//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the JIT interfaces for the ARM target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "ARMJITInfo.h" #include "ARM.h" #include "ARMConstantPoolValue.h" #include "ARMRelocations.h" #include "ARMSubtarget.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "llvm/Function.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Memory.h" #include using namespace llvm; void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) { report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction"); } /// JITCompilerFunction - This contains the address of the JIT function used to /// compile a function lazily. static TargetJITInfo::JITCompilerFn JITCompilerFunction; // Get the ASMPREFIX for the current host. This is often '_'. #ifndef __USER_LABEL_PREFIX__ #define __USER_LABEL_PREFIX__ #endif #define GETASMPREFIX2(X) #X #define GETASMPREFIX(X) GETASMPREFIX2(X) #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__) // CompilationCallback stub - We can't use a C function with inline assembly in // it, because the prolog/epilog inserted by GCC won't work for us. (We need // to preserve more context and manipulate the stack directly). Instead, // write our own wrapper, which does things our way, so we have complete // control over register saving and restoring. extern "C" { #if defined(__arm__) && !defined(ANDROID) void ARMCompilationCallback(); asm( ".text\n" ".align 2\n" ".globl " ASMPREFIX "ARMCompilationCallback\n" ASMPREFIX "ARMCompilationCallback:\n" // Save caller saved registers since they may contain stuff // for the real target function right now. We have to act as if this // whole compilation callback doesn't exist as far as the caller is // concerned, so we can't just preserve the callee saved regs. "stmdb sp!, {r0, r1, r2, r3, lr}\n" #if (defined(__VFP_FP__) && !defined(__SOFTFP__)) "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n" #endif // The LR contains the address of the stub function on entry. // pass it as the argument to the C part of the callback "mov r0, lr\n" "sub sp, sp, #4\n" // Call the C portion of the callback "bl " ASMPREFIX "ARMCompilationCallbackC\n" "add sp, sp, #4\n" // Restoring the LR to the return address of the function that invoked // the stub and de-allocating the stack space for it requires us to // swap the two saved LR values on the stack, as they're backwards // for what we need since the pop instruction has a pre-determined // order for the registers. // +--------+ // 0 | LR | Original return address // +--------+ // 1 | LR | Stub address (start of stub) // 2-5 | R3..R0 | Saved registers (we need to preserve all regs) // 6-20 | D0..D7 | Saved VFP registers // +--------+ // #if (defined(__VFP_FP__) && !defined(__SOFTFP__)) // Restore VFP caller-saved registers. "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n" #endif // // We need to exchange the values in slots 0 and 1 so we can // return to the address in slot 1 with the address in slot 0 // restored to the LR. "ldr r0, [sp,#20]\n" "ldr r1, [sp,#16]\n" "str r1, [sp,#20]\n" "str r0, [sp,#16]\n" // Return to the (newly modified) stub to invoke the real function. // The above twiddling of the saved return addresses allows us to // deallocate everything, including the LR the stub saved, with two // updating load instructions. "ldmia sp!, {r0, r1, r2, r3, lr}\n" "ldr pc, [sp], #4\n" ); #else // Not an ARM host void ARMCompilationCallback() { llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!"); } #endif } /// ARMCompilationCallbackC - This is the target-specific function invoked /// by the function stub when we did not know the real target of a call. /// This function must locate the start of the stub or call site and pass /// it into the JIT compiler function. extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) { // Get the address of the compiled code for this function. intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr); // Rewrite the call target... so that we don't end up here every time we // execute the call. We're replacing the first two instructions of the // stub with: // ldr pc, [pc,#-4] // if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) { llvm_unreachable("ERROR: Unable to mark stub writable"); } *(intptr_t *)StubAddr = 0xe51ff004; // ldr pc, [pc, #-4] *(intptr_t *)(StubAddr+4) = NewVal; if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) { llvm_unreachable("ERROR: Unable to mark stub executable"); } } TargetJITInfo::LazyResolverFn ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) { JITCompilerFunction = F; return ARMCompilationCallback; } void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr, JITCodeEmitter &JCE) { uint8_t Buffer[4]; uint8_t *Cur = Buffer; MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr); void *PtrAddr = JCE.allocIndirectGV( GV, Buffer, sizeof(Buffer), /*Alignment=*/4); addIndirectSymAddr(Ptr, (intptr_t)PtrAddr); return PtrAddr; } TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() { // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a // 4-byte address. See emitFunctionStub for details. StubLayout Result = {16, 4}; return Result; } void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn, JITCodeEmitter &JCE) { void *Addr; // If this is just a call to an external function, emit a branch instead of a // call. The code is the same except for one bit of the last instruction. if (Fn != (void*)(intptr_t)ARMCompilationCallback) { // Branch to the corresponding function addr. if (IsPIC) { // The stub is 16-byte size and 4-aligned. intptr_t LazyPtr = getIndirectSymAddr(Fn); if (!LazyPtr) { // In PIC mode, the function stub is loading a lazy-ptr. LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE); DEBUG(if (F) errs() << "JIT: Indirect symbol emitted at [" << LazyPtr << "] for GV '" << F->getName() << "'\n"; else errs() << "JIT: Stub emitted at [" << LazyPtr << "] for external function at '" << Fn << "'\n"); } JCE.emitAlignment(4); Addr = (void*)JCE.getCurrentPCValue(); if (!sys::Memory::setRangeWritable(Addr, 16)) { llvm_unreachable("ERROR: Unable to mark stub writable"); } JCE.emitWordLE(0xe59fc004); // ldr ip, [pc, #+4] JCE.emitWordLE(0xe08fc00c); // L_func$scv: add ip, pc, ip JCE.emitWordLE(0xe59cf000); // ldr pc, [ip] JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8)); // func - (L_func$scv+8) sys::Memory::InvalidateInstructionCache(Addr, 16); if (!sys::Memory::setRangeExecutable(Addr, 16)) { llvm_unreachable("ERROR: Unable to mark stub executable"); } } else { // The stub is 8-byte size and 4-aligned. JCE.emitAlignment(4); Addr = (void*)JCE.getCurrentPCValue(); if (!sys::Memory::setRangeWritable(Addr, 8)) { llvm_unreachable("ERROR: Unable to mark stub writable"); } JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4] JCE.emitWordLE((intptr_t)Fn); // addr of function sys::Memory::InvalidateInstructionCache(Addr, 8); if (!sys::Memory::setRangeExecutable(Addr, 8)) { llvm_unreachable("ERROR: Unable to mark stub executable"); } } } else { // The compilation callback will overwrite the first two words of this // stub with indirect branch instructions targeting the compiled code. // This stub sets the return address to restart the stub, so that // the new branch will be invoked when we come back. // // Branch and link to the compilation callback. // The stub is 16-byte size and 4-byte aligned. JCE.emitAlignment(4); Addr = (void*)JCE.getCurrentPCValue(); if (!sys::Memory::setRangeWritable(Addr, 16)) { llvm_unreachable("ERROR: Unable to mark stub writable"); } // Save LR so the callback can determine which stub called it. // The compilation callback is responsible for popping this prior // to returning. JCE.emitWordLE(0xe92d4000); // push {lr} // Set the return address to go back to the start of this stub. JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12 // Invoke the compilation callback. JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4] // The address of the compilation callback. JCE.emitWordLE((intptr_t)ARMCompilationCallback); sys::Memory::InvalidateInstructionCache(Addr, 16); if (!sys::Memory::setRangeExecutable(Addr, 16)) { llvm_unreachable("ERROR: Unable to mark stub executable"); } } return Addr; } intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const { ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType(); switch (RT) { default: return (intptr_t)(MR->getResultPointer()); case ARM::reloc_arm_pic_jt: // Destination address - jump table base. return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal(); case ARM::reloc_arm_jt_base: // Jump table base address. return getJumpTableBaseAddr(MR->getJumpTableIndex()); case ARM::reloc_arm_cp_entry: case ARM::reloc_arm_vfp_cp_entry: case ARM::reloc_arm_so_imm_cp_entry: // Constant pool entry address. return getConstantPoolEntryAddr(MR->getConstantPoolIndex()); case ARM::reloc_arm_machine_cp_entry: { ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal(); assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) && "Can't handle this machine constant pool entry yet!"); intptr_t Addr = (intptr_t)(MR->getResultPointer()); Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment(); return Addr; } } } /// relocate - Before the JIT can run a block of code that has been emitted, /// it must rewrite the code to contain the actual addresses of any /// referenced global symbols. void ARMJITInfo::relocate(void *Function, MachineRelocation *MR, unsigned NumRelocs, unsigned char* GOTBase) { for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { void *RelocPos = (char*)Function + MR->getMachineCodeOffset(); intptr_t ResultPtr = resolveRelocDestAddr(MR); switch ((ARM::RelocationType)MR->getRelocationType()) { case ARM::reloc_arm_cp_entry: case ARM::reloc_arm_vfp_cp_entry: case ARM::reloc_arm_relative: { // It is necessary to calculate the correct PC relative value. We // subtract the base addr from the target addr to form a byte offset. ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; // If the result is positive, set bit U(23) to 1. if (ResultPtr >= 0) *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift; else { // Otherwise, obtain the absolute value and set bit U(23) to 0. *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift); ResultPtr = - ResultPtr; } // Set the immed value calculated. // VFP immediate offset is multiplied by 4. if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry) ResultPtr = ResultPtr >> 2; *((intptr_t*)RelocPos) |= ResultPtr; // Set register Rn to PC (which is register 15 on all architectures). // FIXME: This avoids the need for register info in the JIT class. *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift; break; } case ARM::reloc_arm_so_imm_cp_entry: { ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; // If the result is positive, set bit U(23) to 1. if (ResultPtr >= 0) *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift; else { // Otherwise, obtain the absolute value and set bit U(23) to 0. *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift); // FIXME: Also set bit 22 to 1 since 'sub' instruction is going to be used. *((intptr_t*)RelocPos) |= 1 << 22; ResultPtr = - ResultPtr; } int SoImmVal = ARM_AM::getSOImmVal(ResultPtr); assert(SoImmVal != -1 && "Not a valid so_imm value!"); *((intptr_t*)RelocPos) |= (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1) << ARMII::SoRotImmShift; *((intptr_t*)RelocPos) |= ARM_AM::getSOImmValImm((unsigned)SoImmVal); // Set register Rn to PC (which is register 15 on all architectures). // FIXME: This avoids the need for register info in the JIT class. *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift; break; } case ARM::reloc_arm_pic_jt: case ARM::reloc_arm_machine_cp_entry: case ARM::reloc_arm_absolute: { // These addresses have already been resolved. *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr; break; } case ARM::reloc_arm_branch: { // It is necessary to calculate the correct value of signed_immed_24 // field. We subtract the base addr from the target addr to form a // byte offset, which must be inside the range -33554432 and +33554428. // Then, we set the signed_immed_24 field of the instruction to bits // [25:2] of the byte offset. More details ARM-ARM p. A4-11. ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2; assert(ResultPtr >= -33554432 && ResultPtr <= 33554428); *((intptr_t*)RelocPos) |= ResultPtr; break; } case ARM::reloc_arm_jt_base: { // JT base - (instruction addr + 8) ResultPtr = ResultPtr - (intptr_t)RelocPos - 8; *((intptr_t*)RelocPos) |= ResultPtr; break; } case ARM::reloc_arm_movw: { ResultPtr = ResultPtr & 0xFFFF; *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF; *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16; break; } case ARM::reloc_arm_movt: { ResultPtr = (ResultPtr >> 16) & 0xFFFF; *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF; *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16; break; } } } }