//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements ProgramState and ProgramStateManager. // //===----------------------------------------------------------------------===// #include "clang/Analysis/CFG.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; namespace clang { namespace ento { /// Increments the number of times this state is referenced. void ProgramStateRetain(const ProgramState *state) { ++const_cast(state)->refCount; } /// Decrement the number of times this state is referenced. void ProgramStateRelease(const ProgramState *state) { assert(state->refCount > 0); ProgramState *s = const_cast(state); if (--s->refCount == 0) { ProgramStateManager &Mgr = s->getStateManager(); Mgr.StateSet.RemoveNode(s); s->~ProgramState(); Mgr.freeStates.push_back(s); } } }} ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, StoreRef st, GenericDataMap gdm) : stateMgr(mgr), Env(env), store(st.getStore()), GDM(gdm), refCount(0) { stateMgr->getStoreManager().incrementReferenceCount(store); } ProgramState::ProgramState(const ProgramState &RHS) : llvm::FoldingSetNode(), stateMgr(RHS.stateMgr), Env(RHS.Env), store(RHS.store), GDM(RHS.GDM), refCount(0) { stateMgr->getStoreManager().incrementReferenceCount(store); } ProgramState::~ProgramState() { if (store) stateMgr->getStoreManager().decrementReferenceCount(store); } ProgramStateManager::ProgramStateManager(ASTContext &Ctx, StoreManagerCreator CreateSMgr, ConstraintManagerCreator CreateCMgr, llvm::BumpPtrAllocator &alloc, SubEngine &SubEng) : Eng(&SubEng), EnvMgr(alloc), GDMFactory(alloc), svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { StoreMgr.reset((*CreateSMgr)(*this)); ConstraintMgr.reset((*CreateCMgr)(*this, SubEng)); } ProgramStateManager::~ProgramStateManager() { for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); I!=E; ++I) I->second.second(I->second.first); } ProgramStateRef ProgramStateManager::removeDeadBindings(ProgramStateRef state, const StackFrameContext *LCtx, SymbolReaper& SymReaper) { // This code essentially performs a "mark-and-sweep" of the VariableBindings. // The roots are any Block-level exprs and Decls that our liveness algorithm // tells us are live. We then see what Decls they may reference, and keep // those around. This code more than likely can be made faster, and the // frequency of which this method is called should be experimented with // for optimum performance. ProgramState NewState = *state; NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); // Clean up the store. StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, SymReaper); NewState.setStore(newStore); SymReaper.setReapedStore(newStore); ProgramStateRef Result = getPersistentState(NewState); return ConstraintMgr->removeDeadBindings(Result, SymReaper); } ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL, const LocationContext *LC, SVal V) const { const StoreRef &newStore = getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V); return makeWithStore(newStore); } ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const { ProgramStateManager &Mgr = getStateManager(); ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), LV, V)); const MemRegion *MR = LV.getAsRegion(); if (MR && Mgr.getOwningEngine() && notifyChanges) return Mgr.getOwningEngine()->processRegionChange(newState, MR); return newState; } ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const { ProgramStateManager &Mgr = getStateManager(); const MemRegion *R = cast(loc).getRegion(); const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V); ProgramStateRef new_state = makeWithStore(newStore); return Mgr.getOwningEngine() ? Mgr.getOwningEngine()->processRegionChange(new_state, R) : new_state; } ProgramStateRef ProgramState::invalidateRegions(ArrayRef Regions, const Expr *E, unsigned Count, const LocationContext *LCtx, StoreManager::InvalidatedSymbols *IS, const CallEvent *Call) const { if (!IS) { StoreManager::InvalidatedSymbols invalidated; return invalidateRegionsImpl(Regions, E, Count, LCtx, invalidated, Call); } return invalidateRegionsImpl(Regions, E, Count, LCtx, *IS, Call); } ProgramStateRef ProgramState::invalidateRegionsImpl(ArrayRef Regions, const Expr *E, unsigned Count, const LocationContext *LCtx, StoreManager::InvalidatedSymbols &IS, const CallEvent *Call) const { ProgramStateManager &Mgr = getStateManager(); SubEngine* Eng = Mgr.getOwningEngine(); if (Eng && Eng->wantsRegionChangeUpdate(this)) { StoreManager::InvalidatedRegions Invalidated; const StoreRef &newStore = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS, Call, &Invalidated); ProgramStateRef newState = makeWithStore(newStore); return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call); } const StoreRef &newStore = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS, Call, NULL); return makeWithStore(newStore); } ProgramStateRef ProgramState::killBinding(Loc LV) const { assert(!isa(LV) && "Use invalidateRegion instead."); Store OldStore = getStore(); const StoreRef &newStore = getStateManager().StoreMgr->killBinding(OldStore, LV); if (newStore.getStore() == OldStore) return this; return makeWithStore(newStore); } ProgramStateRef ProgramState::enterStackFrame(const CallEvent &Call, const StackFrameContext *CalleeCtx) const { const StoreRef &NewStore = getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); return makeWithStore(NewStore); } SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { // We only want to do fetches from regions that we can actually bind // values. For example, SymbolicRegions of type 'id<...>' cannot // have direct bindings (but their can be bindings on their subregions). if (!R->isBoundable()) return UnknownVal(); if (const TypedValueRegion *TR = dyn_cast(R)) { QualType T = TR->getValueType(); if (Loc::isLocType(T) || T->isIntegerType()) return getSVal(R); } return UnknownVal(); } SVal ProgramState::getSVal(Loc location, QualType T) const { SVal V = getRawSVal(cast(location), T); // If 'V' is a symbolic value that is *perfectly* constrained to // be a constant value, use that value instead to lessen the burden // on later analysis stages (so we have less symbolic values to reason // about). if (!T.isNull()) { if (SymbolRef sym = V.getAsSymbol()) { if (const llvm::APSInt *Int = getStateManager() .getConstraintManager() .getSymVal(this, sym)) { // FIXME: Because we don't correctly model (yet) sign-extension // and truncation of symbolic values, we need to convert // the integer value to the correct signedness and bitwidth. // // This shows up in the following: // // char foo(); // unsigned x = foo(); // if (x == 54) // ... // // The symbolic value stored to 'x' is actually the conjured // symbol for the call to foo(); the type of that symbol is 'char', // not unsigned. const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); if (isa(V)) return loc::ConcreteInt(NewV); else return nonloc::ConcreteInt(NewV); } } } return V; } ProgramStateRef ProgramState::BindExpr(const Stmt *S, const LocationContext *LCtx, SVal V, bool Invalidate) const{ Environment NewEnv = getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, Invalidate); if (NewEnv == Env) return this; ProgramState NewSt = *this; NewSt.Env = NewEnv; return getStateManager().getPersistentState(NewSt); } ProgramStateRef ProgramState::bindExprAndLocation(const Stmt *S, const LocationContext *LCtx, SVal location, SVal V) const { Environment NewEnv = getStateManager().EnvMgr.bindExprAndLocation(Env, EnvironmentEntry(S, LCtx), location, V); if (NewEnv == Env) return this; ProgramState NewSt = *this; NewSt.Env = NewEnv; return getStateManager().getPersistentState(NewSt); } ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, DefinedOrUnknownSVal UpperBound, bool Assumption, QualType indexTy) const { if (Idx.isUnknown() || UpperBound.isUnknown()) return this; // Build an expression for 0 <= Idx < UpperBound. // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. // FIXME: This should probably be part of SValBuilder. ProgramStateManager &SM = getStateManager(); SValBuilder &svalBuilder = SM.getSValBuilder(); ASTContext &Ctx = svalBuilder.getContext(); // Get the offset: the minimum value of the array index type. BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); // FIXME: This should be using ValueManager::ArrayindexTy...somehow. if (indexTy.isNull()) indexTy = Ctx.IntTy; nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); // Adjust the index. SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, cast(Idx), Min, indexTy); if (newIdx.isUnknownOrUndef()) return this; // Adjust the upper bound. SVal newBound = svalBuilder.evalBinOpNN(this, BO_Add, cast(UpperBound), Min, indexTy); if (newBound.isUnknownOrUndef()) return this; // Build the actual comparison. SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, cast(newIdx), cast(newBound), Ctx.IntTy); if (inBound.isUnknownOrUndef()) return this; // Finally, let the constraint manager take care of it. ConstraintManager &CM = SM.getConstraintManager(); return CM.assume(this, cast(inBound), Assumption); } ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { ProgramState State(this, EnvMgr.getInitialEnvironment(), StoreMgr->getInitialStore(InitLoc), GDMFactory.getEmptyMap()); return getPersistentState(State); } ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( ProgramStateRef FromState, ProgramStateRef GDMState) { ProgramState NewState(*FromState); NewState.GDM = GDMState->GDM; return getPersistentState(NewState); } ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { llvm::FoldingSetNodeID ID; State.Profile(ID); void *InsertPos; if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) return I; ProgramState *newState = 0; if (!freeStates.empty()) { newState = freeStates.back(); freeStates.pop_back(); } else { newState = (ProgramState*) Alloc.Allocate(); } new (newState) ProgramState(State); StateSet.InsertNode(newState, InsertPos); return newState; } ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { ProgramState NewSt(*this); NewSt.setStore(store); return getStateManager().getPersistentState(NewSt); } void ProgramState::setStore(const StoreRef &newStore) { Store newStoreStore = newStore.getStore(); if (newStoreStore) stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); if (store) stateMgr->getStoreManager().decrementReferenceCount(store); store = newStoreStore; } //===----------------------------------------------------------------------===// // State pretty-printing. //===----------------------------------------------------------------------===// void ProgramState::print(raw_ostream &Out, const char *NL, const char *Sep) const { // Print the store. ProgramStateManager &Mgr = getStateManager(); Mgr.getStoreManager().print(getStore(), Out, NL, Sep); // Print out the environment. Env.print(Out, NL, Sep); // Print out the constraints. Mgr.getConstraintManager().print(this, Out, NL, Sep); // Print checker-specific data. Mgr.getOwningEngine()->printState(Out, this, NL, Sep); } void ProgramState::printDOT(raw_ostream &Out) const { print(Out, "\\l", "\\|"); } void ProgramState::dump() const { print(llvm::errs()); } void ProgramState::printTaint(raw_ostream &Out, const char *NL, const char *Sep) const { TaintMapImpl TM = get(); if (!TM.isEmpty()) Out <<"Tainted Symbols:" << NL; for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) { Out << I->first << " : " << I->second << NL; } } void ProgramState::dumpTaint() const { printTaint(llvm::errs()); } //===----------------------------------------------------------------------===// // Generic Data Map. //===----------------------------------------------------------------------===// void *const* ProgramState::FindGDM(void *K) const { return GDM.lookup(K); } void* ProgramStateManager::FindGDMContext(void *K, void *(*CreateContext)(llvm::BumpPtrAllocator&), void (*DeleteContext)(void*)) { std::pair& p = GDMContexts[K]; if (!p.first) { p.first = CreateContext(Alloc); p.second = DeleteContext; } return p.first; } ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ ProgramState::GenericDataMap M1 = St->getGDM(); ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); if (M1 == M2) return St; ProgramState NewSt = *St; NewSt.GDM = M2; return getPersistentState(NewSt); } ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { ProgramState::GenericDataMap OldM = state->getGDM(); ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); if (NewM == OldM) return state; ProgramState NewState = *state; NewState.GDM = NewM; return getPersistentState(NewState); } bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I) if (!scan(*I)) return false; return true; } bool ScanReachableSymbols::scan(const SymExpr *sym) { unsigned &isVisited = visited[sym]; if (isVisited) return true; isVisited = 1; if (!visitor.VisitSymbol(sym)) return false; // TODO: should be rewritten using SymExpr::symbol_iterator. switch (sym->getKind()) { case SymExpr::RegionValueKind: case SymExpr::ConjuredKind: case SymExpr::DerivedKind: case SymExpr::ExtentKind: case SymExpr::MetadataKind: break; case SymExpr::CastSymbolKind: return scan(cast(sym)->getOperand()); case SymExpr::SymIntKind: return scan(cast(sym)->getLHS()); case SymExpr::IntSymKind: return scan(cast(sym)->getRHS()); case SymExpr::SymSymKind: { const SymSymExpr *x = cast(sym); return scan(x->getLHS()) && scan(x->getRHS()); } } return true; } bool ScanReachableSymbols::scan(SVal val) { if (loc::MemRegionVal *X = dyn_cast(&val)) return scan(X->getRegion()); if (nonloc::LazyCompoundVal *X = dyn_cast(&val)) return scan(X->getRegion()); if (nonloc::LocAsInteger *X = dyn_cast(&val)) return scan(X->getLoc()); if (SymbolRef Sym = val.getAsSymbol()) return scan(Sym); if (const SymExpr *Sym = val.getAsSymbolicExpression()) return scan(Sym); if (nonloc::CompoundVal *X = dyn_cast(&val)) return scan(*X); return true; } bool ScanReachableSymbols::scan(const MemRegion *R) { if (isa(R)) return true; unsigned &isVisited = visited[R]; if (isVisited) return true; isVisited = 1; if (!visitor.VisitMemRegion(R)) return false; // If this is a symbolic region, visit the symbol for the region. if (const SymbolicRegion *SR = dyn_cast(R)) if (!visitor.VisitSymbol(SR->getSymbol())) return false; // If this is a subregion, also visit the parent regions. if (const SubRegion *SR = dyn_cast(R)) { const MemRegion *Super = SR->getSuperRegion(); if (!scan(Super)) return false; // When we reach the topmost region, scan all symbols in it. if (isa(Super)) { StoreManager &StoreMgr = state->getStateManager().getStoreManager(); if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) return false; } } // Regions captured by a block are also implicitly reachable. if (const BlockDataRegion *BDR = dyn_cast(R)) { BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), E = BDR->referenced_vars_end(); for ( ; I != E; ++I) { if (!scan(I.getCapturedRegion())) return false; } } return true; } bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { ScanReachableSymbols S(this, visitor); return S.scan(val); } bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E, SymbolVisitor &visitor) const { ScanReachableSymbols S(this, visitor); for ( ; I != E; ++I) { if (!S.scan(*I)) return false; } return true; } bool ProgramState::scanReachableSymbols(const MemRegion * const *I, const MemRegion * const *E, SymbolVisitor &visitor) const { ScanReachableSymbols S(this, visitor); for ( ; I != E; ++I) { if (!S.scan(*I)) return false; } return true; } ProgramStateRef ProgramState::addTaint(const Stmt *S, const LocationContext *LCtx, TaintTagType Kind) const { if (const Expr *E = dyn_cast_or_null(S)) S = E->IgnoreParens(); SymbolRef Sym = getSVal(S, LCtx).getAsSymbol(); if (Sym) return addTaint(Sym, Kind); const MemRegion *R = getSVal(S, LCtx).getAsRegion(); addTaint(R, Kind); // Cannot add taint, so just return the state. return this; } ProgramStateRef ProgramState::addTaint(const MemRegion *R, TaintTagType Kind) const { if (const SymbolicRegion *SR = dyn_cast_or_null(R)) return addTaint(SR->getSymbol(), Kind); return this; } ProgramStateRef ProgramState::addTaint(SymbolRef Sym, TaintTagType Kind) const { // If this is a symbol cast, remove the cast before adding the taint. Taint // is cast agnostic. while (const SymbolCast *SC = dyn_cast(Sym)) Sym = SC->getOperand(); ProgramStateRef NewState = set(Sym, Kind); assert(NewState); return NewState; } bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx, TaintTagType Kind) const { if (const Expr *E = dyn_cast_or_null(S)) S = E->IgnoreParens(); SVal val = getSVal(S, LCtx); return isTainted(val, Kind); } bool ProgramState::isTainted(SVal V, TaintTagType Kind) const { if (const SymExpr *Sym = V.getAsSymExpr()) return isTainted(Sym, Kind); if (const MemRegion *Reg = V.getAsRegion()) return isTainted(Reg, Kind); return false; } bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const { if (!Reg) return false; // Element region (array element) is tainted if either the base or the offset // are tainted. if (const ElementRegion *ER = dyn_cast(Reg)) return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K); if (const SymbolicRegion *SR = dyn_cast(Reg)) return isTainted(SR->getSymbol(), K); if (const SubRegion *ER = dyn_cast(Reg)) return isTainted(ER->getSuperRegion(), K); return false; } bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const { if (!Sym) return false; // Traverse all the symbols this symbol depends on to see if any are tainted. bool Tainted = false; for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end(); SI != SE; ++SI) { if (!isa(*SI)) continue; const TaintTagType *Tag = get(*SI); Tainted = (Tag && *Tag == Kind); // If this is a SymbolDerived with a tainted parent, it's also tainted. if (const SymbolDerived *SD = dyn_cast(*SI)) Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind); // If memory region is tainted, data is also tainted. if (const SymbolRegionValue *SRV = dyn_cast(*SI)) Tainted = Tainted || isTainted(SRV->getRegion(), Kind); // If If this is a SymbolCast from a tainted value, it's also tainted. if (const SymbolCast *SC = dyn_cast(*SI)) Tainted = Tainted || isTainted(SC->getOperand(), Kind); if (Tainted) return true; } return Tainted; } /// The GDM component containing the dynamic type info. This is a map from a /// symbol to it's most likely type. namespace clang { namespace ento { typedef llvm::ImmutableMap DynamicTypeMap; template<> struct ProgramStateTrait : public ProgramStatePartialTrait { static void *GDMIndex() { static int index; return &index; } }; }} DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const { Reg = Reg->StripCasts(); // Look up the dynamic type in the GDM. const DynamicTypeInfo *GDMType = get(Reg); if (GDMType) return *GDMType; // Otherwise, fall back to what we know about the region. if (const TypedRegion *TR = dyn_cast(Reg)) return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false); if (const SymbolicRegion *SR = dyn_cast(Reg)) { SymbolRef Sym = SR->getSymbol(); return DynamicTypeInfo(Sym->getType(getStateManager().getContext())); } return DynamicTypeInfo(); } ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg, DynamicTypeInfo NewTy) const { Reg = Reg->StripCasts(); ProgramStateRef NewState = set(Reg, NewTy); assert(NewState); return NewState; }