//===-- tsan_rtl.cc -------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Main file (entry points) for the TSan run-time. //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_symbolizer.h" #include "tsan_defs.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_mman.h" #include "tsan_suppressions.h" volatile int __tsan_resumed = 0; extern "C" void __tsan_resume() { __tsan_resumed = 1; } namespace __tsan { #ifndef TSAN_GO THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); #endif static char ctx_placeholder[sizeof(Context)] ALIGNED(64); static Context *ctx; Context *CTX() { return ctx; } Context::Context() : initialized() , report_mtx(MutexTypeReport, StatMtxReport) , nreported() , nmissed_expected() , thread_mtx(MutexTypeThreads, StatMtxThreads) , racy_stacks(MBlockRacyStacks) , racy_addresses(MBlockRacyAddresses) { } // The objects are allocated in TLS, so one may rely on zero-initialization. ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, uptr stk_addr, uptr stk_size, uptr tls_addr, uptr tls_size) : fast_state(tid, epoch) // Do not touch these, rely on zero initialization, // they may be accessed before the ctor. // , fast_ignore_reads() // , fast_ignore_writes() // , in_rtl() , shadow_stack_pos(&shadow_stack[0]) , tid(tid) , unique_id(unique_id) , stk_addr(stk_addr) , stk_size(stk_size) , tls_addr(tls_addr) , tls_size(tls_size) { } ThreadContext::ThreadContext(int tid) : tid(tid) , unique_id() , user_id() , thr() , status(ThreadStatusInvalid) , detached() , reuse_count() , epoch0() , epoch1() , dead_info() , dead_next() { } static void WriteMemoryProfile(char *buf, uptr buf_size, int num) { uptr shadow = GetShadowMemoryConsumption(); int nthread = 0; int nlivethread = 0; uptr threadmem = 0; { Lock l(&ctx->thread_mtx); for (unsigned i = 0; i < kMaxTid; i++) { ThreadContext *tctx = ctx->threads[i]; if (tctx == 0) continue; nthread += 1; threadmem += sizeof(ThreadContext); if (tctx->status != ThreadStatusRunning) continue; nlivethread += 1; threadmem += sizeof(ThreadState); } } uptr nsync = 0; uptr syncmem = CTX()->synctab.GetMemoryConsumption(&nsync); internal_snprintf(buf, buf_size, "%d: shadow=%zuMB" " thread=%zuMB(total=%d/live=%d)" " sync=%zuMB(cnt=%zu)\n", num, shadow >> 20, threadmem >> 20, nthread, nlivethread, syncmem >> 20, nsync); } static void MemoryProfileThread(void *arg) { ScopedInRtl in_rtl; fd_t fd = (fd_t)(uptr)arg; for (int i = 0; ; i++) { InternalScopedBuffer buf(4096); WriteMemoryProfile(buf.data(), buf.size(), i); internal_write(fd, buf.data(), internal_strlen(buf.data())); SleepForSeconds(1); } } static void InitializeMemoryProfile() { if (flags()->profile_memory == 0 || flags()->profile_memory[0] == 0) return; InternalScopedBuffer filename(4096); internal_snprintf(filename.data(), filename.size(), "%s.%d", flags()->profile_memory, GetPid()); fd_t fd = internal_open(filename.data(), true); if (fd == kInvalidFd) { TsanPrintf("Failed to open memory profile file '%s'\n", &filename[0]); Die(); } internal_start_thread(&MemoryProfileThread, (void*)(uptr)fd); } static void MemoryFlushThread(void *arg) { ScopedInRtl in_rtl; for (int i = 0; ; i++) { SleepForMillis(flags()->flush_memory_ms); FlushShadowMemory(); } } static void InitializeMemoryFlush() { if (flags()->flush_memory_ms == 0) return; if (flags()->flush_memory_ms < 100) flags()->flush_memory_ms = 100; internal_start_thread(&MemoryFlushThread, 0); } void Initialize(ThreadState *thr) { // Thread safe because done before all threads exist. static bool is_initialized = false; if (is_initialized) return; is_initialized = true; ScopedInRtl in_rtl; #ifndef TSAN_GO InitializeAllocator(); #endif InitializeInterceptors(); const char *env = InitializePlatform(); InitializeMutex(); InitializeDynamicAnnotations(); ctx = new(ctx_placeholder) Context; InitializeShadowMemory(); ctx->dead_list_size = 0; ctx->dead_list_head = 0; ctx->dead_list_tail = 0; InitializeFlags(&ctx->flags, env); InitializeSuppressions(); InitializeMemoryProfile(); InitializeMemoryFlush(); const char *external_symbolizer = flags()->external_symbolizer_path; if (external_symbolizer != 0 && external_symbolizer[0] != '\0') { InitializeExternalSymbolizer(external_symbolizer); } if (ctx->flags.verbosity) TsanPrintf("***** Running under ThreadSanitizer v2 (pid %d) *****\n", GetPid()); // Initialize thread 0. ctx->thread_seq = 0; int tid = ThreadCreate(thr, 0, 0, true); CHECK_EQ(tid, 0); ThreadStart(thr, tid); CHECK_EQ(thr->in_rtl, 1); ctx->initialized = true; if (flags()->stop_on_start) { TsanPrintf("ThreadSanitizer is suspended at startup (pid %d)." " Call __tsan_resume().\n", GetPid()); while (__tsan_resumed == 0); } } int Finalize(ThreadState *thr) { ScopedInRtl in_rtl; Context *ctx = __tsan::ctx; bool failed = false; ThreadFinalize(thr); if (ctx->nreported) { failed = true; TsanPrintf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); } if (ctx->nmissed_expected) { failed = true; TsanPrintf("ThreadSanitizer: missed %d expected races\n", ctx->nmissed_expected); } StatOutput(ctx->stat); return failed ? flags()->exitcode : 0; } #ifndef TSAN_GO u32 CurrentStackId(ThreadState *thr, uptr pc) { if (thr->shadow_stack_pos == 0) // May happen during bootstrap. return 0; if (pc) { thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } u32 id = StackDepotPut(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack); if (pc) thr->shadow_stack_pos--; return id; } #endif void TraceSwitch(ThreadState *thr) { thr->nomalloc++; ScopedInRtl in_rtl; Lock l(&thr->trace.mtx); unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % kTraceParts; TraceHeader *hdr = &thr->trace.headers[trace]; hdr->epoch0 = thr->fast_state.epoch(); hdr->stack0.ObtainCurrent(thr, 0); thr->nomalloc--; } #ifndef TSAN_GO extern "C" void __tsan_trace_switch() { TraceSwitch(cur_thread()); } extern "C" void __tsan_report_race() { ReportRace(cur_thread()); } #endif ALWAYS_INLINE static Shadow LoadShadow(u64 *p) { u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); return Shadow(raw); } ALWAYS_INLINE static void StoreShadow(u64 *sp, u64 s) { atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); } ALWAYS_INLINE static void StoreIfNotYetStored(u64 *sp, u64 *s) { StoreShadow(sp, *s); *s = 0; } static inline void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) { thr->racy_state[0] = cur.raw(); thr->racy_state[1] = old.raw(); thr->racy_shadow_addr = shadow_mem; #ifndef TSAN_GO HACKY_CALL(__tsan_report_race); #else ReportRace(thr); #endif } static inline bool BothReads(Shadow s, int kAccessIsWrite) { return !kAccessIsWrite && !s.is_write(); } static inline bool OldIsRWStronger(Shadow old, int kAccessIsWrite) { return old.is_write() || !kAccessIsWrite; } static inline bool OldIsRWWeaker(Shadow old, int kAccessIsWrite) { return !old.is_write() || kAccessIsWrite; } static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) { return old.epoch() >= thr->fast_synch_epoch; } static inline bool HappensBefore(Shadow old, ThreadState *thr) { return thr->clock.get(old.tid()) >= old.epoch(); } ALWAYS_INLINE void MemoryAccessImpl(ThreadState *thr, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, FastState fast_state, u64 *shadow_mem, Shadow cur) { StatInc(thr, StatMop); StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); // This potentially can live in an MMX/SSE scratch register. // The required intrinsics are: // __m128i _mm_move_epi64(__m128i*); // _mm_storel_epi64(u64*, __m128i); u64 store_word = cur.raw(); // scan all the shadow values and dispatch to 4 categories: // same, replace, candidate and race (see comments below). // we consider only 3 cases regarding access sizes: // equal, intersect and not intersect. initially I considered // larger and smaller as well, it allowed to replace some // 'candidates' with 'same' or 'replace', but I think // it's just not worth it (performance- and complexity-wise). Shadow old(0); if (kShadowCnt == 1) { int idx = 0; #include "tsan_update_shadow_word_inl.h" } else if (kShadowCnt == 2) { int idx = 0; #include "tsan_update_shadow_word_inl.h" idx = 1; #include "tsan_update_shadow_word_inl.h" } else if (kShadowCnt == 4) { int idx = 0; #include "tsan_update_shadow_word_inl.h" idx = 1; #include "tsan_update_shadow_word_inl.h" idx = 2; #include "tsan_update_shadow_word_inl.h" idx = 3; #include "tsan_update_shadow_word_inl.h" } else if (kShadowCnt == 8) { int idx = 0; #include "tsan_update_shadow_word_inl.h" idx = 1; #include "tsan_update_shadow_word_inl.h" idx = 2; #include "tsan_update_shadow_word_inl.h" idx = 3; #include "tsan_update_shadow_word_inl.h" idx = 4; #include "tsan_update_shadow_word_inl.h" idx = 5; #include "tsan_update_shadow_word_inl.h" idx = 6; #include "tsan_update_shadow_word_inl.h" idx = 7; #include "tsan_update_shadow_word_inl.h" } else { CHECK(false); } // we did not find any races and had already stored // the current access info, so we are done if (LIKELY(store_word == 0)) return; // choose a random candidate slot and replace it StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); StatInc(thr, StatShadowReplace); return; RACE: HandleRace(thr, shadow_mem, cur, old); return; } ALWAYS_INLINE void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog, bool kAccessIsWrite) { u64 *shadow_mem = (u64*)MemToShadow(addr); DPrintf2("#%d: tsan::OnMemoryAccess: @%p %p size=%d" " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", (int)thr->fast_state.tid(), (void*)pc, (void*)addr, (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2], (uptr)shadow_mem[3]); #if TSAN_DEBUG if (!IsAppMem(addr)) { TsanPrintf("Access to non app mem %zx\n", addr); DCHECK(IsAppMem(addr)); } if (!IsShadowMem((uptr)shadow_mem)) { TsanPrintf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); DCHECK(IsShadowMem((uptr)shadow_mem)); } #endif FastState fast_state = thr->fast_state; if (fast_state.GetIgnoreBit()) return; fast_state.IncrementEpoch(); thr->fast_state = fast_state; Shadow cur(fast_state); cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); cur.SetWrite(kAccessIsWrite); // We must not store to the trace if we do not store to the shadow. // That is, this call must be moved somewhere below. TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc); MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, fast_state, shadow_mem, cur); } static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, u64 val) { if (size == 0) return; // FIXME: fix me. uptr offset = addr % kShadowCell; if (offset) { offset = kShadowCell - offset; if (size <= offset) return; addr += offset; size -= offset; } DCHECK_EQ(addr % 8, 0); // If a user passes some insane arguments (memset(0)), // let it just crash as usual. if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) return; (void)thr; (void)pc; // Some programs mmap like hundreds of GBs but actually used a small part. // So, it's better to report a false positive on the memory // then to hang here senselessly. const uptr kMaxResetSize = 1024*1024*1024; if (size > kMaxResetSize) size = kMaxResetSize; size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); u64 *p = (u64*)MemToShadow(addr); CHECK(IsShadowMem((uptr)p)); CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); // FIXME: may overwrite a part outside the region for (uptr i = 0; i < size * kShadowCnt / kShadowCell;) { p[i++] = val; for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0; } } void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { MemoryRangeSet(thr, pc, addr, size, 0); } void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { MemoryAccessRange(thr, pc, addr, size, true); Shadow s(thr->fast_state); s.MarkAsFreed(); s.SetWrite(true); s.SetAddr0AndSizeLog(0, 3); MemoryRangeSet(thr, pc, addr, size, s.raw()); } void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { Shadow s(thr->fast_state); s.SetWrite(true); s.SetAddr0AndSizeLog(0, 3); MemoryRangeSet(thr, pc, addr, size, s.raw()); } void FuncEntry(ThreadState *thr, uptr pc) { DCHECK_EQ(thr->in_rtl, 0); StatInc(thr, StatFuncEnter); DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeFuncEnter, pc); // Shadow stack maintenance can be replaced with // stack unwinding during trace switch (which presumably must be faster). DCHECK_GE(thr->shadow_stack_pos, &thr->shadow_stack[0]); #ifndef TSAN_GO DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]); #else if (thr->shadow_stack_pos == thr->shadow_stack_end) { const int sz = thr->shadow_stack_end - thr->shadow_stack; const int newsz = 2 * sz; uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, newsz * sizeof(uptr)); internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); internal_free(thr->shadow_stack); thr->shadow_stack = newstack; thr->shadow_stack_pos = newstack + sz; thr->shadow_stack_end = newstack + newsz; } #endif thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } void FuncExit(ThreadState *thr) { DCHECK_EQ(thr->in_rtl, 0); StatInc(thr, StatFuncExit); DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeFuncExit, 0); DCHECK_GT(thr->shadow_stack_pos, &thr->shadow_stack[0]); #ifndef TSAN_GO DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]); #endif thr->shadow_stack_pos--; } void IgnoreCtl(ThreadState *thr, bool write, bool begin) { DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin); thr->ignore_reads_and_writes += begin ? 1 : -1; CHECK_GE(thr->ignore_reads_and_writes, 0); if (thr->ignore_reads_and_writes) thr->fast_state.SetIgnoreBit(); else thr->fast_state.ClearIgnoreBit(); } bool MD5Hash::operator==(const MD5Hash &other) const { return hash[0] == other.hash[0] && hash[1] == other.hash[1]; } #if TSAN_DEBUG void build_consistency_debug() {} #else void build_consistency_release() {} #endif #if TSAN_COLLECT_STATS void build_consistency_stats() {} #else void build_consistency_nostats() {} #endif #if TSAN_SHADOW_COUNT == 1 void build_consistency_shadow1() {} #elif TSAN_SHADOW_COUNT == 2 void build_consistency_shadow2() {} #elif TSAN_SHADOW_COUNT == 4 void build_consistency_shadow4() {} #else void build_consistency_shadow8() {} #endif } // namespace __tsan #ifndef TSAN_GO // Must be included in this file to make sure everything is inlined. #include "tsan_interface_inl.h" #endif