1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28 llvm::Value *Array,
29 llvm::Value *Value,
30 unsigned FirstIndex,
31 unsigned LastIndex) {
32 // Alternatively, we could emit this as a loop in the source.
33 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35 Builder.CreateStore(Value, Cell);
36 }
37 }
38
isAggregateTypeForABI(QualType T)39 static bool isAggregateTypeForABI(QualType T) {
40 return CodeGenFunction::hasAggregateLLVMType(T) ||
41 T->isMemberFunctionPointerType();
42 }
43
~ABIInfo()44 ABIInfo::~ABIInfo() {}
45
getContext() const46 ASTContext &ABIInfo::getContext() const {
47 return CGT.getContext();
48 }
49
getVMContext() const50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51 return CGT.getLLVMContext();
52 }
53
getTargetData() const54 const llvm::TargetData &ABIInfo::getTargetData() const {
55 return CGT.getTargetData();
56 }
57
58
dump() const59 void ABIArgInfo::dump() const {
60 raw_ostream &OS = llvm::errs();
61 OS << "(ABIArgInfo Kind=";
62 switch (TheKind) {
63 case Direct:
64 OS << "Direct Type=";
65 if (llvm::Type *Ty = getCoerceToType())
66 Ty->print(OS);
67 else
68 OS << "null";
69 break;
70 case Extend:
71 OS << "Extend";
72 break;
73 case Ignore:
74 OS << "Ignore";
75 break;
76 case Indirect:
77 OS << "Indirect Align=" << getIndirectAlign()
78 << " ByVal=" << getIndirectByVal()
79 << " Realign=" << getIndirectRealign();
80 break;
81 case Expand:
82 OS << "Expand";
83 break;
84 }
85 OS << ")\n";
86 }
87
~TargetCodeGenInfo()88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93 // Verified for:
94 // x86-64 FreeBSD, Linux, Darwin
95 // x86-32 FreeBSD, Linux, Darwin
96 // PowerPC Linux, Darwin
97 // ARM Darwin (*not* EABI)
98 return 32;
99 }
100
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const101 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102 const FunctionNoProtoType *fnType) const {
103 // The following conventions are known to require this to be false:
104 // x86_stdcall
105 // MIPS
106 // For everything else, we just prefer false unless we opt out.
107 return false;
108 }
109
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115 bool AllowArrays) {
116 if (FD->isUnnamedBitfield())
117 return true;
118
119 QualType FT = FD->getType();
120
121 // Constant arrays of empty records count as empty, strip them off.
122 // Constant arrays of zero length always count as empty.
123 if (AllowArrays)
124 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125 if (AT->getSize() == 0)
126 return true;
127 FT = AT->getElementType();
128 }
129
130 const RecordType *RT = FT->getAs<RecordType>();
131 if (!RT)
132 return false;
133
134 // C++ record fields are never empty, at least in the Itanium ABI.
135 //
136 // FIXME: We should use a predicate for whether this behavior is true in the
137 // current ABI.
138 if (isa<CXXRecordDecl>(RT->getDecl()))
139 return false;
140
141 return isEmptyRecord(Context, FT, AllowArrays);
142 }
143
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148 const RecordType *RT = T->getAs<RecordType>();
149 if (!RT)
150 return 0;
151 const RecordDecl *RD = RT->getDecl();
152 if (RD->hasFlexibleArrayMember())
153 return false;
154
155 // If this is a C++ record, check the bases first.
156 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158 e = CXXRD->bases_end(); i != e; ++i)
159 if (!isEmptyRecord(Context, i->getType(), true))
160 return false;
161
162 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163 i != e; ++i)
164 if (!isEmptyField(Context, *i, AllowArrays))
165 return false;
166 return true;
167 }
168
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
hasNonTrivialDestructorOrCopyConstructor(const RecordType * RT)171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173 if (!RD)
174 return false;
175
176 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T)182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183 const RecordType *RT = T->getAs<RecordType>();
184 if (!RT)
185 return false;
186
187 return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199 const RecordType *RT = T->getAsStructureType();
200 if (!RT)
201 return 0;
202
203 const RecordDecl *RD = RT->getDecl();
204 if (RD->hasFlexibleArrayMember())
205 return 0;
206
207 const Type *Found = 0;
208
209 // If this is a C++ record, check the bases first.
210 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212 e = CXXRD->bases_end(); i != e; ++i) {
213 // Ignore empty records.
214 if (isEmptyRecord(Context, i->getType(), true))
215 continue;
216
217 // If we already found an element then this isn't a single-element struct.
218 if (Found)
219 return 0;
220
221 // If this is non-empty and not a single element struct, the composite
222 // cannot be a single element struct.
223 Found = isSingleElementStruct(i->getType(), Context);
224 if (!Found)
225 return 0;
226 }
227 }
228
229 // Check for single element.
230 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231 i != e; ++i) {
232 const FieldDecl *FD = *i;
233 QualType FT = FD->getType();
234
235 // Ignore empty fields.
236 if (isEmptyField(Context, FD, true))
237 continue;
238
239 // If we already found an element then this isn't a single-element
240 // struct.
241 if (Found)
242 return 0;
243
244 // Treat single element arrays as the element.
245 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246 if (AT->getSize().getZExtValue() != 1)
247 break;
248 FT = AT->getElementType();
249 }
250
251 if (!isAggregateTypeForABI(FT)) {
252 Found = FT.getTypePtr();
253 } else {
254 Found = isSingleElementStruct(FT, Context);
255 if (!Found)
256 return 0;
257 }
258 }
259
260 // We don't consider a struct a single-element struct if it has
261 // padding beyond the element type.
262 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263 return 0;
264
265 return Found;
266 }
267
is32Or64BitBasicType(QualType Ty,ASTContext & Context)268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270 !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271 !Ty->isBlockPointerType())
272 return false;
273
274 uint64_t Size = Context.getTypeSize(Ty);
275 return Size == 32 || Size == 64;
276 }
277
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288 // We can only expand structure types.
289 const RecordType *RT = Ty->getAs<RecordType>();
290 if (!RT)
291 return false;
292
293 // We can only expand (C) structures.
294 //
295 // FIXME: This needs to be generalized to handle classes as well.
296 const RecordDecl *RD = RT->getDecl();
297 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298 return false;
299
300 uint64_t Size = 0;
301
302 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303 i != e; ++i) {
304 const FieldDecl *FD = *i;
305
306 if (!is32Or64BitBasicType(FD->getType(), Context))
307 return false;
308
309 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310 // how to expand them yet, and the predicate for telling if a bitfield still
311 // counts as "basic" is more complicated than what we were doing previously.
312 if (FD->isBitField())
313 return false;
314
315 Size += Context.getTypeSize(FD->getType());
316 }
317
318 // Make sure there are not any holes in the struct.
319 if (Size != Context.getTypeSize(Ty))
320 return false;
321
322 return true;
323 }
324
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)332 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333
334 ABIArgInfo classifyReturnType(QualType RetTy) const;
335 ABIArgInfo classifyArgumentType(QualType RetTy) const;
336
computeInfo(CGFunctionInfo & FI) const337 virtual void computeInfo(CGFunctionInfo &FI) const {
338 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340 it != ie; ++it)
341 it->info = classifyArgumentType(it->type);
342 }
343
344 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345 CodeGenFunction &CGF) const;
346 };
347
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)350 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355 CodeGenFunction &CGF) const {
356 return 0;
357 }
358
classifyArgumentType(QualType Ty) const359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360 if (isAggregateTypeForABI(Ty)) {
361 // Records with non trivial destructors/constructors should not be passed
362 // by value.
363 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365
366 return ABIArgInfo::getIndirect(0);
367 }
368
369 // Treat an enum type as its underlying type.
370 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371 Ty = EnumTy->getDecl()->getIntegerType();
372
373 return (Ty->isPromotableIntegerType() ?
374 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376
classifyReturnType(QualType RetTy) const377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378 if (RetTy->isVoidType())
379 return ABIArgInfo::getIgnore();
380
381 if (isAggregateTypeForABI(RetTy))
382 return ABIArgInfo::getIndirect(0);
383
384 // Treat an enum type as its underlying type.
385 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386 RetTy = EnumTy->getDecl()->getIntegerType();
387
388 return (RetTy->isPromotableIntegerType() ?
389 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391
392 //===----------------------------------------------------------------------===//
393 // le32/PNaCl bitcode ABI Implementation
394 //===----------------------------------------------------------------------===//
395
396 class PNaClABIInfo : public ABIInfo {
397 public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)398 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
399
400 ABIArgInfo classifyReturnType(QualType RetTy) const;
401 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
402
403 virtual void computeInfo(CGFunctionInfo &FI) const;
404 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
405 CodeGenFunction &CGF) const;
406 };
407
408 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
409 public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)410 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
411 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
412 };
413
computeInfo(CGFunctionInfo & FI) const414 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
415 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
416
417 unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
418
419 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
420 it != ie; ++it)
421 it->info = classifyArgumentType(it->type, FreeRegs);
422 }
423
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const424 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
425 CodeGenFunction &CGF) const {
426 return 0;
427 }
428
classifyArgumentType(QualType Ty,unsigned & FreeRegs) const429 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
430 unsigned &FreeRegs) const {
431 if (isAggregateTypeForABI(Ty)) {
432 // Records with non trivial destructors/constructors should not be passed
433 // by value.
434 FreeRegs = 0;
435 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
436 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
437
438 return ABIArgInfo::getIndirect(0);
439 }
440
441 // Treat an enum type as its underlying type.
442 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
443 Ty = EnumTy->getDecl()->getIntegerType();
444
445 ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
446 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
447
448 // Regparm regs hold 32 bits.
449 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
450 if (SizeInRegs == 0) return BaseInfo;
451 if (SizeInRegs > FreeRegs) {
452 FreeRegs = 0;
453 return BaseInfo;
454 }
455 FreeRegs -= SizeInRegs;
456 return BaseInfo.isDirect() ?
457 ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
458 ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
459 }
460
classifyReturnType(QualType RetTy) const461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462 if (RetTy->isVoidType())
463 return ABIArgInfo::getIgnore();
464
465 if (isAggregateTypeForABI(RetTy))
466 return ABIArgInfo::getIndirect(0);
467
468 // Treat an enum type as its underlying type.
469 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
470 RetTy = EnumTy->getDecl()->getIntegerType();
471
472 return (RetTy->isPromotableIntegerType() ?
473 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
474 }
475
476 /// UseX86_MMXType - Return true if this is an MMX type that should use the
477 /// special x86_mmx type.
UseX86_MMXType(llvm::Type * IRType)478 bool UseX86_MMXType(llvm::Type *IRType) {
479 // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
480 // special x86_mmx type.
481 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483 IRType->getScalarSizeInBits() != 64;
484 }
485
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)486 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487 StringRef Constraint,
488 llvm::Type* Ty) {
489 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
490 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
491 return Ty;
492 }
493
494 //===----------------------------------------------------------------------===//
495 // X86-32 ABI Implementation
496 //===----------------------------------------------------------------------===//
497
498 /// X86_32ABIInfo - The X86-32 ABI information.
499 class X86_32ABIInfo : public ABIInfo {
500 enum Class {
501 Integer,
502 Float
503 };
504
505 static const unsigned MinABIStackAlignInBytes = 4;
506
507 bool IsDarwinVectorABI;
508 bool IsSmallStructInRegABI;
509 bool IsMMXDisabled;
510 bool IsWin32FloatStructABI;
511 unsigned DefaultNumRegisterParameters;
512
isRegisterSize(unsigned Size)513 static bool isRegisterSize(unsigned Size) {
514 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
515 }
516
517 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
518 unsigned callingConvention);
519
520 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
521 /// such that the argument will be passed in memory.
522 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
523
524 /// \brief Return the alignment to use for the given type on the stack.
525 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
526
527 Class classify(QualType Ty) const;
528 ABIArgInfo classifyReturnType(QualType RetTy,
529 unsigned callingConvention) const;
530 ABIArgInfo classifyArgumentTypeWithReg(QualType RetTy,
531 unsigned &FreeRegs) const;
532 ABIArgInfo classifyArgumentType(QualType RetTy) const;
533
534 public:
535
536 virtual void computeInfo(CGFunctionInfo &FI) const;
537 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
538 CodeGenFunction &CGF) const;
539
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool m,bool w,unsigned r)540 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
541 unsigned r)
542 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
543 IsMMXDisabled(m), IsWin32FloatStructABI(w),
544 DefaultNumRegisterParameters(r) {}
545 };
546
547 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
548 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool m,bool w,unsigned r)549 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
550 bool d, bool p, bool m, bool w, unsigned r)
551 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
552
553 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
554 CodeGen::CodeGenModule &CGM) const;
555
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const556 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
557 // Darwin uses different dwarf register numbers for EH.
558 if (CGM.isTargetDarwin()) return 5;
559
560 return 4;
561 }
562
563 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
564 llvm::Value *Address) const;
565
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const566 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
567 StringRef Constraint,
568 llvm::Type* Ty) const {
569 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
570 }
571
572 };
573
574 }
575
576 /// shouldReturnTypeInRegister - Determine if the given type should be
577 /// passed in a register (for the Darwin ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context,unsigned callingConvention)578 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
579 ASTContext &Context,
580 unsigned callingConvention) {
581 uint64_t Size = Context.getTypeSize(Ty);
582
583 // Type must be register sized.
584 if (!isRegisterSize(Size))
585 return false;
586
587 if (Ty->isVectorType()) {
588 // 64- and 128- bit vectors inside structures are not returned in
589 // registers.
590 if (Size == 64 || Size == 128)
591 return false;
592
593 return true;
594 }
595
596 // If this is a builtin, pointer, enum, complex type, member pointer, or
597 // member function pointer it is ok.
598 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
599 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
600 Ty->isBlockPointerType() || Ty->isMemberPointerType())
601 return true;
602
603 // Arrays are treated like records.
604 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
605 return shouldReturnTypeInRegister(AT->getElementType(), Context,
606 callingConvention);
607
608 // Otherwise, it must be a record type.
609 const RecordType *RT = Ty->getAs<RecordType>();
610 if (!RT) return false;
611
612 // FIXME: Traverse bases here too.
613
614 // For thiscall conventions, structures will never be returned in
615 // a register. This is for compatibility with the MSVC ABI
616 if (callingConvention == llvm::CallingConv::X86_ThisCall &&
617 RT->isStructureType()) {
618 return false;
619 }
620
621 // Structure types are passed in register if all fields would be
622 // passed in a register.
623 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
624 e = RT->getDecl()->field_end(); i != e; ++i) {
625 const FieldDecl *FD = *i;
626
627 // Empty fields are ignored.
628 if (isEmptyField(Context, FD, true))
629 continue;
630
631 // Check fields recursively.
632 if (!shouldReturnTypeInRegister(FD->getType(), Context,
633 callingConvention))
634 return false;
635 }
636 return true;
637 }
638
classifyReturnType(QualType RetTy,unsigned callingConvention) const639 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
640 unsigned callingConvention) const {
641 if (RetTy->isVoidType())
642 return ABIArgInfo::getIgnore();
643
644 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
645 // On Darwin, some vectors are returned in registers.
646 if (IsDarwinVectorABI) {
647 uint64_t Size = getContext().getTypeSize(RetTy);
648
649 // 128-bit vectors are a special case; they are returned in
650 // registers and we need to make sure to pick a type the LLVM
651 // backend will like.
652 if (Size == 128)
653 return ABIArgInfo::getDirect(llvm::VectorType::get(
654 llvm::Type::getInt64Ty(getVMContext()), 2));
655
656 // Always return in register if it fits in a general purpose
657 // register, or if it is 64 bits and has a single element.
658 if ((Size == 8 || Size == 16 || Size == 32) ||
659 (Size == 64 && VT->getNumElements() == 1))
660 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
661 Size));
662
663 return ABIArgInfo::getIndirect(0);
664 }
665
666 return ABIArgInfo::getDirect();
667 }
668
669 if (isAggregateTypeForABI(RetTy)) {
670 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
671 // Structures with either a non-trivial destructor or a non-trivial
672 // copy constructor are always indirect.
673 if (hasNonTrivialDestructorOrCopyConstructor(RT))
674 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
675
676 // Structures with flexible arrays are always indirect.
677 if (RT->getDecl()->hasFlexibleArrayMember())
678 return ABIArgInfo::getIndirect(0);
679 }
680
681 // If specified, structs and unions are always indirect.
682 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
683 return ABIArgInfo::getIndirect(0);
684
685 // Small structures which are register sized are generally returned
686 // in a register.
687 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
688 callingConvention)) {
689 uint64_t Size = getContext().getTypeSize(RetTy);
690
691 // As a special-case, if the struct is a "single-element" struct, and
692 // the field is of type "float" or "double", return it in a
693 // floating-point register. (MSVC does not apply this special case.)
694 // We apply a similar transformation for pointer types to improve the
695 // quality of the generated IR.
696 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
697 if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
698 || SeltTy->hasPointerRepresentation())
699 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
700
701 // FIXME: We should be able to narrow this integer in cases with dead
702 // padding.
703 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
704 }
705
706 return ABIArgInfo::getIndirect(0);
707 }
708
709 // Treat an enum type as its underlying type.
710 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711 RetTy = EnumTy->getDecl()->getIntegerType();
712
713 return (RetTy->isPromotableIntegerType() ?
714 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
715 }
716
isSSEVectorType(ASTContext & Context,QualType Ty)717 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
718 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
719 }
720
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)721 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
722 const RecordType *RT = Ty->getAs<RecordType>();
723 if (!RT)
724 return 0;
725 const RecordDecl *RD = RT->getDecl();
726
727 // If this is a C++ record, check the bases first.
728 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
729 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
730 e = CXXRD->bases_end(); i != e; ++i)
731 if (!isRecordWithSSEVectorType(Context, i->getType()))
732 return false;
733
734 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
735 i != e; ++i) {
736 QualType FT = i->getType();
737
738 if (isSSEVectorType(Context, FT))
739 return true;
740
741 if (isRecordWithSSEVectorType(Context, FT))
742 return true;
743 }
744
745 return false;
746 }
747
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const748 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
749 unsigned Align) const {
750 // Otherwise, if the alignment is less than or equal to the minimum ABI
751 // alignment, just use the default; the backend will handle this.
752 if (Align <= MinABIStackAlignInBytes)
753 return 0; // Use default alignment.
754
755 // On non-Darwin, the stack type alignment is always 4.
756 if (!IsDarwinVectorABI) {
757 // Set explicit alignment, since we may need to realign the top.
758 return MinABIStackAlignInBytes;
759 }
760
761 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
762 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
763 isRecordWithSSEVectorType(getContext(), Ty)))
764 return 16;
765
766 return MinABIStackAlignInBytes;
767 }
768
getIndirectResult(QualType Ty,bool ByVal) const769 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
770 if (!ByVal)
771 return ABIArgInfo::getIndirect(0, false);
772
773 // Compute the byval alignment.
774 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
775 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
776 if (StackAlign == 0)
777 return ABIArgInfo::getIndirect(4);
778
779 // If the stack alignment is less than the type alignment, realign the
780 // argument.
781 if (StackAlign < TypeAlign)
782 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
783 /*Realign=*/true);
784
785 return ABIArgInfo::getIndirect(StackAlign);
786 }
787
classify(QualType Ty) const788 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
789 const Type *T = isSingleElementStruct(Ty, getContext());
790 if (!T)
791 T = Ty.getTypePtr();
792
793 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
794 BuiltinType::Kind K = BT->getKind();
795 if (K == BuiltinType::Float || K == BuiltinType::Double)
796 return Float;
797 }
798 return Integer;
799 }
800
801 ABIArgInfo
classifyArgumentTypeWithReg(QualType Ty,unsigned & FreeRegs) const802 X86_32ABIInfo::classifyArgumentTypeWithReg(QualType Ty,
803 unsigned &FreeRegs) const {
804 // Common case first.
805 if (FreeRegs == 0)
806 return classifyArgumentType(Ty);
807
808 Class C = classify(Ty);
809 if (C == Float)
810 return classifyArgumentType(Ty);
811
812 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
813 if (SizeInRegs == 0)
814 return classifyArgumentType(Ty);
815
816 if (SizeInRegs > FreeRegs) {
817 FreeRegs = 0;
818 return classifyArgumentType(Ty);
819 }
820 assert(SizeInRegs >= 1 && SizeInRegs <= 3);
821 FreeRegs -= SizeInRegs;
822
823 // If it is a simple scalar, keep the type so that we produce a cleaner IR.
824 ABIArgInfo Foo = classifyArgumentType(Ty);
825 if (Foo.isDirect() && !Foo.getDirectOffset() && !Foo.getPaddingType())
826 return ABIArgInfo::getDirectInReg(Foo.getCoerceToType());
827 if (Foo.isExtend())
828 return ABIArgInfo::getExtendInReg(Foo.getCoerceToType());
829
830 llvm::LLVMContext &LLVMContext = getVMContext();
831 llvm::Type *Int32 = llvm::Type::getInt32Ty(LLVMContext);
832 SmallVector<llvm::Type*, 3> Elements;
833 for (unsigned I = 0; I < SizeInRegs; ++I)
834 Elements.push_back(Int32);
835 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
836 return ABIArgInfo::getDirectInReg(Result);
837 }
838
classifyArgumentType(QualType Ty) const839 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
840 // FIXME: Set alignment on indirect arguments.
841 if (isAggregateTypeForABI(Ty)) {
842 // Structures with flexible arrays are always indirect.
843 if (const RecordType *RT = Ty->getAs<RecordType>()) {
844 // Structures with either a non-trivial destructor or a non-trivial
845 // copy constructor are always indirect.
846 if (hasNonTrivialDestructorOrCopyConstructor(RT))
847 return getIndirectResult(Ty, /*ByVal=*/false);
848
849 if (RT->getDecl()->hasFlexibleArrayMember())
850 return getIndirectResult(Ty);
851 }
852
853 // Ignore empty structs/unions.
854 if (isEmptyRecord(getContext(), Ty, true))
855 return ABIArgInfo::getIgnore();
856
857 // Expand small (<= 128-bit) record types when we know that the stack layout
858 // of those arguments will match the struct. This is important because the
859 // LLVM backend isn't smart enough to remove byval, which inhibits many
860 // optimizations.
861 if (getContext().getTypeSize(Ty) <= 4*32 &&
862 canExpandIndirectArgument(Ty, getContext()))
863 return ABIArgInfo::getExpand();
864
865 return getIndirectResult(Ty);
866 }
867
868 if (const VectorType *VT = Ty->getAs<VectorType>()) {
869 // On Darwin, some vectors are passed in memory, we handle this by passing
870 // it as an i8/i16/i32/i64.
871 if (IsDarwinVectorABI) {
872 uint64_t Size = getContext().getTypeSize(Ty);
873 if ((Size == 8 || Size == 16 || Size == 32) ||
874 (Size == 64 && VT->getNumElements() == 1))
875 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
876 Size));
877 }
878
879 llvm::Type *IRType = CGT.ConvertType(Ty);
880 if (UseX86_MMXType(IRType)) {
881 if (IsMMXDisabled)
882 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
883 64));
884 ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
885 AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
886 return AAI;
887 }
888
889 return ABIArgInfo::getDirect();
890 }
891
892
893 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
894 Ty = EnumTy->getDecl()->getIntegerType();
895
896 return (Ty->isPromotableIntegerType() ?
897 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
898 }
899
computeInfo(CGFunctionInfo & FI) const900 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
901 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
902 FI.getCallingConvention());
903
904 unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() :
905 DefaultNumRegisterParameters;
906
907 // If the return value is indirect, then the hidden argument is consuming one
908 // integer register.
909 if (FI.getReturnInfo().isIndirect() && FreeRegs) {
910 --FreeRegs;
911 ABIArgInfo &Old = FI.getReturnInfo();
912 Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
913 Old.getIndirectByVal(),
914 Old.getIndirectRealign());
915 }
916
917 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
918 it != ie; ++it)
919 it->info = classifyArgumentTypeWithReg(it->type, FreeRegs);
920 }
921
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const922 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
923 CodeGenFunction &CGF) const {
924 llvm::Type *BPP = CGF.Int8PtrPtrTy;
925
926 CGBuilderTy &Builder = CGF.Builder;
927 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
928 "ap");
929 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
930
931 // Compute if the address needs to be aligned
932 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
933 Align = getTypeStackAlignInBytes(Ty, Align);
934 Align = std::max(Align, 4U);
935 if (Align > 4) {
936 // addr = (addr + align - 1) & -align;
937 llvm::Value *Offset =
938 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
939 Addr = CGF.Builder.CreateGEP(Addr, Offset);
940 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
941 CGF.Int32Ty);
942 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
943 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
944 Addr->getType(),
945 "ap.cur.aligned");
946 }
947
948 llvm::Type *PTy =
949 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
950 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
951
952 uint64_t Offset =
953 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
954 llvm::Value *NextAddr =
955 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
956 "ap.next");
957 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
958
959 return AddrTyped;
960 }
961
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const962 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
963 llvm::GlobalValue *GV,
964 CodeGen::CodeGenModule &CGM) const {
965 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
966 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
967 // Get the LLVM function.
968 llvm::Function *Fn = cast<llvm::Function>(GV);
969
970 // Now add the 'alignstack' attribute with a value of 16.
971 Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
972 }
973 }
974 }
975
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const976 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
977 CodeGen::CodeGenFunction &CGF,
978 llvm::Value *Address) const {
979 CodeGen::CGBuilderTy &Builder = CGF.Builder;
980
981 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
982
983 // 0-7 are the eight integer registers; the order is different
984 // on Darwin (for EH), but the range is the same.
985 // 8 is %eip.
986 AssignToArrayRange(Builder, Address, Four8, 0, 8);
987
988 if (CGF.CGM.isTargetDarwin()) {
989 // 12-16 are st(0..4). Not sure why we stop at 4.
990 // These have size 16, which is sizeof(long double) on
991 // platforms with 8-byte alignment for that type.
992 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
993 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
994
995 } else {
996 // 9 is %eflags, which doesn't get a size on Darwin for some
997 // reason.
998 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
999
1000 // 11-16 are st(0..5). Not sure why we stop at 5.
1001 // These have size 12, which is sizeof(long double) on
1002 // platforms with 4-byte alignment for that type.
1003 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1004 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1005 }
1006
1007 return false;
1008 }
1009
1010 //===----------------------------------------------------------------------===//
1011 // X86-64 ABI Implementation
1012 //===----------------------------------------------------------------------===//
1013
1014
1015 namespace {
1016 /// X86_64ABIInfo - The X86_64 ABI information.
1017 class X86_64ABIInfo : public ABIInfo {
1018 enum Class {
1019 Integer = 0,
1020 SSE,
1021 SSEUp,
1022 X87,
1023 X87Up,
1024 ComplexX87,
1025 NoClass,
1026 Memory
1027 };
1028
1029 /// merge - Implement the X86_64 ABI merging algorithm.
1030 ///
1031 /// Merge an accumulating classification \arg Accum with a field
1032 /// classification \arg Field.
1033 ///
1034 /// \param Accum - The accumulating classification. This should
1035 /// always be either NoClass or the result of a previous merge
1036 /// call. In addition, this should never be Memory (the caller
1037 /// should just return Memory for the aggregate).
1038 static Class merge(Class Accum, Class Field);
1039
1040 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1041 ///
1042 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1043 /// final MEMORY or SSE classes when necessary.
1044 ///
1045 /// \param AggregateSize - The size of the current aggregate in
1046 /// the classification process.
1047 ///
1048 /// \param Lo - The classification for the parts of the type
1049 /// residing in the low word of the containing object.
1050 ///
1051 /// \param Hi - The classification for the parts of the type
1052 /// residing in the higher words of the containing object.
1053 ///
1054 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1055
1056 /// classify - Determine the x86_64 register classes in which the
1057 /// given type T should be passed.
1058 ///
1059 /// \param Lo - The classification for the parts of the type
1060 /// residing in the low word of the containing object.
1061 ///
1062 /// \param Hi - The classification for the parts of the type
1063 /// residing in the high word of the containing object.
1064 ///
1065 /// \param OffsetBase - The bit offset of this type in the
1066 /// containing object. Some parameters are classified different
1067 /// depending on whether they straddle an eightbyte boundary.
1068 ///
1069 /// If a word is unused its result will be NoClass; if a type should
1070 /// be passed in Memory then at least the classification of \arg Lo
1071 /// will be Memory.
1072 ///
1073 /// The \arg Lo class will be NoClass iff the argument is ignored.
1074 ///
1075 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1076 /// also be ComplexX87.
1077 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1078
1079 llvm::Type *GetByteVectorType(QualType Ty) const;
1080 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1081 unsigned IROffset, QualType SourceTy,
1082 unsigned SourceOffset) const;
1083 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1084 unsigned IROffset, QualType SourceTy,
1085 unsigned SourceOffset) const;
1086
1087 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1088 /// such that the argument will be returned in memory.
1089 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1090
1091 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1092 /// such that the argument will be passed in memory.
1093 ///
1094 /// \param freeIntRegs - The number of free integer registers remaining
1095 /// available.
1096 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1097
1098 ABIArgInfo classifyReturnType(QualType RetTy) const;
1099
1100 ABIArgInfo classifyArgumentType(QualType Ty,
1101 unsigned freeIntRegs,
1102 unsigned &neededInt,
1103 unsigned &neededSSE) const;
1104
1105 bool IsIllegalVectorType(QualType Ty) const;
1106
1107 /// The 0.98 ABI revision clarified a lot of ambiguities,
1108 /// unfortunately in ways that were not always consistent with
1109 /// certain previous compilers. In particular, platforms which
1110 /// required strict binary compatibility with older versions of GCC
1111 /// may need to exempt themselves.
honorsRevision0_98() const1112 bool honorsRevision0_98() const {
1113 return !getContext().getTargetInfo().getTriple().isOSDarwin();
1114 }
1115
1116 bool HasAVX;
1117
1118 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool hasavx)1119 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1120 ABIInfo(CGT), HasAVX(hasavx) {}
1121
isPassedUsingAVXType(QualType type) const1122 bool isPassedUsingAVXType(QualType type) const {
1123 unsigned neededInt, neededSSE;
1124 // The freeIntRegs argument doesn't matter here.
1125 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1126 if (info.isDirect()) {
1127 llvm::Type *ty = info.getCoerceToType();
1128 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1129 return (vectorTy->getBitWidth() > 128);
1130 }
1131 return false;
1132 }
1133
1134 virtual void computeInfo(CGFunctionInfo &FI) const;
1135
1136 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1137 CodeGenFunction &CGF) const;
1138 };
1139
1140 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1141 class WinX86_64ABIInfo : public ABIInfo {
1142
1143 ABIArgInfo classify(QualType Ty) const;
1144
1145 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)1146 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1147
1148 virtual void computeInfo(CGFunctionInfo &FI) const;
1149
1150 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1151 CodeGenFunction &CGF) const;
1152 };
1153
1154 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1155 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1156 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1157 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1158
getABIInfo() const1159 const X86_64ABIInfo &getABIInfo() const {
1160 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1161 }
1162
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1163 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1164 return 7;
1165 }
1166
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1167 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1168 llvm::Value *Address) const {
1169 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1170
1171 // 0-15 are the 16 integer registers.
1172 // 16 is %rip.
1173 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1174 return false;
1175 }
1176
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1177 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1178 StringRef Constraint,
1179 llvm::Type* Ty) const {
1180 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1181 }
1182
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1183 bool isNoProtoCallVariadic(const CallArgList &args,
1184 const FunctionNoProtoType *fnType) const {
1185 // The default CC on x86-64 sets %al to the number of SSA
1186 // registers used, and GCC sets this when calling an unprototyped
1187 // function, so we override the default behavior. However, don't do
1188 // that when AVX types are involved: the ABI explicitly states it is
1189 // undefined, and it doesn't work in practice because of how the ABI
1190 // defines varargs anyway.
1191 if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1192 bool HasAVXType = false;
1193 for (CallArgList::const_iterator
1194 it = args.begin(), ie = args.end(); it != ie; ++it) {
1195 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1196 HasAVXType = true;
1197 break;
1198 }
1199 }
1200
1201 if (!HasAVXType)
1202 return true;
1203 }
1204
1205 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1206 }
1207
1208 };
1209
1210 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1211 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)1212 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1213 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1214
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1215 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1216 return 7;
1217 }
1218
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1219 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1220 llvm::Value *Address) const {
1221 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1222
1223 // 0-15 are the 16 integer registers.
1224 // 16 is %rip.
1225 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1226 return false;
1227 }
1228 };
1229
1230 }
1231
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const1232 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1233 Class &Hi) const {
1234 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1235 //
1236 // (a) If one of the classes is Memory, the whole argument is passed in
1237 // memory.
1238 //
1239 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1240 // memory.
1241 //
1242 // (c) If the size of the aggregate exceeds two eightbytes and the first
1243 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1244 // argument is passed in memory. NOTE: This is necessary to keep the
1245 // ABI working for processors that don't support the __m256 type.
1246 //
1247 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1248 //
1249 // Some of these are enforced by the merging logic. Others can arise
1250 // only with unions; for example:
1251 // union { _Complex double; unsigned; }
1252 //
1253 // Note that clauses (b) and (c) were added in 0.98.
1254 //
1255 if (Hi == Memory)
1256 Lo = Memory;
1257 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1258 Lo = Memory;
1259 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1260 Lo = Memory;
1261 if (Hi == SSEUp && Lo != SSE)
1262 Hi = SSE;
1263 }
1264
merge(Class Accum,Class Field)1265 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1266 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1267 // classified recursively so that always two fields are
1268 // considered. The resulting class is calculated according to
1269 // the classes of the fields in the eightbyte:
1270 //
1271 // (a) If both classes are equal, this is the resulting class.
1272 //
1273 // (b) If one of the classes is NO_CLASS, the resulting class is
1274 // the other class.
1275 //
1276 // (c) If one of the classes is MEMORY, the result is the MEMORY
1277 // class.
1278 //
1279 // (d) If one of the classes is INTEGER, the result is the
1280 // INTEGER.
1281 //
1282 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1283 // MEMORY is used as class.
1284 //
1285 // (f) Otherwise class SSE is used.
1286
1287 // Accum should never be memory (we should have returned) or
1288 // ComplexX87 (because this cannot be passed in a structure).
1289 assert((Accum != Memory && Accum != ComplexX87) &&
1290 "Invalid accumulated classification during merge.");
1291 if (Accum == Field || Field == NoClass)
1292 return Accum;
1293 if (Field == Memory)
1294 return Memory;
1295 if (Accum == NoClass)
1296 return Field;
1297 if (Accum == Integer || Field == Integer)
1298 return Integer;
1299 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1300 Accum == X87 || Accum == X87Up)
1301 return Memory;
1302 return SSE;
1303 }
1304
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi) const1305 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1306 Class &Lo, Class &Hi) const {
1307 // FIXME: This code can be simplified by introducing a simple value class for
1308 // Class pairs with appropriate constructor methods for the various
1309 // situations.
1310
1311 // FIXME: Some of the split computations are wrong; unaligned vectors
1312 // shouldn't be passed in registers for example, so there is no chance they
1313 // can straddle an eightbyte. Verify & simplify.
1314
1315 Lo = Hi = NoClass;
1316
1317 Class &Current = OffsetBase < 64 ? Lo : Hi;
1318 Current = Memory;
1319
1320 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1321 BuiltinType::Kind k = BT->getKind();
1322
1323 if (k == BuiltinType::Void) {
1324 Current = NoClass;
1325 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1326 Lo = Integer;
1327 Hi = Integer;
1328 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1329 Current = Integer;
1330 } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1331 Current = SSE;
1332 } else if (k == BuiltinType::LongDouble) {
1333 Lo = X87;
1334 Hi = X87Up;
1335 }
1336 // FIXME: _Decimal32 and _Decimal64 are SSE.
1337 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1338 return;
1339 }
1340
1341 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1342 // Classify the underlying integer type.
1343 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1344 return;
1345 }
1346
1347 if (Ty->hasPointerRepresentation()) {
1348 Current = Integer;
1349 return;
1350 }
1351
1352 if (Ty->isMemberPointerType()) {
1353 if (Ty->isMemberFunctionPointerType())
1354 Lo = Hi = Integer;
1355 else
1356 Current = Integer;
1357 return;
1358 }
1359
1360 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1361 uint64_t Size = getContext().getTypeSize(VT);
1362 if (Size == 32) {
1363 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1364 // float> as integer.
1365 Current = Integer;
1366
1367 // If this type crosses an eightbyte boundary, it should be
1368 // split.
1369 uint64_t EB_Real = (OffsetBase) / 64;
1370 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1371 if (EB_Real != EB_Imag)
1372 Hi = Lo;
1373 } else if (Size == 64) {
1374 // gcc passes <1 x double> in memory. :(
1375 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1376 return;
1377
1378 // gcc passes <1 x long long> as INTEGER.
1379 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1380 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1381 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1382 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1383 Current = Integer;
1384 else
1385 Current = SSE;
1386
1387 // If this type crosses an eightbyte boundary, it should be
1388 // split.
1389 if (OffsetBase && OffsetBase != 64)
1390 Hi = Lo;
1391 } else if (Size == 128 || (HasAVX && Size == 256)) {
1392 // Arguments of 256-bits are split into four eightbyte chunks. The
1393 // least significant one belongs to class SSE and all the others to class
1394 // SSEUP. The original Lo and Hi design considers that types can't be
1395 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1396 // This design isn't correct for 256-bits, but since there're no cases
1397 // where the upper parts would need to be inspected, avoid adding
1398 // complexity and just consider Hi to match the 64-256 part.
1399 Lo = SSE;
1400 Hi = SSEUp;
1401 }
1402 return;
1403 }
1404
1405 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1406 QualType ET = getContext().getCanonicalType(CT->getElementType());
1407
1408 uint64_t Size = getContext().getTypeSize(Ty);
1409 if (ET->isIntegralOrEnumerationType()) {
1410 if (Size <= 64)
1411 Current = Integer;
1412 else if (Size <= 128)
1413 Lo = Hi = Integer;
1414 } else if (ET == getContext().FloatTy)
1415 Current = SSE;
1416 else if (ET == getContext().DoubleTy)
1417 Lo = Hi = SSE;
1418 else if (ET == getContext().LongDoubleTy)
1419 Current = ComplexX87;
1420
1421 // If this complex type crosses an eightbyte boundary then it
1422 // should be split.
1423 uint64_t EB_Real = (OffsetBase) / 64;
1424 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1425 if (Hi == NoClass && EB_Real != EB_Imag)
1426 Hi = Lo;
1427
1428 return;
1429 }
1430
1431 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1432 // Arrays are treated like structures.
1433
1434 uint64_t Size = getContext().getTypeSize(Ty);
1435
1436 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1437 // than four eightbytes, ..., it has class MEMORY.
1438 if (Size > 256)
1439 return;
1440
1441 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1442 // fields, it has class MEMORY.
1443 //
1444 // Only need to check alignment of array base.
1445 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1446 return;
1447
1448 // Otherwise implement simplified merge. We could be smarter about
1449 // this, but it isn't worth it and would be harder to verify.
1450 Current = NoClass;
1451 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1452 uint64_t ArraySize = AT->getSize().getZExtValue();
1453
1454 // The only case a 256-bit wide vector could be used is when the array
1455 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1456 // to work for sizes wider than 128, early check and fallback to memory.
1457 if (Size > 128 && EltSize != 256)
1458 return;
1459
1460 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1461 Class FieldLo, FieldHi;
1462 classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1463 Lo = merge(Lo, FieldLo);
1464 Hi = merge(Hi, FieldHi);
1465 if (Lo == Memory || Hi == Memory)
1466 break;
1467 }
1468
1469 postMerge(Size, Lo, Hi);
1470 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1471 return;
1472 }
1473
1474 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1475 uint64_t Size = getContext().getTypeSize(Ty);
1476
1477 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1478 // than four eightbytes, ..., it has class MEMORY.
1479 if (Size > 256)
1480 return;
1481
1482 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1483 // copy constructor or a non-trivial destructor, it is passed by invisible
1484 // reference.
1485 if (hasNonTrivialDestructorOrCopyConstructor(RT))
1486 return;
1487
1488 const RecordDecl *RD = RT->getDecl();
1489
1490 // Assume variable sized types are passed in memory.
1491 if (RD->hasFlexibleArrayMember())
1492 return;
1493
1494 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1495
1496 // Reset Lo class, this will be recomputed.
1497 Current = NoClass;
1498
1499 // If this is a C++ record, classify the bases first.
1500 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1501 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1502 e = CXXRD->bases_end(); i != e; ++i) {
1503 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1504 "Unexpected base class!");
1505 const CXXRecordDecl *Base =
1506 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1507
1508 // Classify this field.
1509 //
1510 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1511 // single eightbyte, each is classified separately. Each eightbyte gets
1512 // initialized to class NO_CLASS.
1513 Class FieldLo, FieldHi;
1514 uint64_t Offset =
1515 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1516 classify(i->getType(), Offset, FieldLo, FieldHi);
1517 Lo = merge(Lo, FieldLo);
1518 Hi = merge(Hi, FieldHi);
1519 if (Lo == Memory || Hi == Memory)
1520 break;
1521 }
1522 }
1523
1524 // Classify the fields one at a time, merging the results.
1525 unsigned idx = 0;
1526 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1527 i != e; ++i, ++idx) {
1528 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1529 bool BitField = i->isBitField();
1530
1531 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1532 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1533 //
1534 // The only case a 256-bit wide vector could be used is when the struct
1535 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1536 // to work for sizes wider than 128, early check and fallback to memory.
1537 //
1538 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1539 Lo = Memory;
1540 return;
1541 }
1542 // Note, skip this test for bit-fields, see below.
1543 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1544 Lo = Memory;
1545 return;
1546 }
1547
1548 // Classify this field.
1549 //
1550 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1551 // exceeds a single eightbyte, each is classified
1552 // separately. Each eightbyte gets initialized to class
1553 // NO_CLASS.
1554 Class FieldLo, FieldHi;
1555
1556 // Bit-fields require special handling, they do not force the
1557 // structure to be passed in memory even if unaligned, and
1558 // therefore they can straddle an eightbyte.
1559 if (BitField) {
1560 // Ignore padding bit-fields.
1561 if (i->isUnnamedBitfield())
1562 continue;
1563
1564 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1565 uint64_t Size = i->getBitWidthValue(getContext());
1566
1567 uint64_t EB_Lo = Offset / 64;
1568 uint64_t EB_Hi = (Offset + Size - 1) / 64;
1569 FieldLo = FieldHi = NoClass;
1570 if (EB_Lo) {
1571 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1572 FieldLo = NoClass;
1573 FieldHi = Integer;
1574 } else {
1575 FieldLo = Integer;
1576 FieldHi = EB_Hi ? Integer : NoClass;
1577 }
1578 } else
1579 classify(i->getType(), Offset, FieldLo, FieldHi);
1580 Lo = merge(Lo, FieldLo);
1581 Hi = merge(Hi, FieldHi);
1582 if (Lo == Memory || Hi == Memory)
1583 break;
1584 }
1585
1586 postMerge(Size, Lo, Hi);
1587 }
1588 }
1589
getIndirectReturnResult(QualType Ty) const1590 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1591 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1592 // place naturally.
1593 if (!isAggregateTypeForABI(Ty)) {
1594 // Treat an enum type as its underlying type.
1595 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1596 Ty = EnumTy->getDecl()->getIntegerType();
1597
1598 return (Ty->isPromotableIntegerType() ?
1599 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1600 }
1601
1602 return ABIArgInfo::getIndirect(0);
1603 }
1604
IsIllegalVectorType(QualType Ty) const1605 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1606 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1607 uint64_t Size = getContext().getTypeSize(VecTy);
1608 unsigned LargestVector = HasAVX ? 256 : 128;
1609 if (Size <= 64 || Size > LargestVector)
1610 return true;
1611 }
1612
1613 return false;
1614 }
1615
getIndirectResult(QualType Ty,unsigned freeIntRegs) const1616 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1617 unsigned freeIntRegs) const {
1618 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1619 // place naturally.
1620 //
1621 // This assumption is optimistic, as there could be free registers available
1622 // when we need to pass this argument in memory, and LLVM could try to pass
1623 // the argument in the free register. This does not seem to happen currently,
1624 // but this code would be much safer if we could mark the argument with
1625 // 'onstack'. See PR12193.
1626 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1627 // Treat an enum type as its underlying type.
1628 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1629 Ty = EnumTy->getDecl()->getIntegerType();
1630
1631 return (Ty->isPromotableIntegerType() ?
1632 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1633 }
1634
1635 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1636 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1637
1638 // Compute the byval alignment. We specify the alignment of the byval in all
1639 // cases so that the mid-level optimizer knows the alignment of the byval.
1640 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1641
1642 // Attempt to avoid passing indirect results using byval when possible. This
1643 // is important for good codegen.
1644 //
1645 // We do this by coercing the value into a scalar type which the backend can
1646 // handle naturally (i.e., without using byval).
1647 //
1648 // For simplicity, we currently only do this when we have exhausted all of the
1649 // free integer registers. Doing this when there are free integer registers
1650 // would require more care, as we would have to ensure that the coerced value
1651 // did not claim the unused register. That would require either reording the
1652 // arguments to the function (so that any subsequent inreg values came first),
1653 // or only doing this optimization when there were no following arguments that
1654 // might be inreg.
1655 //
1656 // We currently expect it to be rare (particularly in well written code) for
1657 // arguments to be passed on the stack when there are still free integer
1658 // registers available (this would typically imply large structs being passed
1659 // by value), so this seems like a fair tradeoff for now.
1660 //
1661 // We can revisit this if the backend grows support for 'onstack' parameter
1662 // attributes. See PR12193.
1663 if (freeIntRegs == 0) {
1664 uint64_t Size = getContext().getTypeSize(Ty);
1665
1666 // If this type fits in an eightbyte, coerce it into the matching integral
1667 // type, which will end up on the stack (with alignment 8).
1668 if (Align == 8 && Size <= 64)
1669 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1670 Size));
1671 }
1672
1673 return ABIArgInfo::getIndirect(Align);
1674 }
1675
1676 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1677 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
1678 /// vector register.
GetByteVectorType(QualType Ty) const1679 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1680 llvm::Type *IRType = CGT.ConvertType(Ty);
1681
1682 // Wrapper structs that just contain vectors are passed just like vectors,
1683 // strip them off if present.
1684 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1685 while (STy && STy->getNumElements() == 1) {
1686 IRType = STy->getElementType(0);
1687 STy = dyn_cast<llvm::StructType>(IRType);
1688 }
1689
1690 // If the preferred type is a 16-byte vector, prefer to pass it.
1691 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1692 llvm::Type *EltTy = VT->getElementType();
1693 unsigned BitWidth = VT->getBitWidth();
1694 if ((BitWidth >= 128 && BitWidth <= 256) &&
1695 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1696 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1697 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1698 EltTy->isIntegerTy(128)))
1699 return VT;
1700 }
1701
1702 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1703 }
1704
1705 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1706 /// is known to either be off the end of the specified type or being in
1707 /// alignment padding. The user type specified is known to be at most 128 bits
1708 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1709 /// classification that put one of the two halves in the INTEGER class.
1710 ///
1711 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)1712 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1713 unsigned EndBit, ASTContext &Context) {
1714 // If the bytes being queried are off the end of the type, there is no user
1715 // data hiding here. This handles analysis of builtins, vectors and other
1716 // types that don't contain interesting padding.
1717 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1718 if (TySize <= StartBit)
1719 return true;
1720
1721 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1722 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1723 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1724
1725 // Check each element to see if the element overlaps with the queried range.
1726 for (unsigned i = 0; i != NumElts; ++i) {
1727 // If the element is after the span we care about, then we're done..
1728 unsigned EltOffset = i*EltSize;
1729 if (EltOffset >= EndBit) break;
1730
1731 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1732 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1733 EndBit-EltOffset, Context))
1734 return false;
1735 }
1736 // If it overlaps no elements, then it is safe to process as padding.
1737 return true;
1738 }
1739
1740 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1741 const RecordDecl *RD = RT->getDecl();
1742 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1743
1744 // If this is a C++ record, check the bases first.
1745 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1746 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1747 e = CXXRD->bases_end(); i != e; ++i) {
1748 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1749 "Unexpected base class!");
1750 const CXXRecordDecl *Base =
1751 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1752
1753 // If the base is after the span we care about, ignore it.
1754 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1755 if (BaseOffset >= EndBit) continue;
1756
1757 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1758 if (!BitsContainNoUserData(i->getType(), BaseStart,
1759 EndBit-BaseOffset, Context))
1760 return false;
1761 }
1762 }
1763
1764 // Verify that no field has data that overlaps the region of interest. Yes
1765 // this could be sped up a lot by being smarter about queried fields,
1766 // however we're only looking at structs up to 16 bytes, so we don't care
1767 // much.
1768 unsigned idx = 0;
1769 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1770 i != e; ++i, ++idx) {
1771 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1772
1773 // If we found a field after the region we care about, then we're done.
1774 if (FieldOffset >= EndBit) break;
1775
1776 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1777 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1778 Context))
1779 return false;
1780 }
1781
1782 // If nothing in this record overlapped the area of interest, then we're
1783 // clean.
1784 return true;
1785 }
1786
1787 return false;
1788 }
1789
1790 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1791 /// float member at the specified offset. For example, {int,{float}} has a
1792 /// float at offset 4. It is conservatively correct for this routine to return
1793 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::TargetData & TD)1794 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1795 const llvm::TargetData &TD) {
1796 // Base case if we find a float.
1797 if (IROffset == 0 && IRType->isFloatTy())
1798 return true;
1799
1800 // If this is a struct, recurse into the field at the specified offset.
1801 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1802 const llvm::StructLayout *SL = TD.getStructLayout(STy);
1803 unsigned Elt = SL->getElementContainingOffset(IROffset);
1804 IROffset -= SL->getElementOffset(Elt);
1805 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1806 }
1807
1808 // If this is an array, recurse into the field at the specified offset.
1809 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1810 llvm::Type *EltTy = ATy->getElementType();
1811 unsigned EltSize = TD.getTypeAllocSize(EltTy);
1812 IROffset -= IROffset/EltSize*EltSize;
1813 return ContainsFloatAtOffset(EltTy, IROffset, TD);
1814 }
1815
1816 return false;
1817 }
1818
1819
1820 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1821 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1822 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const1823 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1824 QualType SourceTy, unsigned SourceOffset) const {
1825 // The only three choices we have are either double, <2 x float>, or float. We
1826 // pass as float if the last 4 bytes is just padding. This happens for
1827 // structs that contain 3 floats.
1828 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1829 SourceOffset*8+64, getContext()))
1830 return llvm::Type::getFloatTy(getVMContext());
1831
1832 // We want to pass as <2 x float> if the LLVM IR type contains a float at
1833 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
1834 // case.
1835 if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1836 ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1837 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1838
1839 return llvm::Type::getDoubleTy(getVMContext());
1840 }
1841
1842
1843 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1844 /// an 8-byte GPR. This means that we either have a scalar or we are talking
1845 /// about the high or low part of an up-to-16-byte struct. This routine picks
1846 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1847 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1848 /// etc).
1849 ///
1850 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1851 /// the source type. IROffset is an offset in bytes into the LLVM IR type that
1852 /// the 8-byte value references. PrefType may be null.
1853 ///
1854 /// SourceTy is the source level type for the entire argument. SourceOffset is
1855 /// an offset into this that we're processing (which is always either 0 or 8).
1856 ///
1857 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const1858 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1859 QualType SourceTy, unsigned SourceOffset) const {
1860 // If we're dealing with an un-offset LLVM IR type, then it means that we're
1861 // returning an 8-byte unit starting with it. See if we can safely use it.
1862 if (IROffset == 0) {
1863 // Pointers and int64's always fill the 8-byte unit.
1864 if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1865 return IRType;
1866
1867 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1868 // goodness in the source type is just tail padding. This is allowed to
1869 // kick in for struct {double,int} on the int, but not on
1870 // struct{double,int,int} because we wouldn't return the second int. We
1871 // have to do this analysis on the source type because we can't depend on
1872 // unions being lowered a specific way etc.
1873 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1874 IRType->isIntegerTy(32)) {
1875 unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1876
1877 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1878 SourceOffset*8+64, getContext()))
1879 return IRType;
1880 }
1881 }
1882
1883 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1884 // If this is a struct, recurse into the field at the specified offset.
1885 const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1886 if (IROffset < SL->getSizeInBytes()) {
1887 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1888 IROffset -= SL->getElementOffset(FieldIdx);
1889
1890 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1891 SourceTy, SourceOffset);
1892 }
1893 }
1894
1895 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1896 llvm::Type *EltTy = ATy->getElementType();
1897 unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1898 unsigned EltOffset = IROffset/EltSize*EltSize;
1899 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1900 SourceOffset);
1901 }
1902
1903 // Okay, we don't have any better idea of what to pass, so we pass this in an
1904 // integer register that isn't too big to fit the rest of the struct.
1905 unsigned TySizeInBytes =
1906 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1907
1908 assert(TySizeInBytes != SourceOffset && "Empty field?");
1909
1910 // It is always safe to classify this as an integer type up to i64 that
1911 // isn't larger than the structure.
1912 return llvm::IntegerType::get(getVMContext(),
1913 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1914 }
1915
1916
1917 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1918 /// be used as elements of a two register pair to pass or return, return a
1919 /// first class aggregate to represent them. For example, if the low part of
1920 /// a by-value argument should be passed as i32* and the high part as float,
1921 /// return {i32*, float}.
1922 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::TargetData & TD)1923 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1924 const llvm::TargetData &TD) {
1925 // In order to correctly satisfy the ABI, we need to the high part to start
1926 // at offset 8. If the high and low parts we inferred are both 4-byte types
1927 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1928 // the second element at offset 8. Check for this:
1929 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1930 unsigned HiAlign = TD.getABITypeAlignment(Hi);
1931 unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1932 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1933
1934 // To handle this, we have to increase the size of the low part so that the
1935 // second element will start at an 8 byte offset. We can't increase the size
1936 // of the second element because it might make us access off the end of the
1937 // struct.
1938 if (HiStart != 8) {
1939 // There are only two sorts of types the ABI generation code can produce for
1940 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1941 // Promote these to a larger type.
1942 if (Lo->isFloatTy())
1943 Lo = llvm::Type::getDoubleTy(Lo->getContext());
1944 else {
1945 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1946 Lo = llvm::Type::getInt64Ty(Lo->getContext());
1947 }
1948 }
1949
1950 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1951
1952
1953 // Verify that the second element is at an 8-byte offset.
1954 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1955 "Invalid x86-64 argument pair!");
1956 return Result;
1957 }
1958
1959 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const1960 classifyReturnType(QualType RetTy) const {
1961 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1962 // classification algorithm.
1963 X86_64ABIInfo::Class Lo, Hi;
1964 classify(RetTy, 0, Lo, Hi);
1965
1966 // Check some invariants.
1967 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1968 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1969
1970 llvm::Type *ResType = 0;
1971 switch (Lo) {
1972 case NoClass:
1973 if (Hi == NoClass)
1974 return ABIArgInfo::getIgnore();
1975 // If the low part is just padding, it takes no register, leave ResType
1976 // null.
1977 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1978 "Unknown missing lo part");
1979 break;
1980
1981 case SSEUp:
1982 case X87Up:
1983 llvm_unreachable("Invalid classification for lo word.");
1984
1985 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1986 // hidden argument.
1987 case Memory:
1988 return getIndirectReturnResult(RetTy);
1989
1990 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1991 // available register of the sequence %rax, %rdx is used.
1992 case Integer:
1993 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1994
1995 // If we have a sign or zero extended integer, make sure to return Extend
1996 // so that the parameter gets the right LLVM IR attributes.
1997 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1998 // Treat an enum type as its underlying type.
1999 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2000 RetTy = EnumTy->getDecl()->getIntegerType();
2001
2002 if (RetTy->isIntegralOrEnumerationType() &&
2003 RetTy->isPromotableIntegerType())
2004 return ABIArgInfo::getExtend();
2005 }
2006 break;
2007
2008 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2009 // available SSE register of the sequence %xmm0, %xmm1 is used.
2010 case SSE:
2011 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2012 break;
2013
2014 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2015 // returned on the X87 stack in %st0 as 80-bit x87 number.
2016 case X87:
2017 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2018 break;
2019
2020 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2021 // part of the value is returned in %st0 and the imaginary part in
2022 // %st1.
2023 case ComplexX87:
2024 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2025 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2026 llvm::Type::getX86_FP80Ty(getVMContext()),
2027 NULL);
2028 break;
2029 }
2030
2031 llvm::Type *HighPart = 0;
2032 switch (Hi) {
2033 // Memory was handled previously and X87 should
2034 // never occur as a hi class.
2035 case Memory:
2036 case X87:
2037 llvm_unreachable("Invalid classification for hi word.");
2038
2039 case ComplexX87: // Previously handled.
2040 case NoClass:
2041 break;
2042
2043 case Integer:
2044 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2045 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2046 return ABIArgInfo::getDirect(HighPart, 8);
2047 break;
2048 case SSE:
2049 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2050 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2051 return ABIArgInfo::getDirect(HighPart, 8);
2052 break;
2053
2054 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2055 // is passed in the next available eightbyte chunk if the last used
2056 // vector register.
2057 //
2058 // SSEUP should always be preceded by SSE, just widen.
2059 case SSEUp:
2060 assert(Lo == SSE && "Unexpected SSEUp classification.");
2061 ResType = GetByteVectorType(RetTy);
2062 break;
2063
2064 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2065 // returned together with the previous X87 value in %st0.
2066 case X87Up:
2067 // If X87Up is preceded by X87, we don't need to do
2068 // anything. However, in some cases with unions it may not be
2069 // preceded by X87. In such situations we follow gcc and pass the
2070 // extra bits in an SSE reg.
2071 if (Lo != X87) {
2072 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2073 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2074 return ABIArgInfo::getDirect(HighPart, 8);
2075 }
2076 break;
2077 }
2078
2079 // If a high part was specified, merge it together with the low part. It is
2080 // known to pass in the high eightbyte of the result. We do this by forming a
2081 // first class struct aggregate with the high and low part: {low, high}
2082 if (HighPart)
2083 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2084
2085 return ABIArgInfo::getDirect(ResType);
2086 }
2087
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE) const2088 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2089 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2090 const
2091 {
2092 X86_64ABIInfo::Class Lo, Hi;
2093 classify(Ty, 0, Lo, Hi);
2094
2095 // Check some invariants.
2096 // FIXME: Enforce these by construction.
2097 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2098 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2099
2100 neededInt = 0;
2101 neededSSE = 0;
2102 llvm::Type *ResType = 0;
2103 switch (Lo) {
2104 case NoClass:
2105 if (Hi == NoClass)
2106 return ABIArgInfo::getIgnore();
2107 // If the low part is just padding, it takes no register, leave ResType
2108 // null.
2109 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2110 "Unknown missing lo part");
2111 break;
2112
2113 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2114 // on the stack.
2115 case Memory:
2116
2117 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2118 // COMPLEX_X87, it is passed in memory.
2119 case X87:
2120 case ComplexX87:
2121 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2122 ++neededInt;
2123 return getIndirectResult(Ty, freeIntRegs);
2124
2125 case SSEUp:
2126 case X87Up:
2127 llvm_unreachable("Invalid classification for lo word.");
2128
2129 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2130 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2131 // and %r9 is used.
2132 case Integer:
2133 ++neededInt;
2134
2135 // Pick an 8-byte type based on the preferred type.
2136 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2137
2138 // If we have a sign or zero extended integer, make sure to return Extend
2139 // so that the parameter gets the right LLVM IR attributes.
2140 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2141 // Treat an enum type as its underlying type.
2142 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2143 Ty = EnumTy->getDecl()->getIntegerType();
2144
2145 if (Ty->isIntegralOrEnumerationType() &&
2146 Ty->isPromotableIntegerType())
2147 return ABIArgInfo::getExtend();
2148 }
2149
2150 break;
2151
2152 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2153 // available SSE register is used, the registers are taken in the
2154 // order from %xmm0 to %xmm7.
2155 case SSE: {
2156 llvm::Type *IRType = CGT.ConvertType(Ty);
2157 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2158 ++neededSSE;
2159 break;
2160 }
2161 }
2162
2163 llvm::Type *HighPart = 0;
2164 switch (Hi) {
2165 // Memory was handled previously, ComplexX87 and X87 should
2166 // never occur as hi classes, and X87Up must be preceded by X87,
2167 // which is passed in memory.
2168 case Memory:
2169 case X87:
2170 case ComplexX87:
2171 llvm_unreachable("Invalid classification for hi word.");
2172
2173 case NoClass: break;
2174
2175 case Integer:
2176 ++neededInt;
2177 // Pick an 8-byte type based on the preferred type.
2178 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2179
2180 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2181 return ABIArgInfo::getDirect(HighPart, 8);
2182 break;
2183
2184 // X87Up generally doesn't occur here (long double is passed in
2185 // memory), except in situations involving unions.
2186 case X87Up:
2187 case SSE:
2188 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2189
2190 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2191 return ABIArgInfo::getDirect(HighPart, 8);
2192
2193 ++neededSSE;
2194 break;
2195
2196 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2197 // eightbyte is passed in the upper half of the last used SSE
2198 // register. This only happens when 128-bit vectors are passed.
2199 case SSEUp:
2200 assert(Lo == SSE && "Unexpected SSEUp classification");
2201 ResType = GetByteVectorType(Ty);
2202 break;
2203 }
2204
2205 // If a high part was specified, merge it together with the low part. It is
2206 // known to pass in the high eightbyte of the result. We do this by forming a
2207 // first class struct aggregate with the high and low part: {low, high}
2208 if (HighPart)
2209 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2210
2211 return ABIArgInfo::getDirect(ResType);
2212 }
2213
computeInfo(CGFunctionInfo & FI) const2214 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2215
2216 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2217
2218 // Keep track of the number of assigned registers.
2219 unsigned freeIntRegs = 6, freeSSERegs = 8;
2220
2221 // If the return value is indirect, then the hidden argument is consuming one
2222 // integer register.
2223 if (FI.getReturnInfo().isIndirect())
2224 --freeIntRegs;
2225
2226 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2227 // get assigned (in left-to-right order) for passing as follows...
2228 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2229 it != ie; ++it) {
2230 unsigned neededInt, neededSSE;
2231 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2232 neededSSE);
2233
2234 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2235 // eightbyte of an argument, the whole argument is passed on the
2236 // stack. If registers have already been assigned for some
2237 // eightbytes of such an argument, the assignments get reverted.
2238 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2239 freeIntRegs -= neededInt;
2240 freeSSERegs -= neededSSE;
2241 } else {
2242 it->info = getIndirectResult(it->type, freeIntRegs);
2243 }
2244 }
2245 }
2246
EmitVAArgFromMemory(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF)2247 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2248 QualType Ty,
2249 CodeGenFunction &CGF) {
2250 llvm::Value *overflow_arg_area_p =
2251 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2252 llvm::Value *overflow_arg_area =
2253 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2254
2255 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2256 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2257 // It isn't stated explicitly in the standard, but in practice we use
2258 // alignment greater than 16 where necessary.
2259 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2260 if (Align > 8) {
2261 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2262 llvm::Value *Offset =
2263 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2264 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2265 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2266 CGF.Int64Ty);
2267 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2268 overflow_arg_area =
2269 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2270 overflow_arg_area->getType(),
2271 "overflow_arg_area.align");
2272 }
2273
2274 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2275 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2276 llvm::Value *Res =
2277 CGF.Builder.CreateBitCast(overflow_arg_area,
2278 llvm::PointerType::getUnqual(LTy));
2279
2280 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2281 // l->overflow_arg_area + sizeof(type).
2282 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2283 // an 8 byte boundary.
2284
2285 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2286 llvm::Value *Offset =
2287 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
2288 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2289 "overflow_arg_area.next");
2290 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2291
2292 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2293 return Res;
2294 }
2295
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2296 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2297 CodeGenFunction &CGF) const {
2298 // Assume that va_list type is correct; should be pointer to LLVM type:
2299 // struct {
2300 // i32 gp_offset;
2301 // i32 fp_offset;
2302 // i8* overflow_arg_area;
2303 // i8* reg_save_area;
2304 // };
2305 unsigned neededInt, neededSSE;
2306
2307 Ty = CGF.getContext().getCanonicalType(Ty);
2308 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2309
2310 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2311 // in the registers. If not go to step 7.
2312 if (!neededInt && !neededSSE)
2313 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2314
2315 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2316 // general purpose registers needed to pass type and num_fp to hold
2317 // the number of floating point registers needed.
2318
2319 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2320 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2321 // l->fp_offset > 304 - num_fp * 16 go to step 7.
2322 //
2323 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2324 // register save space).
2325
2326 llvm::Value *InRegs = 0;
2327 llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2328 llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2329 if (neededInt) {
2330 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2331 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2332 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2333 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2334 }
2335
2336 if (neededSSE) {
2337 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2338 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2339 llvm::Value *FitsInFP =
2340 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2341 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2342 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2343 }
2344
2345 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2346 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2347 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2348 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2349
2350 // Emit code to load the value if it was passed in registers.
2351
2352 CGF.EmitBlock(InRegBlock);
2353
2354 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2355 // an offset of l->gp_offset and/or l->fp_offset. This may require
2356 // copying to a temporary location in case the parameter is passed
2357 // in different register classes or requires an alignment greater
2358 // than 8 for general purpose registers and 16 for XMM registers.
2359 //
2360 // FIXME: This really results in shameful code when we end up needing to
2361 // collect arguments from different places; often what should result in a
2362 // simple assembling of a structure from scattered addresses has many more
2363 // loads than necessary. Can we clean this up?
2364 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2365 llvm::Value *RegAddr =
2366 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2367 "reg_save_area");
2368 if (neededInt && neededSSE) {
2369 // FIXME: Cleanup.
2370 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2371 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2372 llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2373 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2374 llvm::Type *TyLo = ST->getElementType(0);
2375 llvm::Type *TyHi = ST->getElementType(1);
2376 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2377 "Unexpected ABI info for mixed regs");
2378 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2379 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2380 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2381 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2382 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2383 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2384 llvm::Value *V =
2385 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2386 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2387 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2388 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2389
2390 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2391 llvm::PointerType::getUnqual(LTy));
2392 } else if (neededInt) {
2393 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2394 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2395 llvm::PointerType::getUnqual(LTy));
2396 } else if (neededSSE == 1) {
2397 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2398 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2399 llvm::PointerType::getUnqual(LTy));
2400 } else {
2401 assert(neededSSE == 2 && "Invalid number of needed registers!");
2402 // SSE registers are spaced 16 bytes apart in the register save
2403 // area, we need to collect the two eightbytes together.
2404 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2405 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2406 llvm::Type *DoubleTy = CGF.DoubleTy;
2407 llvm::Type *DblPtrTy =
2408 llvm::PointerType::getUnqual(DoubleTy);
2409 llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2410 DoubleTy, NULL);
2411 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2412 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2413 DblPtrTy));
2414 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2415 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2416 DblPtrTy));
2417 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2418 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2419 llvm::PointerType::getUnqual(LTy));
2420 }
2421
2422 // AMD64-ABI 3.5.7p5: Step 5. Set:
2423 // l->gp_offset = l->gp_offset + num_gp * 8
2424 // l->fp_offset = l->fp_offset + num_fp * 16.
2425 if (neededInt) {
2426 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2427 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2428 gp_offset_p);
2429 }
2430 if (neededSSE) {
2431 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2432 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2433 fp_offset_p);
2434 }
2435 CGF.EmitBranch(ContBlock);
2436
2437 // Emit code to load the value if it was passed in memory.
2438
2439 CGF.EmitBlock(InMemBlock);
2440 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2441
2442 // Return the appropriate result.
2443
2444 CGF.EmitBlock(ContBlock);
2445 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2446 "vaarg.addr");
2447 ResAddr->addIncoming(RegAddr, InRegBlock);
2448 ResAddr->addIncoming(MemAddr, InMemBlock);
2449 return ResAddr;
2450 }
2451
classify(QualType Ty) const2452 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2453
2454 if (Ty->isVoidType())
2455 return ABIArgInfo::getIgnore();
2456
2457 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2458 Ty = EnumTy->getDecl()->getIntegerType();
2459
2460 uint64_t Size = getContext().getTypeSize(Ty);
2461
2462 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2463 if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2464 RT->getDecl()->hasFlexibleArrayMember())
2465 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2466
2467 // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2468 if (Size == 128 &&
2469 getContext().getTargetInfo().getTriple().getOS()
2470 == llvm::Triple::MinGW32)
2471 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2472 Size));
2473
2474 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2475 // not 1, 2, 4, or 8 bytes, must be passed by reference."
2476 if (Size <= 64 &&
2477 (Size & (Size - 1)) == 0)
2478 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2479 Size));
2480
2481 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2482 }
2483
2484 if (Ty->isPromotableIntegerType())
2485 return ABIArgInfo::getExtend();
2486
2487 return ABIArgInfo::getDirect();
2488 }
2489
computeInfo(CGFunctionInfo & FI) const2490 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2491
2492 QualType RetTy = FI.getReturnType();
2493 FI.getReturnInfo() = classify(RetTy);
2494
2495 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2496 it != ie; ++it)
2497 it->info = classify(it->type);
2498 }
2499
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2500 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2501 CodeGenFunction &CGF) const {
2502 llvm::Type *BPP = CGF.Int8PtrPtrTy;
2503
2504 CGBuilderTy &Builder = CGF.Builder;
2505 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2506 "ap");
2507 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2508 llvm::Type *PTy =
2509 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2510 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2511
2512 uint64_t Offset =
2513 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2514 llvm::Value *NextAddr =
2515 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2516 "ap.next");
2517 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2518
2519 return AddrTyped;
2520 }
2521
2522 // PowerPC-32
2523
2524 namespace {
2525 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2526 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT)2527 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2528
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2529 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2530 // This is recovered from gcc output.
2531 return 1; // r1 is the dedicated stack pointer
2532 }
2533
2534 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2535 llvm::Value *Address) const;
2536 };
2537
2538 }
2539
2540 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2541 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2542 llvm::Value *Address) const {
2543 // This is calculated from the LLVM and GCC tables and verified
2544 // against gcc output. AFAIK all ABIs use the same encoding.
2545
2546 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2547
2548 llvm::IntegerType *i8 = CGF.Int8Ty;
2549 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2550 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2551 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2552
2553 // 0-31: r0-31, the 4-byte general-purpose registers
2554 AssignToArrayRange(Builder, Address, Four8, 0, 31);
2555
2556 // 32-63: fp0-31, the 8-byte floating-point registers
2557 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2558
2559 // 64-76 are various 4-byte special-purpose registers:
2560 // 64: mq
2561 // 65: lr
2562 // 66: ctr
2563 // 67: ap
2564 // 68-75 cr0-7
2565 // 76: xer
2566 AssignToArrayRange(Builder, Address, Four8, 64, 76);
2567
2568 // 77-108: v0-31, the 16-byte vector registers
2569 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2570
2571 // 109: vrsave
2572 // 110: vscr
2573 // 111: spe_acc
2574 // 112: spefscr
2575 // 113: sfp
2576 AssignToArrayRange(Builder, Address, Four8, 109, 113);
2577
2578 return false;
2579 }
2580
2581 // PowerPC-64
2582
2583 namespace {
2584 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2585 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)2586 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2587
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2588 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2589 // This is recovered from gcc output.
2590 return 1; // r1 is the dedicated stack pointer
2591 }
2592
2593 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2594 llvm::Value *Address) const;
2595 };
2596
2597 }
2598
2599 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2600 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2601 llvm::Value *Address) const {
2602 // This is calculated from the LLVM and GCC tables and verified
2603 // against gcc output. AFAIK all ABIs use the same encoding.
2604
2605 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2606
2607 llvm::IntegerType *i8 = CGF.Int8Ty;
2608 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2609 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2610 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2611
2612 // 0-31: r0-31, the 8-byte general-purpose registers
2613 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2614
2615 // 32-63: fp0-31, the 8-byte floating-point registers
2616 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2617
2618 // 64-76 are various 4-byte special-purpose registers:
2619 // 64: mq
2620 // 65: lr
2621 // 66: ctr
2622 // 67: ap
2623 // 68-75 cr0-7
2624 // 76: xer
2625 AssignToArrayRange(Builder, Address, Four8, 64, 76);
2626
2627 // 77-108: v0-31, the 16-byte vector registers
2628 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2629
2630 // 109: vrsave
2631 // 110: vscr
2632 // 111: spe_acc
2633 // 112: spefscr
2634 // 113: sfp
2635 AssignToArrayRange(Builder, Address, Four8, 109, 113);
2636
2637 return false;
2638 }
2639
2640 //===----------------------------------------------------------------------===//
2641 // ARM ABI Implementation
2642 //===----------------------------------------------------------------------===//
2643
2644 namespace {
2645
2646 class ARMABIInfo : public ABIInfo {
2647 public:
2648 enum ABIKind {
2649 APCS = 0,
2650 AAPCS = 1,
2651 AAPCS_VFP
2652 };
2653
2654 private:
2655 ABIKind Kind;
2656
2657 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)2658 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2659
isEABI() const2660 bool isEABI() const {
2661 StringRef Env =
2662 getContext().getTargetInfo().getTriple().getEnvironmentName();
2663 return (Env == "gnueabi" || Env == "eabi" ||
2664 Env == "android" || Env == "androideabi");
2665 }
2666
2667 private:
getABIKind() const2668 ABIKind getABIKind() const { return Kind; }
2669
2670 ABIArgInfo classifyReturnType(QualType RetTy) const;
2671 ABIArgInfo classifyArgumentType(QualType RetTy) const;
2672
2673 virtual void computeInfo(CGFunctionInfo &FI) const;
2674
2675 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2676 CodeGenFunction &CGF) const;
2677 };
2678
2679 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2680 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)2681 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2682 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2683
getABIInfo() const2684 const ARMABIInfo &getABIInfo() const {
2685 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2686 }
2687
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2688 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2689 return 13;
2690 }
2691
getARCRetainAutoreleasedReturnValueMarker() const2692 StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2693 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2694 }
2695
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2696 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2697 llvm::Value *Address) const {
2698 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2699
2700 // 0-15 are the 16 integer registers.
2701 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2702 return false;
2703 }
2704
getSizeOfUnwindException() const2705 unsigned getSizeOfUnwindException() const {
2706 if (getABIInfo().isEABI()) return 88;
2707 return TargetCodeGenInfo::getSizeOfUnwindException();
2708 }
2709 };
2710
2711 }
2712
computeInfo(CGFunctionInfo & FI) const2713 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2714 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2715 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2716 it != ie; ++it)
2717 it->info = classifyArgumentType(it->type);
2718
2719 // Always honor user-specified calling convention.
2720 if (FI.getCallingConvention() != llvm::CallingConv::C)
2721 return;
2722
2723 // Calling convention as default by an ABI.
2724 llvm::CallingConv::ID DefaultCC;
2725 if (isEABI())
2726 DefaultCC = llvm::CallingConv::ARM_AAPCS;
2727 else
2728 DefaultCC = llvm::CallingConv::ARM_APCS;
2729
2730 // If user did not ask for specific calling convention explicitly (e.g. via
2731 // pcs attribute), set effective calling convention if it's different than ABI
2732 // default.
2733 switch (getABIKind()) {
2734 case APCS:
2735 if (DefaultCC != llvm::CallingConv::ARM_APCS)
2736 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2737 break;
2738 case AAPCS:
2739 if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2740 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2741 break;
2742 case AAPCS_VFP:
2743 if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2744 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2745 break;
2746 }
2747 }
2748
2749 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2750 /// aggregate. If HAMembers is non-null, the number of base elements
2751 /// contained in the type is returned through it; this is used for the
2752 /// recursive calls that check aggregate component types.
isHomogeneousAggregate(QualType Ty,const Type * & Base,ASTContext & Context,uint64_t * HAMembers=0)2753 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2754 ASTContext &Context,
2755 uint64_t *HAMembers = 0) {
2756 uint64_t Members = 0;
2757 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2758 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2759 return false;
2760 Members *= AT->getSize().getZExtValue();
2761 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2762 const RecordDecl *RD = RT->getDecl();
2763 if (RD->hasFlexibleArrayMember())
2764 return false;
2765
2766 Members = 0;
2767 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2768 i != e; ++i) {
2769 const FieldDecl *FD = *i;
2770 uint64_t FldMembers;
2771 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2772 return false;
2773
2774 Members = (RD->isUnion() ?
2775 std::max(Members, FldMembers) : Members + FldMembers);
2776 }
2777 } else {
2778 Members = 1;
2779 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2780 Members = 2;
2781 Ty = CT->getElementType();
2782 }
2783
2784 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2785 // double, or 64-bit or 128-bit vectors.
2786 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2787 if (BT->getKind() != BuiltinType::Float &&
2788 BT->getKind() != BuiltinType::Double &&
2789 BT->getKind() != BuiltinType::LongDouble)
2790 return false;
2791 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2792 unsigned VecSize = Context.getTypeSize(VT);
2793 if (VecSize != 64 && VecSize != 128)
2794 return false;
2795 } else {
2796 return false;
2797 }
2798
2799 // The base type must be the same for all members. Vector types of the
2800 // same total size are treated as being equivalent here.
2801 const Type *TyPtr = Ty.getTypePtr();
2802 if (!Base)
2803 Base = TyPtr;
2804 if (Base != TyPtr &&
2805 (!Base->isVectorType() || !TyPtr->isVectorType() ||
2806 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2807 return false;
2808 }
2809
2810 // Homogeneous Aggregates can have at most 4 members of the base type.
2811 if (HAMembers)
2812 *HAMembers = Members;
2813
2814 return (Members > 0 && Members <= 4);
2815 }
2816
classifyArgumentType(QualType Ty) const2817 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2818 if (!isAggregateTypeForABI(Ty)) {
2819 // Treat an enum type as its underlying type.
2820 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2821 Ty = EnumTy->getDecl()->getIntegerType();
2822
2823 return (Ty->isPromotableIntegerType() ?
2824 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2825 }
2826
2827 // Ignore empty records.
2828 if (isEmptyRecord(getContext(), Ty, true))
2829 return ABIArgInfo::getIgnore();
2830
2831 // Structures with either a non-trivial destructor or a non-trivial
2832 // copy constructor are always indirect.
2833 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2834 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2835
2836 if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2837 // Homogeneous Aggregates need to be expanded.
2838 const Type *Base = 0;
2839 if (isHomogeneousAggregate(Ty, Base, getContext())) {
2840 assert(Base && "Base class should be set for homogeneous aggregate");
2841 return ABIArgInfo::getExpand();
2842 }
2843 }
2844
2845 // Support byval for ARM.
2846 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
2847 getContext().getTypeAlign(Ty) > 64) {
2848 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
2849 }
2850
2851 // Otherwise, pass by coercing to a structure of the appropriate size.
2852 llvm::Type* ElemTy;
2853 unsigned SizeRegs;
2854 // FIXME: Try to match the types of the arguments more accurately where
2855 // we can.
2856 if (getContext().getTypeAlign(Ty) <= 32) {
2857 ElemTy = llvm::Type::getInt32Ty(getVMContext());
2858 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2859 } else {
2860 ElemTy = llvm::Type::getInt64Ty(getVMContext());
2861 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2862 }
2863
2864 llvm::Type *STy =
2865 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2866 return ABIArgInfo::getDirect(STy);
2867 }
2868
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)2869 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2870 llvm::LLVMContext &VMContext) {
2871 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2872 // is called integer-like if its size is less than or equal to one word, and
2873 // the offset of each of its addressable sub-fields is zero.
2874
2875 uint64_t Size = Context.getTypeSize(Ty);
2876
2877 // Check that the type fits in a word.
2878 if (Size > 32)
2879 return false;
2880
2881 // FIXME: Handle vector types!
2882 if (Ty->isVectorType())
2883 return false;
2884
2885 // Float types are never treated as "integer like".
2886 if (Ty->isRealFloatingType())
2887 return false;
2888
2889 // If this is a builtin or pointer type then it is ok.
2890 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2891 return true;
2892
2893 // Small complex integer types are "integer like".
2894 if (const ComplexType *CT = Ty->getAs<ComplexType>())
2895 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2896
2897 // Single element and zero sized arrays should be allowed, by the definition
2898 // above, but they are not.
2899
2900 // Otherwise, it must be a record type.
2901 const RecordType *RT = Ty->getAs<RecordType>();
2902 if (!RT) return false;
2903
2904 // Ignore records with flexible arrays.
2905 const RecordDecl *RD = RT->getDecl();
2906 if (RD->hasFlexibleArrayMember())
2907 return false;
2908
2909 // Check that all sub-fields are at offset 0, and are themselves "integer
2910 // like".
2911 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2912
2913 bool HadField = false;
2914 unsigned idx = 0;
2915 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2916 i != e; ++i, ++idx) {
2917 const FieldDecl *FD = *i;
2918
2919 // Bit-fields are not addressable, we only need to verify they are "integer
2920 // like". We still have to disallow a subsequent non-bitfield, for example:
2921 // struct { int : 0; int x }
2922 // is non-integer like according to gcc.
2923 if (FD->isBitField()) {
2924 if (!RD->isUnion())
2925 HadField = true;
2926
2927 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2928 return false;
2929
2930 continue;
2931 }
2932
2933 // Check if this field is at offset 0.
2934 if (Layout.getFieldOffset(idx) != 0)
2935 return false;
2936
2937 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2938 return false;
2939
2940 // Only allow at most one field in a structure. This doesn't match the
2941 // wording above, but follows gcc in situations with a field following an
2942 // empty structure.
2943 if (!RD->isUnion()) {
2944 if (HadField)
2945 return false;
2946
2947 HadField = true;
2948 }
2949 }
2950
2951 return true;
2952 }
2953
classifyReturnType(QualType RetTy) const2954 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2955 if (RetTy->isVoidType())
2956 return ABIArgInfo::getIgnore();
2957
2958 // Large vector types should be returned via memory.
2959 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2960 return ABIArgInfo::getIndirect(0);
2961
2962 if (!isAggregateTypeForABI(RetTy)) {
2963 // Treat an enum type as its underlying type.
2964 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2965 RetTy = EnumTy->getDecl()->getIntegerType();
2966
2967 return (RetTy->isPromotableIntegerType() ?
2968 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2969 }
2970
2971 // Structures with either a non-trivial destructor or a non-trivial
2972 // copy constructor are always indirect.
2973 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2974 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2975
2976 // Are we following APCS?
2977 if (getABIKind() == APCS) {
2978 if (isEmptyRecord(getContext(), RetTy, false))
2979 return ABIArgInfo::getIgnore();
2980
2981 // Complex types are all returned as packed integers.
2982 //
2983 // FIXME: Consider using 2 x vector types if the back end handles them
2984 // correctly.
2985 if (RetTy->isAnyComplexType())
2986 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2987 getContext().getTypeSize(RetTy)));
2988
2989 // Integer like structures are returned in r0.
2990 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2991 // Return in the smallest viable integer type.
2992 uint64_t Size = getContext().getTypeSize(RetTy);
2993 if (Size <= 8)
2994 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2995 if (Size <= 16)
2996 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2997 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2998 }
2999
3000 // Otherwise return in memory.
3001 return ABIArgInfo::getIndirect(0);
3002 }
3003
3004 // Otherwise this is an AAPCS variant.
3005
3006 if (isEmptyRecord(getContext(), RetTy, true))
3007 return ABIArgInfo::getIgnore();
3008
3009 // Check for homogeneous aggregates with AAPCS-VFP.
3010 if (getABIKind() == AAPCS_VFP) {
3011 const Type *Base = 0;
3012 if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3013 assert(Base && "Base class should be set for homogeneous aggregate");
3014 // Homogeneous Aggregates are returned directly.
3015 return ABIArgInfo::getDirect();
3016 }
3017 }
3018
3019 // Aggregates <= 4 bytes are returned in r0; other aggregates
3020 // are returned indirectly.
3021 uint64_t Size = getContext().getTypeSize(RetTy);
3022 if (Size <= 32) {
3023 // Return in the smallest viable integer type.
3024 if (Size <= 8)
3025 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3026 if (Size <= 16)
3027 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3028 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3029 }
3030
3031 return ABIArgInfo::getIndirect(0);
3032 }
3033
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3034 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3035 CodeGenFunction &CGF) const {
3036 llvm::Type *BP = CGF.Int8PtrTy;
3037 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3038
3039 CGBuilderTy &Builder = CGF.Builder;
3040 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3041 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3042 // Handle address alignment for type alignment > 32 bits
3043 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3044 if (TyAlign > 4) {
3045 assert((TyAlign & (TyAlign - 1)) == 0 &&
3046 "Alignment is not power of 2!");
3047 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3048 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3049 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3050 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3051 }
3052 llvm::Type *PTy =
3053 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3054 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3055
3056 uint64_t Offset =
3057 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3058 llvm::Value *NextAddr =
3059 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3060 "ap.next");
3061 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3062
3063 return AddrTyped;
3064 }
3065
3066 //===----------------------------------------------------------------------===//
3067 // NVPTX ABI Implementation
3068 //===----------------------------------------------------------------------===//
3069
3070 namespace {
3071
3072 class NVPTXABIInfo : public ABIInfo {
3073 public:
NVPTXABIInfo(CodeGenTypes & CGT)3074 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3075
3076 ABIArgInfo classifyReturnType(QualType RetTy) const;
3077 ABIArgInfo classifyArgumentType(QualType Ty) const;
3078
3079 virtual void computeInfo(CGFunctionInfo &FI) const;
3080 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3081 CodeGenFunction &CFG) const;
3082 };
3083
3084 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3085 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)3086 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3087 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3088
3089 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3090 CodeGen::CodeGenModule &M) const;
3091 };
3092
classifyReturnType(QualType RetTy) const3093 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3094 if (RetTy->isVoidType())
3095 return ABIArgInfo::getIgnore();
3096 if (isAggregateTypeForABI(RetTy))
3097 return ABIArgInfo::getIndirect(0);
3098 return ABIArgInfo::getDirect();
3099 }
3100
classifyArgumentType(QualType Ty) const3101 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3102 if (isAggregateTypeForABI(Ty))
3103 return ABIArgInfo::getIndirect(0);
3104
3105 return ABIArgInfo::getDirect();
3106 }
3107
computeInfo(CGFunctionInfo & FI) const3108 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3109 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3110 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3111 it != ie; ++it)
3112 it->info = classifyArgumentType(it->type);
3113
3114 // Always honor user-specified calling convention.
3115 if (FI.getCallingConvention() != llvm::CallingConv::C)
3116 return;
3117
3118 // Calling convention as default by an ABI.
3119 // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3120 // but we should switch to NVVM metadata later on.
3121 llvm::CallingConv::ID DefaultCC;
3122 const LangOptions &LangOpts = getContext().getLangOpts();
3123 if (LangOpts.OpenCL || LangOpts.CUDA) {
3124 // If we are in OpenCL or CUDA mode, then default to device functions
3125 DefaultCC = llvm::CallingConv::PTX_Device;
3126 } else {
3127 // If we are in standard C/C++ mode, use the triple to decide on the default
3128 StringRef Env =
3129 getContext().getTargetInfo().getTriple().getEnvironmentName();
3130 if (Env == "device")
3131 DefaultCC = llvm::CallingConv::PTX_Device;
3132 else
3133 DefaultCC = llvm::CallingConv::PTX_Kernel;
3134 }
3135 FI.setEffectiveCallingConvention(DefaultCC);
3136
3137 }
3138
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CFG) const3139 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3140 CodeGenFunction &CFG) const {
3141 llvm_unreachable("NVPTX does not support varargs");
3142 }
3143
3144 void NVPTXTargetCodeGenInfo::
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3145 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3146 CodeGen::CodeGenModule &M) const{
3147 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3148 if (!FD) return;
3149
3150 llvm::Function *F = cast<llvm::Function>(GV);
3151
3152 // Perform special handling in OpenCL mode
3153 if (M.getLangOpts().OpenCL) {
3154 // Use OpenCL function attributes to set proper calling conventions
3155 // By default, all functions are device functions
3156 if (FD->hasAttr<OpenCLKernelAttr>()) {
3157 // OpenCL __kernel functions get a kernel calling convention
3158 F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3159 // And kernel functions are not subject to inlining
3160 F->addFnAttr(llvm::Attribute::NoInline);
3161 }
3162 }
3163
3164 // Perform special handling in CUDA mode.
3165 if (M.getLangOpts().CUDA) {
3166 // CUDA __global__ functions get a kernel calling convention. Since
3167 // __global__ functions cannot be called from the device, we do not
3168 // need to set the noinline attribute.
3169 if (FD->getAttr<CUDAGlobalAttr>())
3170 F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3171 }
3172 }
3173
3174 }
3175
3176 //===----------------------------------------------------------------------===//
3177 // MBlaze ABI Implementation
3178 //===----------------------------------------------------------------------===//
3179
3180 namespace {
3181
3182 class MBlazeABIInfo : public ABIInfo {
3183 public:
MBlazeABIInfo(CodeGenTypes & CGT)3184 MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3185
3186 bool isPromotableIntegerType(QualType Ty) const;
3187
3188 ABIArgInfo classifyReturnType(QualType RetTy) const;
3189 ABIArgInfo classifyArgumentType(QualType RetTy) const;
3190
computeInfo(CGFunctionInfo & FI) const3191 virtual void computeInfo(CGFunctionInfo &FI) const {
3192 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3193 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3194 it != ie; ++it)
3195 it->info = classifyArgumentType(it->type);
3196 }
3197
3198 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3199 CodeGenFunction &CGF) const;
3200 };
3201
3202 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3203 public:
MBlazeTargetCodeGenInfo(CodeGenTypes & CGT)3204 MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3205 : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3206 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3207 CodeGen::CodeGenModule &M) const;
3208 };
3209
3210 }
3211
isPromotableIntegerType(QualType Ty) const3212 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3213 // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3214 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3215 switch (BT->getKind()) {
3216 case BuiltinType::Bool:
3217 case BuiltinType::Char_S:
3218 case BuiltinType::Char_U:
3219 case BuiltinType::SChar:
3220 case BuiltinType::UChar:
3221 case BuiltinType::Short:
3222 case BuiltinType::UShort:
3223 return true;
3224 default:
3225 return false;
3226 }
3227 return false;
3228 }
3229
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3230 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3231 CodeGenFunction &CGF) const {
3232 // FIXME: Implement
3233 return 0;
3234 }
3235
3236
classifyReturnType(QualType RetTy) const3237 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3238 if (RetTy->isVoidType())
3239 return ABIArgInfo::getIgnore();
3240 if (isAggregateTypeForABI(RetTy))
3241 return ABIArgInfo::getIndirect(0);
3242
3243 return (isPromotableIntegerType(RetTy) ?
3244 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3245 }
3246
classifyArgumentType(QualType Ty) const3247 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3248 if (isAggregateTypeForABI(Ty))
3249 return ABIArgInfo::getIndirect(0);
3250
3251 return (isPromotableIntegerType(Ty) ?
3252 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3253 }
3254
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3255 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3256 llvm::GlobalValue *GV,
3257 CodeGen::CodeGenModule &M)
3258 const {
3259 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3260 if (!FD) return;
3261
3262 llvm::CallingConv::ID CC = llvm::CallingConv::C;
3263 if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3264 CC = llvm::CallingConv::MBLAZE_INTR;
3265 else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3266 CC = llvm::CallingConv::MBLAZE_SVOL;
3267
3268 if (CC != llvm::CallingConv::C) {
3269 // Handle 'interrupt_handler' attribute:
3270 llvm::Function *F = cast<llvm::Function>(GV);
3271
3272 // Step 1: Set ISR calling convention.
3273 F->setCallingConv(CC);
3274
3275 // Step 2: Add attributes goodness.
3276 F->addFnAttr(llvm::Attribute::NoInline);
3277 }
3278
3279 // Step 3: Emit _interrupt_handler alias.
3280 if (CC == llvm::CallingConv::MBLAZE_INTR)
3281 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3282 "_interrupt_handler", GV, &M.getModule());
3283 }
3284
3285
3286 //===----------------------------------------------------------------------===//
3287 // MSP430 ABI Implementation
3288 //===----------------------------------------------------------------------===//
3289
3290 namespace {
3291
3292 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3293 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)3294 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3295 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3296 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3297 CodeGen::CodeGenModule &M) const;
3298 };
3299
3300 }
3301
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3302 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3303 llvm::GlobalValue *GV,
3304 CodeGen::CodeGenModule &M) const {
3305 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3306 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3307 // Handle 'interrupt' attribute:
3308 llvm::Function *F = cast<llvm::Function>(GV);
3309
3310 // Step 1: Set ISR calling convention.
3311 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3312
3313 // Step 2: Add attributes goodness.
3314 F->addFnAttr(llvm::Attribute::NoInline);
3315
3316 // Step 3: Emit ISR vector alias.
3317 unsigned Num = attr->getNumber() + 0xffe0;
3318 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3319 "vector_" + Twine::utohexstr(Num),
3320 GV, &M.getModule());
3321 }
3322 }
3323 }
3324
3325 //===----------------------------------------------------------------------===//
3326 // MIPS ABI Implementation. This works for both little-endian and
3327 // big-endian variants.
3328 //===----------------------------------------------------------------------===//
3329
3330 namespace {
3331 class MipsABIInfo : public ABIInfo {
3332 bool IsO32;
3333 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3334 void CoerceToIntArgs(uint64_t TySize,
3335 SmallVector<llvm::Type*, 8> &ArgList) const;
3336 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3337 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3338 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3339 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)3340 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3341 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3342 StackAlignInBytes(IsO32 ? 8 : 16) {}
3343
3344 ABIArgInfo classifyReturnType(QualType RetTy) const;
3345 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3346 virtual void computeInfo(CGFunctionInfo &FI) const;
3347 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3348 CodeGenFunction &CGF) const;
3349 };
3350
3351 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3352 unsigned SizeOfUnwindException;
3353 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)3354 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3355 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3356 SizeOfUnwindException(IsO32 ? 24 : 32) {}
3357
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const3358 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3359 return 29;
3360 }
3361
3362 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3363 llvm::Value *Address) const;
3364
getSizeOfUnwindException() const3365 unsigned getSizeOfUnwindException() const {
3366 return SizeOfUnwindException;
3367 }
3368 };
3369 }
3370
CoerceToIntArgs(uint64_t TySize,SmallVector<llvm::Type *,8> & ArgList) const3371 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3372 SmallVector<llvm::Type*, 8> &ArgList) const {
3373 llvm::IntegerType *IntTy =
3374 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3375
3376 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3377 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3378 ArgList.push_back(IntTy);
3379
3380 // If necessary, add one more integer type to ArgList.
3381 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3382
3383 if (R)
3384 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3385 }
3386
3387 // In N32/64, an aligned double precision floating point field is passed in
3388 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const3389 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3390 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3391
3392 if (IsO32) {
3393 CoerceToIntArgs(TySize, ArgList);
3394 return llvm::StructType::get(getVMContext(), ArgList);
3395 }
3396
3397 if (Ty->isComplexType())
3398 return CGT.ConvertType(Ty);
3399
3400 const RecordType *RT = Ty->getAs<RecordType>();
3401
3402 // Unions/vectors are passed in integer registers.
3403 if (!RT || !RT->isStructureOrClassType()) {
3404 CoerceToIntArgs(TySize, ArgList);
3405 return llvm::StructType::get(getVMContext(), ArgList);
3406 }
3407
3408 const RecordDecl *RD = RT->getDecl();
3409 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3410 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3411
3412 uint64_t LastOffset = 0;
3413 unsigned idx = 0;
3414 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3415
3416 // Iterate over fields in the struct/class and check if there are any aligned
3417 // double fields.
3418 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3419 i != e; ++i, ++idx) {
3420 const QualType Ty = i->getType();
3421 const BuiltinType *BT = Ty->getAs<BuiltinType>();
3422
3423 if (!BT || BT->getKind() != BuiltinType::Double)
3424 continue;
3425
3426 uint64_t Offset = Layout.getFieldOffset(idx);
3427 if (Offset % 64) // Ignore doubles that are not aligned.
3428 continue;
3429
3430 // Add ((Offset - LastOffset) / 64) args of type i64.
3431 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3432 ArgList.push_back(I64);
3433
3434 // Add double type.
3435 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3436 LastOffset = Offset + 64;
3437 }
3438
3439 CoerceToIntArgs(TySize - LastOffset, IntArgList);
3440 ArgList.append(IntArgList.begin(), IntArgList.end());
3441
3442 return llvm::StructType::get(getVMContext(), ArgList);
3443 }
3444
getPaddingType(uint64_t Align,uint64_t Offset) const3445 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3446 assert((Offset % MinABIStackAlignInBytes) == 0);
3447
3448 if ((Align - 1) & Offset)
3449 return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3450
3451 return 0;
3452 }
3453
3454 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const3455 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3456 uint64_t OrigOffset = Offset;
3457 uint64_t TySize = getContext().getTypeSize(Ty);
3458 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3459
3460 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3461 (uint64_t)StackAlignInBytes);
3462 Offset = llvm::RoundUpToAlignment(Offset, Align);
3463 Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3464
3465 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3466 // Ignore empty aggregates.
3467 if (TySize == 0)
3468 return ABIArgInfo::getIgnore();
3469
3470 // Records with non trivial destructors/constructors should not be passed
3471 // by value.
3472 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3473 Offset = OrigOffset + MinABIStackAlignInBytes;
3474 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3475 }
3476
3477 // If we have reached here, aggregates are passed directly by coercing to
3478 // another structure type. Padding is inserted if the offset of the
3479 // aggregate is unaligned.
3480 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3481 getPaddingType(Align, OrigOffset));
3482 }
3483
3484 // Treat an enum type as its underlying type.
3485 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3486 Ty = EnumTy->getDecl()->getIntegerType();
3487
3488 if (Ty->isPromotableIntegerType())
3489 return ABIArgInfo::getExtend();
3490
3491 return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3492 }
3493
3494 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const3495 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3496 const RecordType *RT = RetTy->getAs<RecordType>();
3497 SmallVector<llvm::Type*, 8> RTList;
3498
3499 if (RT && RT->isStructureOrClassType()) {
3500 const RecordDecl *RD = RT->getDecl();
3501 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3502 unsigned FieldCnt = Layout.getFieldCount();
3503
3504 // N32/64 returns struct/classes in floating point registers if the
3505 // following conditions are met:
3506 // 1. The size of the struct/class is no larger than 128-bit.
3507 // 2. The struct/class has one or two fields all of which are floating
3508 // point types.
3509 // 3. The offset of the first field is zero (this follows what gcc does).
3510 //
3511 // Any other composite results are returned in integer registers.
3512 //
3513 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3514 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3515 for (; b != e; ++b) {
3516 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3517
3518 if (!BT || !BT->isFloatingPoint())
3519 break;
3520
3521 RTList.push_back(CGT.ConvertType(b->getType()));
3522 }
3523
3524 if (b == e)
3525 return llvm::StructType::get(getVMContext(), RTList,
3526 RD->hasAttr<PackedAttr>());
3527
3528 RTList.clear();
3529 }
3530 }
3531
3532 CoerceToIntArgs(Size, RTList);
3533 return llvm::StructType::get(getVMContext(), RTList);
3534 }
3535
classifyReturnType(QualType RetTy) const3536 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3537 uint64_t Size = getContext().getTypeSize(RetTy);
3538
3539 if (RetTy->isVoidType() || Size == 0)
3540 return ABIArgInfo::getIgnore();
3541
3542 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
3543 if (Size <= 128) {
3544 if (RetTy->isAnyComplexType())
3545 return ABIArgInfo::getDirect();
3546
3547 // O32 returns integer vectors in registers.
3548 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
3549 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3550
3551 if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3552 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3553 }
3554
3555 return ABIArgInfo::getIndirect(0);
3556 }
3557
3558 // Treat an enum type as its underlying type.
3559 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3560 RetTy = EnumTy->getDecl()->getIntegerType();
3561
3562 return (RetTy->isPromotableIntegerType() ?
3563 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3564 }
3565
computeInfo(CGFunctionInfo & FI) const3566 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3567 ABIArgInfo &RetInfo = FI.getReturnInfo();
3568 RetInfo = classifyReturnType(FI.getReturnType());
3569
3570 // Check if a pointer to an aggregate is passed as a hidden argument.
3571 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
3572
3573 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3574 it != ie; ++it)
3575 it->info = classifyArgumentType(it->type, Offset);
3576 }
3577
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3578 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3579 CodeGenFunction &CGF) const {
3580 llvm::Type *BP = CGF.Int8PtrTy;
3581 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3582
3583 CGBuilderTy &Builder = CGF.Builder;
3584 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3585 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3586 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3587 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3588 llvm::Value *AddrTyped;
3589 unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3590 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3591
3592 if (TypeAlign > MinABIStackAlignInBytes) {
3593 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3594 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3595 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3596 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3597 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3598 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3599 }
3600 else
3601 AddrTyped = Builder.CreateBitCast(Addr, PTy);
3602
3603 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3604 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3605 uint64_t Offset =
3606 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3607 llvm::Value *NextAddr =
3608 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3609 "ap.next");
3610 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3611
3612 return AddrTyped;
3613 }
3614
3615 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3616 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3617 llvm::Value *Address) const {
3618 // This information comes from gcc's implementation, which seems to
3619 // as canonical as it gets.
3620
3621 // Everything on MIPS is 4 bytes. Double-precision FP registers
3622 // are aliased to pairs of single-precision FP registers.
3623 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3624
3625 // 0-31 are the general purpose registers, $0 - $31.
3626 // 32-63 are the floating-point registers, $f0 - $f31.
3627 // 64 and 65 are the multiply/divide registers, $hi and $lo.
3628 // 66 is the (notional, I think) register for signal-handler return.
3629 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3630
3631 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3632 // They are one bit wide and ignored here.
3633
3634 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3635 // (coprocessor 1 is the FP unit)
3636 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3637 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3638 // 176-181 are the DSP accumulator registers.
3639 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3640 return false;
3641 }
3642
3643 //===----------------------------------------------------------------------===//
3644 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3645 // Currently subclassed only to implement custom OpenCL C function attribute
3646 // handling.
3647 //===----------------------------------------------------------------------===//
3648
3649 namespace {
3650
3651 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3652 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)3653 TCETargetCodeGenInfo(CodeGenTypes &CGT)
3654 : DefaultTargetCodeGenInfo(CGT) {}
3655
3656 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3657 CodeGen::CodeGenModule &M) const;
3658 };
3659
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3660 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3661 llvm::GlobalValue *GV,
3662 CodeGen::CodeGenModule &M) const {
3663 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3664 if (!FD) return;
3665
3666 llvm::Function *F = cast<llvm::Function>(GV);
3667
3668 if (M.getLangOpts().OpenCL) {
3669 if (FD->hasAttr<OpenCLKernelAttr>()) {
3670 // OpenCL C Kernel functions are not subject to inlining
3671 F->addFnAttr(llvm::Attribute::NoInline);
3672
3673 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3674
3675 // Convert the reqd_work_group_size() attributes to metadata.
3676 llvm::LLVMContext &Context = F->getContext();
3677 llvm::NamedMDNode *OpenCLMetadata =
3678 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3679
3680 SmallVector<llvm::Value*, 5> Operands;
3681 Operands.push_back(F);
3682
3683 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3684 llvm::APInt(32,
3685 FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3686 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3687 llvm::APInt(32,
3688 FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3689 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3690 llvm::APInt(32,
3691 FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3692
3693 // Add a boolean constant operand for "required" (true) or "hint" (false)
3694 // for implementing the work_group_size_hint attr later. Currently
3695 // always true as the hint is not yet implemented.
3696 Operands.push_back(llvm::ConstantInt::getTrue(Context));
3697 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3698 }
3699 }
3700 }
3701 }
3702
3703 }
3704
3705 //===----------------------------------------------------------------------===//
3706 // Hexagon ABI Implementation
3707 //===----------------------------------------------------------------------===//
3708
3709 namespace {
3710
3711 class HexagonABIInfo : public ABIInfo {
3712
3713
3714 public:
HexagonABIInfo(CodeGenTypes & CGT)3715 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3716
3717 private:
3718
3719 ABIArgInfo classifyReturnType(QualType RetTy) const;
3720 ABIArgInfo classifyArgumentType(QualType RetTy) const;
3721
3722 virtual void computeInfo(CGFunctionInfo &FI) const;
3723
3724 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3725 CodeGenFunction &CGF) const;
3726 };
3727
3728 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3729 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)3730 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3731 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3732
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3733 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3734 return 29;
3735 }
3736 };
3737
3738 }
3739
computeInfo(CGFunctionInfo & FI) const3740 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3741 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3742 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3743 it != ie; ++it)
3744 it->info = classifyArgumentType(it->type);
3745 }
3746
classifyArgumentType(QualType Ty) const3747 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3748 if (!isAggregateTypeForABI(Ty)) {
3749 // Treat an enum type as its underlying type.
3750 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3751 Ty = EnumTy->getDecl()->getIntegerType();
3752
3753 return (Ty->isPromotableIntegerType() ?
3754 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3755 }
3756
3757 // Ignore empty records.
3758 if (isEmptyRecord(getContext(), Ty, true))
3759 return ABIArgInfo::getIgnore();
3760
3761 // Structures with either a non-trivial destructor or a non-trivial
3762 // copy constructor are always indirect.
3763 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3764 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3765
3766 uint64_t Size = getContext().getTypeSize(Ty);
3767 if (Size > 64)
3768 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3769 // Pass in the smallest viable integer type.
3770 else if (Size > 32)
3771 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3772 else if (Size > 16)
3773 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3774 else if (Size > 8)
3775 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3776 else
3777 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3778 }
3779
classifyReturnType(QualType RetTy) const3780 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3781 if (RetTy->isVoidType())
3782 return ABIArgInfo::getIgnore();
3783
3784 // Large vector types should be returned via memory.
3785 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3786 return ABIArgInfo::getIndirect(0);
3787
3788 if (!isAggregateTypeForABI(RetTy)) {
3789 // Treat an enum type as its underlying type.
3790 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3791 RetTy = EnumTy->getDecl()->getIntegerType();
3792
3793 return (RetTy->isPromotableIntegerType() ?
3794 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3795 }
3796
3797 // Structures with either a non-trivial destructor or a non-trivial
3798 // copy constructor are always indirect.
3799 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3800 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3801
3802 if (isEmptyRecord(getContext(), RetTy, true))
3803 return ABIArgInfo::getIgnore();
3804
3805 // Aggregates <= 8 bytes are returned in r0; other aggregates
3806 // are returned indirectly.
3807 uint64_t Size = getContext().getTypeSize(RetTy);
3808 if (Size <= 64) {
3809 // Return in the smallest viable integer type.
3810 if (Size <= 8)
3811 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3812 if (Size <= 16)
3813 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3814 if (Size <= 32)
3815 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3816 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3817 }
3818
3819 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3820 }
3821
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3822 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3823 CodeGenFunction &CGF) const {
3824 // FIXME: Need to handle alignment
3825 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3826
3827 CGBuilderTy &Builder = CGF.Builder;
3828 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3829 "ap");
3830 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3831 llvm::Type *PTy =
3832 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3833 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3834
3835 uint64_t Offset =
3836 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3837 llvm::Value *NextAddr =
3838 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3839 "ap.next");
3840 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3841
3842 return AddrTyped;
3843 }
3844
3845
getTargetCodeGenInfo()3846 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3847 if (TheTargetCodeGenInfo)
3848 return *TheTargetCodeGenInfo;
3849
3850 const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3851 switch (Triple.getArch()) {
3852 default:
3853 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3854
3855 case llvm::Triple::le32:
3856 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
3857 case llvm::Triple::mips:
3858 case llvm::Triple::mipsel:
3859 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3860
3861 case llvm::Triple::mips64:
3862 case llvm::Triple::mips64el:
3863 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3864
3865 case llvm::Triple::arm:
3866 case llvm::Triple::thumb:
3867 {
3868 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3869
3870 if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3871 Kind = ARMABIInfo::APCS;
3872 else if (CodeGenOpts.FloatABI == "hard")
3873 Kind = ARMABIInfo::AAPCS_VFP;
3874
3875 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3876 }
3877
3878 case llvm::Triple::ppc:
3879 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3880 case llvm::Triple::ppc64:
3881 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
3882
3883 case llvm::Triple::nvptx:
3884 case llvm::Triple::nvptx64:
3885 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
3886
3887 case llvm::Triple::mblaze:
3888 return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3889
3890 case llvm::Triple::msp430:
3891 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3892
3893 case llvm::Triple::tce:
3894 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3895
3896 case llvm::Triple::x86: {
3897 bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3898
3899 if (Triple.isOSDarwin())
3900 return *(TheTargetCodeGenInfo =
3901 new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
3902 CodeGenOpts.NumRegisterParameters));
3903
3904 switch (Triple.getOS()) {
3905 case llvm::Triple::Cygwin:
3906 case llvm::Triple::MinGW32:
3907 case llvm::Triple::AuroraUX:
3908 case llvm::Triple::DragonFly:
3909 case llvm::Triple::FreeBSD:
3910 case llvm::Triple::OpenBSD:
3911 case llvm::Triple::Bitrig:
3912 return *(TheTargetCodeGenInfo =
3913 new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
3914 false,
3915 CodeGenOpts.NumRegisterParameters));
3916
3917 case llvm::Triple::Win32:
3918 return *(TheTargetCodeGenInfo =
3919 new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
3920 CodeGenOpts.NumRegisterParameters));
3921
3922 default:
3923 return *(TheTargetCodeGenInfo =
3924 new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
3925 false,
3926 CodeGenOpts.NumRegisterParameters));
3927 }
3928 }
3929
3930 case llvm::Triple::x86_64: {
3931 bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3932
3933 switch (Triple.getOS()) {
3934 case llvm::Triple::Win32:
3935 case llvm::Triple::MinGW32:
3936 case llvm::Triple::Cygwin:
3937 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3938 default:
3939 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3940 HasAVX));
3941 }
3942 }
3943 case llvm::Triple::hexagon:
3944 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3945 }
3946 }
3947