• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
isAggregateTypeForABI(QualType T)39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
~ABIInfo()44 ABIInfo::~ABIInfo() {}
45 
getContext() const46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
getVMContext() const50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
getTargetData() const54 const llvm::TargetData &ABIInfo::getTargetData() const {
55   return CGT.getTargetData();
56 }
57 
58 
dump() const59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
~TargetCodeGenInfo()88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const101 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
102                                      const FunctionNoProtoType *fnType) const {
103   // The following conventions are known to require this to be false:
104   //   x86_stdcall
105   //   MIPS
106   // For everything else, we just prefer false unless we opt out.
107   return false;
108 }
109 
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111 
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                          bool AllowArrays) {
116   if (FD->isUnnamedBitfield())
117     return true;
118 
119   QualType FT = FD->getType();
120 
121   // Constant arrays of empty records count as empty, strip them off.
122   // Constant arrays of zero length always count as empty.
123   if (AllowArrays)
124     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125       if (AT->getSize() == 0)
126         return true;
127       FT = AT->getElementType();
128     }
129 
130   const RecordType *RT = FT->getAs<RecordType>();
131   if (!RT)
132     return false;
133 
134   // C++ record fields are never empty, at least in the Itanium ABI.
135   //
136   // FIXME: We should use a predicate for whether this behavior is true in the
137   // current ABI.
138   if (isa<CXXRecordDecl>(RT->getDecl()))
139     return false;
140 
141   return isEmptyRecord(Context, FT, AllowArrays);
142 }
143 
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148   const RecordType *RT = T->getAs<RecordType>();
149   if (!RT)
150     return 0;
151   const RecordDecl *RD = RT->getDecl();
152   if (RD->hasFlexibleArrayMember())
153     return false;
154 
155   // If this is a C++ record, check the bases first.
156   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158            e = CXXRD->bases_end(); i != e; ++i)
159       if (!isEmptyRecord(Context, i->getType(), true))
160         return false;
161 
162   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163          i != e; ++i)
164     if (!isEmptyField(Context, *i, AllowArrays))
165       return false;
166   return true;
167 }
168 
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
hasNonTrivialDestructorOrCopyConstructor(const RecordType * RT)171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173   if (!RD)
174     return false;
175 
176   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178 
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T)182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183   const RecordType *RT = T->getAs<RecordType>();
184   if (!RT)
185     return false;
186 
187   return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189 
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199   const RecordType *RT = T->getAsStructureType();
200   if (!RT)
201     return 0;
202 
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return 0;
206 
207   const Type *Found = 0;
208 
209   // If this is a C++ record, check the bases first.
210   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212            e = CXXRD->bases_end(); i != e; ++i) {
213       // Ignore empty records.
214       if (isEmptyRecord(Context, i->getType(), true))
215         continue;
216 
217       // If we already found an element then this isn't a single-element struct.
218       if (Found)
219         return 0;
220 
221       // If this is non-empty and not a single element struct, the composite
222       // cannot be a single element struct.
223       Found = isSingleElementStruct(i->getType(), Context);
224       if (!Found)
225         return 0;
226     }
227   }
228 
229   // Check for single element.
230   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231          i != e; ++i) {
232     const FieldDecl *FD = *i;
233     QualType FT = FD->getType();
234 
235     // Ignore empty fields.
236     if (isEmptyField(Context, FD, true))
237       continue;
238 
239     // If we already found an element then this isn't a single-element
240     // struct.
241     if (Found)
242       return 0;
243 
244     // Treat single element arrays as the element.
245     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246       if (AT->getSize().getZExtValue() != 1)
247         break;
248       FT = AT->getElementType();
249     }
250 
251     if (!isAggregateTypeForABI(FT)) {
252       Found = FT.getTypePtr();
253     } else {
254       Found = isSingleElementStruct(FT, Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // We don't consider a struct a single-element struct if it has
261   // padding beyond the element type.
262   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263     return 0;
264 
265   return Found;
266 }
267 
is32Or64BitBasicType(QualType Ty,ASTContext & Context)268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271       !Ty->isBlockPointerType())
272     return false;
273 
274   uint64_t Size = Context.getTypeSize(Ty);
275   return Size == 32 || Size == 64;
276 }
277 
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288   // We can only expand structure types.
289   const RecordType *RT = Ty->getAs<RecordType>();
290   if (!RT)
291     return false;
292 
293   // We can only expand (C) structures.
294   //
295   // FIXME: This needs to be generalized to handle classes as well.
296   const RecordDecl *RD = RT->getDecl();
297   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298     return false;
299 
300   uint64_t Size = 0;
301 
302   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303          i != e; ++i) {
304     const FieldDecl *FD = *i;
305 
306     if (!is32Or64BitBasicType(FD->getType(), Context))
307       return false;
308 
309     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310     // how to expand them yet, and the predicate for telling if a bitfield still
311     // counts as "basic" is more complicated than what we were doing previously.
312     if (FD->isBitField())
313       return false;
314 
315     Size += Context.getTypeSize(FD->getType());
316   }
317 
318   // Make sure there are not any holes in the struct.
319   if (Size != Context.getTypeSize(Ty))
320     return false;
321 
322   return true;
323 }
324 
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)332   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333 
334   ABIArgInfo classifyReturnType(QualType RetTy) const;
335   ABIArgInfo classifyArgumentType(QualType RetTy) const;
336 
computeInfo(CGFunctionInfo & FI) const337   virtual void computeInfo(CGFunctionInfo &FI) const {
338     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340          it != ie; ++it)
341       it->info = classifyArgumentType(it->type);
342   }
343 
344   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                  CodeGenFunction &CGF) const;
346 };
347 
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)350   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                        CodeGenFunction &CGF) const {
356   return 0;
357 }
358 
classifyArgumentType(QualType Ty) const359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360   if (isAggregateTypeForABI(Ty)) {
361     // Records with non trivial destructors/constructors should not be passed
362     // by value.
363     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365 
366     return ABIArgInfo::getIndirect(0);
367   }
368 
369   // Treat an enum type as its underlying type.
370   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371     Ty = EnumTy->getDecl()->getIntegerType();
372 
373   return (Ty->isPromotableIntegerType() ?
374           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376 
classifyReturnType(QualType RetTy) const377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378   if (RetTy->isVoidType())
379     return ABIArgInfo::getIgnore();
380 
381   if (isAggregateTypeForABI(RetTy))
382     return ABIArgInfo::getIndirect(0);
383 
384   // Treat an enum type as its underlying type.
385   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386     RetTy = EnumTy->getDecl()->getIntegerType();
387 
388   return (RetTy->isPromotableIntegerType() ?
389           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391 
392 //===----------------------------------------------------------------------===//
393 // le32/PNaCl bitcode ABI Implementation
394 //===----------------------------------------------------------------------===//
395 
396 class PNaClABIInfo : public ABIInfo {
397  public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)398   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
399 
400   ABIArgInfo classifyReturnType(QualType RetTy) const;
401   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
402 
403   virtual void computeInfo(CGFunctionInfo &FI) const;
404   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
405                                  CodeGenFunction &CGF) const;
406 };
407 
408 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
409  public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)410   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
411     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
412 };
413 
computeInfo(CGFunctionInfo & FI) const414 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
415     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
416 
417     unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
418 
419     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
420          it != ie; ++it)
421       it->info = classifyArgumentType(it->type, FreeRegs);
422   }
423 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const424 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
425                                        CodeGenFunction &CGF) const {
426   return 0;
427 }
428 
classifyArgumentType(QualType Ty,unsigned & FreeRegs) const429 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
430                                               unsigned &FreeRegs) const {
431   if (isAggregateTypeForABI(Ty)) {
432     // Records with non trivial destructors/constructors should not be passed
433     // by value.
434     FreeRegs = 0;
435     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
436       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
437 
438     return ABIArgInfo::getIndirect(0);
439   }
440 
441   // Treat an enum type as its underlying type.
442   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
443     Ty = EnumTy->getDecl()->getIntegerType();
444 
445   ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
446           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
447 
448   // Regparm regs hold 32 bits.
449   unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
450   if (SizeInRegs == 0) return BaseInfo;
451   if (SizeInRegs > FreeRegs) {
452     FreeRegs = 0;
453     return BaseInfo;
454   }
455   FreeRegs -= SizeInRegs;
456   return BaseInfo.isDirect() ?
457       ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
458       ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
459 }
460 
classifyReturnType(QualType RetTy) const461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462   if (RetTy->isVoidType())
463     return ABIArgInfo::getIgnore();
464 
465   if (isAggregateTypeForABI(RetTy))
466     return ABIArgInfo::getIndirect(0);
467 
468   // Treat an enum type as its underlying type.
469   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
470     RetTy = EnumTy->getDecl()->getIntegerType();
471 
472   return (RetTy->isPromotableIntegerType() ?
473           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
474 }
475 
476 /// UseX86_MMXType - Return true if this is an MMX type that should use the
477 /// special x86_mmx type.
UseX86_MMXType(llvm::Type * IRType)478 bool UseX86_MMXType(llvm::Type *IRType) {
479   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
480   // special x86_mmx type.
481   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
482     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
483     IRType->getScalarSizeInBits() != 64;
484 }
485 
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)486 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
487                                           StringRef Constraint,
488                                           llvm::Type* Ty) {
489   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
490     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
491   return Ty;
492 }
493 
494 //===----------------------------------------------------------------------===//
495 // X86-32 ABI Implementation
496 //===----------------------------------------------------------------------===//
497 
498 /// X86_32ABIInfo - The X86-32 ABI information.
499 class X86_32ABIInfo : public ABIInfo {
500   enum Class {
501     Integer,
502     Float
503   };
504 
505   static const unsigned MinABIStackAlignInBytes = 4;
506 
507   bool IsDarwinVectorABI;
508   bool IsSmallStructInRegABI;
509   bool IsMMXDisabled;
510   bool IsWin32FloatStructABI;
511   unsigned DefaultNumRegisterParameters;
512 
isRegisterSize(unsigned Size)513   static bool isRegisterSize(unsigned Size) {
514     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
515   }
516 
517   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
518                                           unsigned callingConvention);
519 
520   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
521   /// such that the argument will be passed in memory.
522   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
523 
524   /// \brief Return the alignment to use for the given type on the stack.
525   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
526 
527   Class classify(QualType Ty) const;
528   ABIArgInfo classifyReturnType(QualType RetTy,
529                                 unsigned callingConvention) const;
530   ABIArgInfo classifyArgumentTypeWithReg(QualType RetTy,
531                                          unsigned &FreeRegs) const;
532   ABIArgInfo classifyArgumentType(QualType RetTy) const;
533 
534 public:
535 
536   virtual void computeInfo(CGFunctionInfo &FI) const;
537   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
538                                  CodeGenFunction &CGF) const;
539 
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool m,bool w,unsigned r)540   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w,
541                 unsigned r)
542     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
543       IsMMXDisabled(m), IsWin32FloatStructABI(w),
544       DefaultNumRegisterParameters(r) {}
545 };
546 
547 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
548 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool m,bool w,unsigned r)549   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
550       bool d, bool p, bool m, bool w, unsigned r)
551     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w, r)) {}
552 
553   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
554                            CodeGen::CodeGenModule &CGM) const;
555 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const556   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
557     // Darwin uses different dwarf register numbers for EH.
558     if (CGM.isTargetDarwin()) return 5;
559 
560     return 4;
561   }
562 
563   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
564                                llvm::Value *Address) const;
565 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const566   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
567                                   StringRef Constraint,
568                                   llvm::Type* Ty) const {
569     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
570   }
571 
572 };
573 
574 }
575 
576 /// shouldReturnTypeInRegister - Determine if the given type should be
577 /// passed in a register (for the Darwin ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context,unsigned callingConvention)578 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
579                                                ASTContext &Context,
580                                                unsigned callingConvention) {
581   uint64_t Size = Context.getTypeSize(Ty);
582 
583   // Type must be register sized.
584   if (!isRegisterSize(Size))
585     return false;
586 
587   if (Ty->isVectorType()) {
588     // 64- and 128- bit vectors inside structures are not returned in
589     // registers.
590     if (Size == 64 || Size == 128)
591       return false;
592 
593     return true;
594   }
595 
596   // If this is a builtin, pointer, enum, complex type, member pointer, or
597   // member function pointer it is ok.
598   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
599       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
600       Ty->isBlockPointerType() || Ty->isMemberPointerType())
601     return true;
602 
603   // Arrays are treated like records.
604   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
605     return shouldReturnTypeInRegister(AT->getElementType(), Context,
606                                       callingConvention);
607 
608   // Otherwise, it must be a record type.
609   const RecordType *RT = Ty->getAs<RecordType>();
610   if (!RT) return false;
611 
612   // FIXME: Traverse bases here too.
613 
614   // For thiscall conventions, structures will never be returned in
615   // a register.  This is for compatibility with the MSVC ABI
616   if (callingConvention == llvm::CallingConv::X86_ThisCall &&
617       RT->isStructureType()) {
618     return false;
619   }
620 
621   // Structure types are passed in register if all fields would be
622   // passed in a register.
623   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
624          e = RT->getDecl()->field_end(); i != e; ++i) {
625     const FieldDecl *FD = *i;
626 
627     // Empty fields are ignored.
628     if (isEmptyField(Context, FD, true))
629       continue;
630 
631     // Check fields recursively.
632     if (!shouldReturnTypeInRegister(FD->getType(), Context,
633                                     callingConvention))
634       return false;
635   }
636   return true;
637 }
638 
classifyReturnType(QualType RetTy,unsigned callingConvention) const639 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
640                                             unsigned callingConvention) const {
641   if (RetTy->isVoidType())
642     return ABIArgInfo::getIgnore();
643 
644   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
645     // On Darwin, some vectors are returned in registers.
646     if (IsDarwinVectorABI) {
647       uint64_t Size = getContext().getTypeSize(RetTy);
648 
649       // 128-bit vectors are a special case; they are returned in
650       // registers and we need to make sure to pick a type the LLVM
651       // backend will like.
652       if (Size == 128)
653         return ABIArgInfo::getDirect(llvm::VectorType::get(
654                   llvm::Type::getInt64Ty(getVMContext()), 2));
655 
656       // Always return in register if it fits in a general purpose
657       // register, or if it is 64 bits and has a single element.
658       if ((Size == 8 || Size == 16 || Size == 32) ||
659           (Size == 64 && VT->getNumElements() == 1))
660         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
661                                                             Size));
662 
663       return ABIArgInfo::getIndirect(0);
664     }
665 
666     return ABIArgInfo::getDirect();
667   }
668 
669   if (isAggregateTypeForABI(RetTy)) {
670     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
671       // Structures with either a non-trivial destructor or a non-trivial
672       // copy constructor are always indirect.
673       if (hasNonTrivialDestructorOrCopyConstructor(RT))
674         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
675 
676       // Structures with flexible arrays are always indirect.
677       if (RT->getDecl()->hasFlexibleArrayMember())
678         return ABIArgInfo::getIndirect(0);
679     }
680 
681     // If specified, structs and unions are always indirect.
682     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
683       return ABIArgInfo::getIndirect(0);
684 
685     // Small structures which are register sized are generally returned
686     // in a register.
687     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
688                                                   callingConvention)) {
689       uint64_t Size = getContext().getTypeSize(RetTy);
690 
691       // As a special-case, if the struct is a "single-element" struct, and
692       // the field is of type "float" or "double", return it in a
693       // floating-point register. (MSVC does not apply this special case.)
694       // We apply a similar transformation for pointer types to improve the
695       // quality of the generated IR.
696       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
697         if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
698             || SeltTy->hasPointerRepresentation())
699           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
700 
701       // FIXME: We should be able to narrow this integer in cases with dead
702       // padding.
703       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
704     }
705 
706     return ABIArgInfo::getIndirect(0);
707   }
708 
709   // Treat an enum type as its underlying type.
710   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711     RetTy = EnumTy->getDecl()->getIntegerType();
712 
713   return (RetTy->isPromotableIntegerType() ?
714           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
715 }
716 
isSSEVectorType(ASTContext & Context,QualType Ty)717 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
718   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
719 }
720 
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)721 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
722   const RecordType *RT = Ty->getAs<RecordType>();
723   if (!RT)
724     return 0;
725   const RecordDecl *RD = RT->getDecl();
726 
727   // If this is a C++ record, check the bases first.
728   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
729     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
730            e = CXXRD->bases_end(); i != e; ++i)
731       if (!isRecordWithSSEVectorType(Context, i->getType()))
732         return false;
733 
734   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
735        i != e; ++i) {
736     QualType FT = i->getType();
737 
738     if (isSSEVectorType(Context, FT))
739       return true;
740 
741     if (isRecordWithSSEVectorType(Context, FT))
742       return true;
743   }
744 
745   return false;
746 }
747 
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const748 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
749                                                  unsigned Align) const {
750   // Otherwise, if the alignment is less than or equal to the minimum ABI
751   // alignment, just use the default; the backend will handle this.
752   if (Align <= MinABIStackAlignInBytes)
753     return 0; // Use default alignment.
754 
755   // On non-Darwin, the stack type alignment is always 4.
756   if (!IsDarwinVectorABI) {
757     // Set explicit alignment, since we may need to realign the top.
758     return MinABIStackAlignInBytes;
759   }
760 
761   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
762   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
763                       isRecordWithSSEVectorType(getContext(), Ty)))
764     return 16;
765 
766   return MinABIStackAlignInBytes;
767 }
768 
getIndirectResult(QualType Ty,bool ByVal) const769 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
770   if (!ByVal)
771     return ABIArgInfo::getIndirect(0, false);
772 
773   // Compute the byval alignment.
774   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
775   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
776   if (StackAlign == 0)
777     return ABIArgInfo::getIndirect(4);
778 
779   // If the stack alignment is less than the type alignment, realign the
780   // argument.
781   if (StackAlign < TypeAlign)
782     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
783                                    /*Realign=*/true);
784 
785   return ABIArgInfo::getIndirect(StackAlign);
786 }
787 
classify(QualType Ty) const788 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
789   const Type *T = isSingleElementStruct(Ty, getContext());
790   if (!T)
791     T = Ty.getTypePtr();
792 
793   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
794     BuiltinType::Kind K = BT->getKind();
795     if (K == BuiltinType::Float || K == BuiltinType::Double)
796       return Float;
797   }
798   return Integer;
799 }
800 
801 ABIArgInfo
classifyArgumentTypeWithReg(QualType Ty,unsigned & FreeRegs) const802 X86_32ABIInfo::classifyArgumentTypeWithReg(QualType Ty,
803                                            unsigned &FreeRegs) const {
804   // Common case first.
805   if (FreeRegs == 0)
806     return classifyArgumentType(Ty);
807 
808   Class C = classify(Ty);
809   if (C == Float)
810     return classifyArgumentType(Ty);
811 
812   unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
813   if (SizeInRegs == 0)
814     return classifyArgumentType(Ty);
815 
816   if (SizeInRegs > FreeRegs) {
817     FreeRegs = 0;
818     return classifyArgumentType(Ty);
819   }
820   assert(SizeInRegs >= 1 && SizeInRegs <= 3);
821   FreeRegs -= SizeInRegs;
822 
823   // If it is a simple scalar, keep the type so that we produce a cleaner IR.
824   ABIArgInfo Foo = classifyArgumentType(Ty);
825   if (Foo.isDirect() && !Foo.getDirectOffset() && !Foo.getPaddingType())
826     return ABIArgInfo::getDirectInReg(Foo.getCoerceToType());
827   if (Foo.isExtend())
828     return ABIArgInfo::getExtendInReg(Foo.getCoerceToType());
829 
830   llvm::LLVMContext &LLVMContext = getVMContext();
831   llvm::Type *Int32 = llvm::Type::getInt32Ty(LLVMContext);
832   SmallVector<llvm::Type*, 3> Elements;
833   for (unsigned I = 0; I < SizeInRegs; ++I)
834     Elements.push_back(Int32);
835   llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
836   return ABIArgInfo::getDirectInReg(Result);
837 }
838 
classifyArgumentType(QualType Ty) const839 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
840   // FIXME: Set alignment on indirect arguments.
841   if (isAggregateTypeForABI(Ty)) {
842     // Structures with flexible arrays are always indirect.
843     if (const RecordType *RT = Ty->getAs<RecordType>()) {
844       // Structures with either a non-trivial destructor or a non-trivial
845       // copy constructor are always indirect.
846       if (hasNonTrivialDestructorOrCopyConstructor(RT))
847         return getIndirectResult(Ty, /*ByVal=*/false);
848 
849       if (RT->getDecl()->hasFlexibleArrayMember())
850         return getIndirectResult(Ty);
851     }
852 
853     // Ignore empty structs/unions.
854     if (isEmptyRecord(getContext(), Ty, true))
855       return ABIArgInfo::getIgnore();
856 
857     // Expand small (<= 128-bit) record types when we know that the stack layout
858     // of those arguments will match the struct. This is important because the
859     // LLVM backend isn't smart enough to remove byval, which inhibits many
860     // optimizations.
861     if (getContext().getTypeSize(Ty) <= 4*32 &&
862         canExpandIndirectArgument(Ty, getContext()))
863       return ABIArgInfo::getExpand();
864 
865     return getIndirectResult(Ty);
866   }
867 
868   if (const VectorType *VT = Ty->getAs<VectorType>()) {
869     // On Darwin, some vectors are passed in memory, we handle this by passing
870     // it as an i8/i16/i32/i64.
871     if (IsDarwinVectorABI) {
872       uint64_t Size = getContext().getTypeSize(Ty);
873       if ((Size == 8 || Size == 16 || Size == 32) ||
874           (Size == 64 && VT->getNumElements() == 1))
875         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
876                                                             Size));
877     }
878 
879     llvm::Type *IRType = CGT.ConvertType(Ty);
880     if (UseX86_MMXType(IRType)) {
881       if (IsMMXDisabled)
882         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
883                                                             64));
884       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
885       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
886       return AAI;
887     }
888 
889     return ABIArgInfo::getDirect();
890   }
891 
892 
893   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
894     Ty = EnumTy->getDecl()->getIntegerType();
895 
896   return (Ty->isPromotableIntegerType() ?
897           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
898 }
899 
computeInfo(CGFunctionInfo & FI) const900 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
901   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
902                                           FI.getCallingConvention());
903 
904   unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() :
905     DefaultNumRegisterParameters;
906 
907   // If the return value is indirect, then the hidden argument is consuming one
908   // integer register.
909   if (FI.getReturnInfo().isIndirect() && FreeRegs) {
910     --FreeRegs;
911     ABIArgInfo &Old = FI.getReturnInfo();
912     Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
913                                        Old.getIndirectByVal(),
914                                        Old.getIndirectRealign());
915   }
916 
917   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
918        it != ie; ++it)
919     it->info = classifyArgumentTypeWithReg(it->type, FreeRegs);
920 }
921 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const922 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
923                                       CodeGenFunction &CGF) const {
924   llvm::Type *BPP = CGF.Int8PtrPtrTy;
925 
926   CGBuilderTy &Builder = CGF.Builder;
927   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
928                                                        "ap");
929   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
930 
931   // Compute if the address needs to be aligned
932   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
933   Align = getTypeStackAlignInBytes(Ty, Align);
934   Align = std::max(Align, 4U);
935   if (Align > 4) {
936     // addr = (addr + align - 1) & -align;
937     llvm::Value *Offset =
938       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
939     Addr = CGF.Builder.CreateGEP(Addr, Offset);
940     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
941                                                     CGF.Int32Ty);
942     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
943     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
944                                       Addr->getType(),
945                                       "ap.cur.aligned");
946   }
947 
948   llvm::Type *PTy =
949     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
950   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
951 
952   uint64_t Offset =
953     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
954   llvm::Value *NextAddr =
955     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
956                       "ap.next");
957   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
958 
959   return AddrTyped;
960 }
961 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const962 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
963                                                   llvm::GlobalValue *GV,
964                                             CodeGen::CodeGenModule &CGM) const {
965   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
966     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
967       // Get the LLVM function.
968       llvm::Function *Fn = cast<llvm::Function>(GV);
969 
970       // Now add the 'alignstack' attribute with a value of 16.
971       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
972     }
973   }
974 }
975 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const976 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
977                                                CodeGen::CodeGenFunction &CGF,
978                                                llvm::Value *Address) const {
979   CodeGen::CGBuilderTy &Builder = CGF.Builder;
980 
981   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
982 
983   // 0-7 are the eight integer registers;  the order is different
984   //   on Darwin (for EH), but the range is the same.
985   // 8 is %eip.
986   AssignToArrayRange(Builder, Address, Four8, 0, 8);
987 
988   if (CGF.CGM.isTargetDarwin()) {
989     // 12-16 are st(0..4).  Not sure why we stop at 4.
990     // These have size 16, which is sizeof(long double) on
991     // platforms with 8-byte alignment for that type.
992     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
993     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
994 
995   } else {
996     // 9 is %eflags, which doesn't get a size on Darwin for some
997     // reason.
998     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
999 
1000     // 11-16 are st(0..5).  Not sure why we stop at 5.
1001     // These have size 12, which is sizeof(long double) on
1002     // platforms with 4-byte alignment for that type.
1003     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1004     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1005   }
1006 
1007   return false;
1008 }
1009 
1010 //===----------------------------------------------------------------------===//
1011 // X86-64 ABI Implementation
1012 //===----------------------------------------------------------------------===//
1013 
1014 
1015 namespace {
1016 /// X86_64ABIInfo - The X86_64 ABI information.
1017 class X86_64ABIInfo : public ABIInfo {
1018   enum Class {
1019     Integer = 0,
1020     SSE,
1021     SSEUp,
1022     X87,
1023     X87Up,
1024     ComplexX87,
1025     NoClass,
1026     Memory
1027   };
1028 
1029   /// merge - Implement the X86_64 ABI merging algorithm.
1030   ///
1031   /// Merge an accumulating classification \arg Accum with a field
1032   /// classification \arg Field.
1033   ///
1034   /// \param Accum - The accumulating classification. This should
1035   /// always be either NoClass or the result of a previous merge
1036   /// call. In addition, this should never be Memory (the caller
1037   /// should just return Memory for the aggregate).
1038   static Class merge(Class Accum, Class Field);
1039 
1040   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1041   ///
1042   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1043   /// final MEMORY or SSE classes when necessary.
1044   ///
1045   /// \param AggregateSize - The size of the current aggregate in
1046   /// the classification process.
1047   ///
1048   /// \param Lo - The classification for the parts of the type
1049   /// residing in the low word of the containing object.
1050   ///
1051   /// \param Hi - The classification for the parts of the type
1052   /// residing in the higher words of the containing object.
1053   ///
1054   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1055 
1056   /// classify - Determine the x86_64 register classes in which the
1057   /// given type T should be passed.
1058   ///
1059   /// \param Lo - The classification for the parts of the type
1060   /// residing in the low word of the containing object.
1061   ///
1062   /// \param Hi - The classification for the parts of the type
1063   /// residing in the high word of the containing object.
1064   ///
1065   /// \param OffsetBase - The bit offset of this type in the
1066   /// containing object.  Some parameters are classified different
1067   /// depending on whether they straddle an eightbyte boundary.
1068   ///
1069   /// If a word is unused its result will be NoClass; if a type should
1070   /// be passed in Memory then at least the classification of \arg Lo
1071   /// will be Memory.
1072   ///
1073   /// The \arg Lo class will be NoClass iff the argument is ignored.
1074   ///
1075   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1076   /// also be ComplexX87.
1077   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
1078 
1079   llvm::Type *GetByteVectorType(QualType Ty) const;
1080   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1081                                  unsigned IROffset, QualType SourceTy,
1082                                  unsigned SourceOffset) const;
1083   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1084                                      unsigned IROffset, QualType SourceTy,
1085                                      unsigned SourceOffset) const;
1086 
1087   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1088   /// such that the argument will be returned in memory.
1089   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1090 
1091   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1092   /// such that the argument will be passed in memory.
1093   ///
1094   /// \param freeIntRegs - The number of free integer registers remaining
1095   /// available.
1096   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1097 
1098   ABIArgInfo classifyReturnType(QualType RetTy) const;
1099 
1100   ABIArgInfo classifyArgumentType(QualType Ty,
1101                                   unsigned freeIntRegs,
1102                                   unsigned &neededInt,
1103                                   unsigned &neededSSE) const;
1104 
1105   bool IsIllegalVectorType(QualType Ty) const;
1106 
1107   /// The 0.98 ABI revision clarified a lot of ambiguities,
1108   /// unfortunately in ways that were not always consistent with
1109   /// certain previous compilers.  In particular, platforms which
1110   /// required strict binary compatibility with older versions of GCC
1111   /// may need to exempt themselves.
honorsRevision0_98() const1112   bool honorsRevision0_98() const {
1113     return !getContext().getTargetInfo().getTriple().isOSDarwin();
1114   }
1115 
1116   bool HasAVX;
1117 
1118 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool hasavx)1119   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1120       ABIInfo(CGT), HasAVX(hasavx) {}
1121 
isPassedUsingAVXType(QualType type) const1122   bool isPassedUsingAVXType(QualType type) const {
1123     unsigned neededInt, neededSSE;
1124     // The freeIntRegs argument doesn't matter here.
1125     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE);
1126     if (info.isDirect()) {
1127       llvm::Type *ty = info.getCoerceToType();
1128       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1129         return (vectorTy->getBitWidth() > 128);
1130     }
1131     return false;
1132   }
1133 
1134   virtual void computeInfo(CGFunctionInfo &FI) const;
1135 
1136   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1137                                  CodeGenFunction &CGF) const;
1138 };
1139 
1140 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1141 class WinX86_64ABIInfo : public ABIInfo {
1142 
1143   ABIArgInfo classify(QualType Ty) const;
1144 
1145 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)1146   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1147 
1148   virtual void computeInfo(CGFunctionInfo &FI) const;
1149 
1150   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1151                                  CodeGenFunction &CGF) const;
1152 };
1153 
1154 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1155 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1156   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1157     : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1158 
getABIInfo() const1159   const X86_64ABIInfo &getABIInfo() const {
1160     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1161   }
1162 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1163   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1164     return 7;
1165   }
1166 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1167   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1168                                llvm::Value *Address) const {
1169     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1170 
1171     // 0-15 are the 16 integer registers.
1172     // 16 is %rip.
1173     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1174     return false;
1175   }
1176 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1177   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1178                                   StringRef Constraint,
1179                                   llvm::Type* Ty) const {
1180     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1181   }
1182 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1183   bool isNoProtoCallVariadic(const CallArgList &args,
1184                              const FunctionNoProtoType *fnType) const {
1185     // The default CC on x86-64 sets %al to the number of SSA
1186     // registers used, and GCC sets this when calling an unprototyped
1187     // function, so we override the default behavior.  However, don't do
1188     // that when AVX types are involved: the ABI explicitly states it is
1189     // undefined, and it doesn't work in practice because of how the ABI
1190     // defines varargs anyway.
1191     if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
1192       bool HasAVXType = false;
1193       for (CallArgList::const_iterator
1194              it = args.begin(), ie = args.end(); it != ie; ++it) {
1195         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1196           HasAVXType = true;
1197           break;
1198         }
1199       }
1200 
1201       if (!HasAVXType)
1202         return true;
1203     }
1204 
1205     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1206   }
1207 
1208 };
1209 
1210 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1211 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)1212   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1213     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1214 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1215   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1216     return 7;
1217   }
1218 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1219   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1220                                llvm::Value *Address) const {
1221     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1222 
1223     // 0-15 are the 16 integer registers.
1224     // 16 is %rip.
1225     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1226     return false;
1227   }
1228 };
1229 
1230 }
1231 
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const1232 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1233                               Class &Hi) const {
1234   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1235   //
1236   // (a) If one of the classes is Memory, the whole argument is passed in
1237   //     memory.
1238   //
1239   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1240   //     memory.
1241   //
1242   // (c) If the size of the aggregate exceeds two eightbytes and the first
1243   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1244   //     argument is passed in memory. NOTE: This is necessary to keep the
1245   //     ABI working for processors that don't support the __m256 type.
1246   //
1247   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1248   //
1249   // Some of these are enforced by the merging logic.  Others can arise
1250   // only with unions; for example:
1251   //   union { _Complex double; unsigned; }
1252   //
1253   // Note that clauses (b) and (c) were added in 0.98.
1254   //
1255   if (Hi == Memory)
1256     Lo = Memory;
1257   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1258     Lo = Memory;
1259   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1260     Lo = Memory;
1261   if (Hi == SSEUp && Lo != SSE)
1262     Hi = SSE;
1263 }
1264 
merge(Class Accum,Class Field)1265 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1266   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1267   // classified recursively so that always two fields are
1268   // considered. The resulting class is calculated according to
1269   // the classes of the fields in the eightbyte:
1270   //
1271   // (a) If both classes are equal, this is the resulting class.
1272   //
1273   // (b) If one of the classes is NO_CLASS, the resulting class is
1274   // the other class.
1275   //
1276   // (c) If one of the classes is MEMORY, the result is the MEMORY
1277   // class.
1278   //
1279   // (d) If one of the classes is INTEGER, the result is the
1280   // INTEGER.
1281   //
1282   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1283   // MEMORY is used as class.
1284   //
1285   // (f) Otherwise class SSE is used.
1286 
1287   // Accum should never be memory (we should have returned) or
1288   // ComplexX87 (because this cannot be passed in a structure).
1289   assert((Accum != Memory && Accum != ComplexX87) &&
1290          "Invalid accumulated classification during merge.");
1291   if (Accum == Field || Field == NoClass)
1292     return Accum;
1293   if (Field == Memory)
1294     return Memory;
1295   if (Accum == NoClass)
1296     return Field;
1297   if (Accum == Integer || Field == Integer)
1298     return Integer;
1299   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1300       Accum == X87 || Accum == X87Up)
1301     return Memory;
1302   return SSE;
1303 }
1304 
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi) const1305 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1306                              Class &Lo, Class &Hi) const {
1307   // FIXME: This code can be simplified by introducing a simple value class for
1308   // Class pairs with appropriate constructor methods for the various
1309   // situations.
1310 
1311   // FIXME: Some of the split computations are wrong; unaligned vectors
1312   // shouldn't be passed in registers for example, so there is no chance they
1313   // can straddle an eightbyte. Verify & simplify.
1314 
1315   Lo = Hi = NoClass;
1316 
1317   Class &Current = OffsetBase < 64 ? Lo : Hi;
1318   Current = Memory;
1319 
1320   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1321     BuiltinType::Kind k = BT->getKind();
1322 
1323     if (k == BuiltinType::Void) {
1324       Current = NoClass;
1325     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1326       Lo = Integer;
1327       Hi = Integer;
1328     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1329       Current = Integer;
1330     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1331       Current = SSE;
1332     } else if (k == BuiltinType::LongDouble) {
1333       Lo = X87;
1334       Hi = X87Up;
1335     }
1336     // FIXME: _Decimal32 and _Decimal64 are SSE.
1337     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1338     return;
1339   }
1340 
1341   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1342     // Classify the underlying integer type.
1343     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1344     return;
1345   }
1346 
1347   if (Ty->hasPointerRepresentation()) {
1348     Current = Integer;
1349     return;
1350   }
1351 
1352   if (Ty->isMemberPointerType()) {
1353     if (Ty->isMemberFunctionPointerType())
1354       Lo = Hi = Integer;
1355     else
1356       Current = Integer;
1357     return;
1358   }
1359 
1360   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1361     uint64_t Size = getContext().getTypeSize(VT);
1362     if (Size == 32) {
1363       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1364       // float> as integer.
1365       Current = Integer;
1366 
1367       // If this type crosses an eightbyte boundary, it should be
1368       // split.
1369       uint64_t EB_Real = (OffsetBase) / 64;
1370       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1371       if (EB_Real != EB_Imag)
1372         Hi = Lo;
1373     } else if (Size == 64) {
1374       // gcc passes <1 x double> in memory. :(
1375       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1376         return;
1377 
1378       // gcc passes <1 x long long> as INTEGER.
1379       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1380           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1381           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1382           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1383         Current = Integer;
1384       else
1385         Current = SSE;
1386 
1387       // If this type crosses an eightbyte boundary, it should be
1388       // split.
1389       if (OffsetBase && OffsetBase != 64)
1390         Hi = Lo;
1391     } else if (Size == 128 || (HasAVX && Size == 256)) {
1392       // Arguments of 256-bits are split into four eightbyte chunks. The
1393       // least significant one belongs to class SSE and all the others to class
1394       // SSEUP. The original Lo and Hi design considers that types can't be
1395       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1396       // This design isn't correct for 256-bits, but since there're no cases
1397       // where the upper parts would need to be inspected, avoid adding
1398       // complexity and just consider Hi to match the 64-256 part.
1399       Lo = SSE;
1400       Hi = SSEUp;
1401     }
1402     return;
1403   }
1404 
1405   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1406     QualType ET = getContext().getCanonicalType(CT->getElementType());
1407 
1408     uint64_t Size = getContext().getTypeSize(Ty);
1409     if (ET->isIntegralOrEnumerationType()) {
1410       if (Size <= 64)
1411         Current = Integer;
1412       else if (Size <= 128)
1413         Lo = Hi = Integer;
1414     } else if (ET == getContext().FloatTy)
1415       Current = SSE;
1416     else if (ET == getContext().DoubleTy)
1417       Lo = Hi = SSE;
1418     else if (ET == getContext().LongDoubleTy)
1419       Current = ComplexX87;
1420 
1421     // If this complex type crosses an eightbyte boundary then it
1422     // should be split.
1423     uint64_t EB_Real = (OffsetBase) / 64;
1424     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1425     if (Hi == NoClass && EB_Real != EB_Imag)
1426       Hi = Lo;
1427 
1428     return;
1429   }
1430 
1431   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1432     // Arrays are treated like structures.
1433 
1434     uint64_t Size = getContext().getTypeSize(Ty);
1435 
1436     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1437     // than four eightbytes, ..., it has class MEMORY.
1438     if (Size > 256)
1439       return;
1440 
1441     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1442     // fields, it has class MEMORY.
1443     //
1444     // Only need to check alignment of array base.
1445     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1446       return;
1447 
1448     // Otherwise implement simplified merge. We could be smarter about
1449     // this, but it isn't worth it and would be harder to verify.
1450     Current = NoClass;
1451     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1452     uint64_t ArraySize = AT->getSize().getZExtValue();
1453 
1454     // The only case a 256-bit wide vector could be used is when the array
1455     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1456     // to work for sizes wider than 128, early check and fallback to memory.
1457     if (Size > 128 && EltSize != 256)
1458       return;
1459 
1460     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1461       Class FieldLo, FieldHi;
1462       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1463       Lo = merge(Lo, FieldLo);
1464       Hi = merge(Hi, FieldHi);
1465       if (Lo == Memory || Hi == Memory)
1466         break;
1467     }
1468 
1469     postMerge(Size, Lo, Hi);
1470     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1471     return;
1472   }
1473 
1474   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1475     uint64_t Size = getContext().getTypeSize(Ty);
1476 
1477     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1478     // than four eightbytes, ..., it has class MEMORY.
1479     if (Size > 256)
1480       return;
1481 
1482     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1483     // copy constructor or a non-trivial destructor, it is passed by invisible
1484     // reference.
1485     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1486       return;
1487 
1488     const RecordDecl *RD = RT->getDecl();
1489 
1490     // Assume variable sized types are passed in memory.
1491     if (RD->hasFlexibleArrayMember())
1492       return;
1493 
1494     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1495 
1496     // Reset Lo class, this will be recomputed.
1497     Current = NoClass;
1498 
1499     // If this is a C++ record, classify the bases first.
1500     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1501       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1502              e = CXXRD->bases_end(); i != e; ++i) {
1503         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1504                "Unexpected base class!");
1505         const CXXRecordDecl *Base =
1506           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1507 
1508         // Classify this field.
1509         //
1510         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1511         // single eightbyte, each is classified separately. Each eightbyte gets
1512         // initialized to class NO_CLASS.
1513         Class FieldLo, FieldHi;
1514         uint64_t Offset =
1515           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1516         classify(i->getType(), Offset, FieldLo, FieldHi);
1517         Lo = merge(Lo, FieldLo);
1518         Hi = merge(Hi, FieldHi);
1519         if (Lo == Memory || Hi == Memory)
1520           break;
1521       }
1522     }
1523 
1524     // Classify the fields one at a time, merging the results.
1525     unsigned idx = 0;
1526     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1527            i != e; ++i, ++idx) {
1528       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1529       bool BitField = i->isBitField();
1530 
1531       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1532       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1533       //
1534       // The only case a 256-bit wide vector could be used is when the struct
1535       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1536       // to work for sizes wider than 128, early check and fallback to memory.
1537       //
1538       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1539         Lo = Memory;
1540         return;
1541       }
1542       // Note, skip this test for bit-fields, see below.
1543       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1544         Lo = Memory;
1545         return;
1546       }
1547 
1548       // Classify this field.
1549       //
1550       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1551       // exceeds a single eightbyte, each is classified
1552       // separately. Each eightbyte gets initialized to class
1553       // NO_CLASS.
1554       Class FieldLo, FieldHi;
1555 
1556       // Bit-fields require special handling, they do not force the
1557       // structure to be passed in memory even if unaligned, and
1558       // therefore they can straddle an eightbyte.
1559       if (BitField) {
1560         // Ignore padding bit-fields.
1561         if (i->isUnnamedBitfield())
1562           continue;
1563 
1564         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1565         uint64_t Size = i->getBitWidthValue(getContext());
1566 
1567         uint64_t EB_Lo = Offset / 64;
1568         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1569         FieldLo = FieldHi = NoClass;
1570         if (EB_Lo) {
1571           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1572           FieldLo = NoClass;
1573           FieldHi = Integer;
1574         } else {
1575           FieldLo = Integer;
1576           FieldHi = EB_Hi ? Integer : NoClass;
1577         }
1578       } else
1579         classify(i->getType(), Offset, FieldLo, FieldHi);
1580       Lo = merge(Lo, FieldLo);
1581       Hi = merge(Hi, FieldHi);
1582       if (Lo == Memory || Hi == Memory)
1583         break;
1584     }
1585 
1586     postMerge(Size, Lo, Hi);
1587   }
1588 }
1589 
getIndirectReturnResult(QualType Ty) const1590 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1591   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1592   // place naturally.
1593   if (!isAggregateTypeForABI(Ty)) {
1594     // Treat an enum type as its underlying type.
1595     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1596       Ty = EnumTy->getDecl()->getIntegerType();
1597 
1598     return (Ty->isPromotableIntegerType() ?
1599             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1600   }
1601 
1602   return ABIArgInfo::getIndirect(0);
1603 }
1604 
IsIllegalVectorType(QualType Ty) const1605 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1606   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1607     uint64_t Size = getContext().getTypeSize(VecTy);
1608     unsigned LargestVector = HasAVX ? 256 : 128;
1609     if (Size <= 64 || Size > LargestVector)
1610       return true;
1611   }
1612 
1613   return false;
1614 }
1615 
getIndirectResult(QualType Ty,unsigned freeIntRegs) const1616 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1617                                             unsigned freeIntRegs) const {
1618   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1619   // place naturally.
1620   //
1621   // This assumption is optimistic, as there could be free registers available
1622   // when we need to pass this argument in memory, and LLVM could try to pass
1623   // the argument in the free register. This does not seem to happen currently,
1624   // but this code would be much safer if we could mark the argument with
1625   // 'onstack'. See PR12193.
1626   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1627     // Treat an enum type as its underlying type.
1628     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1629       Ty = EnumTy->getDecl()->getIntegerType();
1630 
1631     return (Ty->isPromotableIntegerType() ?
1632             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1633   }
1634 
1635   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1636     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1637 
1638   // Compute the byval alignment. We specify the alignment of the byval in all
1639   // cases so that the mid-level optimizer knows the alignment of the byval.
1640   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1641 
1642   // Attempt to avoid passing indirect results using byval when possible. This
1643   // is important for good codegen.
1644   //
1645   // We do this by coercing the value into a scalar type which the backend can
1646   // handle naturally (i.e., without using byval).
1647   //
1648   // For simplicity, we currently only do this when we have exhausted all of the
1649   // free integer registers. Doing this when there are free integer registers
1650   // would require more care, as we would have to ensure that the coerced value
1651   // did not claim the unused register. That would require either reording the
1652   // arguments to the function (so that any subsequent inreg values came first),
1653   // or only doing this optimization when there were no following arguments that
1654   // might be inreg.
1655   //
1656   // We currently expect it to be rare (particularly in well written code) for
1657   // arguments to be passed on the stack when there are still free integer
1658   // registers available (this would typically imply large structs being passed
1659   // by value), so this seems like a fair tradeoff for now.
1660   //
1661   // We can revisit this if the backend grows support for 'onstack' parameter
1662   // attributes. See PR12193.
1663   if (freeIntRegs == 0) {
1664     uint64_t Size = getContext().getTypeSize(Ty);
1665 
1666     // If this type fits in an eightbyte, coerce it into the matching integral
1667     // type, which will end up on the stack (with alignment 8).
1668     if (Align == 8 && Size <= 64)
1669       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1670                                                           Size));
1671   }
1672 
1673   return ABIArgInfo::getIndirect(Align);
1674 }
1675 
1676 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1677 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1678 /// vector register.
GetByteVectorType(QualType Ty) const1679 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1680   llvm::Type *IRType = CGT.ConvertType(Ty);
1681 
1682   // Wrapper structs that just contain vectors are passed just like vectors,
1683   // strip them off if present.
1684   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1685   while (STy && STy->getNumElements() == 1) {
1686     IRType = STy->getElementType(0);
1687     STy = dyn_cast<llvm::StructType>(IRType);
1688   }
1689 
1690   // If the preferred type is a 16-byte vector, prefer to pass it.
1691   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1692     llvm::Type *EltTy = VT->getElementType();
1693     unsigned BitWidth = VT->getBitWidth();
1694     if ((BitWidth >= 128 && BitWidth <= 256) &&
1695         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1696          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1697          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1698          EltTy->isIntegerTy(128)))
1699       return VT;
1700   }
1701 
1702   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1703 }
1704 
1705 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1706 /// is known to either be off the end of the specified type or being in
1707 /// alignment padding.  The user type specified is known to be at most 128 bits
1708 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1709 /// classification that put one of the two halves in the INTEGER class.
1710 ///
1711 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)1712 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1713                                   unsigned EndBit, ASTContext &Context) {
1714   // If the bytes being queried are off the end of the type, there is no user
1715   // data hiding here.  This handles analysis of builtins, vectors and other
1716   // types that don't contain interesting padding.
1717   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1718   if (TySize <= StartBit)
1719     return true;
1720 
1721   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1722     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1723     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1724 
1725     // Check each element to see if the element overlaps with the queried range.
1726     for (unsigned i = 0; i != NumElts; ++i) {
1727       // If the element is after the span we care about, then we're done..
1728       unsigned EltOffset = i*EltSize;
1729       if (EltOffset >= EndBit) break;
1730 
1731       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1732       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1733                                  EndBit-EltOffset, Context))
1734         return false;
1735     }
1736     // If it overlaps no elements, then it is safe to process as padding.
1737     return true;
1738   }
1739 
1740   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1741     const RecordDecl *RD = RT->getDecl();
1742     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1743 
1744     // If this is a C++ record, check the bases first.
1745     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1746       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1747            e = CXXRD->bases_end(); i != e; ++i) {
1748         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1749                "Unexpected base class!");
1750         const CXXRecordDecl *Base =
1751           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1752 
1753         // If the base is after the span we care about, ignore it.
1754         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1755         if (BaseOffset >= EndBit) continue;
1756 
1757         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1758         if (!BitsContainNoUserData(i->getType(), BaseStart,
1759                                    EndBit-BaseOffset, Context))
1760           return false;
1761       }
1762     }
1763 
1764     // Verify that no field has data that overlaps the region of interest.  Yes
1765     // this could be sped up a lot by being smarter about queried fields,
1766     // however we're only looking at structs up to 16 bytes, so we don't care
1767     // much.
1768     unsigned idx = 0;
1769     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1770          i != e; ++i, ++idx) {
1771       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1772 
1773       // If we found a field after the region we care about, then we're done.
1774       if (FieldOffset >= EndBit) break;
1775 
1776       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1777       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1778                                  Context))
1779         return false;
1780     }
1781 
1782     // If nothing in this record overlapped the area of interest, then we're
1783     // clean.
1784     return true;
1785   }
1786 
1787   return false;
1788 }
1789 
1790 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1791 /// float member at the specified offset.  For example, {int,{float}} has a
1792 /// float at offset 4.  It is conservatively correct for this routine to return
1793 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::TargetData & TD)1794 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1795                                   const llvm::TargetData &TD) {
1796   // Base case if we find a float.
1797   if (IROffset == 0 && IRType->isFloatTy())
1798     return true;
1799 
1800   // If this is a struct, recurse into the field at the specified offset.
1801   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1802     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1803     unsigned Elt = SL->getElementContainingOffset(IROffset);
1804     IROffset -= SL->getElementOffset(Elt);
1805     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1806   }
1807 
1808   // If this is an array, recurse into the field at the specified offset.
1809   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1810     llvm::Type *EltTy = ATy->getElementType();
1811     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1812     IROffset -= IROffset/EltSize*EltSize;
1813     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1814   }
1815 
1816   return false;
1817 }
1818 
1819 
1820 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1821 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1822 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const1823 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1824                    QualType SourceTy, unsigned SourceOffset) const {
1825   // The only three choices we have are either double, <2 x float>, or float. We
1826   // pass as float if the last 4 bytes is just padding.  This happens for
1827   // structs that contain 3 floats.
1828   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1829                             SourceOffset*8+64, getContext()))
1830     return llvm::Type::getFloatTy(getVMContext());
1831 
1832   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1833   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1834   // case.
1835   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1836       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1837     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1838 
1839   return llvm::Type::getDoubleTy(getVMContext());
1840 }
1841 
1842 
1843 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1844 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1845 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1846 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1847 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1848 /// etc).
1849 ///
1850 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1851 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1852 /// the 8-byte value references.  PrefType may be null.
1853 ///
1854 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1855 /// an offset into this that we're processing (which is always either 0 or 8).
1856 ///
1857 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const1858 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1859                        QualType SourceTy, unsigned SourceOffset) const {
1860   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1861   // returning an 8-byte unit starting with it.  See if we can safely use it.
1862   if (IROffset == 0) {
1863     // Pointers and int64's always fill the 8-byte unit.
1864     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1865       return IRType;
1866 
1867     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1868     // goodness in the source type is just tail padding.  This is allowed to
1869     // kick in for struct {double,int} on the int, but not on
1870     // struct{double,int,int} because we wouldn't return the second int.  We
1871     // have to do this analysis on the source type because we can't depend on
1872     // unions being lowered a specific way etc.
1873     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1874         IRType->isIntegerTy(32)) {
1875       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1876 
1877       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1878                                 SourceOffset*8+64, getContext()))
1879         return IRType;
1880     }
1881   }
1882 
1883   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1884     // If this is a struct, recurse into the field at the specified offset.
1885     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1886     if (IROffset < SL->getSizeInBytes()) {
1887       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1888       IROffset -= SL->getElementOffset(FieldIdx);
1889 
1890       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1891                                     SourceTy, SourceOffset);
1892     }
1893   }
1894 
1895   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1896     llvm::Type *EltTy = ATy->getElementType();
1897     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1898     unsigned EltOffset = IROffset/EltSize*EltSize;
1899     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1900                                   SourceOffset);
1901   }
1902 
1903   // Okay, we don't have any better idea of what to pass, so we pass this in an
1904   // integer register that isn't too big to fit the rest of the struct.
1905   unsigned TySizeInBytes =
1906     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1907 
1908   assert(TySizeInBytes != SourceOffset && "Empty field?");
1909 
1910   // It is always safe to classify this as an integer type up to i64 that
1911   // isn't larger than the structure.
1912   return llvm::IntegerType::get(getVMContext(),
1913                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1914 }
1915 
1916 
1917 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1918 /// be used as elements of a two register pair to pass or return, return a
1919 /// first class aggregate to represent them.  For example, if the low part of
1920 /// a by-value argument should be passed as i32* and the high part as float,
1921 /// return {i32*, float}.
1922 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::TargetData & TD)1923 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1924                            const llvm::TargetData &TD) {
1925   // In order to correctly satisfy the ABI, we need to the high part to start
1926   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1927   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1928   // the second element at offset 8.  Check for this:
1929   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1930   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1931   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1932   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1933 
1934   // To handle this, we have to increase the size of the low part so that the
1935   // second element will start at an 8 byte offset.  We can't increase the size
1936   // of the second element because it might make us access off the end of the
1937   // struct.
1938   if (HiStart != 8) {
1939     // There are only two sorts of types the ABI generation code can produce for
1940     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1941     // Promote these to a larger type.
1942     if (Lo->isFloatTy())
1943       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1944     else {
1945       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1946       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1947     }
1948   }
1949 
1950   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1951 
1952 
1953   // Verify that the second element is at an 8-byte offset.
1954   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1955          "Invalid x86-64 argument pair!");
1956   return Result;
1957 }
1958 
1959 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const1960 classifyReturnType(QualType RetTy) const {
1961   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1962   // classification algorithm.
1963   X86_64ABIInfo::Class Lo, Hi;
1964   classify(RetTy, 0, Lo, Hi);
1965 
1966   // Check some invariants.
1967   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1968   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1969 
1970   llvm::Type *ResType = 0;
1971   switch (Lo) {
1972   case NoClass:
1973     if (Hi == NoClass)
1974       return ABIArgInfo::getIgnore();
1975     // If the low part is just padding, it takes no register, leave ResType
1976     // null.
1977     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1978            "Unknown missing lo part");
1979     break;
1980 
1981   case SSEUp:
1982   case X87Up:
1983     llvm_unreachable("Invalid classification for lo word.");
1984 
1985     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1986     // hidden argument.
1987   case Memory:
1988     return getIndirectReturnResult(RetTy);
1989 
1990     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1991     // available register of the sequence %rax, %rdx is used.
1992   case Integer:
1993     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1994 
1995     // If we have a sign or zero extended integer, make sure to return Extend
1996     // so that the parameter gets the right LLVM IR attributes.
1997     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1998       // Treat an enum type as its underlying type.
1999       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2000         RetTy = EnumTy->getDecl()->getIntegerType();
2001 
2002       if (RetTy->isIntegralOrEnumerationType() &&
2003           RetTy->isPromotableIntegerType())
2004         return ABIArgInfo::getExtend();
2005     }
2006     break;
2007 
2008     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2009     // available SSE register of the sequence %xmm0, %xmm1 is used.
2010   case SSE:
2011     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2012     break;
2013 
2014     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2015     // returned on the X87 stack in %st0 as 80-bit x87 number.
2016   case X87:
2017     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2018     break;
2019 
2020     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2021     // part of the value is returned in %st0 and the imaginary part in
2022     // %st1.
2023   case ComplexX87:
2024     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2025     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2026                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2027                                     NULL);
2028     break;
2029   }
2030 
2031   llvm::Type *HighPart = 0;
2032   switch (Hi) {
2033     // Memory was handled previously and X87 should
2034     // never occur as a hi class.
2035   case Memory:
2036   case X87:
2037     llvm_unreachable("Invalid classification for hi word.");
2038 
2039   case ComplexX87: // Previously handled.
2040   case NoClass:
2041     break;
2042 
2043   case Integer:
2044     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2045     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2046       return ABIArgInfo::getDirect(HighPart, 8);
2047     break;
2048   case SSE:
2049     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2050     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2051       return ABIArgInfo::getDirect(HighPart, 8);
2052     break;
2053 
2054     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2055     // is passed in the next available eightbyte chunk if the last used
2056     // vector register.
2057     //
2058     // SSEUP should always be preceded by SSE, just widen.
2059   case SSEUp:
2060     assert(Lo == SSE && "Unexpected SSEUp classification.");
2061     ResType = GetByteVectorType(RetTy);
2062     break;
2063 
2064     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2065     // returned together with the previous X87 value in %st0.
2066   case X87Up:
2067     // If X87Up is preceded by X87, we don't need to do
2068     // anything. However, in some cases with unions it may not be
2069     // preceded by X87. In such situations we follow gcc and pass the
2070     // extra bits in an SSE reg.
2071     if (Lo != X87) {
2072       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2073       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2074         return ABIArgInfo::getDirect(HighPart, 8);
2075     }
2076     break;
2077   }
2078 
2079   // If a high part was specified, merge it together with the low part.  It is
2080   // known to pass in the high eightbyte of the result.  We do this by forming a
2081   // first class struct aggregate with the high and low part: {low, high}
2082   if (HighPart)
2083     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2084 
2085   return ABIArgInfo::getDirect(ResType);
2086 }
2087 
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE) const2088 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2089   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE)
2090   const
2091 {
2092   X86_64ABIInfo::Class Lo, Hi;
2093   classify(Ty, 0, Lo, Hi);
2094 
2095   // Check some invariants.
2096   // FIXME: Enforce these by construction.
2097   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2098   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2099 
2100   neededInt = 0;
2101   neededSSE = 0;
2102   llvm::Type *ResType = 0;
2103   switch (Lo) {
2104   case NoClass:
2105     if (Hi == NoClass)
2106       return ABIArgInfo::getIgnore();
2107     // If the low part is just padding, it takes no register, leave ResType
2108     // null.
2109     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2110            "Unknown missing lo part");
2111     break;
2112 
2113     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2114     // on the stack.
2115   case Memory:
2116 
2117     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2118     // COMPLEX_X87, it is passed in memory.
2119   case X87:
2120   case ComplexX87:
2121     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2122       ++neededInt;
2123     return getIndirectResult(Ty, freeIntRegs);
2124 
2125   case SSEUp:
2126   case X87Up:
2127     llvm_unreachable("Invalid classification for lo word.");
2128 
2129     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2130     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2131     // and %r9 is used.
2132   case Integer:
2133     ++neededInt;
2134 
2135     // Pick an 8-byte type based on the preferred type.
2136     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2137 
2138     // If we have a sign or zero extended integer, make sure to return Extend
2139     // so that the parameter gets the right LLVM IR attributes.
2140     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2141       // Treat an enum type as its underlying type.
2142       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2143         Ty = EnumTy->getDecl()->getIntegerType();
2144 
2145       if (Ty->isIntegralOrEnumerationType() &&
2146           Ty->isPromotableIntegerType())
2147         return ABIArgInfo::getExtend();
2148     }
2149 
2150     break;
2151 
2152     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2153     // available SSE register is used, the registers are taken in the
2154     // order from %xmm0 to %xmm7.
2155   case SSE: {
2156     llvm::Type *IRType = CGT.ConvertType(Ty);
2157     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2158     ++neededSSE;
2159     break;
2160   }
2161   }
2162 
2163   llvm::Type *HighPart = 0;
2164   switch (Hi) {
2165     // Memory was handled previously, ComplexX87 and X87 should
2166     // never occur as hi classes, and X87Up must be preceded by X87,
2167     // which is passed in memory.
2168   case Memory:
2169   case X87:
2170   case ComplexX87:
2171     llvm_unreachable("Invalid classification for hi word.");
2172 
2173   case NoClass: break;
2174 
2175   case Integer:
2176     ++neededInt;
2177     // Pick an 8-byte type based on the preferred type.
2178     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2179 
2180     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2181       return ABIArgInfo::getDirect(HighPart, 8);
2182     break;
2183 
2184     // X87Up generally doesn't occur here (long double is passed in
2185     // memory), except in situations involving unions.
2186   case X87Up:
2187   case SSE:
2188     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2189 
2190     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2191       return ABIArgInfo::getDirect(HighPart, 8);
2192 
2193     ++neededSSE;
2194     break;
2195 
2196     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2197     // eightbyte is passed in the upper half of the last used SSE
2198     // register.  This only happens when 128-bit vectors are passed.
2199   case SSEUp:
2200     assert(Lo == SSE && "Unexpected SSEUp classification");
2201     ResType = GetByteVectorType(Ty);
2202     break;
2203   }
2204 
2205   // If a high part was specified, merge it together with the low part.  It is
2206   // known to pass in the high eightbyte of the result.  We do this by forming a
2207   // first class struct aggregate with the high and low part: {low, high}
2208   if (HighPart)
2209     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
2210 
2211   return ABIArgInfo::getDirect(ResType);
2212 }
2213 
computeInfo(CGFunctionInfo & FI) const2214 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2215 
2216   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2217 
2218   // Keep track of the number of assigned registers.
2219   unsigned freeIntRegs = 6, freeSSERegs = 8;
2220 
2221   // If the return value is indirect, then the hidden argument is consuming one
2222   // integer register.
2223   if (FI.getReturnInfo().isIndirect())
2224     --freeIntRegs;
2225 
2226   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2227   // get assigned (in left-to-right order) for passing as follows...
2228   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2229        it != ie; ++it) {
2230     unsigned neededInt, neededSSE;
2231     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2232                                     neededSSE);
2233 
2234     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2235     // eightbyte of an argument, the whole argument is passed on the
2236     // stack. If registers have already been assigned for some
2237     // eightbytes of such an argument, the assignments get reverted.
2238     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2239       freeIntRegs -= neededInt;
2240       freeSSERegs -= neededSSE;
2241     } else {
2242       it->info = getIndirectResult(it->type, freeIntRegs);
2243     }
2244   }
2245 }
2246 
EmitVAArgFromMemory(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF)2247 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2248                                         QualType Ty,
2249                                         CodeGenFunction &CGF) {
2250   llvm::Value *overflow_arg_area_p =
2251     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2252   llvm::Value *overflow_arg_area =
2253     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2254 
2255   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2256   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2257   // It isn't stated explicitly in the standard, but in practice we use
2258   // alignment greater than 16 where necessary.
2259   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2260   if (Align > 8) {
2261     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2262     llvm::Value *Offset =
2263       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2264     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2265     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2266                                                     CGF.Int64Ty);
2267     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2268     overflow_arg_area =
2269       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2270                                  overflow_arg_area->getType(),
2271                                  "overflow_arg_area.align");
2272   }
2273 
2274   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2275   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2276   llvm::Value *Res =
2277     CGF.Builder.CreateBitCast(overflow_arg_area,
2278                               llvm::PointerType::getUnqual(LTy));
2279 
2280   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2281   // l->overflow_arg_area + sizeof(type).
2282   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2283   // an 8 byte boundary.
2284 
2285   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2286   llvm::Value *Offset =
2287       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2288   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2289                                             "overflow_arg_area.next");
2290   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2291 
2292   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2293   return Res;
2294 }
2295 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2296 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2297                                       CodeGenFunction &CGF) const {
2298   // Assume that va_list type is correct; should be pointer to LLVM type:
2299   // struct {
2300   //   i32 gp_offset;
2301   //   i32 fp_offset;
2302   //   i8* overflow_arg_area;
2303   //   i8* reg_save_area;
2304   // };
2305   unsigned neededInt, neededSSE;
2306 
2307   Ty = CGF.getContext().getCanonicalType(Ty);
2308   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE);
2309 
2310   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2311   // in the registers. If not go to step 7.
2312   if (!neededInt && !neededSSE)
2313     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2314 
2315   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2316   // general purpose registers needed to pass type and num_fp to hold
2317   // the number of floating point registers needed.
2318 
2319   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2320   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2321   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2322   //
2323   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2324   // register save space).
2325 
2326   llvm::Value *InRegs = 0;
2327   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2328   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2329   if (neededInt) {
2330     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2331     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2332     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2333     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2334   }
2335 
2336   if (neededSSE) {
2337     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2338     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2339     llvm::Value *FitsInFP =
2340       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2341     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2342     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2343   }
2344 
2345   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2346   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2347   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2348   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2349 
2350   // Emit code to load the value if it was passed in registers.
2351 
2352   CGF.EmitBlock(InRegBlock);
2353 
2354   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2355   // an offset of l->gp_offset and/or l->fp_offset. This may require
2356   // copying to a temporary location in case the parameter is passed
2357   // in different register classes or requires an alignment greater
2358   // than 8 for general purpose registers and 16 for XMM registers.
2359   //
2360   // FIXME: This really results in shameful code when we end up needing to
2361   // collect arguments from different places; often what should result in a
2362   // simple assembling of a structure from scattered addresses has many more
2363   // loads than necessary. Can we clean this up?
2364   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2365   llvm::Value *RegAddr =
2366     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2367                            "reg_save_area");
2368   if (neededInt && neededSSE) {
2369     // FIXME: Cleanup.
2370     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2371     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2372     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2373     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2374     llvm::Type *TyLo = ST->getElementType(0);
2375     llvm::Type *TyHi = ST->getElementType(1);
2376     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2377            "Unexpected ABI info for mixed regs");
2378     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2379     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2380     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2381     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2382     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2383     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2384     llvm::Value *V =
2385       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2386     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2387     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2388     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2389 
2390     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2391                                         llvm::PointerType::getUnqual(LTy));
2392   } else if (neededInt) {
2393     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2394     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2395                                         llvm::PointerType::getUnqual(LTy));
2396   } else if (neededSSE == 1) {
2397     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2398     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2399                                         llvm::PointerType::getUnqual(LTy));
2400   } else {
2401     assert(neededSSE == 2 && "Invalid number of needed registers!");
2402     // SSE registers are spaced 16 bytes apart in the register save
2403     // area, we need to collect the two eightbytes together.
2404     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2405     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2406     llvm::Type *DoubleTy = CGF.DoubleTy;
2407     llvm::Type *DblPtrTy =
2408       llvm::PointerType::getUnqual(DoubleTy);
2409     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2410                                                        DoubleTy, NULL);
2411     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2412     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2413                                                          DblPtrTy));
2414     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2415     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2416                                                          DblPtrTy));
2417     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2418     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2419                                         llvm::PointerType::getUnqual(LTy));
2420   }
2421 
2422   // AMD64-ABI 3.5.7p5: Step 5. Set:
2423   // l->gp_offset = l->gp_offset + num_gp * 8
2424   // l->fp_offset = l->fp_offset + num_fp * 16.
2425   if (neededInt) {
2426     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2427     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2428                             gp_offset_p);
2429   }
2430   if (neededSSE) {
2431     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2432     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2433                             fp_offset_p);
2434   }
2435   CGF.EmitBranch(ContBlock);
2436 
2437   // Emit code to load the value if it was passed in memory.
2438 
2439   CGF.EmitBlock(InMemBlock);
2440   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2441 
2442   // Return the appropriate result.
2443 
2444   CGF.EmitBlock(ContBlock);
2445   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2446                                                  "vaarg.addr");
2447   ResAddr->addIncoming(RegAddr, InRegBlock);
2448   ResAddr->addIncoming(MemAddr, InMemBlock);
2449   return ResAddr;
2450 }
2451 
classify(QualType Ty) const2452 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2453 
2454   if (Ty->isVoidType())
2455     return ABIArgInfo::getIgnore();
2456 
2457   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2458     Ty = EnumTy->getDecl()->getIntegerType();
2459 
2460   uint64_t Size = getContext().getTypeSize(Ty);
2461 
2462   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2463     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2464         RT->getDecl()->hasFlexibleArrayMember())
2465       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2466 
2467     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2468     if (Size == 128 &&
2469         getContext().getTargetInfo().getTriple().getOS()
2470           == llvm::Triple::MinGW32)
2471       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2472                                                           Size));
2473 
2474     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2475     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2476     if (Size <= 64 &&
2477         (Size & (Size - 1)) == 0)
2478       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2479                                                           Size));
2480 
2481     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2482   }
2483 
2484   if (Ty->isPromotableIntegerType())
2485     return ABIArgInfo::getExtend();
2486 
2487   return ABIArgInfo::getDirect();
2488 }
2489 
computeInfo(CGFunctionInfo & FI) const2490 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2491 
2492   QualType RetTy = FI.getReturnType();
2493   FI.getReturnInfo() = classify(RetTy);
2494 
2495   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2496        it != ie; ++it)
2497     it->info = classify(it->type);
2498 }
2499 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2500 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2501                                       CodeGenFunction &CGF) const {
2502   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2503 
2504   CGBuilderTy &Builder = CGF.Builder;
2505   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2506                                                        "ap");
2507   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2508   llvm::Type *PTy =
2509     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2510   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2511 
2512   uint64_t Offset =
2513     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2514   llvm::Value *NextAddr =
2515     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2516                       "ap.next");
2517   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2518 
2519   return AddrTyped;
2520 }
2521 
2522 // PowerPC-32
2523 
2524 namespace {
2525 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2526 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT)2527   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2528 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2529   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2530     // This is recovered from gcc output.
2531     return 1; // r1 is the dedicated stack pointer
2532   }
2533 
2534   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2535                                llvm::Value *Address) const;
2536 };
2537 
2538 }
2539 
2540 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2541 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2542                                                 llvm::Value *Address) const {
2543   // This is calculated from the LLVM and GCC tables and verified
2544   // against gcc output.  AFAIK all ABIs use the same encoding.
2545 
2546   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2547 
2548   llvm::IntegerType *i8 = CGF.Int8Ty;
2549   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2550   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2551   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2552 
2553   // 0-31: r0-31, the 4-byte general-purpose registers
2554   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2555 
2556   // 32-63: fp0-31, the 8-byte floating-point registers
2557   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2558 
2559   // 64-76 are various 4-byte special-purpose registers:
2560   // 64: mq
2561   // 65: lr
2562   // 66: ctr
2563   // 67: ap
2564   // 68-75 cr0-7
2565   // 76: xer
2566   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2567 
2568   // 77-108: v0-31, the 16-byte vector registers
2569   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2570 
2571   // 109: vrsave
2572   // 110: vscr
2573   // 111: spe_acc
2574   // 112: spefscr
2575   // 113: sfp
2576   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2577 
2578   return false;
2579 }
2580 
2581 // PowerPC-64
2582 
2583 namespace {
2584 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2585 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)2586   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2587 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2588   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2589     // This is recovered from gcc output.
2590     return 1; // r1 is the dedicated stack pointer
2591   }
2592 
2593   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2594                                llvm::Value *Address) const;
2595 };
2596 
2597 }
2598 
2599 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2600 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2601                                                 llvm::Value *Address) const {
2602   // This is calculated from the LLVM and GCC tables and verified
2603   // against gcc output.  AFAIK all ABIs use the same encoding.
2604 
2605   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2606 
2607   llvm::IntegerType *i8 = CGF.Int8Ty;
2608   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2609   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2610   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2611 
2612   // 0-31: r0-31, the 8-byte general-purpose registers
2613   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
2614 
2615   // 32-63: fp0-31, the 8-byte floating-point registers
2616   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2617 
2618   // 64-76 are various 4-byte special-purpose registers:
2619   // 64: mq
2620   // 65: lr
2621   // 66: ctr
2622   // 67: ap
2623   // 68-75 cr0-7
2624   // 76: xer
2625   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2626 
2627   // 77-108: v0-31, the 16-byte vector registers
2628   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2629 
2630   // 109: vrsave
2631   // 110: vscr
2632   // 111: spe_acc
2633   // 112: spefscr
2634   // 113: sfp
2635   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2636 
2637   return false;
2638 }
2639 
2640 //===----------------------------------------------------------------------===//
2641 // ARM ABI Implementation
2642 //===----------------------------------------------------------------------===//
2643 
2644 namespace {
2645 
2646 class ARMABIInfo : public ABIInfo {
2647 public:
2648   enum ABIKind {
2649     APCS = 0,
2650     AAPCS = 1,
2651     AAPCS_VFP
2652   };
2653 
2654 private:
2655   ABIKind Kind;
2656 
2657 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)2658   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2659 
isEABI() const2660   bool isEABI() const {
2661     StringRef Env =
2662       getContext().getTargetInfo().getTriple().getEnvironmentName();
2663     return (Env == "gnueabi" || Env == "eabi" ||
2664             Env == "android" || Env == "androideabi");
2665   }
2666 
2667 private:
getABIKind() const2668   ABIKind getABIKind() const { return Kind; }
2669 
2670   ABIArgInfo classifyReturnType(QualType RetTy) const;
2671   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2672 
2673   virtual void computeInfo(CGFunctionInfo &FI) const;
2674 
2675   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2676                                  CodeGenFunction &CGF) const;
2677 };
2678 
2679 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2680 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)2681   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2682     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2683 
getABIInfo() const2684   const ARMABIInfo &getABIInfo() const {
2685     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2686   }
2687 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2688   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2689     return 13;
2690   }
2691 
getARCRetainAutoreleasedReturnValueMarker() const2692   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2693     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2694   }
2695 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2696   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2697                                llvm::Value *Address) const {
2698     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2699 
2700     // 0-15 are the 16 integer registers.
2701     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
2702     return false;
2703   }
2704 
getSizeOfUnwindException() const2705   unsigned getSizeOfUnwindException() const {
2706     if (getABIInfo().isEABI()) return 88;
2707     return TargetCodeGenInfo::getSizeOfUnwindException();
2708   }
2709 };
2710 
2711 }
2712 
computeInfo(CGFunctionInfo & FI) const2713 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2714   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2715   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2716        it != ie; ++it)
2717     it->info = classifyArgumentType(it->type);
2718 
2719   // Always honor user-specified calling convention.
2720   if (FI.getCallingConvention() != llvm::CallingConv::C)
2721     return;
2722 
2723   // Calling convention as default by an ABI.
2724   llvm::CallingConv::ID DefaultCC;
2725   if (isEABI())
2726     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2727   else
2728     DefaultCC = llvm::CallingConv::ARM_APCS;
2729 
2730   // If user did not ask for specific calling convention explicitly (e.g. via
2731   // pcs attribute), set effective calling convention if it's different than ABI
2732   // default.
2733   switch (getABIKind()) {
2734   case APCS:
2735     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2736       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2737     break;
2738   case AAPCS:
2739     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2740       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2741     break;
2742   case AAPCS_VFP:
2743     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2744       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2745     break;
2746   }
2747 }
2748 
2749 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2750 /// aggregate.  If HAMembers is non-null, the number of base elements
2751 /// contained in the type is returned through it; this is used for the
2752 /// recursive calls that check aggregate component types.
isHomogeneousAggregate(QualType Ty,const Type * & Base,ASTContext & Context,uint64_t * HAMembers=0)2753 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2754                                    ASTContext &Context,
2755                                    uint64_t *HAMembers = 0) {
2756   uint64_t Members = 0;
2757   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2758     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2759       return false;
2760     Members *= AT->getSize().getZExtValue();
2761   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2762     const RecordDecl *RD = RT->getDecl();
2763     if (RD->hasFlexibleArrayMember())
2764       return false;
2765 
2766     Members = 0;
2767     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2768          i != e; ++i) {
2769       const FieldDecl *FD = *i;
2770       uint64_t FldMembers;
2771       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2772         return false;
2773 
2774       Members = (RD->isUnion() ?
2775                  std::max(Members, FldMembers) : Members + FldMembers);
2776     }
2777   } else {
2778     Members = 1;
2779     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2780       Members = 2;
2781       Ty = CT->getElementType();
2782     }
2783 
2784     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2785     // double, or 64-bit or 128-bit vectors.
2786     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2787       if (BT->getKind() != BuiltinType::Float &&
2788           BT->getKind() != BuiltinType::Double &&
2789           BT->getKind() != BuiltinType::LongDouble)
2790         return false;
2791     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2792       unsigned VecSize = Context.getTypeSize(VT);
2793       if (VecSize != 64 && VecSize != 128)
2794         return false;
2795     } else {
2796       return false;
2797     }
2798 
2799     // The base type must be the same for all members.  Vector types of the
2800     // same total size are treated as being equivalent here.
2801     const Type *TyPtr = Ty.getTypePtr();
2802     if (!Base)
2803       Base = TyPtr;
2804     if (Base != TyPtr &&
2805         (!Base->isVectorType() || !TyPtr->isVectorType() ||
2806          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2807       return false;
2808   }
2809 
2810   // Homogeneous Aggregates can have at most 4 members of the base type.
2811   if (HAMembers)
2812     *HAMembers = Members;
2813 
2814   return (Members > 0 && Members <= 4);
2815 }
2816 
classifyArgumentType(QualType Ty) const2817 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2818   if (!isAggregateTypeForABI(Ty)) {
2819     // Treat an enum type as its underlying type.
2820     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2821       Ty = EnumTy->getDecl()->getIntegerType();
2822 
2823     return (Ty->isPromotableIntegerType() ?
2824             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2825   }
2826 
2827   // Ignore empty records.
2828   if (isEmptyRecord(getContext(), Ty, true))
2829     return ABIArgInfo::getIgnore();
2830 
2831   // Structures with either a non-trivial destructor or a non-trivial
2832   // copy constructor are always indirect.
2833   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2834     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2835 
2836   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2837     // Homogeneous Aggregates need to be expanded.
2838     const Type *Base = 0;
2839     if (isHomogeneousAggregate(Ty, Base, getContext())) {
2840       assert(Base && "Base class should be set for homogeneous aggregate");
2841       return ABIArgInfo::getExpand();
2842     }
2843   }
2844 
2845   // Support byval for ARM.
2846   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64) ||
2847       getContext().getTypeAlign(Ty) > 64) {
2848     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
2849   }
2850 
2851   // Otherwise, pass by coercing to a structure of the appropriate size.
2852   llvm::Type* ElemTy;
2853   unsigned SizeRegs;
2854   // FIXME: Try to match the types of the arguments more accurately where
2855   // we can.
2856   if (getContext().getTypeAlign(Ty) <= 32) {
2857     ElemTy = llvm::Type::getInt32Ty(getVMContext());
2858     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2859   } else {
2860     ElemTy = llvm::Type::getInt64Ty(getVMContext());
2861     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2862   }
2863 
2864   llvm::Type *STy =
2865     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2866   return ABIArgInfo::getDirect(STy);
2867 }
2868 
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)2869 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2870                               llvm::LLVMContext &VMContext) {
2871   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2872   // is called integer-like if its size is less than or equal to one word, and
2873   // the offset of each of its addressable sub-fields is zero.
2874 
2875   uint64_t Size = Context.getTypeSize(Ty);
2876 
2877   // Check that the type fits in a word.
2878   if (Size > 32)
2879     return false;
2880 
2881   // FIXME: Handle vector types!
2882   if (Ty->isVectorType())
2883     return false;
2884 
2885   // Float types are never treated as "integer like".
2886   if (Ty->isRealFloatingType())
2887     return false;
2888 
2889   // If this is a builtin or pointer type then it is ok.
2890   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2891     return true;
2892 
2893   // Small complex integer types are "integer like".
2894   if (const ComplexType *CT = Ty->getAs<ComplexType>())
2895     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2896 
2897   // Single element and zero sized arrays should be allowed, by the definition
2898   // above, but they are not.
2899 
2900   // Otherwise, it must be a record type.
2901   const RecordType *RT = Ty->getAs<RecordType>();
2902   if (!RT) return false;
2903 
2904   // Ignore records with flexible arrays.
2905   const RecordDecl *RD = RT->getDecl();
2906   if (RD->hasFlexibleArrayMember())
2907     return false;
2908 
2909   // Check that all sub-fields are at offset 0, and are themselves "integer
2910   // like".
2911   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2912 
2913   bool HadField = false;
2914   unsigned idx = 0;
2915   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2916        i != e; ++i, ++idx) {
2917     const FieldDecl *FD = *i;
2918 
2919     // Bit-fields are not addressable, we only need to verify they are "integer
2920     // like". We still have to disallow a subsequent non-bitfield, for example:
2921     //   struct { int : 0; int x }
2922     // is non-integer like according to gcc.
2923     if (FD->isBitField()) {
2924       if (!RD->isUnion())
2925         HadField = true;
2926 
2927       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2928         return false;
2929 
2930       continue;
2931     }
2932 
2933     // Check if this field is at offset 0.
2934     if (Layout.getFieldOffset(idx) != 0)
2935       return false;
2936 
2937     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2938       return false;
2939 
2940     // Only allow at most one field in a structure. This doesn't match the
2941     // wording above, but follows gcc in situations with a field following an
2942     // empty structure.
2943     if (!RD->isUnion()) {
2944       if (HadField)
2945         return false;
2946 
2947       HadField = true;
2948     }
2949   }
2950 
2951   return true;
2952 }
2953 
classifyReturnType(QualType RetTy) const2954 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2955   if (RetTy->isVoidType())
2956     return ABIArgInfo::getIgnore();
2957 
2958   // Large vector types should be returned via memory.
2959   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2960     return ABIArgInfo::getIndirect(0);
2961 
2962   if (!isAggregateTypeForABI(RetTy)) {
2963     // Treat an enum type as its underlying type.
2964     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2965       RetTy = EnumTy->getDecl()->getIntegerType();
2966 
2967     return (RetTy->isPromotableIntegerType() ?
2968             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2969   }
2970 
2971   // Structures with either a non-trivial destructor or a non-trivial
2972   // copy constructor are always indirect.
2973   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2974     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2975 
2976   // Are we following APCS?
2977   if (getABIKind() == APCS) {
2978     if (isEmptyRecord(getContext(), RetTy, false))
2979       return ABIArgInfo::getIgnore();
2980 
2981     // Complex types are all returned as packed integers.
2982     //
2983     // FIXME: Consider using 2 x vector types if the back end handles them
2984     // correctly.
2985     if (RetTy->isAnyComplexType())
2986       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2987                                               getContext().getTypeSize(RetTy)));
2988 
2989     // Integer like structures are returned in r0.
2990     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2991       // Return in the smallest viable integer type.
2992       uint64_t Size = getContext().getTypeSize(RetTy);
2993       if (Size <= 8)
2994         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2995       if (Size <= 16)
2996         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2997       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2998     }
2999 
3000     // Otherwise return in memory.
3001     return ABIArgInfo::getIndirect(0);
3002   }
3003 
3004   // Otherwise this is an AAPCS variant.
3005 
3006   if (isEmptyRecord(getContext(), RetTy, true))
3007     return ABIArgInfo::getIgnore();
3008 
3009   // Check for homogeneous aggregates with AAPCS-VFP.
3010   if (getABIKind() == AAPCS_VFP) {
3011     const Type *Base = 0;
3012     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3013       assert(Base && "Base class should be set for homogeneous aggregate");
3014       // Homogeneous Aggregates are returned directly.
3015       return ABIArgInfo::getDirect();
3016     }
3017   }
3018 
3019   // Aggregates <= 4 bytes are returned in r0; other aggregates
3020   // are returned indirectly.
3021   uint64_t Size = getContext().getTypeSize(RetTy);
3022   if (Size <= 32) {
3023     // Return in the smallest viable integer type.
3024     if (Size <= 8)
3025       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3026     if (Size <= 16)
3027       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3028     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3029   }
3030 
3031   return ABIArgInfo::getIndirect(0);
3032 }
3033 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3034 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3035                                    CodeGenFunction &CGF) const {
3036   llvm::Type *BP = CGF.Int8PtrTy;
3037   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3038 
3039   CGBuilderTy &Builder = CGF.Builder;
3040   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3041   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3042   // Handle address alignment for type alignment > 32 bits
3043   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3044   if (TyAlign > 4) {
3045     assert((TyAlign & (TyAlign - 1)) == 0 &&
3046            "Alignment is not power of 2!");
3047     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3048     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3049     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3050     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3051   }
3052   llvm::Type *PTy =
3053     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3054   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3055 
3056   uint64_t Offset =
3057     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3058   llvm::Value *NextAddr =
3059     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3060                       "ap.next");
3061   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3062 
3063   return AddrTyped;
3064 }
3065 
3066 //===----------------------------------------------------------------------===//
3067 // NVPTX ABI Implementation
3068 //===----------------------------------------------------------------------===//
3069 
3070 namespace {
3071 
3072 class NVPTXABIInfo : public ABIInfo {
3073 public:
NVPTXABIInfo(CodeGenTypes & CGT)3074   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3075 
3076   ABIArgInfo classifyReturnType(QualType RetTy) const;
3077   ABIArgInfo classifyArgumentType(QualType Ty) const;
3078 
3079   virtual void computeInfo(CGFunctionInfo &FI) const;
3080   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3081                                  CodeGenFunction &CFG) const;
3082 };
3083 
3084 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
3085 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)3086   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
3087     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
3088 
3089   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3090                                    CodeGen::CodeGenModule &M) const;
3091 };
3092 
classifyReturnType(QualType RetTy) const3093 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
3094   if (RetTy->isVoidType())
3095     return ABIArgInfo::getIgnore();
3096   if (isAggregateTypeForABI(RetTy))
3097     return ABIArgInfo::getIndirect(0);
3098   return ABIArgInfo::getDirect();
3099 }
3100 
classifyArgumentType(QualType Ty) const3101 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
3102   if (isAggregateTypeForABI(Ty))
3103     return ABIArgInfo::getIndirect(0);
3104 
3105   return ABIArgInfo::getDirect();
3106 }
3107 
computeInfo(CGFunctionInfo & FI) const3108 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
3109   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3110   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3111        it != ie; ++it)
3112     it->info = classifyArgumentType(it->type);
3113 
3114   // Always honor user-specified calling convention.
3115   if (FI.getCallingConvention() != llvm::CallingConv::C)
3116     return;
3117 
3118   // Calling convention as default by an ABI.
3119   // We're still using the PTX_Kernel/PTX_Device calling conventions here,
3120   // but we should switch to NVVM metadata later on.
3121   llvm::CallingConv::ID DefaultCC;
3122   const LangOptions &LangOpts = getContext().getLangOpts();
3123   if (LangOpts.OpenCL || LangOpts.CUDA) {
3124     // If we are in OpenCL or CUDA mode, then default to device functions
3125     DefaultCC = llvm::CallingConv::PTX_Device;
3126   } else {
3127     // If we are in standard C/C++ mode, use the triple to decide on the default
3128     StringRef Env =
3129       getContext().getTargetInfo().getTriple().getEnvironmentName();
3130     if (Env == "device")
3131       DefaultCC = llvm::CallingConv::PTX_Device;
3132     else
3133       DefaultCC = llvm::CallingConv::PTX_Kernel;
3134   }
3135   FI.setEffectiveCallingConvention(DefaultCC);
3136 
3137 }
3138 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CFG) const3139 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3140                                      CodeGenFunction &CFG) const {
3141   llvm_unreachable("NVPTX does not support varargs");
3142 }
3143 
3144 void NVPTXTargetCodeGenInfo::
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3145 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3146                     CodeGen::CodeGenModule &M) const{
3147   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3148   if (!FD) return;
3149 
3150   llvm::Function *F = cast<llvm::Function>(GV);
3151 
3152   // Perform special handling in OpenCL mode
3153   if (M.getLangOpts().OpenCL) {
3154     // Use OpenCL function attributes to set proper calling conventions
3155     // By default, all functions are device functions
3156     if (FD->hasAttr<OpenCLKernelAttr>()) {
3157       // OpenCL __kernel functions get a kernel calling convention
3158       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3159       // And kernel functions are not subject to inlining
3160       F->addFnAttr(llvm::Attribute::NoInline);
3161     }
3162   }
3163 
3164   // Perform special handling in CUDA mode.
3165   if (M.getLangOpts().CUDA) {
3166     // CUDA __global__ functions get a kernel calling convention.  Since
3167     // __global__ functions cannot be called from the device, we do not
3168     // need to set the noinline attribute.
3169     if (FD->getAttr<CUDAGlobalAttr>())
3170       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
3171   }
3172 }
3173 
3174 }
3175 
3176 //===----------------------------------------------------------------------===//
3177 // MBlaze ABI Implementation
3178 //===----------------------------------------------------------------------===//
3179 
3180 namespace {
3181 
3182 class MBlazeABIInfo : public ABIInfo {
3183 public:
MBlazeABIInfo(CodeGenTypes & CGT)3184   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3185 
3186   bool isPromotableIntegerType(QualType Ty) const;
3187 
3188   ABIArgInfo classifyReturnType(QualType RetTy) const;
3189   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3190 
computeInfo(CGFunctionInfo & FI) const3191   virtual void computeInfo(CGFunctionInfo &FI) const {
3192     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3193     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3194          it != ie; ++it)
3195       it->info = classifyArgumentType(it->type);
3196   }
3197 
3198   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3199                                  CodeGenFunction &CGF) const;
3200 };
3201 
3202 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
3203 public:
MBlazeTargetCodeGenInfo(CodeGenTypes & CGT)3204   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
3205     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
3206   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3207                            CodeGen::CodeGenModule &M) const;
3208 };
3209 
3210 }
3211 
isPromotableIntegerType(QualType Ty) const3212 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
3213   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
3214   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3215     switch (BT->getKind()) {
3216     case BuiltinType::Bool:
3217     case BuiltinType::Char_S:
3218     case BuiltinType::Char_U:
3219     case BuiltinType::SChar:
3220     case BuiltinType::UChar:
3221     case BuiltinType::Short:
3222     case BuiltinType::UShort:
3223       return true;
3224     default:
3225       return false;
3226     }
3227   return false;
3228 }
3229 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3230 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3231                                       CodeGenFunction &CGF) const {
3232   // FIXME: Implement
3233   return 0;
3234 }
3235 
3236 
classifyReturnType(QualType RetTy) const3237 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
3238   if (RetTy->isVoidType())
3239     return ABIArgInfo::getIgnore();
3240   if (isAggregateTypeForABI(RetTy))
3241     return ABIArgInfo::getIndirect(0);
3242 
3243   return (isPromotableIntegerType(RetTy) ?
3244           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3245 }
3246 
classifyArgumentType(QualType Ty) const3247 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
3248   if (isAggregateTypeForABI(Ty))
3249     return ABIArgInfo::getIndirect(0);
3250 
3251   return (isPromotableIntegerType(Ty) ?
3252           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3253 }
3254 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3255 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3256                                                   llvm::GlobalValue *GV,
3257                                                   CodeGen::CodeGenModule &M)
3258                                                   const {
3259   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3260   if (!FD) return;
3261 
3262   llvm::CallingConv::ID CC = llvm::CallingConv::C;
3263   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
3264     CC = llvm::CallingConv::MBLAZE_INTR;
3265   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
3266     CC = llvm::CallingConv::MBLAZE_SVOL;
3267 
3268   if (CC != llvm::CallingConv::C) {
3269       // Handle 'interrupt_handler' attribute:
3270       llvm::Function *F = cast<llvm::Function>(GV);
3271 
3272       // Step 1: Set ISR calling convention.
3273       F->setCallingConv(CC);
3274 
3275       // Step 2: Add attributes goodness.
3276       F->addFnAttr(llvm::Attribute::NoInline);
3277   }
3278 
3279   // Step 3: Emit _interrupt_handler alias.
3280   if (CC == llvm::CallingConv::MBLAZE_INTR)
3281     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3282                           "_interrupt_handler", GV, &M.getModule());
3283 }
3284 
3285 
3286 //===----------------------------------------------------------------------===//
3287 // MSP430 ABI Implementation
3288 //===----------------------------------------------------------------------===//
3289 
3290 namespace {
3291 
3292 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3293 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)3294   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3295     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3296   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3297                            CodeGen::CodeGenModule &M) const;
3298 };
3299 
3300 }
3301 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3302 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3303                                                   llvm::GlobalValue *GV,
3304                                              CodeGen::CodeGenModule &M) const {
3305   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3306     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3307       // Handle 'interrupt' attribute:
3308       llvm::Function *F = cast<llvm::Function>(GV);
3309 
3310       // Step 1: Set ISR calling convention.
3311       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3312 
3313       // Step 2: Add attributes goodness.
3314       F->addFnAttr(llvm::Attribute::NoInline);
3315 
3316       // Step 3: Emit ISR vector alias.
3317       unsigned Num = attr->getNumber() + 0xffe0;
3318       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3319                             "vector_" + Twine::utohexstr(Num),
3320                             GV, &M.getModule());
3321     }
3322   }
3323 }
3324 
3325 //===----------------------------------------------------------------------===//
3326 // MIPS ABI Implementation.  This works for both little-endian and
3327 // big-endian variants.
3328 //===----------------------------------------------------------------------===//
3329 
3330 namespace {
3331 class MipsABIInfo : public ABIInfo {
3332   bool IsO32;
3333   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
3334   void CoerceToIntArgs(uint64_t TySize,
3335                        SmallVector<llvm::Type*, 8> &ArgList) const;
3336   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
3337   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
3338   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
3339 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)3340   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3341     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
3342     StackAlignInBytes(IsO32 ? 8 : 16) {}
3343 
3344   ABIArgInfo classifyReturnType(QualType RetTy) const;
3345   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
3346   virtual void computeInfo(CGFunctionInfo &FI) const;
3347   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3348                                  CodeGenFunction &CGF) const;
3349 };
3350 
3351 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3352   unsigned SizeOfUnwindException;
3353 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)3354   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3355     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3356       SizeOfUnwindException(IsO32 ? 24 : 32) {}
3357 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const3358   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3359     return 29;
3360   }
3361 
3362   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3363                                llvm::Value *Address) const;
3364 
getSizeOfUnwindException() const3365   unsigned getSizeOfUnwindException() const {
3366     return SizeOfUnwindException;
3367   }
3368 };
3369 }
3370 
CoerceToIntArgs(uint64_t TySize,SmallVector<llvm::Type *,8> & ArgList) const3371 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
3372                                   SmallVector<llvm::Type*, 8> &ArgList) const {
3373   llvm::IntegerType *IntTy =
3374     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3375 
3376   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
3377   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
3378     ArgList.push_back(IntTy);
3379 
3380   // If necessary, add one more integer type to ArgList.
3381   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
3382 
3383   if (R)
3384     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3385 }
3386 
3387 // In N32/64, an aligned double precision floating point field is passed in
3388 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const3389 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
3390   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
3391 
3392   if (IsO32) {
3393     CoerceToIntArgs(TySize, ArgList);
3394     return llvm::StructType::get(getVMContext(), ArgList);
3395   }
3396 
3397   if (Ty->isComplexType())
3398     return CGT.ConvertType(Ty);
3399 
3400   const RecordType *RT = Ty->getAs<RecordType>();
3401 
3402   // Unions/vectors are passed in integer registers.
3403   if (!RT || !RT->isStructureOrClassType()) {
3404     CoerceToIntArgs(TySize, ArgList);
3405     return llvm::StructType::get(getVMContext(), ArgList);
3406   }
3407 
3408   const RecordDecl *RD = RT->getDecl();
3409   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3410   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
3411 
3412   uint64_t LastOffset = 0;
3413   unsigned idx = 0;
3414   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3415 
3416   // Iterate over fields in the struct/class and check if there are any aligned
3417   // double fields.
3418   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3419        i != e; ++i, ++idx) {
3420     const QualType Ty = i->getType();
3421     const BuiltinType *BT = Ty->getAs<BuiltinType>();
3422 
3423     if (!BT || BT->getKind() != BuiltinType::Double)
3424       continue;
3425 
3426     uint64_t Offset = Layout.getFieldOffset(idx);
3427     if (Offset % 64) // Ignore doubles that are not aligned.
3428       continue;
3429 
3430     // Add ((Offset - LastOffset) / 64) args of type i64.
3431     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3432       ArgList.push_back(I64);
3433 
3434     // Add double type.
3435     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3436     LastOffset = Offset + 64;
3437   }
3438 
3439   CoerceToIntArgs(TySize - LastOffset, IntArgList);
3440   ArgList.append(IntArgList.begin(), IntArgList.end());
3441 
3442   return llvm::StructType::get(getVMContext(), ArgList);
3443 }
3444 
getPaddingType(uint64_t Align,uint64_t Offset) const3445 llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
3446   assert((Offset % MinABIStackAlignInBytes) == 0);
3447 
3448   if ((Align - 1) & Offset)
3449     return llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
3450 
3451   return 0;
3452 }
3453 
3454 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const3455 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
3456   uint64_t OrigOffset = Offset;
3457   uint64_t TySize = getContext().getTypeSize(Ty);
3458   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
3459 
3460   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
3461                    (uint64_t)StackAlignInBytes);
3462   Offset = llvm::RoundUpToAlignment(Offset, Align);
3463   Offset += llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
3464 
3465   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
3466     // Ignore empty aggregates.
3467     if (TySize == 0)
3468       return ABIArgInfo::getIgnore();
3469 
3470     // Records with non trivial destructors/constructors should not be passed
3471     // by value.
3472     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
3473       Offset = OrigOffset + MinABIStackAlignInBytes;
3474       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3475     }
3476 
3477     // If we have reached here, aggregates are passed directly by coercing to
3478     // another structure type. Padding is inserted if the offset of the
3479     // aggregate is unaligned.
3480     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
3481                                  getPaddingType(Align, OrigOffset));
3482   }
3483 
3484   // Treat an enum type as its underlying type.
3485   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3486     Ty = EnumTy->getDecl()->getIntegerType();
3487 
3488   if (Ty->isPromotableIntegerType())
3489     return ABIArgInfo::getExtend();
3490 
3491   return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
3492 }
3493 
3494 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const3495 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
3496   const RecordType *RT = RetTy->getAs<RecordType>();
3497   SmallVector<llvm::Type*, 8> RTList;
3498 
3499   if (RT && RT->isStructureOrClassType()) {
3500     const RecordDecl *RD = RT->getDecl();
3501     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3502     unsigned FieldCnt = Layout.getFieldCount();
3503 
3504     // N32/64 returns struct/classes in floating point registers if the
3505     // following conditions are met:
3506     // 1. The size of the struct/class is no larger than 128-bit.
3507     // 2. The struct/class has one or two fields all of which are floating
3508     //    point types.
3509     // 3. The offset of the first field is zero (this follows what gcc does).
3510     //
3511     // Any other composite results are returned in integer registers.
3512     //
3513     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
3514       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
3515       for (; b != e; ++b) {
3516         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
3517 
3518         if (!BT || !BT->isFloatingPoint())
3519           break;
3520 
3521         RTList.push_back(CGT.ConvertType(b->getType()));
3522       }
3523 
3524       if (b == e)
3525         return llvm::StructType::get(getVMContext(), RTList,
3526                                      RD->hasAttr<PackedAttr>());
3527 
3528       RTList.clear();
3529     }
3530   }
3531 
3532   CoerceToIntArgs(Size, RTList);
3533   return llvm::StructType::get(getVMContext(), RTList);
3534 }
3535 
classifyReturnType(QualType RetTy) const3536 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3537   uint64_t Size = getContext().getTypeSize(RetTy);
3538 
3539   if (RetTy->isVoidType() || Size == 0)
3540     return ABIArgInfo::getIgnore();
3541 
3542   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
3543     if (Size <= 128) {
3544       if (RetTy->isAnyComplexType())
3545         return ABIArgInfo::getDirect();
3546 
3547       // O32 returns integer vectors in registers.
3548       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
3549         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3550 
3551       if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3552         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
3553     }
3554 
3555     return ABIArgInfo::getIndirect(0);
3556   }
3557 
3558   // Treat an enum type as its underlying type.
3559   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3560     RetTy = EnumTy->getDecl()->getIntegerType();
3561 
3562   return (RetTy->isPromotableIntegerType() ?
3563           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3564 }
3565 
computeInfo(CGFunctionInfo & FI) const3566 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3567   ABIArgInfo &RetInfo = FI.getReturnInfo();
3568   RetInfo = classifyReturnType(FI.getReturnType());
3569 
3570   // Check if a pointer to an aggregate is passed as a hidden argument.
3571   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
3572 
3573   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3574        it != ie; ++it)
3575     it->info = classifyArgumentType(it->type, Offset);
3576 }
3577 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3578 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3579                                     CodeGenFunction &CGF) const {
3580   llvm::Type *BP = CGF.Int8PtrTy;
3581   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3582 
3583   CGBuilderTy &Builder = CGF.Builder;
3584   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3585   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3586   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
3587   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3588   llvm::Value *AddrTyped;
3589   unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
3590   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
3591 
3592   if (TypeAlign > MinABIStackAlignInBytes) {
3593     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
3594     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
3595     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
3596     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
3597     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3598     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3599   }
3600   else
3601     AddrTyped = Builder.CreateBitCast(Addr, PTy);
3602 
3603   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3604   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
3605   uint64_t Offset =
3606     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3607   llvm::Value *NextAddr =
3608     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
3609                       "ap.next");
3610   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3611 
3612   return AddrTyped;
3613 }
3614 
3615 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3616 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3617                                                llvm::Value *Address) const {
3618   // This information comes from gcc's implementation, which seems to
3619   // as canonical as it gets.
3620 
3621   // Everything on MIPS is 4 bytes.  Double-precision FP registers
3622   // are aliased to pairs of single-precision FP registers.
3623   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3624 
3625   // 0-31 are the general purpose registers, $0 - $31.
3626   // 32-63 are the floating-point registers, $f0 - $f31.
3627   // 64 and 65 are the multiply/divide registers, $hi and $lo.
3628   // 66 is the (notional, I think) register for signal-handler return.
3629   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
3630 
3631   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3632   // They are one bit wide and ignored here.
3633 
3634   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3635   // (coprocessor 1 is the FP unit)
3636   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3637   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3638   // 176-181 are the DSP accumulator registers.
3639   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
3640   return false;
3641 }
3642 
3643 //===----------------------------------------------------------------------===//
3644 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3645 // Currently subclassed only to implement custom OpenCL C function attribute
3646 // handling.
3647 //===----------------------------------------------------------------------===//
3648 
3649 namespace {
3650 
3651 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3652 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)3653   TCETargetCodeGenInfo(CodeGenTypes &CGT)
3654     : DefaultTargetCodeGenInfo(CGT) {}
3655 
3656   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3657                                    CodeGen::CodeGenModule &M) const;
3658 };
3659 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const3660 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3661                                                llvm::GlobalValue *GV,
3662                                                CodeGen::CodeGenModule &M) const {
3663   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3664   if (!FD) return;
3665 
3666   llvm::Function *F = cast<llvm::Function>(GV);
3667 
3668   if (M.getLangOpts().OpenCL) {
3669     if (FD->hasAttr<OpenCLKernelAttr>()) {
3670       // OpenCL C Kernel functions are not subject to inlining
3671       F->addFnAttr(llvm::Attribute::NoInline);
3672 
3673       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3674 
3675         // Convert the reqd_work_group_size() attributes to metadata.
3676         llvm::LLVMContext &Context = F->getContext();
3677         llvm::NamedMDNode *OpenCLMetadata =
3678             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3679 
3680         SmallVector<llvm::Value*, 5> Operands;
3681         Operands.push_back(F);
3682 
3683         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3684                              llvm::APInt(32,
3685                              FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3686         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3687                              llvm::APInt(32,
3688                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3689         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
3690                              llvm::APInt(32,
3691                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3692 
3693         // Add a boolean constant operand for "required" (true) or "hint" (false)
3694         // for implementing the work_group_size_hint attr later. Currently
3695         // always true as the hint is not yet implemented.
3696         Operands.push_back(llvm::ConstantInt::getTrue(Context));
3697         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3698       }
3699     }
3700   }
3701 }
3702 
3703 }
3704 
3705 //===----------------------------------------------------------------------===//
3706 // Hexagon ABI Implementation
3707 //===----------------------------------------------------------------------===//
3708 
3709 namespace {
3710 
3711 class HexagonABIInfo : public ABIInfo {
3712 
3713 
3714 public:
HexagonABIInfo(CodeGenTypes & CGT)3715   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3716 
3717 private:
3718 
3719   ABIArgInfo classifyReturnType(QualType RetTy) const;
3720   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3721 
3722   virtual void computeInfo(CGFunctionInfo &FI) const;
3723 
3724   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3725                                  CodeGenFunction &CGF) const;
3726 };
3727 
3728 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
3729 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)3730   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
3731     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
3732 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3733   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3734     return 29;
3735   }
3736 };
3737 
3738 }
3739 
computeInfo(CGFunctionInfo & FI) const3740 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
3741   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3742   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3743        it != ie; ++it)
3744     it->info = classifyArgumentType(it->type);
3745 }
3746 
classifyArgumentType(QualType Ty) const3747 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
3748   if (!isAggregateTypeForABI(Ty)) {
3749     // Treat an enum type as its underlying type.
3750     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3751       Ty = EnumTy->getDecl()->getIntegerType();
3752 
3753     return (Ty->isPromotableIntegerType() ?
3754             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3755   }
3756 
3757   // Ignore empty records.
3758   if (isEmptyRecord(getContext(), Ty, true))
3759     return ABIArgInfo::getIgnore();
3760 
3761   // Structures with either a non-trivial destructor or a non-trivial
3762   // copy constructor are always indirect.
3763   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3764     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3765 
3766   uint64_t Size = getContext().getTypeSize(Ty);
3767   if (Size > 64)
3768     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3769     // Pass in the smallest viable integer type.
3770   else if (Size > 32)
3771       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3772   else if (Size > 16)
3773       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3774   else if (Size > 8)
3775       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3776   else
3777       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3778 }
3779 
classifyReturnType(QualType RetTy) const3780 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
3781   if (RetTy->isVoidType())
3782     return ABIArgInfo::getIgnore();
3783 
3784   // Large vector types should be returned via memory.
3785   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
3786     return ABIArgInfo::getIndirect(0);
3787 
3788   if (!isAggregateTypeForABI(RetTy)) {
3789     // Treat an enum type as its underlying type.
3790     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3791       RetTy = EnumTy->getDecl()->getIntegerType();
3792 
3793     return (RetTy->isPromotableIntegerType() ?
3794             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3795   }
3796 
3797   // Structures with either a non-trivial destructor or a non-trivial
3798   // copy constructor are always indirect.
3799   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
3800     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3801 
3802   if (isEmptyRecord(getContext(), RetTy, true))
3803     return ABIArgInfo::getIgnore();
3804 
3805   // Aggregates <= 8 bytes are returned in r0; other aggregates
3806   // are returned indirectly.
3807   uint64_t Size = getContext().getTypeSize(RetTy);
3808   if (Size <= 64) {
3809     // Return in the smallest viable integer type.
3810     if (Size <= 8)
3811       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3812     if (Size <= 16)
3813       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3814     if (Size <= 32)
3815       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3816     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
3817   }
3818 
3819   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
3820 }
3821 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3822 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3823                                        CodeGenFunction &CGF) const {
3824   // FIXME: Need to handle alignment
3825   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3826 
3827   CGBuilderTy &Builder = CGF.Builder;
3828   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3829                                                        "ap");
3830   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3831   llvm::Type *PTy =
3832     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3833   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3834 
3835   uint64_t Offset =
3836     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
3837   llvm::Value *NextAddr =
3838     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3839                       "ap.next");
3840   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3841 
3842   return AddrTyped;
3843 }
3844 
3845 
getTargetCodeGenInfo()3846 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3847   if (TheTargetCodeGenInfo)
3848     return *TheTargetCodeGenInfo;
3849 
3850   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3851   switch (Triple.getArch()) {
3852   default:
3853     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3854 
3855   case llvm::Triple::le32:
3856     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
3857   case llvm::Triple::mips:
3858   case llvm::Triple::mipsel:
3859     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3860 
3861   case llvm::Triple::mips64:
3862   case llvm::Triple::mips64el:
3863     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3864 
3865   case llvm::Triple::arm:
3866   case llvm::Triple::thumb:
3867     {
3868       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3869 
3870       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3871         Kind = ARMABIInfo::APCS;
3872       else if (CodeGenOpts.FloatABI == "hard")
3873         Kind = ARMABIInfo::AAPCS_VFP;
3874 
3875       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3876     }
3877 
3878   case llvm::Triple::ppc:
3879     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3880   case llvm::Triple::ppc64:
3881     return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
3882 
3883   case llvm::Triple::nvptx:
3884   case llvm::Triple::nvptx64:
3885     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
3886 
3887   case llvm::Triple::mblaze:
3888     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3889 
3890   case llvm::Triple::msp430:
3891     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3892 
3893   case llvm::Triple::tce:
3894     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3895 
3896   case llvm::Triple::x86: {
3897     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3898 
3899     if (Triple.isOSDarwin())
3900       return *(TheTargetCodeGenInfo =
3901                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX, false,
3902                                            CodeGenOpts.NumRegisterParameters));
3903 
3904     switch (Triple.getOS()) {
3905     case llvm::Triple::Cygwin:
3906     case llvm::Triple::MinGW32:
3907     case llvm::Triple::AuroraUX:
3908     case llvm::Triple::DragonFly:
3909     case llvm::Triple::FreeBSD:
3910     case llvm::Triple::OpenBSD:
3911     case llvm::Triple::Bitrig:
3912       return *(TheTargetCodeGenInfo =
3913                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX,
3914                                            false,
3915                                            CodeGenOpts.NumRegisterParameters));
3916 
3917     case llvm::Triple::Win32:
3918       return *(TheTargetCodeGenInfo =
3919                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX, true,
3920                                            CodeGenOpts.NumRegisterParameters));
3921 
3922     default:
3923       return *(TheTargetCodeGenInfo =
3924                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX,
3925                                            false,
3926                                            CodeGenOpts.NumRegisterParameters));
3927     }
3928   }
3929 
3930   case llvm::Triple::x86_64: {
3931     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3932 
3933     switch (Triple.getOS()) {
3934     case llvm::Triple::Win32:
3935     case llvm::Triple::MinGW32:
3936     case llvm::Triple::Cygwin:
3937       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3938     default:
3939       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3940                                                                   HasAVX));
3941     }
3942   }
3943   case llvm::Triple::hexagon:
3944     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
3945   }
3946 }
3947