// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "serialize.h" #include "unicode.h" #include "log.h" #include "regexp-stack.h" #include "macro-assembler.h" #include "regexp-macro-assembler.h" #include "x64/regexp-macro-assembler-x64.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP /* * This assembler uses the following register assignment convention * - rdx : currently loaded character(s) as ASCII or UC16. Must be loaded using * LoadCurrentCharacter before using any of the dispatch methods. * - rdi : current position in input, as negative offset from end of string. * Please notice that this is the byte offset, not the character * offset! Is always a 32-bit signed (negative) offset, but must be * maintained sign-extended to 64 bits, since it is used as index. * - rsi : end of input (points to byte after last character in input), * so that rsi+rdi points to the current character. * - rbp : frame pointer. Used to access arguments, local variables and * RegExp registers. * - rsp : points to tip of C stack. * - rcx : points to tip of backtrack stack. The backtrack stack contains * only 32-bit values. Most are offsets from some base (e.g., character * positions from end of string or code location from Code* pointer). * - r8 : code object pointer. Used to convert between absolute and * code-object-relative addresses. * * The registers rax, rbx, r9 and r11 are free to use for computations. * If changed to use r12+, they should be saved as callee-save registers. * The macro assembler special registers r12 and r13 (kSmiConstantRegister, * kRootRegister) aren't special during execution of RegExp code (they don't * hold the values assumed when creating JS code), so no Smi or Root related * macro operations can be used. * * Each call to a C++ method should retain these registers. * * The stack will have the following content, in some order, indexable from the * frame pointer (see, e.g., kStackHighEnd): * - Isolate* isolate (Address of the current isolate) * - direct_call (if 1, direct call from JavaScript code, if 0 call * through the runtime system) * - stack_area_base (High end of the memory area to use as * backtracking stack) * - int* capture_array (int[num_saved_registers_], for output). * - end of input (Address of end of string) * - start of input (Address of first character in string) * - start index (character index of start) * - String* input_string (input string) * - return address * - backup of callee save registers (rbx, possibly rsi and rdi). * - Offset of location before start of input (effectively character * position -1). Used to initialize capture registers to a non-position. * - At start of string (if 1, we are starting at the start of the * string, otherwise 0) * - register 0 rbp[-n] (Only positions must be stored in the first * - register 1 rbp[-n-8] num_saved_registers_ registers) * - ... * * The first num_saved_registers_ registers are initialized to point to * "character -1" in the string (i.e., char_size() bytes before the first * character of the string). The remaining registers starts out uninitialized. * * The first seven values must be provided by the calling code by * calling the code's entry address cast to a function pointer with the * following signature: * int (*match)(String* input_string, * int start_index, * Address start, * Address end, * int* capture_output_array, * bool at_start, * byte* stack_area_base, * bool direct_call) */ #define __ ACCESS_MASM((&masm_)) RegExpMacroAssemblerX64::RegExpMacroAssemblerX64( Mode mode, int registers_to_save) : masm_(Isolate::Current(), NULL, kRegExpCodeSize), no_root_array_scope_(&masm_), code_relative_fixup_positions_(4), mode_(mode), num_registers_(registers_to_save), num_saved_registers_(registers_to_save), entry_label_(), start_label_(), success_label_(), backtrack_label_(), exit_label_() { ASSERT_EQ(0, registers_to_save % 2); __ jmp(&entry_label_); // We'll write the entry code when we know more. __ bind(&start_label_); // And then continue from here. } RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() { // Unuse labels in case we throw away the assembler without calling GetCode. entry_label_.Unuse(); start_label_.Unuse(); success_label_.Unuse(); backtrack_label_.Unuse(); exit_label_.Unuse(); check_preempt_label_.Unuse(); stack_overflow_label_.Unuse(); } int RegExpMacroAssemblerX64::stack_limit_slack() { return RegExpStack::kStackLimitSlack; } void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) { if (by != 0) { __ addq(rdi, Immediate(by * char_size())); } } void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) { ASSERT(reg >= 0); ASSERT(reg < num_registers_); if (by != 0) { __ addq(register_location(reg), Immediate(by)); } } void RegExpMacroAssemblerX64::Backtrack() { CheckPreemption(); // Pop Code* offset from backtrack stack, add Code* and jump to location. Pop(rbx); __ addq(rbx, code_object_pointer()); __ jmp(rbx); } void RegExpMacroAssemblerX64::Bind(Label* label) { __ bind(label); } void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) { __ cmpl(current_character(), Immediate(c)); BranchOrBacktrack(equal, on_equal); } void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) { __ cmpl(current_character(), Immediate(limit)); BranchOrBacktrack(greater, on_greater); } void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) { Label not_at_start; // Did we start the match at the start of the string at all? __ cmpl(Operand(rbp, kStartIndex), Immediate(0)); BranchOrBacktrack(not_equal, ¬_at_start); // If we did, are we still at the start of the input? __ lea(rax, Operand(rsi, rdi, times_1, 0)); __ cmpq(rax, Operand(rbp, kInputStart)); BranchOrBacktrack(equal, on_at_start); __ bind(¬_at_start); } void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) { // Did we start the match at the start of the string at all? __ cmpl(Operand(rbp, kStartIndex), Immediate(0)); BranchOrBacktrack(not_equal, on_not_at_start); // If we did, are we still at the start of the input? __ lea(rax, Operand(rsi, rdi, times_1, 0)); __ cmpq(rax, Operand(rbp, kInputStart)); BranchOrBacktrack(not_equal, on_not_at_start); } void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) { __ cmpl(current_character(), Immediate(limit)); BranchOrBacktrack(less, on_less); } void RegExpMacroAssemblerX64::CheckCharacters(Vector str, int cp_offset, Label* on_failure, bool check_end_of_string) { #ifdef DEBUG // If input is ASCII, don't even bother calling here if the string to // match contains a non-ASCII character. if (mode_ == ASCII) { ASSERT(String::IsAscii(str.start(), str.length())); } #endif int byte_length = str.length() * char_size(); int byte_offset = cp_offset * char_size(); if (check_end_of_string) { // Check that there are at least str.length() characters left in the input. __ cmpl(rdi, Immediate(-(byte_offset + byte_length))); BranchOrBacktrack(greater, on_failure); } if (on_failure == NULL) { // Instead of inlining a backtrack, (re)use the global backtrack target. on_failure = &backtrack_label_; } // Do one character test first to minimize loading for the case that // we don't match at all (loading more than one character introduces that // chance of reading unaligned and reading across cache boundaries). // If the first character matches, expect a larger chance of matching the // string, and start loading more characters at a time. if (mode_ == ASCII) { __ cmpb(Operand(rsi, rdi, times_1, byte_offset), Immediate(static_cast(str[0]))); } else { // Don't use 16-bit immediate. The size changing prefix throws off // pre-decoding. __ movzxwl(rax, Operand(rsi, rdi, times_1, byte_offset)); __ cmpl(rax, Immediate(static_cast(str[0]))); } BranchOrBacktrack(not_equal, on_failure); __ lea(rbx, Operand(rsi, rdi, times_1, 0)); for (int i = 1, n = str.length(); i < n; ) { if (mode_ == ASCII) { if (i + 8 <= n) { uint64_t combined_chars = (static_cast(str[i + 0]) << 0) || (static_cast(str[i + 1]) << 8) || (static_cast(str[i + 2]) << 16) || (static_cast(str[i + 3]) << 24) || (static_cast(str[i + 4]) << 32) || (static_cast(str[i + 5]) << 40) || (static_cast(str[i + 6]) << 48) || (static_cast(str[i + 7]) << 56); __ movq(rax, combined_chars, RelocInfo::NONE); __ cmpq(rax, Operand(rbx, byte_offset + i)); i += 8; } else if (i + 4 <= n) { uint32_t combined_chars = (static_cast(str[i + 0]) << 0) || (static_cast(str[i + 1]) << 8) || (static_cast(str[i + 2]) << 16) || (static_cast(str[i + 3]) << 24); __ cmpl(Operand(rbx, byte_offset + i), Immediate(combined_chars)); i += 4; } else { __ cmpb(Operand(rbx, byte_offset + i), Immediate(static_cast(str[i]))); i++; } } else { ASSERT(mode_ == UC16); if (i + 4 <= n) { uint64_t combined_chars = *reinterpret_cast(&str[i]); __ movq(rax, combined_chars, RelocInfo::NONE); __ cmpq(rax, Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16))); i += 4; } else if (i + 2 <= n) { uint32_t combined_chars = *reinterpret_cast(&str[i]); __ cmpl(Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)), Immediate(combined_chars)); i += 2; } else { __ movzxwl(rax, Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16))); __ cmpl(rax, Immediate(str[i])); i++; } } BranchOrBacktrack(not_equal, on_failure); } } void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) { Label fallthrough; __ cmpl(rdi, Operand(backtrack_stackpointer(), 0)); __ j(not_equal, &fallthrough); Drop(); BranchOrBacktrack(no_condition, on_equal); __ bind(&fallthrough); } void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase( int start_reg, Label* on_no_match) { Label fallthrough; __ movq(rdx, register_location(start_reg)); // Offset of start of capture __ movq(rbx, register_location(start_reg + 1)); // Offset of end of capture __ subq(rbx, rdx); // Length of capture. // ----------------------- // rdx = Start offset of capture. // rbx = Length of capture // If length is negative, this code will fail (it's a symptom of a partial or // illegal capture where start of capture after end of capture). // This must not happen (no back-reference can reference a capture that wasn't // closed before in the reg-exp, and we must not generate code that can cause // this condition). // If length is zero, either the capture is empty or it is nonparticipating. // In either case succeed immediately. __ j(equal, &fallthrough); if (mode_ == ASCII) { Label loop_increment; if (on_no_match == NULL) { on_no_match = &backtrack_label_; } __ lea(r9, Operand(rsi, rdx, times_1, 0)); __ lea(r11, Operand(rsi, rdi, times_1, 0)); __ addq(rbx, r9); // End of capture // --------------------- // r11 - current input character address // r9 - current capture character address // rbx - end of capture Label loop; __ bind(&loop); __ movzxbl(rdx, Operand(r9, 0)); __ movzxbl(rax, Operand(r11, 0)); // al - input character // dl - capture character __ cmpb(rax, rdx); __ j(equal, &loop_increment); // Mismatch, try case-insensitive match (converting letters to lower-case). // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's // a match. __ or_(rax, Immediate(0x20)); // Convert match character to lower-case. __ or_(rdx, Immediate(0x20)); // Convert capture character to lower-case. __ cmpb(rax, rdx); __ j(not_equal, on_no_match); // Definitely not equal. __ subb(rax, Immediate('a')); __ cmpb(rax, Immediate('z' - 'a')); __ j(above, on_no_match); // Weren't letters anyway. __ bind(&loop_increment); // Increment pointers into match and capture strings. __ addq(r11, Immediate(1)); __ addq(r9, Immediate(1)); // Compare to end of capture, and loop if not done. __ cmpq(r9, rbx); __ j(below, &loop); // Compute new value of character position after the matched part. __ movq(rdi, r11); __ subq(rdi, rsi); } else { ASSERT(mode_ == UC16); // Save important/volatile registers before calling C function. #ifndef _WIN64 // Caller save on Linux and callee save in Windows. __ push(rsi); __ push(rdi); #endif __ push(backtrack_stackpointer()); static const int num_arguments = 4; __ PrepareCallCFunction(num_arguments); // Put arguments into parameter registers. Parameters are // Address byte_offset1 - Address captured substring's start. // Address byte_offset2 - Address of current character position. // size_t byte_length - length of capture in bytes(!) // Isolate* isolate #ifdef _WIN64 // Compute and set byte_offset1 (start of capture). __ lea(rcx, Operand(rsi, rdx, times_1, 0)); // Set byte_offset2. __ lea(rdx, Operand(rsi, rdi, times_1, 0)); // Set byte_length. __ movq(r8, rbx); // Isolate. __ LoadAddress(r9, ExternalReference::isolate_address()); #else // AMD64 calling convention // Compute byte_offset2 (current position = rsi+rdi). __ lea(rax, Operand(rsi, rdi, times_1, 0)); // Compute and set byte_offset1 (start of capture). __ lea(rdi, Operand(rsi, rdx, times_1, 0)); // Set byte_offset2. __ movq(rsi, rax); // Set byte_length. __ movq(rdx, rbx); // Isolate. __ LoadAddress(rcx, ExternalReference::isolate_address()); #endif { // NOLINT: Can't find a way to open this scope without confusing the // linter. AllowExternalCallThatCantCauseGC scope(&masm_); ExternalReference compare = ExternalReference::re_case_insensitive_compare_uc16(masm_.isolate()); __ CallCFunction(compare, num_arguments); } // Restore original values before reacting on result value. __ Move(code_object_pointer(), masm_.CodeObject()); __ pop(backtrack_stackpointer()); #ifndef _WIN64 __ pop(rdi); __ pop(rsi); #endif // Check if function returned non-zero for success or zero for failure. __ testq(rax, rax); BranchOrBacktrack(zero, on_no_match); // On success, increment position by length of capture. // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs). __ addq(rdi, rbx); } __ bind(&fallthrough); } void RegExpMacroAssemblerX64::CheckNotBackReference( int start_reg, Label* on_no_match) { Label fallthrough; // Find length of back-referenced capture. __ movq(rdx, register_location(start_reg)); __ movq(rax, register_location(start_reg + 1)); __ subq(rax, rdx); // Length to check. // Fail on partial or illegal capture (start of capture after end of capture). // This must not happen (no back-reference can reference a capture that wasn't // closed before in the reg-exp). __ Check(greater_equal, "Invalid capture referenced"); // Succeed on empty capture (including non-participating capture) __ j(equal, &fallthrough); // ----------------------- // rdx - Start of capture // rax - length of capture // Check that there are sufficient characters left in the input. __ movl(rbx, rdi); __ addl(rbx, rax); BranchOrBacktrack(greater, on_no_match); // Compute pointers to match string and capture string __ lea(rbx, Operand(rsi, rdi, times_1, 0)); // Start of match. __ addq(rdx, rsi); // Start of capture. __ lea(r9, Operand(rdx, rax, times_1, 0)); // End of capture // ----------------------- // rbx - current capture character address. // rbx - current input character address . // r9 - end of input to match (capture length after rbx). Label loop; __ bind(&loop); if (mode_ == ASCII) { __ movzxbl(rax, Operand(rdx, 0)); __ cmpb(rax, Operand(rbx, 0)); } else { ASSERT(mode_ == UC16); __ movzxwl(rax, Operand(rdx, 0)); __ cmpw(rax, Operand(rbx, 0)); } BranchOrBacktrack(not_equal, on_no_match); // Increment pointers into capture and match string. __ addq(rbx, Immediate(char_size())); __ addq(rdx, Immediate(char_size())); // Check if we have reached end of match area. __ cmpq(rdx, r9); __ j(below, &loop); // Success. // Set current character position to position after match. __ movq(rdi, rbx); __ subq(rdi, rsi); __ bind(&fallthrough); } void RegExpMacroAssemblerX64::CheckNotRegistersEqual(int reg1, int reg2, Label* on_not_equal) { __ movq(rax, register_location(reg1)); __ cmpq(rax, register_location(reg2)); BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c, Label* on_not_equal) { __ cmpl(current_character(), Immediate(c)); BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal) { __ movl(rax, current_character()); __ and_(rax, Immediate(mask)); __ cmpl(rax, Immediate(c)); BranchOrBacktrack(equal, on_equal); } void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_not_equal) { __ movl(rax, current_character()); __ and_(rax, Immediate(mask)); __ cmpl(rax, Immediate(c)); BranchOrBacktrack(not_equal, on_not_equal); } void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd( uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) { ASSERT(minus < String::kMaxUtf16CodeUnit); __ lea(rax, Operand(current_character(), -minus)); __ and_(rax, Immediate(mask)); __ cmpl(rax, Immediate(c)); BranchOrBacktrack(not_equal, on_not_equal); } bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type, Label* on_no_match) { // Range checks (c in min..max) are generally implemented by an unsigned // (c - min) <= (max - min) check, using the sequence: // lea(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min)) // cmp(rax, Immediate(max - min)) switch (type) { case 's': // Match space-characters if (mode_ == ASCII) { // ASCII space characters are '\t'..'\r' and ' '. Label success; __ cmpl(current_character(), Immediate(' ')); __ j(equal, &success); // Check range 0x09..0x0d __ lea(rax, Operand(current_character(), -'\t')); __ cmpl(rax, Immediate('\r' - '\t')); BranchOrBacktrack(above, on_no_match); __ bind(&success); return true; } return false; case 'S': // Match non-space characters. if (mode_ == ASCII) { // ASCII space characters are '\t'..'\r' and ' '. __ cmpl(current_character(), Immediate(' ')); BranchOrBacktrack(equal, on_no_match); __ lea(rax, Operand(current_character(), -'\t')); __ cmpl(rax, Immediate('\r' - '\t')); BranchOrBacktrack(below_equal, on_no_match); return true; } return false; case 'd': // Match ASCII digits ('0'..'9') __ lea(rax, Operand(current_character(), -'0')); __ cmpl(rax, Immediate('9' - '0')); BranchOrBacktrack(above, on_no_match); return true; case 'D': // Match non ASCII-digits __ lea(rax, Operand(current_character(), -'0')); __ cmpl(rax, Immediate('9' - '0')); BranchOrBacktrack(below_equal, on_no_match); return true; case '.': { // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) __ movl(rax, current_character()); __ xor_(rax, Immediate(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c __ subl(rax, Immediate(0x0b)); __ cmpl(rax, Immediate(0x0c - 0x0b)); BranchOrBacktrack(below_equal, on_no_match); if (mode_ == UC16) { // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0b). I.e., check for // 0x201d (0x2028 - 0x0b) or 0x201e. __ subl(rax, Immediate(0x2028 - 0x0b)); __ cmpl(rax, Immediate(0x2029 - 0x2028)); BranchOrBacktrack(below_equal, on_no_match); } return true; } case 'n': { // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) __ movl(rax, current_character()); __ xor_(rax, Immediate(0x01)); // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c __ subl(rax, Immediate(0x0b)); __ cmpl(rax, Immediate(0x0c - 0x0b)); if (mode_ == ASCII) { BranchOrBacktrack(above, on_no_match); } else { Label done; BranchOrBacktrack(below_equal, &done); // Compare original value to 0x2028 and 0x2029, using the already // computed (current_char ^ 0x01 - 0x0b). I.e., check for // 0x201d (0x2028 - 0x0b) or 0x201e. __ subl(rax, Immediate(0x2028 - 0x0b)); __ cmpl(rax, Immediate(0x2029 - 0x2028)); BranchOrBacktrack(above, on_no_match); __ bind(&done); } return true; } case 'w': { if (mode_ != ASCII) { // Table is 128 entries, so all ASCII characters can be tested. __ cmpl(current_character(), Immediate('z')); BranchOrBacktrack(above, on_no_match); } __ movq(rbx, ExternalReference::re_word_character_map()); ASSERT_EQ(0, word_character_map[0]); // Character '\0' is not a word char. __ testb(Operand(rbx, current_character(), times_1, 0), current_character()); BranchOrBacktrack(zero, on_no_match); return true; } case 'W': { Label done; if (mode_ != ASCII) { // Table is 128 entries, so all ASCII characters can be tested. __ cmpl(current_character(), Immediate('z')); __ j(above, &done); } __ movq(rbx, ExternalReference::re_word_character_map()); ASSERT_EQ(0, word_character_map[0]); // Character '\0' is not a word char. __ testb(Operand(rbx, current_character(), times_1, 0), current_character()); BranchOrBacktrack(not_zero, on_no_match); if (mode_ != ASCII) { __ bind(&done); } return true; } case '*': // Match any character. return true; // No custom implementation (yet): s(UC16), S(UC16). default: return false; } } void RegExpMacroAssemblerX64::Fail() { ASSERT(FAILURE == 0); // Return value for failure is zero. __ Set(rax, 0); __ jmp(&exit_label_); } Handle RegExpMacroAssemblerX64::GetCode(Handle source) { // Finalize code - write the entry point code now we know how many // registers we need. // Entry code: __ bind(&entry_label_); // Tell the system that we have a stack frame. Because the type is MANUAL, no // is generated. FrameScope scope(&masm_, StackFrame::MANUAL); // Actually emit code to start a new stack frame. __ push(rbp); __ movq(rbp, rsp); // Save parameters and callee-save registers. Order here should correspond // to order of kBackup_ebx etc. #ifdef _WIN64 // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots. // Store register parameters in pre-allocated stack slots, __ movq(Operand(rbp, kInputString), rcx); __ movq(Operand(rbp, kStartIndex), rdx); // Passed as int32 in edx. __ movq(Operand(rbp, kInputStart), r8); __ movq(Operand(rbp, kInputEnd), r9); // Callee-save on Win64. __ push(rsi); __ push(rdi); __ push(rbx); #else // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack). // Push register parameters on stack for reference. ASSERT_EQ(kInputString, -1 * kPointerSize); ASSERT_EQ(kStartIndex, -2 * kPointerSize); ASSERT_EQ(kInputStart, -3 * kPointerSize); ASSERT_EQ(kInputEnd, -4 * kPointerSize); ASSERT_EQ(kRegisterOutput, -5 * kPointerSize); ASSERT_EQ(kStackHighEnd, -6 * kPointerSize); __ push(rdi); __ push(rsi); __ push(rdx); __ push(rcx); __ push(r8); __ push(r9); __ push(rbx); // Callee-save #endif __ push(Immediate(0)); // Make room for "at start" constant. // Check if we have space on the stack for registers. Label stack_limit_hit; Label stack_ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm_.isolate()); __ movq(rcx, rsp); __ movq(kScratchRegister, stack_limit); __ subq(rcx, Operand(kScratchRegister, 0)); // Handle it if the stack pointer is already below the stack limit. __ j(below_equal, &stack_limit_hit); // Check if there is room for the variable number of registers above // the stack limit. __ cmpq(rcx, Immediate(num_registers_ * kPointerSize)); __ j(above_equal, &stack_ok); // Exit with OutOfMemory exception. There is not enough space on the stack // for our working registers. __ Set(rax, EXCEPTION); __ jmp(&exit_label_); __ bind(&stack_limit_hit); __ Move(code_object_pointer(), masm_.CodeObject()); CallCheckStackGuardState(); // Preserves no registers beside rbp and rsp. __ testq(rax, rax); // If returned value is non-zero, we exit with the returned value as result. __ j(not_zero, &exit_label_); __ bind(&stack_ok); // Allocate space on stack for registers. __ subq(rsp, Immediate(num_registers_ * kPointerSize)); // Load string length. __ movq(rsi, Operand(rbp, kInputEnd)); // Load input position. __ movq(rdi, Operand(rbp, kInputStart)); // Set up rdi to be negative offset from string end. __ subq(rdi, rsi); // Set rax to address of char before start of the string // (effectively string position -1). __ movq(rbx, Operand(rbp, kStartIndex)); __ neg(rbx); if (mode_ == UC16) { __ lea(rax, Operand(rdi, rbx, times_2, -char_size())); } else { __ lea(rax, Operand(rdi, rbx, times_1, -char_size())); } // Store this value in a local variable, for use when clearing // position registers. __ movq(Operand(rbp, kInputStartMinusOne), rax); if (num_saved_registers_ > 0) { // Fill saved registers with initial value = start offset - 1 // Fill in stack push order, to avoid accessing across an unwritten // page (a problem on Windows). __ Set(rcx, kRegisterZero); Label init_loop; __ bind(&init_loop); __ movq(Operand(rbp, rcx, times_1, 0), rax); __ subq(rcx, Immediate(kPointerSize)); __ cmpq(rcx, Immediate(kRegisterZero - num_saved_registers_ * kPointerSize)); __ j(greater, &init_loop); } // Ensure that we have written to each stack page, in order. Skipping a page // on Windows can cause segmentation faults. Assuming page size is 4k. const int kPageSize = 4096; const int kRegistersPerPage = kPageSize / kPointerSize; for (int i = num_saved_registers_ + kRegistersPerPage - 1; i < num_registers_; i += kRegistersPerPage) { __ movq(register_location(i), rax); // One write every page. } // Initialize backtrack stack pointer. __ movq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd)); // Initialize code object pointer. __ Move(code_object_pointer(), masm_.CodeObject()); // Load previous char as initial value of current-character. Label at_start; __ cmpb(Operand(rbp, kStartIndex), Immediate(0)); __ j(equal, &at_start); LoadCurrentCharacterUnchecked(-1, 1); // Load previous char. __ jmp(&start_label_); __ bind(&at_start); __ Set(current_character(), '\n'); __ jmp(&start_label_); // Exit code: if (success_label_.is_linked()) { // Save captures when successful. __ bind(&success_label_); if (num_saved_registers_ > 0) { // copy captures to output __ movq(rdx, Operand(rbp, kStartIndex)); __ movq(rbx, Operand(rbp, kRegisterOutput)); __ movq(rcx, Operand(rbp, kInputEnd)); __ subq(rcx, Operand(rbp, kInputStart)); if (mode_ == UC16) { __ lea(rcx, Operand(rcx, rdx, times_2, 0)); } else { __ addq(rcx, rdx); } for (int i = 0; i < num_saved_registers_; i++) { __ movq(rax, register_location(i)); __ addq(rax, rcx); // Convert to index from start, not end. if (mode_ == UC16) { __ sar(rax, Immediate(1)); // Convert byte index to character index. } __ movl(Operand(rbx, i * kIntSize), rax); } } __ Set(rax, SUCCESS); } // Exit and return rax __ bind(&exit_label_); #ifdef _WIN64 // Restore callee save registers. __ lea(rsp, Operand(rbp, kLastCalleeSaveRegister)); __ pop(rbx); __ pop(rdi); __ pop(rsi); // Stack now at rbp. #else // Restore callee save register. __ movq(rbx, Operand(rbp, kBackup_rbx)); // Skip rsp to rbp. __ movq(rsp, rbp); #endif // Exit function frame, restore previous one. __ pop(rbp); __ ret(0); // Backtrack code (branch target for conditional backtracks). if (backtrack_label_.is_linked()) { __ bind(&backtrack_label_); Backtrack(); } Label exit_with_exception; // Preempt-code if (check_preempt_label_.is_linked()) { SafeCallTarget(&check_preempt_label_); __ push(backtrack_stackpointer()); __ push(rdi); CallCheckStackGuardState(); __ testq(rax, rax); // If returning non-zero, we should end execution with the given // result as return value. __ j(not_zero, &exit_label_); // Restore registers. __ Move(code_object_pointer(), masm_.CodeObject()); __ pop(rdi); __ pop(backtrack_stackpointer()); // String might have moved: Reload esi from frame. __ movq(rsi, Operand(rbp, kInputEnd)); SafeReturn(); } // Backtrack stack overflow code. if (stack_overflow_label_.is_linked()) { SafeCallTarget(&stack_overflow_label_); // Reached if the backtrack-stack limit has been hit. Label grow_failed; // Save registers before calling C function #ifndef _WIN64 // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI. __ push(rsi); __ push(rdi); #endif // Call GrowStack(backtrack_stackpointer()) static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments); #ifdef _WIN64 // Microsoft passes parameters in rcx, rdx, r8. // First argument, backtrack stackpointer, is already in rcx. __ lea(rdx, Operand(rbp, kStackHighEnd)); // Second argument __ LoadAddress(r8, ExternalReference::isolate_address()); #else // AMD64 ABI passes parameters in rdi, rsi, rdx. __ movq(rdi, backtrack_stackpointer()); // First argument. __ lea(rsi, Operand(rbp, kStackHighEnd)); // Second argument. __ LoadAddress(rdx, ExternalReference::isolate_address()); #endif ExternalReference grow_stack = ExternalReference::re_grow_stack(masm_.isolate()); __ CallCFunction(grow_stack, num_arguments); // If return NULL, we have failed to grow the stack, and // must exit with a stack-overflow exception. __ testq(rax, rax); __ j(equal, &exit_with_exception); // Otherwise use return value as new stack pointer. __ movq(backtrack_stackpointer(), rax); // Restore saved registers and continue. __ Move(code_object_pointer(), masm_.CodeObject()); #ifndef _WIN64 __ pop(rdi); __ pop(rsi); #endif SafeReturn(); } if (exit_with_exception.is_linked()) { // If any of the code above needed to exit with an exception. __ bind(&exit_with_exception); // Exit with Result EXCEPTION(-1) to signal thrown exception. __ Set(rax, EXCEPTION); __ jmp(&exit_label_); } FixupCodeRelativePositions(); CodeDesc code_desc; masm_.GetCode(&code_desc); Isolate* isolate = ISOLATE; Handle code = isolate->factory()->NewCode( code_desc, Code::ComputeFlags(Code::REGEXP), masm_.CodeObject()); PROFILE(isolate, RegExpCodeCreateEvent(*code, *source)); return Handle::cast(code); } void RegExpMacroAssemblerX64::GoTo(Label* to) { BranchOrBacktrack(no_condition, to); } void RegExpMacroAssemblerX64::IfRegisterGE(int reg, int comparand, Label* if_ge) { __ cmpq(register_location(reg), Immediate(comparand)); BranchOrBacktrack(greater_equal, if_ge); } void RegExpMacroAssemblerX64::IfRegisterLT(int reg, int comparand, Label* if_lt) { __ cmpq(register_location(reg), Immediate(comparand)); BranchOrBacktrack(less, if_lt); } void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg, Label* if_eq) { __ cmpq(rdi, register_location(reg)); BranchOrBacktrack(equal, if_eq); } RegExpMacroAssembler::IrregexpImplementation RegExpMacroAssemblerX64::Implementation() { return kX64Implementation; } void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds, int characters) { ASSERT(cp_offset >= -1); // ^ and \b can look behind one character. ASSERT(cp_offset < (1<<30)); // Be sane! (And ensure negation works) if (check_bounds) { CheckPosition(cp_offset + characters - 1, on_end_of_input); } LoadCurrentCharacterUnchecked(cp_offset, characters); } void RegExpMacroAssemblerX64::PopCurrentPosition() { Pop(rdi); } void RegExpMacroAssemblerX64::PopRegister(int register_index) { Pop(rax); __ movq(register_location(register_index), rax); } void RegExpMacroAssemblerX64::PushBacktrack(Label* label) { Push(label); CheckStackLimit(); } void RegExpMacroAssemblerX64::PushCurrentPosition() { Push(rdi); } void RegExpMacroAssemblerX64::PushRegister(int register_index, StackCheckFlag check_stack_limit) { __ movq(rax, register_location(register_index)); Push(rax); if (check_stack_limit) CheckStackLimit(); } void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) { __ movq(rdi, register_location(reg)); } void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) { __ movq(backtrack_stackpointer(), register_location(reg)); __ addq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd)); } void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) { Label after_position; __ cmpq(rdi, Immediate(-by * char_size())); __ j(greater_equal, &after_position, Label::kNear); __ movq(rdi, Immediate(-by * char_size())); // On RegExp code entry (where this operation is used), the character before // the current position is expected to be already loaded. // We have advanced the position, so it's safe to read backwards. LoadCurrentCharacterUnchecked(-1, 1); __ bind(&after_position); } void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) { ASSERT(register_index >= num_saved_registers_); // Reserved for positions! __ movq(register_location(register_index), Immediate(to)); } void RegExpMacroAssemblerX64::Succeed() { __ jmp(&success_label_); } void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg, int cp_offset) { if (cp_offset == 0) { __ movq(register_location(reg), rdi); } else { __ lea(rax, Operand(rdi, cp_offset * char_size())); __ movq(register_location(reg), rax); } } void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) { ASSERT(reg_from <= reg_to); __ movq(rax, Operand(rbp, kInputStartMinusOne)); for (int reg = reg_from; reg <= reg_to; reg++) { __ movq(register_location(reg), rax); } } void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) { __ movq(rax, backtrack_stackpointer()); __ subq(rax, Operand(rbp, kStackHighEnd)); __ movq(register_location(reg), rax); } // Private methods: void RegExpMacroAssemblerX64::CallCheckStackGuardState() { // This function call preserves no register values. Caller should // store anything volatile in a C call or overwritten by this function. static const int num_arguments = 3; __ PrepareCallCFunction(num_arguments); #ifdef _WIN64 // Second argument: Code* of self. (Do this before overwriting r8). __ movq(rdx, code_object_pointer()); // Third argument: RegExp code frame pointer. __ movq(r8, rbp); // First argument: Next address on the stack (will be address of // return address). __ lea(rcx, Operand(rsp, -kPointerSize)); #else // Third argument: RegExp code frame pointer. __ movq(rdx, rbp); // Second argument: Code* of self. __ movq(rsi, code_object_pointer()); // First argument: Next address on the stack (will be address of // return address). __ lea(rdi, Operand(rsp, -kPointerSize)); #endif ExternalReference stack_check = ExternalReference::re_check_stack_guard_state(masm_.isolate()); __ CallCFunction(stack_check, num_arguments); } // Helper function for reading a value out of a stack frame. template static T& frame_entry(Address re_frame, int frame_offset) { return reinterpret_cast(Memory::int32_at(re_frame + frame_offset)); } int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame) { Isolate* isolate = frame_entry(re_frame, kIsolate); ASSERT(isolate == Isolate::Current()); if (isolate->stack_guard()->IsStackOverflow()) { isolate->StackOverflow(); return EXCEPTION; } // If not real stack overflow the stack guard was used to interrupt // execution for another purpose. // If this is a direct call from JavaScript retry the RegExp forcing the call // through the runtime system. Currently the direct call cannot handle a GC. if (frame_entry(re_frame, kDirectCall) == 1) { return RETRY; } // Prepare for possible GC. HandleScope handles(isolate); Handle code_handle(re_code); Handle subject(frame_entry(re_frame, kInputString)); // Current string. bool is_ascii = subject->IsAsciiRepresentationUnderneath(); ASSERT(re_code->instruction_start() <= *return_address); ASSERT(*return_address <= re_code->instruction_start() + re_code->instruction_size()); MaybeObject* result = Execution::HandleStackGuardInterrupt(isolate); if (*code_handle != re_code) { // Return address no longer valid intptr_t delta = code_handle->address() - re_code->address(); // Overwrite the return address on the stack. *return_address += delta; } if (result->IsException()) { return EXCEPTION; } Handle subject_tmp = subject; int slice_offset = 0; // Extract the underlying string and the slice offset. if (StringShape(*subject_tmp).IsCons()) { subject_tmp = Handle(ConsString::cast(*subject_tmp)->first()); } else if (StringShape(*subject_tmp).IsSliced()) { SlicedString* slice = SlicedString::cast(*subject_tmp); subject_tmp = Handle(slice->parent()); slice_offset = slice->offset(); } // String might have changed. if (subject_tmp->IsAsciiRepresentation() != is_ascii) { // If we changed between an ASCII and an UC16 string, the specialized // code cannot be used, and we need to restart regexp matching from // scratch (including, potentially, compiling a new version of the code). return RETRY; } // Otherwise, the content of the string might have moved. It must still // be a sequential or external string with the same content. // Update the start and end pointers in the stack frame to the current // location (whether it has actually moved or not). ASSERT(StringShape(*subject_tmp).IsSequential() || StringShape(*subject_tmp).IsExternal()); // The original start address of the characters to match. const byte* start_address = frame_entry(re_frame, kInputStart); // Find the current start address of the same character at the current string // position. int start_index = frame_entry(re_frame, kStartIndex); const byte* new_address = StringCharacterPosition(*subject_tmp, start_index + slice_offset); if (start_address != new_address) { // If there is a difference, update the object pointer and start and end // addresses in the RegExp stack frame to match the new value. const byte* end_address = frame_entry(re_frame, kInputEnd); int byte_length = static_cast(end_address - start_address); frame_entry(re_frame, kInputString) = *subject; frame_entry(re_frame, kInputStart) = new_address; frame_entry(re_frame, kInputEnd) = new_address + byte_length; } else if (frame_entry(re_frame, kInputString) != *subject) { // Subject string might have been a ConsString that underwent // short-circuiting during GC. That will not change start_address but // will change pointer inside the subject handle. frame_entry(re_frame, kInputString) = *subject; } return 0; } Operand RegExpMacroAssemblerX64::register_location(int register_index) { ASSERT(register_index < (1<<30)); if (num_registers_ <= register_index) { num_registers_ = register_index + 1; } return Operand(rbp, kRegisterZero - register_index * kPointerSize); } void RegExpMacroAssemblerX64::CheckPosition(int cp_offset, Label* on_outside_input) { __ cmpl(rdi, Immediate(-cp_offset * char_size())); BranchOrBacktrack(greater_equal, on_outside_input); } void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition, Label* to) { if (condition < 0) { // No condition if (to == NULL) { Backtrack(); return; } __ jmp(to); return; } if (to == NULL) { __ j(condition, &backtrack_label_); return; } __ j(condition, to); } void RegExpMacroAssemblerX64::SafeCall(Label* to) { __ call(to); } void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) { __ bind(label); __ subq(Operand(rsp, 0), code_object_pointer()); } void RegExpMacroAssemblerX64::SafeReturn() { __ addq(Operand(rsp, 0), code_object_pointer()); __ ret(0); } void RegExpMacroAssemblerX64::Push(Register source) { ASSERT(!source.is(backtrack_stackpointer())); // Notice: This updates flags, unlike normal Push. __ subq(backtrack_stackpointer(), Immediate(kIntSize)); __ movl(Operand(backtrack_stackpointer(), 0), source); } void RegExpMacroAssemblerX64::Push(Immediate value) { // Notice: This updates flags, unlike normal Push. __ subq(backtrack_stackpointer(), Immediate(kIntSize)); __ movl(Operand(backtrack_stackpointer(), 0), value); } void RegExpMacroAssemblerX64::FixupCodeRelativePositions() { for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) { int position = code_relative_fixup_positions_[i]; // The position succeeds a relative label offset from position. // Patch the relative offset to be relative to the Code object pointer // instead. int patch_position = position - kIntSize; int offset = masm_.long_at(patch_position); masm_.long_at_put(patch_position, offset + position + Code::kHeaderSize - kHeapObjectTag); } code_relative_fixup_positions_.Clear(); } void RegExpMacroAssemblerX64::Push(Label* backtrack_target) { __ subq(backtrack_stackpointer(), Immediate(kIntSize)); __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target); MarkPositionForCodeRelativeFixup(); } void RegExpMacroAssemblerX64::Pop(Register target) { ASSERT(!target.is(backtrack_stackpointer())); __ movsxlq(target, Operand(backtrack_stackpointer(), 0)); // Notice: This updates flags, unlike normal Pop. __ addq(backtrack_stackpointer(), Immediate(kIntSize)); } void RegExpMacroAssemblerX64::Drop() { __ addq(backtrack_stackpointer(), Immediate(kIntSize)); } void RegExpMacroAssemblerX64::CheckPreemption() { // Check for preemption. Label no_preempt; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(masm_.isolate()); __ load_rax(stack_limit); __ cmpq(rsp, rax); __ j(above, &no_preempt); SafeCall(&check_preempt_label_); __ bind(&no_preempt); } void RegExpMacroAssemblerX64::CheckStackLimit() { Label no_stack_overflow; ExternalReference stack_limit = ExternalReference::address_of_regexp_stack_limit(masm_.isolate()); __ load_rax(stack_limit); __ cmpq(backtrack_stackpointer(), rax); __ j(above, &no_stack_overflow); SafeCall(&stack_overflow_label_); __ bind(&no_stack_overflow); } void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset, int characters) { if (mode_ == ASCII) { if (characters == 4) { __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); } else if (characters == 2) { __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); } else { ASSERT(characters == 1); __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset)); } } else { ASSERT(mode_ == UC16); if (characters == 2) { __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16))); } else { ASSERT(characters == 1); __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16))); } } } #undef __ #endif // V8_INTERPRETED_REGEXP }} // namespace v8::internal #endif // V8_TARGET_ARCH_X64