/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include "utils.h" #include "_jni.h" using android::apps::photoeditor::utils::LockBitmaps; using android::apps::photoeditor::utils::pixel32_t; using android::apps::photoeditor::utils::UnlockBitmaps; namespace { const uint32_t kShiftBits = 10; const uint32_t kShiftValue = (1 << kShiftBits); /* * Convolution matrix of distance 2 with fixed point of 'kShiftBits' bits * shifted. Thus the sum of this matrix should be 'kShiftValue'. Entries of * small values are not calculated to gain efficiency. * The order ot pixels represented in this matrix is: * 1 2 3 * 4 0 5 * 6 7 8 * and the matrix should be: {230, 56, 114, 56, 114, 114, 56, 114, 56}. * However, since most of the valus are identical, we only use the first three * entries and the entries corresponding to the pixels is: * 1 2 1 * 2 0 2 * 1 2 1 */ const uint32_t convolution_matrix[3] = {230, 56, 114}; /* * Generate a blurred random noise bitmap. */ void GenerateBlurredNoise(void* dst_pixels, AndroidBitmapInfo* dst_info, float noise_scale) { uint32_t fixed_noise_scale = noise_scale * kShiftValue; // Clear dst bitmap to 0 for storing generated random noise. memset(dst_pixels, 0, dst_info->stride * dst_info->height); // 0.5 is a empirical value and could be tuned. int random_threshold = RAND_MAX * 0.5; for (uint32_t y = 0; y < dst_info->height; y++) { uint32_t* dp_line = reinterpret_cast( reinterpret_cast(dst_pixels) + y * dst_info->stride); for (uint32_t x = 0; x < dst_info->width; x++) { if (rand() < random_threshold) { uint32_t* dp = dp_line + x; uint32_t* dp_prev = (y == 0) ? dp : (dp - dst_info->width); uint32_t* dp_next = (y == dst_info->height - 1) ? dp : (dp + dst_info->width); /* * 1 2 3 * 4 0 5 * 6 7 8 */ uint32_t* n[9]; n[0] = dp; n[2] = dp_prev; n[7] = dp_next; if (x == 0) { n[1] = n[2]; n[4] = n[0]; n[6] = n[7]; } else { n[1] = n[2] - 1; n[4] = n[0] - 1; n[6] = n[7] - 1; } if (x == dst_info->width - 1) { n[3] = n[2]; n[5] = n[0]; n[8] = n[7]; } else { n[3] = n[2] + 1; n[5] = n[0] + 1; n[8] = n[7] + 1; } // noise randomness uniformly distributed between 0.5 to 1.5, // 0.5 is an empirical value. uint32_t random_noise_scale = fixed_noise_scale * (static_cast(rand()) / RAND_MAX + 0.5); *n[0] = *n[0] + ((convolution_matrix[0] * random_noise_scale) >> kShiftBits); // The value in convolution_matrix is identical (56) for indexes 1, 3, 6, 8. uint32_t normal_scaled_noise = (convolution_matrix[1] * random_noise_scale) >> kShiftBits; *n[1] += normal_scaled_noise; *n[3] += normal_scaled_noise; *n[6] += normal_scaled_noise; *n[8] += normal_scaled_noise; // Likewise, the computation could be saved for indexes 2, 4, 5, 7; normal_scaled_noise = (convolution_matrix[2] * random_noise_scale) >> kShiftBits; *n[2] += normal_scaled_noise; *n[4] += normal_scaled_noise; *n[5] += normal_scaled_noise; *n[7] += normal_scaled_noise; } } } } extern "C" JNIEXPORT void JNICALL Java_com_android_photoeditor_filters_ImageUtils_nativeGrain( JNIEnv *env, jobject obj, jobject src_bitmap, jobject dst_bitmap, jfloat noise_scale) { pGrainType f = (pGrainType)JNIFunc[JNI_Grain].func_ptr; return f(env, obj, src_bitmap, dst_bitmap, noise_scale); } extern "C" void Grain( JNIEnv *env, jobject obj, jobject src_bitmap, jobject dst_bitmap, jfloat noise_scale) { AndroidBitmapInfo src_info; AndroidBitmapInfo dst_info; void* src_pixels; void* dst_pixels; int ret = LockBitmaps( env, src_bitmap, dst_bitmap, &src_info, &dst_info, &src_pixels, &dst_pixels); if (ret < 0) { LOGE("LockBitmaps in grain failed, error=%d", ret); return; } GenerateBlurredNoise(dst_pixels, &dst_info, noise_scale); for (uint32_t scan_line = 0; scan_line < src_info.height; scan_line++) { uint32_t* src = reinterpret_cast( reinterpret_cast(src_pixels) + src_info.stride * scan_line); uint32_t* dst = reinterpret_cast( reinterpret_cast(dst_pixels) + dst_info.stride * scan_line); uint32_t* src_line_end = src + src_info.width; while (src < src_line_end) { pixel32_t* sp = reinterpret_cast(src); pixel32_t* dp = reinterpret_cast(dst); // energy_mask is used to constrain the noise according to the energy // level. Film grain appear more in dark part. // The energy level (from 0 to 765) is square-rooted and should in the // range from 0 to 27.659 (sqrt(765)), so 28 is used for normalization. uint32_t energy_level = sp->rgba8[0] + sp->rgba8[1] + sp->rgba8[2]; uint32_t energy_mask = 28 - static_cast(sqrtf(energy_level)); // The intensity of each channel of RGB is affected by the random // noise previously produced and stored in dp->pixel. // dp->pixel should be in the range of [1.3 * noise_scale * kShiftValue, // 0]. Therefore 'scale' should be in the range of // [kShiftValue, kShiftValue - 1.3 * noise_scale * kShiftValue] uint32_t scale = (kShiftValue - dp->rgba32 * energy_mask / 28); uint32_t red = (sp->rgba8[0] * scale) >> kShiftBits; uint32_t green = (sp->rgba8[1] * scale) >> kShiftBits; uint32_t blue = (sp->rgba8[2] * scale) >> kShiftBits; dp->rgba32 = (sp->rgba8[3] << 24) | (blue << 16) | (green << 8) | red; dst++; src++; } } UnlockBitmaps(env, src_bitmap, dst_bitmap); } } // namespace