pipeequal: return prec::Assignment; case tok::question: return prec::Conditional; case tok::pipepipe: return prec::LogicalOr; case tok::ampamp: return prec::LogicalAnd; case tok::pipe: return prec::InclusiveOr; case tok::caret: return prec::ExclusiveOr; case tok::amp: return prec::And; case tok::exclaimequal: case tok::equalequal: return prec::Equality; case tok::lessequal: case tok::less: case tok::greaterequal: return prec::Relational; case tok::lessless: return prec::Shift; case tok::plus: case tok::minus: return prec::Additive; case tok::percent: case tok::slash: case tok::star: return prec::Multiplicative; case tok::periodstar: case tok::arrowstar: return prec::PointerToMember; } } /// \brief Simple precedence-based parser for binary/ternary operators. /// /// Note: we diverge from the C99 grammar when parsing the assignment-expression /// production. C99 specifies that the LHS of an assignment operator should be /// parsed as a unary-expression, but consistency dictates that it be a /// conditional-expession. In practice, the important thing here is that the /// LHS of an assignment has to be an l-value, which productions between /// unary-expression and conditional-expression don't produce. Because we want /// consistency, we parse the LHS as a conditional-expression, then check for /// l-value-ness in semantic analysis stages. /// /// \verbatim /// pm-expression: [C++ 5.5] /// cast-expression /// pm-expression '.*' cast-expression /// pm-expression '->*' cast-expression /// /// multiplicative-expression: [C99 6.5.5] /// Note: in C++, apply pm-expression instead of cast-expression /// cast-expression /// multiplicative-expression '*' cast-expression /// multiplicative-expression '/' cast-expression /// multiplicative-expression '%' cast-expression /// /// additive-expression: [C99 6.5.6] /// multiplicative-expression /// additive-expression '+' multiplicative-expression /// additive-expression '-' multiplicative-expression /// /// shift-expression: [C99 6.5.7] /// additive-expression /// shift-expression '<<' additive-expression /// shift-expression '>>' additive-expression /// /// relational-expression: [C99 6.5.8] /// shift-expression /// relational-expression '<' shift-expression /// relational-expression '>' shift-expression /// relational-expression '<=' shift-expression /// relational-expression '>=' shift-expression /// /// equality-expression: [C99 6.5.9] /// relational-expression /// equality-expression '==' relational-expression /// equality-expression '!=' relational-expression /// /// AND-expression: [C99 6.5.10] /// equality-expression /// AND-expression '&' equality-expression /// /// exclusive-OR-expression: [C99 6.5.11] /// AND-expression /// exclusive-OR-expression '^' AND-expression /// /// inclusive-OR-expression: [C99 6.5.12] /// exclusive-OR-expression /// inclusive-OR-expression '|' exclusive-OR-expression /// /// logical-AND-expression: [C99 6.5.13] /// inclusive-OR-expression /// logical-AND-expression '&&' inclusive-OR-expression /// /// logical-OR-expression: [C99 6.5.14] /// logical-AND-expression /// logical-OR-expression '||' logical-AND-expression /// /// conditional-expression: [C99 6.5.15] /// logical-OR-expression /// logical-OR-expression '?' expression ':' conditional-expression /// [GNU] logical-OR-expression '?' ':' conditional-expression /// [C++] the third operand is an assignment-expression /// /// assignment-expression: [C99 6.5.16] /// conditional-expression /// unary-expression assignment-operator assignment-expression /// [C++] throw-expression [C++ 15] /// /// assignment-operator: one of /// = *= /= %= += -= <<= >>= &= ^= |= /// /// expression: [C99 6.5.17] /// assignment-expression ...[opt] /// expression ',' assignment-expression ...[opt] /// \endverbatim ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { ExprResult LHS(ParseAssignmentExpression(isTypeCast)); return ParseRHSOfBinaryExpression(LHS, prec::Comma); } /// This routine is called when the '@' is seen and consumed. /// Current token is an Identifier and is not a 'try'. This /// routine is necessary to disambiguate \@try-statement from, /// for example, \@encode-expression. /// ExprResult Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { ExprResult LHS(ParseObjCAtExpression(AtLoc)); return ParseRHSOfBinaryExpression(LHS, prec::Comma); } /// This routine is called when a leading '__extension__' is seen and /// consumed. This is necessary because the token gets consumed in the /// process of disambiguating between an expression and a declaration. ExprResult Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { ExprResult LHS(true); { // Silence extension warnings in the sub-expression ExtensionRAIIObject O(Diags); LHS = ParseCastExpression(false); } if (!LHS.isInvalid()) LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, LHS.take()); return ParseRHSOfBinaryExpression(LHS, prec::Comma); } /// \brief Parse an expr that doesn't include (top-level) commas. ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { if (Tok.is(tok::code_completion)) { Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression); cutOffParsing(); return ExprError(); } if (Tok.is(tok::kw_throw)) return ParseThrowExpression(); ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false, /*isAddressOfOperand=*/false, isTypeCast); return ParseRHSOfBinaryExpression(LHS, prec::Assignment); } /// \brief Parse an assignment expression where part of an Objective-C message /// send has already been parsed. /// /// In this case \p LBracLoc indicates the location of the '[' of the message /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating /// the receiver of the message. /// /// Since this handles full assignment-expression's, it handles postfix /// expressions and other binary operators for these expressions as well. ExprResult Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, SourceLocation SuperLoc, ParsedType ReceiverType, Expr *ReceiverExpr) { ExprResult R = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, ReceiverType, ReceiverExpr); R = ParsePostfixExpressionSuffix(R); return ParseRHSOfBinaryExpression(R, prec::Assignment); } ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) { // C++03 [basic.def.odr]p2: // An expression is potentially evaluated unless it appears where an // integral constant expression is required (see 5.19) [...]. // C++98 and C++11 have no such rule, but this is only a defect in C++98. EnterExpressionEvaluationContext Unevaluated(Actions, Sema::ConstantEvaluated); ExprResult LHS(ParseCastExpression(false, false, isTypeCast)); ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); return Actions.ActOnConstantExpression(Res); } /// \brief Parse a binary expression that starts with \p LHS and has a /// precedence of at least \p MinPrec. ExprResult Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, getLangOpts().CPlusPlus0x); SourceLocation ColonLoc; while (1) { // If this token has a lower precedence than we are allowed to parse (e.g. // because we are called recursively, or because the token is not a binop), // then we are done! if (NextTokPrec < MinPrec) return LHS; // Consume the operator, saving the operator token for error reporting. Token OpToken = Tok; ConsumeToken(); // Special case handling for the ternary operator. ExprResult TernaryMiddle(true); if (NextTokPrec == prec::Conditional) { if (Tok.isNot(tok::colon)) { // Don't parse FOO:BAR as if it were a typo for FOO::BAR. ColonProtectionRAIIObject X(*this); // Handle this production specially: // logical-OR-expression '?' expression ':' conditional-expression // In particular, the RHS of the '?' is 'expression', not // 'logical-OR-expression' as we might expect. TernaryMiddle = ParseExpression(); if (TernaryMiddle.isInvalid()) { LHS = ExprError(); TernaryMiddle = 0; } } else { // Special case handling of "X ? Y : Z" where Y is empty: // logical-OR-expression '?' ':' conditional-expression [GNU] TernaryMiddle = 0; Diag(Tok, diag::ext_gnu_conditional_expr); } if (Tok.is(tok::colon)) { // Eat the colon. ColonLoc = ConsumeToken(); } else { // Otherwise, we're missing a ':'. Assume that this was a typo that // the user forgot. If we're not in a macro expansion, we can suggest // a fixit hint. If there were two spaces before the current token, // suggest inserting the colon in between them, otherwise insert ": ". SourceLocation FILoc = Tok.getLocation(); const char *FIText = ": "; const SourceManager &SM = PP.getSourceManager(); if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { assert(FILoc.isFileID()); bool IsInvalid = false; const char *SourcePtr = SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); if (!IsInvalid && *SourcePtr == ' ') { SourcePtr = SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); if (!IsInvalid && *SourcePtr == ' ') { FILoc = FILoc.getLocWithOffset(-1); FIText = ":"; } } } Diag(Tok, diag::err_expected_colon) << FixItHint::CreateInsertion(FILoc, FIText); Diag(OpToken, diag::note_matching) << "?"; ColonLoc = Tok.getLocation(); } } // Code completion for the right-hand side of an assignment expression // goes through a special hook that takes the left-hand side into account. if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) { Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get()); cutOffParsing(); return ExprError(); } // Parse another leaf here for the RHS of the operator. // ParseCastExpression works here because all RHS expressions in C have it // as a prefix, at least. However, in C++, an assignment-expression could // be a throw-expression, which is not a valid cast-expression. // Therefore we need some special-casing here. // Also note that the third operand of the conditional operator is // an assignment-expression in C++, and in C++11, we can have a // braced-init-list on the RHS of an assignment. For better diagnostics, // parse as if we were allowed braced-init-lists everywhere, and check that // they only appear on the RHS of assignments later. ExprResult RHS; bool RHSIsInitList = false; if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) { RHS = ParseBraceInitializer(); RHSIsInitList = true; } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) RHS = ParseAssignmentExpression(); else RHS = ParseCastExpression(false); if (RHS.isInvalid()) LHS = ExprError(); // Remember the precedence of this operator and get the precedence of the // operator immediately to the right of the RHS. prec::Level ThisPrec = NextTokPrec; NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, getLangOpts().CPlusPlus0x); // Assignment and conditional expressions are right-associative. bool isRightAssoc = ThisPrec == prec::Conditional || ThisPrec == prec::Assignment; // Get the precedence of the operator to the right of the RHS. If it binds // more tightly with RHS than we do, evaluate it completely first. if (ThisPrec < NextTokPrec || (ThisPrec == NextTokPrec && isRightAssoc)) { if (!RHS.isInvalid() && RHSIsInitList) { Diag(Tok, diag::err_init_list_bin_op) << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); RHS = ExprError(); } // If this is left-associative, only parse things on the RHS that bind // more tightly than the current operator. If it is left-associative, it // is okay, to bind exactly as tightly. For example, compile A=B=C=D as // A=(B=(C=D)), where each paren is a level of recursion here. // The function takes ownership of the RHS. RHS = ParseRHSOfBinaryExpression(RHS, static_cast(ThisPrec + !isRightAssoc)); RHSIsInitList = false; if (RHS.isInvalid()) LHS = ExprError(); NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, getLangOpts().CPlusPlus0x); } assert(NextTokPrec <= ThisPrec && "Recursion didn't work!"); if (!RHS.isInvalid() && RHSIsInitList) { if (ThisPrec == prec::Assignment) { Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) << Actions.getExprRange(RHS.get()); } else { Diag(OpToken, diag::err_init_list_bin_op) << /*RHS*/1 << PP.getSpelling(OpToken) << Actions.getExprRange(RHS.get()); LHS = ExprError(); } } if (!LHS.isInvalid()) { // Combine the LHS and RHS into the LHS (e.g. build AST). if (TernaryMiddle.isInvalid()) { // If we're using '>>' as an operator within a template // argument list (in C++98), suggest the addition of // parentheses so that the code remains well-formed in C++0x. if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) SuggestParentheses(OpToken.getLocation(), diag::warn_cxx0x_right_shift_in_template_arg, SourceRange(Actions.getExprRange(LHS.get()).getBegin(), Actions.getExprRange(RHS.get()).getEnd())); LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), OpToken.getKind(), LHS.take(), RHS.take()); } else LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc, LHS.take(), TernaryMiddle.take(), RHS.take()); } } } /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true, /// parse a unary-expression. /// /// \p isAddressOfOperand exists because an id-expression that is the /// operand of address-of gets special treatment due to member pointers. /// ExprResult Parser::ParseCastExpression(bool isUnaryExpression, bool isAddressOfOperand, TypeCastState isTypeCast) { bool NotCastExpr; ExprResult Res = ParseCastExpression(isUnaryExpression, isAddressOfOperand, NotCastExpr, isTypeCast); if (NotCastExpr) Diag(Tok, diag::err_expected_expression); return Res; } namespace { class CastExpressionIdValidator : public CorrectionCandidateCallback { public: CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes) : AllowNonTypes(AllowNonTypes) { WantTypeSpecifiers = AllowTypes; } virtual bool ValidateCandidate(const TypoCorrection &candidate) { NamedDecl *ND = candidate.getCorrectionDecl(); if (!ND) return candidate.isKeyword(); if (isa(ND)) return WantTypeSpecifiers; return AllowNonTypes; } private: bool AllowNonTypes; }; } /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse /// a unary-expression. /// /// \p isAddressOfOperand exists because an id-expression that is the operand /// of address-of gets special treatment due to member pointers. NotCastExpr /// is set to true if the token is not the start of a cast-expression, and no /// diagnostic is emitted in this case. /// /// \verbatim /// cast-expression: [C99 6.5.4] /// unary-expression /// '(' type-name ')' cast-expression /// /// unary-expression: [C99 6.5.3] /// postfix-expression /// '++' unary-expression /// '--' unary-expression /// unary-operator cast-expression /// 'sizeof' unary-expression /// 'sizeof' '(' type-name ')' /// [C++11] 'sizeof' '...' '(' identifier ')' /// [GNU] '__alignof' unary-expression /// [GNU] '__alignof' '(' type-name ')' /// [C11] '_Alignof' '(' type-name ')' /// [C++11] 'alignof' '(' type-id ')' /// [GNU] '&&' identifier /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] /// [C++] new-expression /// [C++] delete-expression /// /// unary-operator: one of /// '&' '*' '+' '-' '~' '!' /// [GNU] '__extension__' '__real' '__imag' /// /// primary-expression: [C99 6.5.1] /// [C99] identifier /// [C++] id-expression /// constant /// string-literal /// [C++] boolean-literal [C++ 2.13.5] /// [C++11] 'nullptr' [C++11 2.14.7] /// [C++11] user-defined-literal /// '(' expression ')' /// [C11] generic-selection /// '__func__' [C99 6.4.2.2] /// [GNU] '__FUNCTION__' /// [GNU] '__PRETTY_FUNCTION__' /// [GNU] '(' compound-statement ')' /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' /// assign-expr ')' /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' /// [GNU] '__null' /// [OBJC] '[' objc-message-expr ']' /// [OBJC] '\@selector' '(' objc-selector-arg ')' /// [OBJC] '\@protocol' '(' identifier ')' /// [OBJC] '\@encode' '(' type-name ')' /// [OBJC] objc-string-literal /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] /// [C++] 'this' [C++ 9.3.2] /// [G++] unary-type-trait '(' type-id ')' /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] /// [EMBT] array-type-trait '(' type-id ',' integer ')' /// [clang] '^' block-literal /// /// constant: [C99 6.4.4] /// integer-constant /// floating-constant /// enumeration-constant -> identifier /// character-constant /// /// id-expression: [C++ 5.1] /// unqualified-id /// qualified-id /// /// unqualified-id: [C++ 5.1] /// identifier /// operator-function-id /// conversion-function-id /// '~' class-name /// template-id /// /// new-expression: [C++ 5.3.4] /// '::'[opt] 'new' new-placement[opt] new-type-id /// new-initializer[opt] /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' /// new-initializer[opt] /// /// delete-expression: [C++ 5.3.5] /// '::'[opt] 'delete' cast-expression /// '::'[opt] 'delete' '[' ']' cast-expression /// /// [GNU/Embarcadero] unary-type-trait: /// '__is_arithmetic' /// '__is_floating_point' /// '__is_integral' /// '__is_lvalue_expr' /// '__is_rvalue_expr' /// '__is_complete_type' /// '__is_void' /// '__is_array' /// '__is_function' /// '__is_reference' /// '__is_lvalue_reference' /// '__is_rvalue_reference' /// '__is_fundamental' /// '__is_object' /// '__is_scalar' /// '__is_compound' /// '__is_pointer' /// '__is_member_object_pointer' /// '__is_member_function_pointer' /// '__is_member_pointer' /// '__is_const' /// '__is_volatile' /// '__is_trivial' /// '__is_standard_layout' /// '__is_signed' /// '__is_unsigned' /// /// [GNU] unary-type-trait: /// '__has_nothrow_assign' /// '__has_nothrow_copy' /// '__has_nothrow_constructor' /// '__has_trivial_assign' [TODO] /// '__has_trivial_copy' [TODO] /// '__has_trivial_constructor' /// '__has_trivial_destructor' /// '__has_virtual_destructor' /// '__is_abstract' [TODO] /// '__is_class' /// '__is_empty' [TODO] /// '__is_enum' /// '__is_final' /// '__is_pod' /// '__is_polymorphic' /// '__is_trivial' /// '__is_union' /// /// [Clang] unary-type-trait: /// '__trivially_copyable' /// /// binary-type-trait: /// [GNU] '__is_base_of' /// [MS] '__is_convertible_to' /// '__is_convertible' /// '__is_same' /// /// [Embarcadero] array-type-trait: /// '__array_rank' /// '__array_extent' /// /// [Embarcadero] expression-trait: /// '__is_lvalue_expr' /// '__is_rvalue_expr' /// \endverbatim /// ExprResult Parser::ParseCastExpression(bool isUnaryExpression, bool isAddressOfOperand, bool &NotCastExpr, TypeCastState isTypeCast) { ExprResult Res; tok::TokenKind SavedKind = Tok.getKind(); NotCastExpr = false; // This handles all of cast-expression, unary-expression, postfix-expression, // and primary-expression. We handle them together like this for efficiency // and to simplify handling of an expression starting with a '(' token: which // may be one of a parenthesized expression, cast-expression, compound literal // expression, or statement expression. // // If the parsed tokens consist of a primary-expression, the cases below // break out of the switch; at the end we call ParsePostfixExpressionSuffix // to handle the postfix expression suffixes. Cases that cannot be followed // by postfix exprs should return without invoking // ParsePostfixExpressionSuffix. switch (SavedKind) { case tok::l_paren: { // If this expression is limited to being a unary-expression, the parent can // not start a cast expression. ParenParseOption ParenExprType = (isUnaryExpression && !getLangOpts().CPlusPlus)? CompoundLiteral : CastExpr; ParsedType CastTy; SourceLocation RParenLoc; { // The inside of the parens don't need to be a colon protected scope, and // isn't immediately a message send. ColonProtectionRAIIObject X(*this, false); Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, isTypeCast == IsTypeCast, CastTy, RParenLoc); } switch (ParenExprType) { case SimpleExpr: break; // Nothing else to do. case CompoundStmt: break; // Nothing else to do. case CompoundLiteral: // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of // postfix-expression exist, parse them now. break; case CastExpr: // We have parsed the cast-expression and no postfix-expr pieces are // following. return Res; } break; } // primary-expression case tok::numeric_constant: // constant: integer-constant // constant: floating-constant Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); ConsumeToken(); break; case tok::kw_true: case tok::kw_false: return ParseCXXBoolLiteral(); case tok::kw___objc_yes: case tok::kw___objc_no: return ParseObjCBoolLiteral(); case tok::kw_nullptr: Diag(Tok, diag::warn_cxx98_compat_nullptr); return Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); case tok::annot_primary_expr: assert(Res.get() == 0 && "Stray primary-expression annotation?"); Res = getExprAnnotation(Tok); ConsumeToken(); break; case tok::kw_decltype: case tok::identifier: { // primary-expression: identifier // unqualified-id: identifier // constant: enumeration-constant // Turn a potentially qualified name into a annot_typename or // annot_cxxscope if it would be valid. This handles things like x::y, etc. if (getLangOpts().CPlusPlus) { // Avoid the unnecessary parse-time lookup in the common case // where the syntax forbids a type. const Token &Next = NextToken(); // If this identifier was reverted from a token ID, and the next token // is a parenthesis, this is likely to be a use of a type trait. Check // those tokens. if (Next.is(tok::l_paren) && Tok.is(tok::identifier) && Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { IdentifierInfo *II = Tok.getIdentifierInfo(); // Build up the mapping of revertable type traits, for future use. if (RevertableTypeTraits.empty()) { #define RTT_JOIN2(X) X #define RTT_JOIN(X,Y) X##Y #define REVERTABLE_TYPE_TRAIT(Name) \ RevertableTypeTraits[PP.getIdentifierInfo(#Name)] \ = RTT_JOIN(tok::kw_,Name) REVERTABLE_TYPE_TRAIT(__is_arithmetic); REVERTABLE_TYPE_TRAIT(__is_convertible); REVERTABLE_TYPE_TRAIT(__is_empty); REVERTABLE_TYPE_TRAIT(__is_floating_point); REVERTABLE_TYPE_TRAIT(__is_function); REVERTABLE_TYPE_TRAIT(__is_fundamental); REVERTABLE_TYPE_TRAIT(__is_integral); REVERTABLE_TYPE_TRAIT(__is_member_function_pointer); REVERTABLE_TYPE_TRAIT(__is_member_pointer); REVERTABLE_TYPE_TRAIT(__is_pod); REVERTABLE_TYPE_TRAIT(__is_pointer); REVERTABLE_TYPE_TRAIT(__is_same); REVERTABLE_TYPE_TRAIT(__is_scalar); REVERTABLE_TYPE_TRAIT(__is_signed); REVERTABLE_TYPE_TRAIT(__is_unsigned); REVERTABLE_TYPE_TRAIT(__is_void); #undef REVERTABLE_TYPE_TRAIT #undef RTT_JOIN2 #undef RTT_JOIN } // If we find that this is in fact the name of a type trait, // update the token kind in place and parse again to treat it as // the appropriate kind of type trait. llvm::SmallDenseMap::iterator Known = RevertableTypeTraits.find(II); if (Known != RevertableTypeTraits.end()) { Tok.setKind(Known->second); return ParseCastExpression(isUnaryExpression, isAddressOfOperand, NotCastExpr, isTypeCast); } } if (Next.is(tok::coloncolon) || (!ColonIsSacred && Next.is(tok::colon)) || Next.is(tok::less) || Next.is(tok::l_paren) || Next.is(tok::l_brace)) { // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. if (TryAnnotateTypeOrScopeToken()) return ExprError(); if (!Tok.is(tok::identifier)) return ParseCastExpression(isUnaryExpression, isAddressOfOperand); } } // Consume the identifier so that we can see if it is followed by a '(' or // '.'. IdentifierInfo &II = *Tok.getIdentifierInfo(); SourceLocation ILoc = ConsumeToken(); // Support 'Class.property' and 'super.property' notation. if (getLangOpts().ObjC1 && Tok.is(tok::period) && (Actions.getTypeName(II, ILoc, getCurScope()) || // Allow the base to be 'super' if in an objc-method. (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { ConsumeToken(); // Allow either an identifier or the keyword 'class' (in C++). if (Tok.isNot(tok::identifier) && !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { Diag(Tok, diag::err_expected_property_name); return ExprError(); } IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); SourceLocation PropertyLoc = ConsumeToken(); Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName, ILoc, PropertyLoc); break; } // In an Objective-C method, if we have "super" followed by an identifier, // the token sequence is ill-formed. However, if there's a ':' or ']' after // that identifier, this is probably a message send with a missing open // bracket. Treat it as such. if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression && getCurScope()->isInObjcMethodScope() && ((Tok.is(tok::identifier) && (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || Tok.is(tok::code_completion))) { Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(), 0); break; } // If we have an Objective-C class name followed by an identifier // and either ':' or ']', this is an Objective-C class message // send that's missing the opening '['. Recovery // appropriately. Also take this path if we're performing code // completion after an Objective-C class name. if (getLangOpts().ObjC1 && ((Tok.is(tok::identifier) && !InMessageExpression) || Tok.is(tok::code_completion))) { const Token& Next = NextToken(); if (Tok.is(tok::code_completion) || Next.is(tok::colon) || Next.is(tok::r_square)) if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) if (Typ.get()->isObjCObjectOrInterfaceType()) { // Fake up a Declarator to use with ActOnTypeName. DeclSpec DS(AttrFactory); DS.SetRangeStart(ILoc); DS.SetRangeEnd(ILoc); const char *PrevSpec = 0; unsigned DiagID; DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ); Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); if (Ty.isInvalid()) break; Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), Ty.get(), 0); break; } } // Make sure to pass down the right value for isAddressOfOperand. if (isAddressOfOperand && isPostfixExpressionSuffixStart()) isAddressOfOperand = false; // Function designators are allowed to be undeclared (C99 6.5.1p2), so we // need to know whether or not this identifier is a function designator or // not. UnqualifiedId Name; CXXScopeSpec ScopeSpec; SourceLocation TemplateKWLoc; CastExpressionIdValidator Validator(isTypeCast != NotTypeCast, isTypeCast != IsTypeCast); Name.setIdentifier(&II, ILoc); Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), isAddressOfOperand, &Validator); break; } case tok::char_constant: // constant: character-constant case tok::wide_char_constant: case tok::utf16_char_constant: case tok::utf32_char_constant: Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); ConsumeToken(); break; case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); ConsumeToken(); break; case tok::string_literal: // primary-expression: string-literal case tok::wide_string_literal: case tok::utf8_string_literal: case tok::utf16_string_literal: case tok::utf32_string_literal: Res = ParseStringLiteralExpression(true); break; case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] Res = ParseGenericSelectionExpression(); break; case tok::kw___builtin_va_arg: case tok::kw___builtin_offsetof: case tok::kw___builtin_choose_expr: case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() return ParseBuiltinPrimaryExpression(); case tok::kw___null: return Actions.ActOnGNUNullExpr(ConsumeToken()); case tok::plusplus: // unary-expression: '++' unary-expression [C99] case tok::minusminus: { // unary-expression: '--' unary-expression [C99] // C++ [expr.unary] has: // unary-expression: // ++ cast-expression // -- cast-expression SourceLocation SavedLoc = ConsumeToken(); Res = ParseCastExpression(!getLangOpts().CPlusPlus); if (!Res.isInvalid()) Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); return Res; } case tok::amp: { // unary-expression: '&' cast-expression // Special treatment because of member pointers SourceLocation SavedLoc = ConsumeToken(); Res = ParseCastExpression(false, true); if (!Res.isInvalid()) Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); return Res; } case tok::star: // unary-expression: '*' cast-expression case tok::plus: // unary-expression: '+' cast-expression case tok::minus: // unary-expression: '-' cast-expression case tok::tilde: // unary-expression: '~' cast-expression case tok::exclaim: // unary-expression: '!' cast-expression case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] SourceLocation SavedLoc = ConsumeToken(); Res = ParseCastExpression(false); if (!Res.isInvalid()) Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); return Res; } case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. SourceLocation SavedLoc = ConsumeToken(); Res = ParseCastExpression(false); if (!Res.isInvalid()) Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); return Res; } case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' if (!getLangOpts().C11) Diag(Tok, diag::ext_c11_alignment) << Tok.getName(); // fallthrough case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' case tok::kw___alignof: // unary-expression: '__alignof' unary-expression // unary-expression: '__alignof' '(' type-name ')' case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression // unary-expression: 'sizeof' '(' type-name ')' case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression return ParseUnaryExprOrTypeTraitExpression(); case tok::ampamp: { // unary-expression: '&&' identifier SourceLocation AmpAmpLoc = ConsumeToken(); if (Tok.isNot(tok::identifier)) return ExprError(Diag(Tok, diag::err_expected_ident)); if (getCurScope()->getFnParent() == 0) return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), Tok.getLocation()); Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); ConsumeToken(); return Res; } case tok::kw_const_cast: case tok::kw_dynamic_cast: case tok::kw_reinterpret_cast: case tok::kw_static_cast: Res = ParseCXXCasts(); break; case tok::kw_typeid: Res = ParseCXXTypeid(); break; case tok::kw___uuidof: Res = ParseCXXUuidof(); break; case tok::kw_this: Res = ParseCXXThis(); break; case tok::annot_typename: if (isStartOfObjCClassMessageMissingOpenBracket()) { ParsedType Type = getTypeAnnotation(Tok); // Fake up a Declarator to use with ActOnTypeName. DeclSpec DS(AttrFactory); DS.SetRangeStart(Tok.getLocation()); DS.SetRangeEnd(Tok.getLastLoc()); const char *PrevSpec = 0; unsigned DiagID; DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), PrevSpec, DiagID, Type); Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); if (Ty.isInvalid()) break; ConsumeToken(); Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), Ty.get(), 0); break; } // Fall through case tok::annot_decltype: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_bool: case tok::kw_short: case tok::kw_int: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw_void: case tok::kw_typename: case tok::kw_typeof: case tok::kw___vector: { if (!getLangOpts().CPlusPlus) { Diag(Tok, diag::err_expected_expression); return ExprError(); } if (SavedKind == tok::kw_typename) { // postfix-expression: typename-specifier '(' expression-list[opt] ')' // typename-specifier braced-init-list if (TryAnnotateTypeOrScopeToken()) return ExprError(); } // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' // simple-type-specifier braced-init-list // DeclSpec DS(AttrFactory); ParseCXXSimpleTypeSpecifier(DS); if (Tok.isNot(tok::l_paren) && (!getLangOpts().CPlusPlus0x || Tok.isNot(tok::l_brace))) return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) << DS.getSourceRange()); if (Tok.is(tok::l_brace)) Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); Res = ParseCXXTypeConstructExpression(DS); break; } case tok::annot_cxxscope: { // [C++] id-expression: qualified-id // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. // (We can end up in this situation after tentative parsing.) if (TryAnnotateTypeOrScopeToken()) return ExprError(); if (!Tok.is(tok::annot_cxxscope)) return ParseCastExpression(isUnaryExpression, isAddressOfOperand, NotCastExpr, isTypeCast); Token Next = NextToken(); if (Next.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); if (TemplateId->Kind == TNK_Type_template) { // We have a qualified template-id that we know refers to a // type, translate it into a type and continue parsing as a // cast expression. CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false); AnnotateTemplateIdTokenAsType(); return ParseCastExpression(isUnaryExpression, isAddressOfOperand, NotCastExpr, isTypeCast); } } // Parse as an id-expression. Res = ParseCXXIdExpression(isAddressOfOperand); break; } case tok::annot_template_id: { // [C++] template-id TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Type_template) { // We have a template-id that we know refers to a type, // translate it into a type and continue parsing as a cast // expression. AnnotateTemplateIdTokenAsType(); return ParseCastExpression(isUnaryExpression, isAddressOfOperand, NotCastExpr, isTypeCast); } // Fall through to treat the template-id as an id-expression. } case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id Res = ParseCXXIdExpression(isAddressOfOperand); break; case tok::coloncolon: { // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken // annotates the token, tail recurse. if (TryAnnotateTypeOrScopeToken()) return ExprError(); if (!Tok.is(tok::coloncolon)) return ParseCastExpression(isUnaryExpression, isAddressOfOperand); // ::new -> [C++] new-expression // ::delete -> [C++] delete-expression SourceLocation CCLoc = ConsumeToken(); if (Tok.is(tok::kw_new)) return ParseCXXNewExpression(true, CCLoc); if (Tok.is(tok::kw_delete)) return ParseCXXDeleteExpression(true, CCLoc); // This is not a type name or scope specifier, it is an invalid expression. Diag(CCLoc, diag::err_expected_expression); return ExprError(); } case tok::kw_new: // [C++] new-expression return ParseCXXNewExpression(false, Tok.getLocation()); case tok::kw_delete: // [C++] delete-expression return ParseCXXDeleteExpression(false, Tok.getLocation()); case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); SourceLocation KeyLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) return ExprError(); // C++11 [expr.unary.noexcept]p1: // The noexcept operator determines whether the evaluation of its operand, // which is an unevaluated operand, can throw an exception. EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); ExprResult Result = ParseExpression(); T.consumeClose(); if (!Result.isInvalid()) Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Result.take(), T.getCloseLocation()); return Result; } case tok::kw___is_abstract: // [GNU] unary-type-trait case tok::kw___is_class: case tok::kw___is_empty: case tok::kw___is_enum: case tok::kw___is_literal: case tok::kw___is_arithmetic: case tok::kw___is_integral: case tok::kw___is_floating_point: case tok::kw___is_complete_type: case tok::kw___is_void: case tok::kw___is_array: case tok::kw___is_function: case tok::kw___is_reference: case tok::kw___is_lvalue_reference: case tok::kw___is_rvalue_reference: case tok::kw___is_fundamental: case tok::kw___is_object: case tok::kw___is_scalar: case tok::kw___is_compound: case tok::kw___is_pointer: case tok::kw___is_member_object_pointer: case tok::kw___is_member_function_pointer: case tok::kw___is_member_pointer: case tok::kw___is_const: case tok::kw___is_volatile: case tok::kw___is_standard_layout: case tok::kw___is_signed: case tok::kw___is_unsigned: case tok::kw___is_literal_type: case tok::kw___is_pod: case tok::kw___is_polymorphic: case tok::kw___is_trivial: case tok::kw___is_trivially_copyable: case tok::kw___is_union: case tok::kw___is_final: case tok::kw___has_trivial_constructor: case tok::kw___has_trivial_copy: case tok::kw___has_trivial_assign: case tok::kw___has_trivial_destructor: case tok::kw___has_nothrow_assign: case tok::kw___has_nothrow_copy: case tok::kw___has_nothrow_constructor: case tok::kw___has_virtual_destructor: return ParseUnaryTypeTrait(); case tok::kw___builtin_types_compatible_p: case tok::kw___is_base_of: case tok::kw___is_same: case tok::kw___is_convertible: case tok::kw___is_convertible_to: case tok::kw___is_trivially_assignable: return ParseBinaryTypeTrait(); case tok::kw___is_trivially_constructible: return ParseTypeTrait(); case tok::kw___array_rank: case tok::kw___array_extent: return ParseArrayTypeTrait(); case tok::kw___is_lvalue_expr: case tok::kw___is_rvalue_expr: return ParseExpressionTrait(); case tok::at: { SourceLocation AtLoc = ConsumeToken(); return ParseObjCAtExpression(AtLoc); } case tok::caret: Res = ParseBlockLiteralExpression(); break; case tok::code_completion: { Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression); cutOffParsing(); return ExprError(); } case tok::l_square: if (getLangOpts().CPlusPlus0x) { if (getLangOpts().ObjC1) { // C++11 lambda expressions and Objective-C message sends both start with a // square bracket. There are three possibilities here: // we have a valid lambda expression, we have an invalid lambda // expression, or we have something that doesn't appear to be a lambda. // If we're in the last case, we fall back to ParseObjCMessageExpression. Res = TryParseLambdaExpression(); if (!Res.isInvalid() && !Res.get()) Res = ParseObjCMessageExpression(); break; } Res = ParseLambdaExpression(); break; } if (getLangOpts().ObjC1) { Res = ParseObjCMessageExpression(); break; } // FALL THROUGH. default: NotCastExpr = true; return ExprError(); } // These can be followed by postfix-expr pieces. return ParsePostfixExpressionSuffix(Res); } /// \brief Once the leading part of a postfix-expression is parsed, this /// method parses any suffixes that apply. /// /// \verbatim /// postfix-expression: [C99 6.5.2] /// primary-expression /// postfix-expression '[' expression ']' /// postfix-expression '[' braced-init-list ']' /// postfix-expression '(' argument-expression-list[opt] ')' /// postfix-expression '.' identifier /// postfix-expression '->' identifier /// postfix-expression '++' /// postfix-expression '--' /// '(' type-name ')' '{' initializer-list '}' /// '(' type-name ')' '{' initializer-list ',' '}' /// /// argument-expression-list: [C99 6.5.2] /// argument-expression ...[opt] /// argument-expression-list ',' assignment-expression ...[opt] /// \endverbatim ExprResult Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { // Now that the primary-expression piece of the postfix-expression has been // parsed, see if there are any postfix-expression pieces here. SourceLocation Loc; while (1) { switch (Tok.getKind()) { case tok::code_completion: if (InMessageExpression) return LHS; Actions.CodeCompletePostfixExpression(getCurScope(), LHS); cutOffParsing(); return ExprError(); case tok::identifier: // If we see identifier: after an expression, and we're not already in a // message send, then this is probably a message send with a missing // opening bracket '['. if (getLangOpts().ObjC1 && !InMessageExpression && (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), ParsedType(), LHS.get()); break; } // Fall through; this isn't a message send. default: // Not a postfix-expression suffix. return LHS; case tok::l_square: { // postfix-expression: p-e '[' expression ']' // If we have a array postfix expression that starts on a new line and // Objective-C is enabled, it is highly likely that the user forgot a // semicolon after the base expression and that the array postfix-expr is // actually another message send. In this case, do some look-ahead to see // if the contents of the square brackets are obviously not a valid // expression and recover by pretending there is no suffix. if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() && isSimpleObjCMessageExpression()) return LHS; // Reject array indices starting with a lambda-expression. '[[' is // reserved for attributes. if (CheckProhibitedCXX11Attribute()) return ExprError(); BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); Loc = T.getOpenLocation(); ExprResult Idx; if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); Idx = ParseBraceInitializer(); } else Idx = ParseExpression(); SourceLocation RLoc = Tok.getLocation(); if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) { LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.take(), Loc, Idx.take(), RLoc); } else LHS = ExprError(); // Match the ']'. T.consumeClose(); break; } case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' // '(' argument-expression-list[opt] ')' tok::TokenKind OpKind = Tok.getKind(); InMessageExpressionRAIIObject InMessage(*this, false); Expr *ExecConfig = 0; BalancedDelimiterTracker PT(*this, tok::l_paren); if (OpKind == tok::lesslessless) { ExprVector ExecConfigExprs; CommaLocsTy ExecConfigCommaLocs; SourceLocation OpenLoc = ConsumeToken(); if (ParseExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) { LHS = ExprError(); } SourceLocation CloseLoc = Tok.getLocation(); if (Tok.is(tok::greatergreatergreater)) { ConsumeToken(); } else if (LHS.isInvalid()) { SkipUntil(tok::greatergreatergreater); } else { // There was an error closing the brackets Diag(Tok, diag::err_expected_ggg); Diag(OpenLoc, diag::note_matching) << "<<<"; SkipUntil(tok::greatergreatergreater); LHS = ExprError(); } if (!LHS.isInvalid()) { if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen, "")) LHS = ExprError(); else Loc = PrevTokLocation; } if (!LHS.isInvalid()) { ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(), OpenLoc, ExecConfigExprs, CloseLoc); if (ECResult.isInvalid()) LHS = ExprError(); else ExecConfig = ECResult.get(); } } else { PT.consumeOpen(); Loc = PT.getOpenLocation(); } ExprVector ArgExprs; CommaLocsTy CommaLocs; if (Tok.is(tok::code_completion)) { Actions.CodeCompleteCall(getCurScope(), LHS.get(), llvm::ArrayRef()); cutOffParsing(); return ExprError(); } if (OpKind == tok::l_paren || !LHS.isInvalid()) { if (Tok.isNot(tok::r_paren)) { if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall, LHS.get())) { LHS = ExprError(); } } } // Match the ')'. if (LHS.isInvalid()) { SkipUntil(tok::r_paren); } else if (Tok.isNot(tok::r_paren)) { PT.consumeClose(); LHS = ExprError(); } else { assert((ArgExprs.size() == 0 || ArgExprs.size()-1 == CommaLocs.size())&& "Unexpected number of commas!"); LHS = Actions.ActOnCallExpr(getCurScope(), LHS.take(), Loc, ArgExprs, Tok.getLocation(), ExecConfig); PT.consumeClose(); } break; } case tok::arrow: case tok::period: { // postfix-expression: p-e '->' template[opt] id-expression // postfix-expression: p-e '.' template[opt] id-expression tok::TokenKind OpKind = Tok.getKind(); SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. CXXScopeSpec SS; ParsedType ObjectType; bool MayBePseudoDestructor = false; if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), LHS.take(), OpLoc, OpKind, ObjectType, MayBePseudoDestructor); if (LHS.isInvalid()) break; ParseOptionalCXXScopeSpecifier(SS, ObjectType, /*EnteringContext=*/false, &MayBePseudoDestructor); if (SS.isNotEmpty()) ObjectType = ParsedType(); } if (Tok.is(tok::code_completion)) { // Code completion for a member access expression. Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(), OpLoc, OpKind == tok::arrow); cutOffParsing(); return ExprError(); } if (MayBePseudoDestructor && !LHS.isInvalid()) { LHS = ParseCXXPseudoDestructor(LHS.take(), OpLoc, OpKind, SS, ObjectType); break; } // Either the action has told is that this cannot be a // pseudo-destructor expression (based on the type of base // expression), or we didn't see a '~' in the right place. We // can still parse a destructor name here, but in that case it // names a real destructor. // Allow explicit constructor calls in Microsoft mode. // FIXME: Add support for explicit call of template constructor. SourceLocation TemplateKWLoc; UnqualifiedId Name; if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) { // Objective-C++: // After a '.' in a member access expression, treat the keyword // 'class' as if it were an identifier. // // This hack allows property access to the 'class' method because it is // such a common method name. For other C++ keywords that are // Objective-C method names, one must use the message send syntax. IdentifierInfo *Id = Tok.getIdentifierInfo(); SourceLocation Loc = ConsumeToken(); Name.setIdentifier(Id, Loc); } else if (ParseUnqualifiedId(SS, /*EnteringContext=*/false, /*AllowDestructorName=*/true, /*AllowConstructorName=*/ getLangOpts().MicrosoftExt, ObjectType, TemplateKWLoc, Name)) LHS = ExprError(); if (!LHS.isInvalid()) LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.take(), OpLoc, OpKind, SS, TemplateKWLoc, Name, CurParsedObjCImpl ? CurParsedObjCImpl->Dcl : 0, Tok.is(tok::l_paren)); break; } case tok::plusplus: // postfix-expression: postfix-expression '++' case tok::minusminus: // postfix-expression: postfix-expression '--' if (!LHS.isInvalid()) { LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), Tok.getKind(), LHS.take()); } ConsumeToken(); break; } } } /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ /// vec_step and we are at the start of an expression or a parenthesized /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the /// expression (isCastExpr == false) or the type (isCastExpr == true). /// /// \verbatim /// unary-expression: [C99 6.5.3] /// 'sizeof' unary-expression /// 'sizeof' '(' type-name ')' /// [GNU] '__alignof' unary-expression /// [GNU] '__alignof' '(' type-name ')' /// [C11] '_Alignof' '(' type-name ')' /// [C++0x] 'alignof' '(' type-id ')' /// /// [GNU] typeof-specifier: /// typeof ( expressions ) /// typeof ( type-name ) /// [GNU/C++] typeof unary-expression /// /// [OpenCL 1.1 6.11.12] vec_step built-in function: /// vec_step ( expressions ) /// vec_step ( type-name ) /// \endverbatim ExprResult Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, bool &isCastExpr, ParsedType &CastTy, SourceRange &CastRange) { assert((OpTok.is(tok::kw_typeof) || OpTok.is(tok::kw_sizeof) || OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof) || OpTok.is(tok::kw_vec_step)) && "Not a typeof/sizeof/alignof/vec_step expression!"); ExprResult Operand; // If the operand doesn't start with an '(', it must be an expression. if (Tok.isNot(tok::l_paren)) { isCastExpr = false; if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) { Diag(Tok,diag::err_expected_lparen_after_id) << OpTok.getIdentifierInfo(); return ExprError(); } Operand = ParseCastExpression(true/*isUnaryExpression*/); } else { // If it starts with a '(', we know that it is either a parenthesized // type-name, or it is a unary-expression that starts with a compound // literal, or starts with a primary-expression that is a parenthesized // expression. ParenParseOption ExprType = CastExpr; SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, false, CastTy, RParenLoc); CastRange = SourceRange(LParenLoc, RParenLoc); // If ParseParenExpression parsed a '(typename)' sequence only, then this is // a type. if (ExprType == CastExpr) { isCastExpr = true; return ExprEmpty(); } if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) { // GNU typeof in C requires the expression to be parenthesized. Not so for // sizeof/alignof or in C++. Therefore, the parenthesized expression is // the start of a unary-expression, but doesn't include any postfix // pieces. Parse these now if present. if (!Operand.isInvalid()) Operand = ParsePostfixExpressionSuffix(Operand.get()); } } // If we get here, the operand to the typeof/sizeof/alignof was an expresion. isCastExpr = false; return Operand; } /// \brief Parse a sizeof or alignof expression. /// /// \verbatim /// unary-expression: [C99 6.5.3] /// 'sizeof' unary-expression /// 'sizeof' '(' type-name ')' /// [C++0x] 'sizeof' '...' '(' identifier ')' /// [GNU] '__alignof' unary-expression /// [GNU] '__alignof' '(' type-name ')' /// [C11] '_Alignof' '(' type-name ')' /// [C++0x] 'alignof' '(' type-id ')' /// \endverbatim ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) || Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) || Tok.is(tok::kw_vec_step)) && "Not a sizeof/alignof/vec_step expression!"); Token OpTok = Tok; ConsumeToken(); // [C++0x] 'sizeof' '...' '(' identifier ')' if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { SourceLocation EllipsisLoc = ConsumeToken(); SourceLocation LParenLoc, RParenLoc; IdentifierInfo *Name = 0; SourceLocation NameLoc; if (Tok.is(tok::l_paren)) { BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); LParenLoc = T.getOpenLocation(); if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); T.consumeClose(); RParenLoc = T.getCloseLocation(); if (RParenLoc.isInvalid()) RParenLoc = PP.getLocForEndOfToken(NameLoc); } else { Diag(Tok, diag::err_expected_parameter_pack); SkipUntil(tok::r_paren); } } else if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); RParenLoc = PP.getLocForEndOfToken(NameLoc); Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) << Name << FixItHint::CreateInsertion(LParenLoc, "(") << FixItHint::CreateInsertion(RParenLoc, ")"); } else { Diag(Tok, diag::err_sizeof_parameter_pack); } if (!Name) return ExprError(); return Actions.ActOnSizeofParameterPackExpr(getCurScope(), OpTok.getLocation(), *Name, NameLoc, RParenLoc); } if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) Diag(OpTok, diag::warn_cxx98_compat_alignof); EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); bool isCastExpr; ParsedType CastTy; SourceRange CastRange; ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange); UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw__Alignof)) ExprKind = UETT_AlignOf; else if (OpTok.is(tok::kw_vec_step)) ExprKind = UETT_VecStep; if (isCastExpr) return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), ExprKind, /*isType=*/true, CastTy.getAsOpaquePtr(), CastRange); // If we get here, the operand to the sizeof/alignof was an expresion. if (!Operand.isInvalid()) Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), ExprKind, /*isType=*/false, Operand.release(), CastRange); return Operand; } /// ParseBuiltinPrimaryExpression /// /// \verbatim /// primary-expression: [C99 6.5.1] /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' /// assign-expr ')' /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' /// /// [GNU] offsetof-member-designator: /// [GNU] identifier /// [GNU] offsetof-member-designator '.' identifier /// [GNU] offsetof-member-designator '[' expression ']' /// \endverbatim ExprResult Parser::ParseBuiltinPrimaryExpression() { ExprResult Res; const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); tok::TokenKind T = Tok.getKind(); SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. // All of these start with an open paren. if (Tok.isNot(tok::l_paren)) return ExprError(Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII); BalancedDelimiterTracker PT(*this, tok::l_paren); PT.consumeOpen(); // TODO: Build AST. switch (T) { default: llvm_unreachable("Not a builtin primary expression!"); case tok::kw___builtin_va_arg: { ExprResult Expr(ParseAssignmentExpression()); if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren)) Expr = ExprError(); TypeResult Ty = ParseTypeName(); if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_expected_rparen); Expr = ExprError(); } if (Expr.isInvalid() || Ty.isInvalid()) Res = ExprError(); else Res = Actions.ActOnVAArg(StartLoc, Expr.take(), Ty.get(), ConsumeParen()); break; } case tok::kw___builtin_offsetof: { SourceLocation TypeLoc = Tok.getLocation(); TypeResult Ty = ParseTypeName(); if (Ty.isInvalid()) { SkipUntil(tok::r_paren); return ExprError(); } if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren)) return ExprError(); // We must have at least one identifier here. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_ident); SkipUntil(tok::r_paren); return ExprError(); } // Keep track of the various subcomponents we see. SmallVector Comps; Comps.push_back(Sema::OffsetOfComponent()); Comps.back().isBrackets = false; Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); // FIXME: This loop leaks the index expressions on error. while (1) { if (Tok.is(tok::period)) { // offsetof-member-designator: offsetof-member-designator '.' identifier Comps.push_back(Sema::OffsetOfComponent()); Comps.back().isBrackets = false; Comps.back().LocStart = ConsumeToken(); if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected_ident); SkipUntil(tok::r_paren); return ExprError(); } Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); Comps.back().LocEnd = ConsumeToken(); } else if (Tok.is(tok::l_square)) { if (CheckProhibitedCXX11Attribute()) return ExprError(); // offsetof-member-designator: offsetof-member-design '[' expression ']' Comps.push_back(Sema::OffsetOfComponent()); Comps.back().isBrackets = true; BalancedDelimiterTracker ST(*this, tok::l_square); ST.consumeOpen(); Comps.back().LocStart = ST.getOpenLocation(); Res = ParseExpression(); if (Res.isInvalid()) { SkipUntil(tok::r_paren); return Res; } Comps.back().U.E = Res.release(); ST.consumeClose(); Comps.back().LocEnd = ST.getCloseLocation(); } else { if (Tok.isNot(tok::r_paren)) { PT.consumeClose(); Res = ExprError(); } else if (Ty.isInvalid()) { Res = ExprError(); } else { PT.consumeClose(); Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, Ty.get(), &Comps[0], Comps.size(), PT.getCloseLocation()); } break; } } break; } case tok::kw___builtin_choose_expr: { ExprResult Cond(ParseAssignmentExpression()); if (Cond.isInvalid()) { SkipUntil(tok::r_paren); return Cond; } if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren)) return ExprError(); ExprResult Expr1(ParseAssignmentExpression()); if (Expr1.isInvalid()) { SkipUntil(tok::r_paren); return Expr1; } if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren)) return ExprError(); ExprResult Expr2(ParseAssignmentExpression()); if (Expr2.isInvalid()) { SkipUntil(tok::r_paren); return Expr2; } if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_expected_rparen); return ExprError(); } Res = Actions.ActOnChooseExpr(StartLoc, Cond.take(), Expr1.take(), Expr2.take(), ConsumeParen()); break; } case tok::kw___builtin_astype: { // The first argument is an expression to be converted, followed by a comma. ExprResult Expr(ParseAssignmentExpression()); if (Expr.isInvalid()) { SkipUntil(tok::r_paren); return ExprError(); } if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren)) return ExprError(); // Second argument is the type to bitcast to. TypeResult DestTy = ParseTypeName(); if (DestTy.isInvalid()) return ExprError(); // Attempt to consume the r-paren. if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_expected_rparen); SkipUntil(tok::r_paren); return ExprError(); } Res = Actions.ActOnAsTypeExpr(Expr.take(), DestTy.get(), StartLoc, ConsumeParen()); break; } } if (Res.isInvalid()) return ExprError(); // These can be followed by postfix-expr pieces because they are // primary-expressions. return ParsePostfixExpressionSuffix(Res.take()); } /// ParseParenExpression - This parses the unit that starts with a '(' token, /// based on what is allowed by ExprType. The actual thing parsed is returned /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, /// not the parsed cast-expression. /// /// \verbatim /// primary-expression: [C99 6.5.1] /// '(' expression ')' /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) /// postfix-expression: [C99 6.5.2] /// '(' type-name ')' '{' initializer-list '}' /// '(' type-name ')' '{' initializer-list ',' '}' /// cast-expression: [C99 6.5.4] /// '(' type-name ')' cast-expression /// [ARC] bridged-cast-expression /// /// [ARC] bridged-cast-expression: /// (__bridge type-name) cast-expression /// (__bridge_transfer type-name) cast-expression /// (__bridge_retained type-name) cast-expression /// \endverbatim ExprResult Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, bool isTypeCast, ParsedType &CastTy, SourceLocation &RParenLoc) { assert(Tok.is(tok::l_paren) && "Not a paren expr!"); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) return ExprError(); SourceLocation OpenLoc = T.getOpenLocation(); ExprResult Result(true); bool isAmbiguousTypeId; CastTy = ParsedType(); if (Tok.is(tok::code_completion)) { Actions.CodeCompleteOrdinaryName(getCurScope(), ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression : Sema::PCC_Expression); cutOffParsing(); return ExprError(); } // Diagnose use of bridge casts in non-arc mode. bool BridgeCast = (getLangOpts().ObjC2 && (Tok.is(tok::kw___bridge) || Tok.is(tok::kw___bridge_transfer) || Tok.is(tok::kw___bridge_retained) || Tok.is(tok::kw___bridge_retain))); if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { StringRef BridgeCastName = Tok.getName(); SourceLocation BridgeKeywordLoc = ConsumeToken(); if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) << BridgeCastName << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); BridgeCast = false; } // None of these cases should fall through with an invalid Result // unless they've already reported an error. if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { Diag(Tok, diag::ext_gnu_statement_expr); Actions.ActOnStartStmtExpr(); StmtResult Stmt(ParseCompoundStatement(true)); ExprType = CompoundStmt; // If the substmt parsed correctly, build the AST node. if (!Stmt.isInvalid()) { Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.take(), Tok.getLocation()); } else { Actions.ActOnStmtExprError(); } } else if (ExprType >= CompoundLiteral && BridgeCast) { tok::TokenKind tokenKind = Tok.getKind(); SourceLocation BridgeKeywordLoc = ConsumeToken(); // Parse an Objective-C ARC ownership cast expression. ObjCBridgeCastKind Kind; if (tokenKind == tok::kw___bridge) Kind = OBC_Bridge; else if (tokenKind == tok::kw___bridge_transfer) Kind = OBC_BridgeTransfer; else if (tokenKind == tok::kw___bridge_retained) Kind = OBC_BridgeRetained; else { // As a hopefully temporary workaround, allow __bridge_retain as // a synonym for __bridge_retained, but only in system headers. assert(tokenKind == tok::kw___bridge_retain); Kind = OBC_BridgeRetained; if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge_retained"); } TypeResult Ty = ParseTypeName(); T.consumeClose(); RParenLoc = T.getCloseLocation(); ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false); if (Ty.isInvalid() || SubExpr.isInvalid()) return ExprError(); return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, BridgeKeywordLoc, Ty.get(), RParenLoc, SubExpr.get()); } else if (ExprType >= CompoundLiteral && isTypeIdInParens(isAmbiguousTypeId)) { // Otherwise, this is a compound literal expression or cast expression. // In C++, if the type-id is ambiguous we disambiguate based on context. // If stopIfCastExpr is true the context is a typeof/sizeof/alignof // in which case we should treat it as type-id. // if stopIfCastExpr is false, we need to determine the context past the // parens, so we defer to ParseCXXAmbiguousParenExpression for that. if (isAmbiguousTypeId && !stopIfCastExpr) { ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T); RParenLoc = T.getCloseLocation(); return res; } // Parse the type declarator. DeclSpec DS(AttrFactory); ParseSpecifierQualifierList(DS); Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); ParseDeclarator(DeclaratorInfo); // If our type is followed by an identifier and either ':' or ']', then // this is probably an Objective-C message send where the leading '[' is // missing. Recover as if that were the case. if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && !InMessageExpression && getLangOpts().ObjC1 && (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { TypeResult Ty; { InMessageExpressionRAIIObject InMessage(*this, false); Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); } Result = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), Ty.get(), 0); } else { // Match the ')'. T.consumeClose(); RParenLoc = T.getCloseLocation(); if (Tok.is(tok::l_brace)) { ExprType = CompoundLiteral; TypeResult Ty; { InMessageExpressionRAIIObject InMessage(*this, false); Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); } return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); } if (ExprType == CastExpr) { // We parsed '(' type-name ')' and the thing after it wasn't a '{'. if (DeclaratorInfo.isInvalidType()) return ExprError(); // Note that this doesn't parse the subsequent cast-expression, it just // returns the parsed type to the callee. if (stopIfCastExpr) { TypeResult Ty; { InMessageExpressionRAIIObject InMessage(*this, false); Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); } CastTy = Ty.get(); return ExprResult(); } // Reject the cast of super idiom in ObjC. if (Tok.is(tok::identifier) && getLangOpts().ObjC1 && Tok.getIdentifierInfo() == Ident_super && getCurScope()->isInObjcMethodScope() && GetLookAheadToken(1).isNot(tok::period)) { Diag(Tok.getLocation(), diag::err_illegal_super_cast) << SourceRange(OpenLoc, RParenLoc); return ExprError(); } // Parse the cast-expression that follows it next. // TODO: For cast expression with CastTy. Result = ParseCastExpression(/*isUnaryExpression=*/false, /*isAddressOfOperand=*/false, /*isTypeCast=*/IsTypeCast); if (!Result.isInvalid()) { Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, DeclaratorInfo, CastTy, RParenLoc, Result.take()); } return Result; } Diag(Tok, diag::err_expected_lbrace_in_compound_literal); return ExprError(); } } else if (isTypeCast) { // Parse the expression-list. InMessageExpressionRAIIObject InMessage(*this, false); ExprVector ArgExprs; CommaLocsTy CommaLocs; if (!ParseExpressionList(ArgExprs, CommaLocs)) { ExprType = SimpleExpr; Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), ArgExprs); } } else { InMessageExpressionRAIIObject InMessage(*this, false); Result = ParseExpression(MaybeTypeCast); ExprType = SimpleExpr; // Don't build a paren expression unless we actually match a ')'. if (!Result.isInvalid() && Tok.is(tok::r_paren)) Result = Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.take()); } // Match the ')'. if (Result.isInvalid()) { SkipUntil(tok::r_paren); return ExprError(); } T.consumeClose(); RParenLoc = T.getCloseLocation(); return Result; } /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name /// and we are at the left brace. /// /// \verbatim /// postfix-expression: [C99 6.5.2] /// '(' type-name ')' '{' initializer-list '}' /// '(' type-name ')' '{' initializer-list ',' '}' /// \endverbatim ExprResult Parser::ParseCompoundLiteralExpression(ParsedType Ty, SourceLocation LParenLoc, SourceLocation RParenLoc) { assert(Tok.is(tok::l_brace) && "Not a compound literal!"); if (!getLangOpts().C99) // Compound literals don't exist in C90. Diag(LParenLoc, diag::ext_c99_compound_literal); ExprResult Result = ParseInitializer(); if (!Result.isInvalid() && Ty) return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.take()); return Result; } /// ParseStringLiteralExpression - This handles the various token types that /// form string literals, and also handles string concatenation [C99 5.1.1.2, /// translation phase #6]. /// /// \verbatim /// primary-expression: [C99 6.5.1] /// string-literal /// \verbatim ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { assert(isTokenStringLiteral() && "Not a string literal!"); // String concat. Note that keywords like __func__ and __FUNCTION__ are not // considered to be strings for concatenation purposes. SmallVector StringToks; do { StringToks.push_back(Tok); ConsumeStringToken(); } while (isTokenStringLiteral()); // Pass the set of string tokens, ready for concatenation, to the actions. return Actions.ActOnStringLiteral(&StringToks[0], StringToks.size(), AllowUserDefinedLiteral ? getCurScope() : 0); } /// ParseGenericSelectionExpression - Parse a C11 generic-selection /// [C11 6.5.1.1]. /// /// \verbatim /// generic-selection: /// _Generic ( assignment-expression , generic-assoc-list ) /// generic-assoc-list: /// generic-association /// generic-assoc-list , generic-association /// generic-association: /// type-name : assignment-expression /// default : assignment-expression /// \endverbatim ExprResult Parser::ParseGenericSelectionExpression() { assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); SourceLocation KeyLoc = ConsumeToken(); if (!getLangOpts().C11) Diag(KeyLoc, diag::ext_c11_generic_selection); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume(diag::err_expected_lparen)) return ExprError(); ExprResult ControllingExpr; { // C11 6.5.1.1p3 "The controlling expression of a generic selection is // not evaluated." EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); ControllingExpr = ParseAssignmentExpression(); if (ControllingExpr.isInvalid()) { SkipUntil(tok::r_paren); return ExprError(); } } if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "")) { SkipUntil(tok::r_paren); return ExprError(); } SourceLocation DefaultLoc; TypeVector Types; ExprVector Exprs; while (1) { ParsedType Ty; if (Tok.is(tok::kw_default)) { // C11 6.5.1.1p2 "A generic selection shall have no more than one default // generic association." if (!DefaultLoc.isInvalid()) { Diag(Tok, diag::err_duplicate_default_assoc); Diag(DefaultLoc, diag::note_previous_default_assoc); SkipUntil(tok::r_paren); return ExprError(); } DefaultLoc = ConsumeToken(); Ty = ParsedType(); } else { ColonProtectionRAIIObject X(*this); TypeResult TR = ParseTypeName(); if (TR.isInvalid()) { SkipUntil(tok::r_paren); return ExprError(); } Ty = TR.release(); } Types.push_back(Ty); if (ExpectAndConsume(tok::colon, diag::err_expected_colon, "")) { SkipUntil(tok::r_paren); return ExprError(); } // FIXME: These expressions should be parsed in a potentially potentially // evaluated context. ExprResult ER(ParseAssignmentExpression()); if (ER.isInvalid()) { SkipUntil(tok::r_paren); return ExprError(); } Exprs.push_back(ER.release()); if (Tok.isNot(tok::comma)) break; ConsumeToken(); } T.consumeClose(); if (T.getCloseLocation().isInvalid()) return ExprError(); return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.release(), Types, Exprs); } /// ParseExpressionList - Used for C/C++ (argument-)expression-list. /// /// \verbatim /// argument-expression-list: /// assignment-expression /// argument-expression-list , assignment-expression /// /// [C++] expression-list: /// [C++] assignment-expression /// [C++] expression-list , assignment-expression /// /// [C++0x] expression-list: /// [C++0x] initializer-list /// /// [C++0x] initializer-list /// [C++0x] initializer-clause ...[opt] /// [C++0x] initializer-list , initializer-clause ...[opt] /// /// [C++0x] initializer-clause: /// [C++0x] assignment-expression /// [C++0x] braced-init-list /// \endverbatim bool Parser::ParseExpressionList(SmallVectorImpl &Exprs, SmallVectorImpl &CommaLocs, void (Sema::*Completer)(Scope *S, Expr *Data, llvm::ArrayRef Args), Expr *Data) { while (1) { if (Tok.is(tok::code_completion)) { if (Completer) (Actions.*Completer)(getCurScope(), Data, Exprs); else Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression); cutOffParsing(); return true; } ExprResult Expr; if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); Expr = ParseBraceInitializer(); } else Expr = ParseAssignmentExpression(); if (Tok.is(tok::ellipsis)) Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); if (Expr.isInvalid()) return true; Exprs.push_back(Expr.release()); if (Tok.isNot(tok::comma)) return false; // Move to the next argument, remember where the comma was. CommaLocs.push_back(ConsumeToken()); } } /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). /// /// \verbatim /// [clang] block-id: /// [clang] specifier-qualifier-list block-declarator /// \endverbatim void Parser::ParseBlockId(SourceLocation CaretLoc) { if (Tok.is(tok::code_completion)) { Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type); return cutOffParsing(); } // Parse the specifier-qualifier-list piece. DeclSpec DS(AttrFactory); ParseSpecifierQualifierList(DS); // Parse the block-declarator. Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext); ParseDeclarator(DeclaratorInfo); // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes. DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation()); MaybeParseGNUAttributes(DeclaratorInfo); // Inform sema that we are starting a block. Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); } /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks /// like ^(int x){ return x+1; } /// /// \verbatim /// block-literal: /// [clang] '^' block-args[opt] compound-statement /// [clang] '^' block-id compound-statement /// [clang] block-args: /// [clang] '(' parameter-list ')' /// \endverbatim ExprResult Parser::ParseBlockLiteralExpression() { assert(Tok.is(tok::caret) && "block literal starts with ^"); SourceLocation CaretLoc = ConsumeToken(); PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, "block literal parsing"); // Enter a scope to hold everything within the block. This includes the // argument decls, decls within the compound expression, etc. This also // allows determining whether a variable reference inside the block is // within or outside of the block. ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | Scope::DeclScope); // Inform sema that we are starting a block. Actions.ActOnBlockStart(CaretLoc, getCurScope()); // Parse the return type if present. DeclSpec DS(AttrFactory); Declarator ParamInfo(DS, Declarator::BlockLiteralContext); // FIXME: Since the return type isn't actually parsed, it can't be used to // fill ParamInfo with an initial valid range, so do it manually. ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); // If this block has arguments, parse them. There is no ambiguity here with // the expression case, because the expression case requires a parameter list. if (Tok.is(tok::l_paren)) { ParseParenDeclarator(ParamInfo); // Parse the pieces after the identifier as if we had "int(...)". // SetIdentifier sets the source range end, but in this case we're past // that location. SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); ParamInfo.SetIdentifier(0, CaretLoc); ParamInfo.SetRangeEnd(Tmp); if (ParamInfo.isInvalidType()) { // If there was an error parsing the arguments, they may have // tried to use ^(x+y) which requires an argument list. Just // skip the whole block literal. Actions.ActOnBlockError(CaretLoc, getCurScope()); return ExprError(); } MaybeParseGNUAttributes(ParamInfo); // Inform sema that we are starting a block. Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); } else if (!Tok.is(tok::l_brace)) { ParseBlockId(CaretLoc); } else { // Otherwise, pretend we saw (void). ParsedAttributes attrs(AttrFactory); ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(true, false, false, SourceLocation(), 0, 0, 0, true, SourceLocation(), SourceLocation(), SourceLocation(), SourceLocation(), EST_None, SourceLocation(), 0, 0, 0, 0, CaretLoc, CaretLoc, ParamInfo), attrs, CaretLoc); MaybeParseGNUAttributes(ParamInfo); // Inform sema that we are starting a block. Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); } ExprResult Result(true); if (!Tok.is(tok::l_brace)) { // Saw something like: ^expr Diag(Tok, diag::err_expected_expression); Actions.ActOnBlockError(CaretLoc, getCurScope()); return ExprError(); } StmtResult Stmt(ParseCompoundStatementBody()); BlockScope.Exit(); if (!Stmt.isInvalid()) Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.take(), getCurScope()); else Actions.ActOnBlockError(CaretLoc, getCurScope()); return Result; } /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. /// /// '__objc_yes' /// '__objc_no' ExprResult Parser::ParseObjCBoolLiteral() { tok::TokenKind Kind = Tok.getKind(); return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind); }