1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integral
11 // constant values and operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_APINT_H
16 #define LLVM_APINT_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <climits>
23 #include <cstring>
24 #include <string>
25
26 namespace llvm {
27 class Deserializer;
28 class FoldingSetNodeID;
29 class Serializer;
30 class StringRef;
31 class hash_code;
32 class raw_ostream;
33
34 template<typename T>
35 class SmallVectorImpl;
36
37 // An unsigned host type used as a single part of a multi-part
38 // bignum.
39 typedef uint64_t integerPart;
40
41 const unsigned int host_char_bit = 8;
42 const unsigned int integerPartWidth = host_char_bit *
43 static_cast<unsigned int>(sizeof(integerPart));
44
45 //===----------------------------------------------------------------------===//
46 // APInt Class
47 //===----------------------------------------------------------------------===//
48
49 /// APInt - This class represents arbitrary precision constant integral values.
50 /// It is a functional replacement for common case unsigned integer type like
51 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
52 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
53 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
54 /// and methods to manipulate integer values of any bit-width. It supports both
55 /// the typical integer arithmetic and comparison operations as well as bitwise
56 /// manipulation.
57 ///
58 /// The class has several invariants worth noting:
59 /// * All bit, byte, and word positions are zero-based.
60 /// * Once the bit width is set, it doesn't change except by the Truncate,
61 /// SignExtend, or ZeroExtend operations.
62 /// * All binary operators must be on APInt instances of the same bit width.
63 /// Attempting to use these operators on instances with different bit
64 /// widths will yield an assertion.
65 /// * The value is stored canonically as an unsigned value. For operations
66 /// where it makes a difference, there are both signed and unsigned variants
67 /// of the operation. For example, sdiv and udiv. However, because the bit
68 /// widths must be the same, operations such as Mul and Add produce the same
69 /// results regardless of whether the values are interpreted as signed or
70 /// not.
71 /// * In general, the class tries to follow the style of computation that LLVM
72 /// uses in its IR. This simplifies its use for LLVM.
73 ///
74 /// @brief Class for arbitrary precision integers.
75 class APInt {
76 unsigned BitWidth; ///< The number of bits in this APInt.
77
78 /// This union is used to store the integer value. When the
79 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80 union {
81 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
82 uint64_t *pVal; ///< Used to store the >64 bits integer value.
83 };
84
85 /// This enum is used to hold the constants we needed for APInt.
86 enum {
87 /// Bits in a word
88 APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
89 CHAR_BIT,
90 /// Byte size of a word
91 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92 };
93
94 /// This constructor is used only internally for speed of construction of
95 /// temporaries. It is unsafe for general use so it is not public.
96 /// @brief Fast internal constructor
APInt(uint64_t * val,unsigned bits)97 APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
98
99 /// @returns true if the number of bits <= 64, false otherwise.
100 /// @brief Determine if this APInt just has one word to store value.
isSingleWord()101 bool isSingleWord() const {
102 return BitWidth <= APINT_BITS_PER_WORD;
103 }
104
105 /// @returns the word position for the specified bit position.
106 /// @brief Determine which word a bit is in.
whichWord(unsigned bitPosition)107 static unsigned whichWord(unsigned bitPosition) {
108 return bitPosition / APINT_BITS_PER_WORD;
109 }
110
111 /// @returns the bit position in a word for the specified bit position
112 /// in the APInt.
113 /// @brief Determine which bit in a word a bit is in.
whichBit(unsigned bitPosition)114 static unsigned whichBit(unsigned bitPosition) {
115 return bitPosition % APINT_BITS_PER_WORD;
116 }
117
118 /// This method generates and returns a uint64_t (word) mask for a single
119 /// bit at a specific bit position. This is used to mask the bit in the
120 /// corresponding word.
121 /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
122 /// @brief Get a single bit mask.
maskBit(unsigned bitPosition)123 static uint64_t maskBit(unsigned bitPosition) {
124 return 1ULL << whichBit(bitPosition);
125 }
126
127 /// This method is used internally to clear the to "N" bits in the high order
128 /// word that are not used by the APInt. This is needed after the most
129 /// significant word is assigned a value to ensure that those bits are
130 /// zero'd out.
131 /// @brief Clear unused high order bits
clearUnusedBits()132 APInt& clearUnusedBits() {
133 // Compute how many bits are used in the final word
134 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
135 if (wordBits == 0)
136 // If all bits are used, we want to leave the value alone. This also
137 // avoids the undefined behavior of >> when the shift is the same size as
138 // the word size (64).
139 return *this;
140
141 // Mask out the high bits.
142 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
143 if (isSingleWord())
144 VAL &= mask;
145 else
146 pVal[getNumWords() - 1] &= mask;
147 return *this;
148 }
149
150 /// @returns the corresponding word for the specified bit position.
151 /// @brief Get the word corresponding to a bit position
getWord(unsigned bitPosition)152 uint64_t getWord(unsigned bitPosition) const {
153 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
154 }
155
156 /// Converts a string into a number. The string must be non-empty
157 /// and well-formed as a number of the given base. The bit-width
158 /// must be sufficient to hold the result.
159 ///
160 /// This is used by the constructors that take string arguments.
161 ///
162 /// StringRef::getAsInteger is superficially similar but (1) does
163 /// not assume that the string is well-formed and (2) grows the
164 /// result to hold the input.
165 ///
166 /// @param radix 2, 8, 10, 16, or 36
167 /// @brief Convert a char array into an APInt
168 void fromString(unsigned numBits, StringRef str, uint8_t radix);
169
170 /// This is used by the toString method to divide by the radix. It simply
171 /// provides a more convenient form of divide for internal use since KnuthDiv
172 /// has specific constraints on its inputs. If those constraints are not met
173 /// then it provides a simpler form of divide.
174 /// @brief An internal division function for dividing APInts.
175 static void divide(const APInt LHS, unsigned lhsWords,
176 const APInt &RHS, unsigned rhsWords,
177 APInt *Quotient, APInt *Remainder);
178
179 /// out-of-line slow case for inline constructor
180 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
181
182 /// shared code between two array constructors
183 void initFromArray(ArrayRef<uint64_t> array);
184
185 /// out-of-line slow case for inline copy constructor
186 void initSlowCase(const APInt& that);
187
188 /// out-of-line slow case for shl
189 APInt shlSlowCase(unsigned shiftAmt) const;
190
191 /// out-of-line slow case for operator&
192 APInt AndSlowCase(const APInt& RHS) const;
193
194 /// out-of-line slow case for operator|
195 APInt OrSlowCase(const APInt& RHS) const;
196
197 /// out-of-line slow case for operator^
198 APInt XorSlowCase(const APInt& RHS) const;
199
200 /// out-of-line slow case for operator=
201 APInt& AssignSlowCase(const APInt& RHS);
202
203 /// out-of-line slow case for operator==
204 bool EqualSlowCase(const APInt& RHS) const;
205
206 /// out-of-line slow case for operator==
207 bool EqualSlowCase(uint64_t Val) const;
208
209 /// out-of-line slow case for countLeadingZeros
210 unsigned countLeadingZerosSlowCase() const;
211
212 /// out-of-line slow case for countTrailingOnes
213 unsigned countTrailingOnesSlowCase() const;
214
215 /// out-of-line slow case for countPopulation
216 unsigned countPopulationSlowCase() const;
217
218 public:
219 /// @name Constructors
220 /// @{
221 /// If isSigned is true then val is treated as if it were a signed value
222 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
223 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
224 /// the range of val are zero filled).
225 /// @param numBits the bit width of the constructed APInt
226 /// @param val the initial value of the APInt
227 /// @param isSigned how to treat signedness of val
228 /// @brief Create a new APInt of numBits width, initialized as val.
229 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)230 : BitWidth(numBits), VAL(0) {
231 assert(BitWidth && "bitwidth too small");
232 if (isSingleWord())
233 VAL = val;
234 else
235 initSlowCase(numBits, val, isSigned);
236 clearUnusedBits();
237 }
238
239 /// Note that bigVal.size() can be smaller or larger than the corresponding
240 /// bit width but any extraneous bits will be dropped.
241 /// @param numBits the bit width of the constructed APInt
242 /// @param bigVal a sequence of words to form the initial value of the APInt
243 /// @brief Construct an APInt of numBits width, initialized as bigVal[].
244 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
245 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
246 /// deprecated because this constructor is prone to ambiguity with the
247 /// APInt(unsigned, uint64_t, bool) constructor.
248 ///
249 /// If this overload is ever deleted, care should be taken to prevent calls
250 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
251 /// constructor.
252 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
253
254 /// This constructor interprets the string \arg str in the given radix. The
255 /// interpretation stops when the first character that is not suitable for the
256 /// radix is encountered, or the end of the string. Acceptable radix values
257 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
258 /// string to require more bits than numBits.
259 ///
260 /// @param numBits the bit width of the constructed APInt
261 /// @param str the string to be interpreted
262 /// @param radix the radix to use for the conversion
263 /// @brief Construct an APInt from a string representation.
264 APInt(unsigned numBits, StringRef str, uint8_t radix);
265
266 /// Simply makes *this a copy of that.
267 /// @brief Copy Constructor.
APInt(const APInt & that)268 APInt(const APInt& that)
269 : BitWidth(that.BitWidth), VAL(0) {
270 assert(BitWidth && "bitwidth too small");
271 if (isSingleWord())
272 VAL = that.VAL;
273 else
274 initSlowCase(that);
275 }
276
277 #if LLVM_USE_RVALUE_REFERENCES
278 /// @brief Move Constructor.
APInt(APInt && that)279 APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
280 that.BitWidth = 0;
281 }
282 #endif
283
284 /// @brief Destructor.
~APInt()285 ~APInt() {
286 if (!isSingleWord())
287 delete [] pVal;
288 }
289
290 /// Default constructor that creates an uninitialized APInt. This is useful
291 /// for object deserialization (pair this with the static method Read).
APInt()292 explicit APInt() : BitWidth(1) {}
293
294 /// Profile - Used to insert APInt objects, or objects that contain APInt
295 /// objects, into FoldingSets.
296 void Profile(FoldingSetNodeID& id) const;
297
298 /// @}
299 /// @name Value Tests
300 /// @{
301 /// This tests the high bit of this APInt to determine if it is set.
302 /// @returns true if this APInt is negative, false otherwise
303 /// @brief Determine sign of this APInt.
isNegative()304 bool isNegative() const {
305 return (*this)[BitWidth - 1];
306 }
307
308 /// This tests the high bit of the APInt to determine if it is unset.
309 /// @brief Determine if this APInt Value is non-negative (>= 0)
isNonNegative()310 bool isNonNegative() const {
311 return !isNegative();
312 }
313
314 /// This tests if the value of this APInt is positive (> 0). Note
315 /// that 0 is not a positive value.
316 /// @returns true if this APInt is positive.
317 /// @brief Determine if this APInt Value is positive.
isStrictlyPositive()318 bool isStrictlyPositive() const {
319 return isNonNegative() && !!*this;
320 }
321
322 /// This checks to see if the value has all bits of the APInt are set or not.
323 /// @brief Determine if all bits are set
isAllOnesValue()324 bool isAllOnesValue() const {
325 return countPopulation() == BitWidth;
326 }
327
328 /// This checks to see if the value of this APInt is the maximum unsigned
329 /// value for the APInt's bit width.
330 /// @brief Determine if this is the largest unsigned value.
isMaxValue()331 bool isMaxValue() const {
332 return countPopulation() == BitWidth;
333 }
334
335 /// This checks to see if the value of this APInt is the maximum signed
336 /// value for the APInt's bit width.
337 /// @brief Determine if this is the largest signed value.
isMaxSignedValue()338 bool isMaxSignedValue() const {
339 return BitWidth == 1 ? VAL == 0 :
340 !isNegative() && countPopulation() == BitWidth - 1;
341 }
342
343 /// This checks to see if the value of this APInt is the minimum unsigned
344 /// value for the APInt's bit width.
345 /// @brief Determine if this is the smallest unsigned value.
isMinValue()346 bool isMinValue() const {
347 return !*this;
348 }
349
350 /// This checks to see if the value of this APInt is the minimum signed
351 /// value for the APInt's bit width.
352 /// @brief Determine if this is the smallest signed value.
isMinSignedValue()353 bool isMinSignedValue() const {
354 return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
355 }
356
357 /// @brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)358 bool isIntN(unsigned N) const {
359 assert(N && "N == 0 ???");
360 return getActiveBits() <= N;
361 }
362
363 /// @brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)364 bool isSignedIntN(unsigned N) const {
365 assert(N && "N == 0 ???");
366 return getMinSignedBits() <= N;
367 }
368
369 /// @returns true if the argument APInt value is a power of two > 0.
isPowerOf2()370 bool isPowerOf2() const {
371 if (isSingleWord())
372 return isPowerOf2_64(VAL);
373 return countPopulationSlowCase() == 1;
374 }
375
376 /// isSignBit - Return true if this is the value returned by getSignBit.
isSignBit()377 bool isSignBit() const { return isMinSignedValue(); }
378
379 /// This converts the APInt to a boolean value as a test against zero.
380 /// @brief Boolean conversion function.
getBoolValue()381 bool getBoolValue() const {
382 return !!*this;
383 }
384
385 /// getLimitedValue - If this value is smaller than the specified limit,
386 /// return it, otherwise return the limit value. This causes the value
387 /// to saturate to the limit.
388 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
389 return (getActiveBits() > 64 || getZExtValue() > Limit) ?
390 Limit : getZExtValue();
391 }
392
393 /// @}
394 /// @name Value Generators
395 /// @{
396 /// @brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)397 static APInt getMaxValue(unsigned numBits) {
398 return getAllOnesValue(numBits);
399 }
400
401 /// @brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)402 static APInt getSignedMaxValue(unsigned numBits) {
403 APInt API = getAllOnesValue(numBits);
404 API.clearBit(numBits - 1);
405 return API;
406 }
407
408 /// @brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)409 static APInt getMinValue(unsigned numBits) {
410 return APInt(numBits, 0);
411 }
412
413 /// @brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)414 static APInt getSignedMinValue(unsigned numBits) {
415 APInt API(numBits, 0);
416 API.setBit(numBits - 1);
417 return API;
418 }
419
420 /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
421 /// it helps code readability when we want to get a SignBit.
422 /// @brief Get the SignBit for a specific bit width.
getSignBit(unsigned BitWidth)423 static APInt getSignBit(unsigned BitWidth) {
424 return getSignedMinValue(BitWidth);
425 }
426
427 /// @returns the all-ones value for an APInt of the specified bit-width.
428 /// @brief Get the all-ones value.
getAllOnesValue(unsigned numBits)429 static APInt getAllOnesValue(unsigned numBits) {
430 return APInt(numBits, -1ULL, true);
431 }
432
433 /// @returns the '0' value for an APInt of the specified bit-width.
434 /// @brief Get the '0' value.
getNullValue(unsigned numBits)435 static APInt getNullValue(unsigned numBits) {
436 return APInt(numBits, 0);
437 }
438
439 /// Get an APInt with the same BitWidth as this APInt, just zero mask
440 /// the low bits and right shift to the least significant bit.
441 /// @returns the high "numBits" bits of this APInt.
442 APInt getHiBits(unsigned numBits) const;
443
444 /// Get an APInt with the same BitWidth as this APInt, just zero mask
445 /// the high bits.
446 /// @returns the low "numBits" bits of this APInt.
447 APInt getLoBits(unsigned numBits) const;
448
449 /// getOneBitSet - Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)450 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
451 APInt Res(numBits, 0);
452 Res.setBit(BitNo);
453 return Res;
454 }
455
456 /// Constructs an APInt value that has a contiguous range of bits set. The
457 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
458 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
459 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
460 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
461 /// @param numBits the intended bit width of the result
462 /// @param loBit the index of the lowest bit set.
463 /// @param hiBit the index of the highest bit set.
464 /// @returns An APInt value with the requested bits set.
465 /// @brief Get a value with a block of bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)466 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
467 assert(hiBit <= numBits && "hiBit out of range");
468 assert(loBit < numBits && "loBit out of range");
469 if (hiBit < loBit)
470 return getLowBitsSet(numBits, hiBit) |
471 getHighBitsSet(numBits, numBits-loBit);
472 return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
473 }
474
475 /// Constructs an APInt value that has the top hiBitsSet bits set.
476 /// @param numBits the bitwidth of the result
477 /// @param hiBitsSet the number of high-order bits set in the result.
478 /// @brief Get a value with high bits set
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)479 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
480 assert(hiBitsSet <= numBits && "Too many bits to set!");
481 // Handle a degenerate case, to avoid shifting by word size
482 if (hiBitsSet == 0)
483 return APInt(numBits, 0);
484 unsigned shiftAmt = numBits - hiBitsSet;
485 // For small values, return quickly
486 if (numBits <= APINT_BITS_PER_WORD)
487 return APInt(numBits, ~0ULL << shiftAmt);
488 return getAllOnesValue(numBits).shl(shiftAmt);
489 }
490
491 /// Constructs an APInt value that has the bottom loBitsSet bits set.
492 /// @param numBits the bitwidth of the result
493 /// @param loBitsSet the number of low-order bits set in the result.
494 /// @brief Get a value with low bits set
getLowBitsSet(unsigned numBits,unsigned loBitsSet)495 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
496 assert(loBitsSet <= numBits && "Too many bits to set!");
497 // Handle a degenerate case, to avoid shifting by word size
498 if (loBitsSet == 0)
499 return APInt(numBits, 0);
500 if (loBitsSet == APINT_BITS_PER_WORD)
501 return APInt(numBits, -1ULL);
502 // For small values, return quickly.
503 if (loBitsSet <= APINT_BITS_PER_WORD)
504 return APInt(numBits, -1ULL >> (APINT_BITS_PER_WORD - loBitsSet));
505 return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
506 }
507
508 /// \brief Determine if two APInts have the same value, after zero-extending
509 /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)510 static bool isSameValue(const APInt &I1, const APInt &I2) {
511 if (I1.getBitWidth() == I2.getBitWidth())
512 return I1 == I2;
513
514 if (I1.getBitWidth() > I2.getBitWidth())
515 return I1 == I2.zext(I1.getBitWidth());
516
517 return I1.zext(I2.getBitWidth()) == I2;
518 }
519
520 /// \brief Overload to compute a hash_code for an APInt value.
521 friend hash_code hash_value(const APInt &Arg);
522
523 /// This function returns a pointer to the internal storage of the APInt.
524 /// This is useful for writing out the APInt in binary form without any
525 /// conversions.
getRawData()526 const uint64_t* getRawData() const {
527 if (isSingleWord())
528 return &VAL;
529 return &pVal[0];
530 }
531
532 /// @}
533 /// @name Unary Operators
534 /// @{
535 /// @returns a new APInt value representing *this incremented by one
536 /// @brief Postfix increment operator.
537 const APInt operator++(int) {
538 APInt API(*this);
539 ++(*this);
540 return API;
541 }
542
543 /// @returns *this incremented by one
544 /// @brief Prefix increment operator.
545 APInt& operator++();
546
547 /// @returns a new APInt representing *this decremented by one.
548 /// @brief Postfix decrement operator.
549 const APInt operator--(int) {
550 APInt API(*this);
551 --(*this);
552 return API;
553 }
554
555 /// @returns *this decremented by one.
556 /// @brief Prefix decrement operator.
557 APInt& operator--();
558
559 /// Performs a bitwise complement operation on this APInt.
560 /// @returns an APInt that is the bitwise complement of *this
561 /// @brief Unary bitwise complement operator.
562 APInt operator~() const {
563 APInt Result(*this);
564 Result.flipAllBits();
565 return Result;
566 }
567
568 /// Negates *this using two's complement logic.
569 /// @returns An APInt value representing the negation of *this.
570 /// @brief Unary negation operator
571 APInt operator-() const {
572 return APInt(BitWidth, 0) - (*this);
573 }
574
575 /// Performs logical negation operation on this APInt.
576 /// @returns true if *this is zero, false otherwise.
577 /// @brief Logical negation operator.
578 bool operator!() const {
579 if (isSingleWord())
580 return !VAL;
581
582 for (unsigned i = 0; i != getNumWords(); ++i)
583 if (pVal[i])
584 return false;
585 return true;
586 }
587
588 /// @}
589 /// @name Assignment Operators
590 /// @{
591 /// @returns *this after assignment of RHS.
592 /// @brief Copy assignment operator.
593 APInt& operator=(const APInt& RHS) {
594 // If the bitwidths are the same, we can avoid mucking with memory
595 if (isSingleWord() && RHS.isSingleWord()) {
596 VAL = RHS.VAL;
597 BitWidth = RHS.BitWidth;
598 return clearUnusedBits();
599 }
600
601 return AssignSlowCase(RHS);
602 }
603
604 #if LLVM_USE_RVALUE_REFERENCES
605 /// @brief Move assignment operator.
606 APInt& operator=(APInt&& that) {
607 if (!isSingleWord())
608 delete [] pVal;
609
610 BitWidth = that.BitWidth;
611 VAL = that.VAL;
612
613 that.BitWidth = 0;
614
615 return *this;
616 }
617 #endif
618
619 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
620 /// the bit width, the excess bits are truncated. If the bit width is larger
621 /// than 64, the value is zero filled in the unspecified high order bits.
622 /// @returns *this after assignment of RHS value.
623 /// @brief Assignment operator.
624 APInt& operator=(uint64_t RHS);
625
626 /// Performs a bitwise AND operation on this APInt and RHS. The result is
627 /// assigned to *this.
628 /// @returns *this after ANDing with RHS.
629 /// @brief Bitwise AND assignment operator.
630 APInt& operator&=(const APInt& RHS);
631
632 /// Performs a bitwise OR operation on this APInt and RHS. The result is
633 /// assigned *this;
634 /// @returns *this after ORing with RHS.
635 /// @brief Bitwise OR assignment operator.
636 APInt& operator|=(const APInt& RHS);
637
638 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
639 /// logically zero-extended or truncated to match the bit-width of
640 /// the LHS.
641 ///
642 /// @brief Bitwise OR assignment operator.
643 APInt& operator|=(uint64_t RHS) {
644 if (isSingleWord()) {
645 VAL |= RHS;
646 clearUnusedBits();
647 } else {
648 pVal[0] |= RHS;
649 }
650 return *this;
651 }
652
653 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
654 /// assigned to *this.
655 /// @returns *this after XORing with RHS.
656 /// @brief Bitwise XOR assignment operator.
657 APInt& operator^=(const APInt& RHS);
658
659 /// Multiplies this APInt by RHS and assigns the result to *this.
660 /// @returns *this
661 /// @brief Multiplication assignment operator.
662 APInt& operator*=(const APInt& RHS);
663
664 /// Adds RHS to *this and assigns the result to *this.
665 /// @returns *this
666 /// @brief Addition assignment operator.
667 APInt& operator+=(const APInt& RHS);
668
669 /// Subtracts RHS from *this and assigns the result to *this.
670 /// @returns *this
671 /// @brief Subtraction assignment operator.
672 APInt& operator-=(const APInt& RHS);
673
674 /// Shifts *this left by shiftAmt and assigns the result to *this.
675 /// @returns *this after shifting left by shiftAmt
676 /// @brief Left-shift assignment function.
677 APInt& operator<<=(unsigned shiftAmt) {
678 *this = shl(shiftAmt);
679 return *this;
680 }
681
682 /// @}
683 /// @name Binary Operators
684 /// @{
685 /// Performs a bitwise AND operation on *this and RHS.
686 /// @returns An APInt value representing the bitwise AND of *this and RHS.
687 /// @brief Bitwise AND operator.
688 APInt operator&(const APInt& RHS) const {
689 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
690 if (isSingleWord())
691 return APInt(getBitWidth(), VAL & RHS.VAL);
692 return AndSlowCase(RHS);
693 }
And(const APInt & RHS)694 APInt And(const APInt& RHS) const {
695 return this->operator&(RHS);
696 }
697
698 /// Performs a bitwise OR operation on *this and RHS.
699 /// @returns An APInt value representing the bitwise OR of *this and RHS.
700 /// @brief Bitwise OR operator.
701 APInt operator|(const APInt& RHS) const {
702 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
703 if (isSingleWord())
704 return APInt(getBitWidth(), VAL | RHS.VAL);
705 return OrSlowCase(RHS);
706 }
Or(const APInt & RHS)707 APInt Or(const APInt& RHS) const {
708 return this->operator|(RHS);
709 }
710
711 /// Performs a bitwise XOR operation on *this and RHS.
712 /// @returns An APInt value representing the bitwise XOR of *this and RHS.
713 /// @brief Bitwise XOR operator.
714 APInt operator^(const APInt& RHS) const {
715 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
716 if (isSingleWord())
717 return APInt(BitWidth, VAL ^ RHS.VAL);
718 return XorSlowCase(RHS);
719 }
Xor(const APInt & RHS)720 APInt Xor(const APInt& RHS) const {
721 return this->operator^(RHS);
722 }
723
724 /// Multiplies this APInt by RHS and returns the result.
725 /// @brief Multiplication operator.
726 APInt operator*(const APInt& RHS) const;
727
728 /// Adds RHS to this APInt and returns the result.
729 /// @brief Addition operator.
730 APInt operator+(const APInt& RHS) const;
731 APInt operator+(uint64_t RHS) const {
732 return (*this) + APInt(BitWidth, RHS);
733 }
734
735 /// Subtracts RHS from this APInt and returns the result.
736 /// @brief Subtraction operator.
737 APInt operator-(const APInt& RHS) const;
738 APInt operator-(uint64_t RHS) const {
739 return (*this) - APInt(BitWidth, RHS);
740 }
741
742 APInt operator<<(unsigned Bits) const {
743 return shl(Bits);
744 }
745
746 APInt operator<<(const APInt &Bits) const {
747 return shl(Bits);
748 }
749
750 /// Arithmetic right-shift this APInt by shiftAmt.
751 /// @brief Arithmetic right-shift function.
752 APInt ashr(unsigned shiftAmt) const;
753
754 /// Logical right-shift this APInt by shiftAmt.
755 /// @brief Logical right-shift function.
756 APInt lshr(unsigned shiftAmt) const;
757
758 /// Left-shift this APInt by shiftAmt.
759 /// @brief Left-shift function.
shl(unsigned shiftAmt)760 APInt shl(unsigned shiftAmt) const {
761 assert(shiftAmt <= BitWidth && "Invalid shift amount");
762 if (isSingleWord()) {
763 if (shiftAmt == BitWidth)
764 return APInt(BitWidth, 0); // avoid undefined shift results
765 return APInt(BitWidth, VAL << shiftAmt);
766 }
767 return shlSlowCase(shiftAmt);
768 }
769
770 /// @brief Rotate left by rotateAmt.
771 APInt rotl(unsigned rotateAmt) const;
772
773 /// @brief Rotate right by rotateAmt.
774 APInt rotr(unsigned rotateAmt) const;
775
776 /// Arithmetic right-shift this APInt by shiftAmt.
777 /// @brief Arithmetic right-shift function.
778 APInt ashr(const APInt &shiftAmt) const;
779
780 /// Logical right-shift this APInt by shiftAmt.
781 /// @brief Logical right-shift function.
782 APInt lshr(const APInt &shiftAmt) const;
783
784 /// Left-shift this APInt by shiftAmt.
785 /// @brief Left-shift function.
786 APInt shl(const APInt &shiftAmt) const;
787
788 /// @brief Rotate left by rotateAmt.
789 APInt rotl(const APInt &rotateAmt) const;
790
791 /// @brief Rotate right by rotateAmt.
792 APInt rotr(const APInt &rotateAmt) const;
793
794 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
795 /// RHS are treated as unsigned quantities for purposes of this division.
796 /// @returns a new APInt value containing the division result
797 /// @brief Unsigned division operation.
798 APInt udiv(const APInt &RHS) const;
799
800 /// Signed divide this APInt by APInt RHS.
801 /// @brief Signed division function for APInt.
sdiv(const APInt & RHS)802 APInt sdiv(const APInt &RHS) const {
803 if (isNegative())
804 if (RHS.isNegative())
805 return (-(*this)).udiv(-RHS);
806 else
807 return -((-(*this)).udiv(RHS));
808 else if (RHS.isNegative())
809 return -(this->udiv(-RHS));
810 return this->udiv(RHS);
811 }
812
813 /// Perform an unsigned remainder operation on this APInt with RHS being the
814 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
815 /// of this operation. Note that this is a true remainder operation and not
816 /// a modulo operation because the sign follows the sign of the dividend
817 /// which is *this.
818 /// @returns a new APInt value containing the remainder result
819 /// @brief Unsigned remainder operation.
820 APInt urem(const APInt &RHS) const;
821
822 /// Signed remainder operation on APInt.
823 /// @brief Function for signed remainder operation.
srem(const APInt & RHS)824 APInt srem(const APInt &RHS) const {
825 if (isNegative())
826 if (RHS.isNegative())
827 return -((-(*this)).urem(-RHS));
828 else
829 return -((-(*this)).urem(RHS));
830 else if (RHS.isNegative())
831 return this->urem(-RHS);
832 return this->urem(RHS);
833 }
834
835 /// Sometimes it is convenient to divide two APInt values and obtain both the
836 /// quotient and remainder. This function does both operations in the same
837 /// computation making it a little more efficient. The pair of input arguments
838 /// may overlap with the pair of output arguments. It is safe to call
839 /// udivrem(X, Y, X, Y), for example.
840 /// @brief Dual division/remainder interface.
841 static void udivrem(const APInt &LHS, const APInt &RHS,
842 APInt &Quotient, APInt &Remainder);
843
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)844 static void sdivrem(const APInt &LHS, const APInt &RHS,
845 APInt &Quotient, APInt &Remainder) {
846 if (LHS.isNegative()) {
847 if (RHS.isNegative())
848 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
849 else {
850 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
851 Quotient = -Quotient;
852 }
853 Remainder = -Remainder;
854 } else if (RHS.isNegative()) {
855 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
856 Quotient = -Quotient;
857 } else {
858 APInt::udivrem(LHS, RHS, Quotient, Remainder);
859 }
860 }
861
862
863 // Operations that return overflow indicators.
864 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
865 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
866 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
867 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
868 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
869 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
870 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
871 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
872
873 /// @returns the bit value at bitPosition
874 /// @brief Array-indexing support.
875 bool operator[](unsigned bitPosition) const {
876 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
877 return (maskBit(bitPosition) &
878 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
879 }
880
881 /// @}
882 /// @name Comparison Operators
883 /// @{
884 /// Compares this APInt with RHS for the validity of the equality
885 /// relationship.
886 /// @brief Equality operator.
887 bool operator==(const APInt& RHS) const {
888 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
889 if (isSingleWord())
890 return VAL == RHS.VAL;
891 return EqualSlowCase(RHS);
892 }
893
894 /// Compares this APInt with a uint64_t for the validity of the equality
895 /// relationship.
896 /// @returns true if *this == Val
897 /// @brief Equality operator.
898 bool operator==(uint64_t Val) const {
899 if (isSingleWord())
900 return VAL == Val;
901 return EqualSlowCase(Val);
902 }
903
904 /// Compares this APInt with RHS for the validity of the equality
905 /// relationship.
906 /// @returns true if *this == Val
907 /// @brief Equality comparison.
eq(const APInt & RHS)908 bool eq(const APInt &RHS) const {
909 return (*this) == RHS;
910 }
911
912 /// Compares this APInt with RHS for the validity of the inequality
913 /// relationship.
914 /// @returns true if *this != Val
915 /// @brief Inequality operator.
916 bool operator!=(const APInt& RHS) const {
917 return !((*this) == RHS);
918 }
919
920 /// Compares this APInt with a uint64_t for the validity of the inequality
921 /// relationship.
922 /// @returns true if *this != Val
923 /// @brief Inequality operator.
924 bool operator!=(uint64_t Val) const {
925 return !((*this) == Val);
926 }
927
928 /// Compares this APInt with RHS for the validity of the inequality
929 /// relationship.
930 /// @returns true if *this != Val
931 /// @brief Inequality comparison
ne(const APInt & RHS)932 bool ne(const APInt &RHS) const {
933 return !((*this) == RHS);
934 }
935
936 /// Regards both *this and RHS as unsigned quantities and compares them for
937 /// the validity of the less-than relationship.
938 /// @returns true if *this < RHS when both are considered unsigned.
939 /// @brief Unsigned less than comparison
940 bool ult(const APInt &RHS) const;
941
942 /// Regards both *this as an unsigned quantity and compares it with RHS for
943 /// the validity of the less-than relationship.
944 /// @returns true if *this < RHS when considered unsigned.
945 /// @brief Unsigned less than comparison
ult(uint64_t RHS)946 bool ult(uint64_t RHS) const {
947 return ult(APInt(getBitWidth(), RHS));
948 }
949
950 /// Regards both *this and RHS as signed quantities and compares them for
951 /// validity of the less-than relationship.
952 /// @returns true if *this < RHS when both are considered signed.
953 /// @brief Signed less than comparison
954 bool slt(const APInt& RHS) const;
955
956 /// Regards both *this as a signed quantity and compares it with RHS for
957 /// the validity of the less-than relationship.
958 /// @returns true if *this < RHS when considered signed.
959 /// @brief Signed less than comparison
slt(uint64_t RHS)960 bool slt(uint64_t RHS) const {
961 return slt(APInt(getBitWidth(), RHS));
962 }
963
964 /// Regards both *this and RHS as unsigned quantities and compares them for
965 /// validity of the less-or-equal relationship.
966 /// @returns true if *this <= RHS when both are considered unsigned.
967 /// @brief Unsigned less or equal comparison
ule(const APInt & RHS)968 bool ule(const APInt& RHS) const {
969 return ult(RHS) || eq(RHS);
970 }
971
972 /// Regards both *this as an unsigned quantity and compares it with RHS for
973 /// the validity of the less-or-equal relationship.
974 /// @returns true if *this <= RHS when considered unsigned.
975 /// @brief Unsigned less or equal comparison
ule(uint64_t RHS)976 bool ule(uint64_t RHS) const {
977 return ule(APInt(getBitWidth(), RHS));
978 }
979
980 /// Regards both *this and RHS as signed quantities and compares them for
981 /// validity of the less-or-equal relationship.
982 /// @returns true if *this <= RHS when both are considered signed.
983 /// @brief Signed less or equal comparison
sle(const APInt & RHS)984 bool sle(const APInt& RHS) const {
985 return slt(RHS) || eq(RHS);
986 }
987
988 /// Regards both *this as a signed quantity and compares it with RHS for
989 /// the validity of the less-or-equal relationship.
990 /// @returns true if *this <= RHS when considered signed.
991 /// @brief Signed less or equal comparison
sle(uint64_t RHS)992 bool sle(uint64_t RHS) const {
993 return sle(APInt(getBitWidth(), RHS));
994 }
995
996 /// Regards both *this and RHS as unsigned quantities and compares them for
997 /// the validity of the greater-than relationship.
998 /// @returns true if *this > RHS when both are considered unsigned.
999 /// @brief Unsigned greather than comparison
ugt(const APInt & RHS)1000 bool ugt(const APInt& RHS) const {
1001 return !ult(RHS) && !eq(RHS);
1002 }
1003
1004 /// Regards both *this as an unsigned quantity and compares it with RHS for
1005 /// the validity of the greater-than relationship.
1006 /// @returns true if *this > RHS when considered unsigned.
1007 /// @brief Unsigned greater than comparison
ugt(uint64_t RHS)1008 bool ugt(uint64_t RHS) const {
1009 return ugt(APInt(getBitWidth(), RHS));
1010 }
1011
1012 /// Regards both *this and RHS as signed quantities and compares them for
1013 /// the validity of the greater-than relationship.
1014 /// @returns true if *this > RHS when both are considered signed.
1015 /// @brief Signed greather than comparison
sgt(const APInt & RHS)1016 bool sgt(const APInt& RHS) const {
1017 return !slt(RHS) && !eq(RHS);
1018 }
1019
1020 /// Regards both *this as a signed quantity and compares it with RHS for
1021 /// the validity of the greater-than relationship.
1022 /// @returns true if *this > RHS when considered signed.
1023 /// @brief Signed greater than comparison
sgt(uint64_t RHS)1024 bool sgt(uint64_t RHS) const {
1025 return sgt(APInt(getBitWidth(), RHS));
1026 }
1027
1028 /// Regards both *this and RHS as unsigned quantities and compares them for
1029 /// validity of the greater-or-equal relationship.
1030 /// @returns true if *this >= RHS when both are considered unsigned.
1031 /// @brief Unsigned greater or equal comparison
uge(const APInt & RHS)1032 bool uge(const APInt& RHS) const {
1033 return !ult(RHS);
1034 }
1035
1036 /// Regards both *this as an unsigned quantity and compares it with RHS for
1037 /// the validity of the greater-or-equal relationship.
1038 /// @returns true if *this >= RHS when considered unsigned.
1039 /// @brief Unsigned greater or equal comparison
uge(uint64_t RHS)1040 bool uge(uint64_t RHS) const {
1041 return uge(APInt(getBitWidth(), RHS));
1042 }
1043
1044 /// Regards both *this and RHS as signed quantities and compares them for
1045 /// validity of the greater-or-equal relationship.
1046 /// @returns true if *this >= RHS when both are considered signed.
1047 /// @brief Signed greather or equal comparison
sge(const APInt & RHS)1048 bool sge(const APInt& RHS) const {
1049 return !slt(RHS);
1050 }
1051
1052 /// Regards both *this as a signed quantity and compares it with RHS for
1053 /// the validity of the greater-or-equal relationship.
1054 /// @returns true if *this >= RHS when considered signed.
1055 /// @brief Signed greater or equal comparison
sge(uint64_t RHS)1056 bool sge(uint64_t RHS) const {
1057 return sge(APInt(getBitWidth(), RHS));
1058 }
1059
1060
1061
1062
1063 /// This operation tests if there are any pairs of corresponding bits
1064 /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1065 bool intersects(const APInt &RHS) const {
1066 return (*this & RHS) != 0;
1067 }
1068
1069 /// @}
1070 /// @name Resizing Operators
1071 /// @{
1072 /// Truncate the APInt to a specified width. It is an error to specify a width
1073 /// that is greater than or equal to the current width.
1074 /// @brief Truncate to new width.
1075 APInt trunc(unsigned width) const;
1076
1077 /// This operation sign extends the APInt to a new width. If the high order
1078 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1079 /// It is an error to specify a width that is less than or equal to the
1080 /// current width.
1081 /// @brief Sign extend to a new width.
1082 APInt sext(unsigned width) const;
1083
1084 /// This operation zero extends the APInt to a new width. The high order bits
1085 /// are filled with 0 bits. It is an error to specify a width that is less
1086 /// than or equal to the current width.
1087 /// @brief Zero extend to a new width.
1088 APInt zext(unsigned width) const;
1089
1090 /// Make this APInt have the bit width given by \p width. The value is sign
1091 /// extended, truncated, or left alone to make it that width.
1092 /// @brief Sign extend or truncate to width
1093 APInt sextOrTrunc(unsigned width) const;
1094
1095 /// Make this APInt have the bit width given by \p width. The value is zero
1096 /// extended, truncated, or left alone to make it that width.
1097 /// @brief Zero extend or truncate to width
1098 APInt zextOrTrunc(unsigned width) const;
1099
1100 /// Make this APInt have the bit width given by \p width. The value is sign
1101 /// extended, or left alone to make it that width.
1102 /// @brief Sign extend or truncate to width
1103 APInt sextOrSelf(unsigned width) const;
1104
1105 /// Make this APInt have the bit width given by \p width. The value is zero
1106 /// extended, or left alone to make it that width.
1107 /// @brief Zero extend or truncate to width
1108 APInt zextOrSelf(unsigned width) const;
1109
1110 /// @}
1111 /// @name Bit Manipulation Operators
1112 /// @{
1113 /// @brief Set every bit to 1.
setAllBits()1114 void setAllBits() {
1115 if (isSingleWord())
1116 VAL = -1ULL;
1117 else {
1118 // Set all the bits in all the words.
1119 for (unsigned i = 0; i < getNumWords(); ++i)
1120 pVal[i] = -1ULL;
1121 }
1122 // Clear the unused ones
1123 clearUnusedBits();
1124 }
1125
1126 /// Set the given bit to 1 whose position is given as "bitPosition".
1127 /// @brief Set a given bit to 1.
1128 void setBit(unsigned bitPosition);
1129
1130 /// @brief Set every bit to 0.
clearAllBits()1131 void clearAllBits() {
1132 if (isSingleWord())
1133 VAL = 0;
1134 else
1135 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1136 }
1137
1138 /// Set the given bit to 0 whose position is given as "bitPosition".
1139 /// @brief Set a given bit to 0.
1140 void clearBit(unsigned bitPosition);
1141
1142 /// @brief Toggle every bit to its opposite value.
flipAllBits()1143 void flipAllBits() {
1144 if (isSingleWord())
1145 VAL ^= -1ULL;
1146 else {
1147 for (unsigned i = 0; i < getNumWords(); ++i)
1148 pVal[i] ^= -1ULL;
1149 }
1150 clearUnusedBits();
1151 }
1152
1153 /// Toggle a given bit to its opposite value whose position is given
1154 /// as "bitPosition".
1155 /// @brief Toggles a given bit to its opposite value.
1156 void flipBit(unsigned bitPosition);
1157
1158 /// @}
1159 /// @name Value Characterization Functions
1160 /// @{
1161
1162 /// @returns the total number of bits.
getBitWidth()1163 unsigned getBitWidth() const {
1164 return BitWidth;
1165 }
1166
1167 /// Here one word's bitwidth equals to that of uint64_t.
1168 /// @returns the number of words to hold the integer value of this APInt.
1169 /// @brief Get the number of words.
getNumWords()1170 unsigned getNumWords() const {
1171 return getNumWords(BitWidth);
1172 }
1173
1174 /// Here one word's bitwidth equals to that of uint64_t.
1175 /// @returns the number of words to hold the integer value with a
1176 /// given bit width.
1177 /// @brief Get the number of words.
getNumWords(unsigned BitWidth)1178 static unsigned getNumWords(unsigned BitWidth) {
1179 return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1180 }
1181
1182 /// This function returns the number of active bits which is defined as the
1183 /// bit width minus the number of leading zeros. This is used in several
1184 /// computations to see how "wide" the value is.
1185 /// @brief Compute the number of active bits in the value
getActiveBits()1186 unsigned getActiveBits() const {
1187 return BitWidth - countLeadingZeros();
1188 }
1189
1190 /// This function returns the number of active words in the value of this
1191 /// APInt. This is used in conjunction with getActiveData to extract the raw
1192 /// value of the APInt.
getActiveWords()1193 unsigned getActiveWords() const {
1194 return whichWord(getActiveBits()-1) + 1;
1195 }
1196
1197 /// Computes the minimum bit width for this APInt while considering it to be
1198 /// a signed (and probably negative) value. If the value is not negative,
1199 /// this function returns the same value as getActiveBits()+1. Otherwise, it
1200 /// returns the smallest bit width that will retain the negative value. For
1201 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1202 /// for -1, this function will always return 1.
1203 /// @brief Get the minimum bit size for this signed APInt
getMinSignedBits()1204 unsigned getMinSignedBits() const {
1205 if (isNegative())
1206 return BitWidth - countLeadingOnes() + 1;
1207 return getActiveBits()+1;
1208 }
1209
1210 /// This method attempts to return the value of this APInt as a zero extended
1211 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1212 /// uint64_t. Otherwise an assertion will result.
1213 /// @brief Get zero extended value
getZExtValue()1214 uint64_t getZExtValue() const {
1215 if (isSingleWord())
1216 return VAL;
1217 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1218 return pVal[0];
1219 }
1220
1221 /// This method attempts to return the value of this APInt as a sign extended
1222 /// int64_t. The bit width must be <= 64 or the value must fit within an
1223 /// int64_t. Otherwise an assertion will result.
1224 /// @brief Get sign extended value
getSExtValue()1225 int64_t getSExtValue() const {
1226 if (isSingleWord())
1227 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1228 (APINT_BITS_PER_WORD - BitWidth);
1229 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1230 return int64_t(pVal[0]);
1231 }
1232
1233 /// This method determines how many bits are required to hold the APInt
1234 /// equivalent of the string given by \arg str.
1235 /// @brief Get bits required for string value.
1236 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1237
1238 /// countLeadingZeros - This function is an APInt version of the
1239 /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1240 /// of zeros from the most significant bit to the first one bit.
1241 /// @returns BitWidth if the value is zero, otherwise
1242 /// returns the number of zeros from the most significant bit to the first
1243 /// one bits.
countLeadingZeros()1244 unsigned countLeadingZeros() const {
1245 if (isSingleWord()) {
1246 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1247 return CountLeadingZeros_64(VAL) - unusedBits;
1248 }
1249 return countLeadingZerosSlowCase();
1250 }
1251
1252 /// countLeadingOnes - This function is an APInt version of the
1253 /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1254 /// of ones from the most significant bit to the first zero bit.
1255 /// @returns 0 if the high order bit is not set, otherwise
1256 /// returns the number of 1 bits from the most significant to the least
1257 /// @brief Count the number of leading one bits.
1258 unsigned countLeadingOnes() const;
1259
1260 /// Computes the number of leading bits of this APInt that are equal to its
1261 /// sign bit.
getNumSignBits()1262 unsigned getNumSignBits() const {
1263 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1264 }
1265
1266 /// countTrailingZeros - This function is an APInt version of the
1267 /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1268 /// the number of zeros from the least significant bit to the first set bit.
1269 /// @returns BitWidth if the value is zero, otherwise
1270 /// returns the number of zeros from the least significant bit to the first
1271 /// one bit.
1272 /// @brief Count the number of trailing zero bits.
1273 unsigned countTrailingZeros() const;
1274
1275 /// countTrailingOnes - This function is an APInt version of the
1276 /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1277 /// the number of ones from the least significant bit to the first zero bit.
1278 /// @returns BitWidth if the value is all ones, otherwise
1279 /// returns the number of ones from the least significant bit to the first
1280 /// zero bit.
1281 /// @brief Count the number of trailing one bits.
countTrailingOnes()1282 unsigned countTrailingOnes() const {
1283 if (isSingleWord())
1284 return CountTrailingOnes_64(VAL);
1285 return countTrailingOnesSlowCase();
1286 }
1287
1288 /// countPopulation - This function is an APInt version of the
1289 /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1290 /// of 1 bits in the APInt value.
1291 /// @returns 0 if the value is zero, otherwise returns the number of set
1292 /// bits.
1293 /// @brief Count the number of bits set.
countPopulation()1294 unsigned countPopulation() const {
1295 if (isSingleWord())
1296 return CountPopulation_64(VAL);
1297 return countPopulationSlowCase();
1298 }
1299
1300 /// @}
1301 /// @name Conversion Functions
1302 /// @{
1303 void print(raw_ostream &OS, bool isSigned) const;
1304
1305 /// toString - Converts an APInt to a string and append it to Str. Str is
1306 /// commonly a SmallString.
1307 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1308 bool formatAsCLiteral = false) const;
1309
1310 /// Considers the APInt to be unsigned and converts it into a string in the
1311 /// radix given. The radix can be 2, 8, 10 16, or 36.
1312 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1313 toString(Str, Radix, false, false);
1314 }
1315
1316 /// Considers the APInt to be signed and converts it into a string in the
1317 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1318 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1319 toString(Str, Radix, true, false);
1320 }
1321
1322 /// toString - This returns the APInt as a std::string. Note that this is an
1323 /// inefficient method. It is better to pass in a SmallVector/SmallString
1324 /// to the methods above to avoid thrashing the heap for the string.
1325 std::string toString(unsigned Radix, bool Signed) const;
1326
1327
1328 /// @returns a byte-swapped representation of this APInt Value.
1329 APInt byteSwap() const;
1330
1331 /// @brief Converts this APInt to a double value.
1332 double roundToDouble(bool isSigned) const;
1333
1334 /// @brief Converts this unsigned APInt to a double value.
roundToDouble()1335 double roundToDouble() const {
1336 return roundToDouble(false);
1337 }
1338
1339 /// @brief Converts this signed APInt to a double value.
signedRoundToDouble()1340 double signedRoundToDouble() const {
1341 return roundToDouble(true);
1342 }
1343
1344 /// The conversion does not do a translation from integer to double, it just
1345 /// re-interprets the bits as a double. Note that it is valid to do this on
1346 /// any bit width. Exactly 64 bits will be translated.
1347 /// @brief Converts APInt bits to a double
bitsToDouble()1348 double bitsToDouble() const {
1349 union {
1350 uint64_t I;
1351 double D;
1352 } T;
1353 T.I = (isSingleWord() ? VAL : pVal[0]);
1354 return T.D;
1355 }
1356
1357 /// The conversion does not do a translation from integer to float, it just
1358 /// re-interprets the bits as a float. Note that it is valid to do this on
1359 /// any bit width. Exactly 32 bits will be translated.
1360 /// @brief Converts APInt bits to a double
bitsToFloat()1361 float bitsToFloat() const {
1362 union {
1363 unsigned I;
1364 float F;
1365 } T;
1366 T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1367 return T.F;
1368 }
1369
1370 /// The conversion does not do a translation from double to integer, it just
1371 /// re-interprets the bits of the double.
1372 /// @brief Converts a double to APInt bits.
doubleToBits(double V)1373 static APInt doubleToBits(double V) {
1374 union {
1375 uint64_t I;
1376 double D;
1377 } T;
1378 T.D = V;
1379 return APInt(sizeof T * CHAR_BIT, T.I);
1380 }
1381
1382 /// The conversion does not do a translation from float to integer, it just
1383 /// re-interprets the bits of the float.
1384 /// @brief Converts a float to APInt bits.
floatToBits(float V)1385 static APInt floatToBits(float V) {
1386 union {
1387 unsigned I;
1388 float F;
1389 } T;
1390 T.F = V;
1391 return APInt(sizeof T * CHAR_BIT, T.I);
1392 }
1393
1394 /// @}
1395 /// @name Mathematics Operations
1396 /// @{
1397
1398 /// @returns the floor log base 2 of this APInt.
logBase2()1399 unsigned logBase2() const {
1400 return BitWidth - 1 - countLeadingZeros();
1401 }
1402
1403 /// @returns the ceil log base 2 of this APInt.
ceilLogBase2()1404 unsigned ceilLogBase2() const {
1405 return BitWidth - (*this - 1).countLeadingZeros();
1406 }
1407
1408 /// @returns the log base 2 of this APInt if its an exact power of two, -1
1409 /// otherwise
exactLogBase2()1410 int32_t exactLogBase2() const {
1411 if (!isPowerOf2())
1412 return -1;
1413 return logBase2();
1414 }
1415
1416 /// @brief Compute the square root
1417 APInt sqrt() const;
1418
1419 /// If *this is < 0 then return -(*this), otherwise *this;
1420 /// @brief Get the absolute value;
abs()1421 APInt abs() const {
1422 if (isNegative())
1423 return -(*this);
1424 return *this;
1425 }
1426
1427 /// @returns the multiplicative inverse for a given modulo.
1428 APInt multiplicativeInverse(const APInt& modulo) const;
1429
1430 /// @}
1431 /// @name Support for division by constant
1432 /// @{
1433
1434 /// Calculate the magic number for signed division by a constant.
1435 struct ms;
1436 ms magic() const;
1437
1438 /// Calculate the magic number for unsigned division by a constant.
1439 struct mu;
1440 mu magicu(unsigned LeadingZeros = 0) const;
1441
1442 /// @}
1443 /// @name Building-block Operations for APInt and APFloat
1444 /// @{
1445
1446 // These building block operations operate on a representation of
1447 // arbitrary precision, two's-complement, bignum integer values.
1448 // They should be sufficient to implement APInt and APFloat bignum
1449 // requirements. Inputs are generally a pointer to the base of an
1450 // array of integer parts, representing an unsigned bignum, and a
1451 // count of how many parts there are.
1452
1453 /// Sets the least significant part of a bignum to the input value,
1454 /// and zeroes out higher parts. */
1455 static void tcSet(integerPart *, integerPart, unsigned int);
1456
1457 /// Assign one bignum to another.
1458 static void tcAssign(integerPart *, const integerPart *, unsigned int);
1459
1460 /// Returns true if a bignum is zero, false otherwise.
1461 static bool tcIsZero(const integerPart *, unsigned int);
1462
1463 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1464 static int tcExtractBit(const integerPart *, unsigned int bit);
1465
1466 /// Copy the bit vector of width srcBITS from SRC, starting at bit
1467 /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1468 /// becomes the least significant bit of DST. All high bits above
1469 /// srcBITS in DST are zero-filled.
1470 static void tcExtract(integerPart *, unsigned int dstCount,
1471 const integerPart *,
1472 unsigned int srcBits, unsigned int srcLSB);
1473
1474 /// Set the given bit of a bignum. Zero-based.
1475 static void tcSetBit(integerPart *, unsigned int bit);
1476
1477 /// Clear the given bit of a bignum. Zero-based.
1478 static void tcClearBit(integerPart *, unsigned int bit);
1479
1480 /// Returns the bit number of the least or most significant set bit
1481 /// of a number. If the input number has no bits set -1U is
1482 /// returned.
1483 static unsigned int tcLSB(const integerPart *, unsigned int);
1484 static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1485
1486 /// Negate a bignum in-place.
1487 static void tcNegate(integerPart *, unsigned int);
1488
1489 /// DST += RHS + CARRY where CARRY is zero or one. Returns the
1490 /// carry flag.
1491 static integerPart tcAdd(integerPart *, const integerPart *,
1492 integerPart carry, unsigned);
1493
1494 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the
1495 /// carry flag.
1496 static integerPart tcSubtract(integerPart *, const integerPart *,
1497 integerPart carry, unsigned);
1498
1499 /// DST += SRC * MULTIPLIER + PART if add is true
1500 /// DST = SRC * MULTIPLIER + PART if add is false
1501 ///
1502 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
1503 /// they must start at the same point, i.e. DST == SRC.
1504 ///
1505 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1506 /// returned. Otherwise DST is filled with the least significant
1507 /// DSTPARTS parts of the result, and if all of the omitted higher
1508 /// parts were zero return zero, otherwise overflow occurred and
1509 /// return one.
1510 static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1511 integerPart multiplier, integerPart carry,
1512 unsigned int srcParts, unsigned int dstParts,
1513 bool add);
1514
1515 /// DST = LHS * RHS, where DST has the same width as the operands
1516 /// and is filled with the least significant parts of the result.
1517 /// Returns one if overflow occurred, otherwise zero. DST must be
1518 /// disjoint from both operands.
1519 static int tcMultiply(integerPart *, const integerPart *,
1520 const integerPart *, unsigned);
1521
1522 /// DST = LHS * RHS, where DST has width the sum of the widths of
1523 /// the operands. No overflow occurs. DST must be disjoint from
1524 /// both operands. Returns the number of parts required to hold the
1525 /// result.
1526 static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1527 const integerPart *, unsigned, unsigned);
1528
1529 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1530 /// Otherwise set LHS to LHS / RHS with the fractional part
1531 /// discarded, set REMAINDER to the remainder, return zero. i.e.
1532 ///
1533 /// OLD_LHS = RHS * LHS + REMAINDER
1534 ///
1535 /// SCRATCH is a bignum of the same size as the operands and result
1536 /// for use by the routine; its contents need not be initialized
1537 /// and are destroyed. LHS, REMAINDER and SCRATCH must be
1538 /// distinct.
1539 static int tcDivide(integerPart *lhs, const integerPart *rhs,
1540 integerPart *remainder, integerPart *scratch,
1541 unsigned int parts);
1542
1543 /// Shift a bignum left COUNT bits. Shifted in bits are zero.
1544 /// There are no restrictions on COUNT.
1545 static void tcShiftLeft(integerPart *, unsigned int parts,
1546 unsigned int count);
1547
1548 /// Shift a bignum right COUNT bits. Shifted in bits are zero.
1549 /// There are no restrictions on COUNT.
1550 static void tcShiftRight(integerPart *, unsigned int parts,
1551 unsigned int count);
1552
1553 /// The obvious AND, OR and XOR and complement operations.
1554 static void tcAnd(integerPart *, const integerPart *, unsigned int);
1555 static void tcOr(integerPart *, const integerPart *, unsigned int);
1556 static void tcXor(integerPart *, const integerPart *, unsigned int);
1557 static void tcComplement(integerPart *, unsigned int);
1558
1559 /// Comparison (unsigned) of two bignums.
1560 static int tcCompare(const integerPart *, const integerPart *,
1561 unsigned int);
1562
1563 /// Increment a bignum in-place. Return the carry flag.
1564 static integerPart tcIncrement(integerPart *, unsigned int);
1565
1566 /// Set the least significant BITS and clear the rest.
1567 static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1568 unsigned int bits);
1569
1570 /// @brief debug method
1571 void dump() const;
1572
1573 /// @}
1574 };
1575
1576 /// Magic data for optimising signed division by a constant.
1577 struct APInt::ms {
1578 APInt m; ///< magic number
1579 unsigned s; ///< shift amount
1580 };
1581
1582 /// Magic data for optimising unsigned division by a constant.
1583 struct APInt::mu {
1584 APInt m; ///< magic number
1585 bool a; ///< add indicator
1586 unsigned s; ///< shift amount
1587 };
1588
1589 inline bool operator==(uint64_t V1, const APInt& V2) {
1590 return V2 == V1;
1591 }
1592
1593 inline bool operator!=(uint64_t V1, const APInt& V2) {
1594 return V2 != V1;
1595 }
1596
1597 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1598 I.print(OS, true);
1599 return OS;
1600 }
1601
1602 namespace APIntOps {
1603
1604 /// @brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1605 inline APInt smin(const APInt &A, const APInt &B) {
1606 return A.slt(B) ? A : B;
1607 }
1608
1609 /// @brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1610 inline APInt smax(const APInt &A, const APInt &B) {
1611 return A.sgt(B) ? A : B;
1612 }
1613
1614 /// @brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1615 inline APInt umin(const APInt &A, const APInt &B) {
1616 return A.ult(B) ? A : B;
1617 }
1618
1619 /// @brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1620 inline APInt umax(const APInt &A, const APInt &B) {
1621 return A.ugt(B) ? A : B;
1622 }
1623
1624 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1625 inline bool isIntN(unsigned N, const APInt& APIVal) {
1626 return APIVal.isIntN(N);
1627 }
1628
1629 /// @brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1630 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1631 return APIVal.isSignedIntN(N);
1632 }
1633
1634 /// @returns true if the argument APInt value is a sequence of ones
1635 /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1636 inline bool isMask(unsigned numBits, const APInt& APIVal) {
1637 return numBits <= APIVal.getBitWidth() &&
1638 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1639 }
1640
1641 /// @returns true if the argument APInt value contains a sequence of ones
1642 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1643 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1644 return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1645 }
1646
1647 /// @returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1648 inline APInt byteSwap(const APInt& APIVal) {
1649 return APIVal.byteSwap();
1650 }
1651
1652 /// @returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1653 inline unsigned logBase2(const APInt& APIVal) {
1654 return APIVal.logBase2();
1655 }
1656
1657 /// GreatestCommonDivisor - This function returns the greatest common
1658 /// divisor of the two APInt values using Euclid's algorithm.
1659 /// @returns the greatest common divisor of Val1 and Val2
1660 /// @brief Compute GCD of two APInt values.
1661 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1662
1663 /// Treats the APInt as an unsigned value for conversion purposes.
1664 /// @brief Converts the given APInt to a double value.
RoundAPIntToDouble(const APInt & APIVal)1665 inline double RoundAPIntToDouble(const APInt& APIVal) {
1666 return APIVal.roundToDouble();
1667 }
1668
1669 /// Treats the APInt as a signed value for conversion purposes.
1670 /// @brief Converts the given APInt to a double value.
RoundSignedAPIntToDouble(const APInt & APIVal)1671 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1672 return APIVal.signedRoundToDouble();
1673 }
1674
1675 /// @brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1676 inline float RoundAPIntToFloat(const APInt& APIVal) {
1677 return float(RoundAPIntToDouble(APIVal));
1678 }
1679
1680 /// Treast the APInt as a signed value for conversion purposes.
1681 /// @brief Converts the given APInt to a float value.
RoundSignedAPIntToFloat(const APInt & APIVal)1682 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1683 return float(APIVal.signedRoundToDouble());
1684 }
1685
1686 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1687 /// @brief Converts the given double value into a APInt.
1688 APInt RoundDoubleToAPInt(double Double, unsigned width);
1689
1690 /// RoundFloatToAPInt - Converts a float value into an APInt value.
1691 /// @brief Converts a float value into a APInt.
RoundFloatToAPInt(float Float,unsigned width)1692 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1693 return RoundDoubleToAPInt(double(Float), width);
1694 }
1695
1696 /// Arithmetic right-shift the APInt by shiftAmt.
1697 /// @brief Arithmetic right-shift function.
ashr(const APInt & LHS,unsigned shiftAmt)1698 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1699 return LHS.ashr(shiftAmt);
1700 }
1701
1702 /// Logical right-shift the APInt by shiftAmt.
1703 /// @brief Logical right-shift function.
lshr(const APInt & LHS,unsigned shiftAmt)1704 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1705 return LHS.lshr(shiftAmt);
1706 }
1707
1708 /// Left-shift the APInt by shiftAmt.
1709 /// @brief Left-shift function.
shl(const APInt & LHS,unsigned shiftAmt)1710 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1711 return LHS.shl(shiftAmt);
1712 }
1713
1714 /// Signed divide APInt LHS by APInt RHS.
1715 /// @brief Signed division function for APInt.
sdiv(const APInt & LHS,const APInt & RHS)1716 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1717 return LHS.sdiv(RHS);
1718 }
1719
1720 /// Unsigned divide APInt LHS by APInt RHS.
1721 /// @brief Unsigned division function for APInt.
udiv(const APInt & LHS,const APInt & RHS)1722 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1723 return LHS.udiv(RHS);
1724 }
1725
1726 /// Signed remainder operation on APInt.
1727 /// @brief Function for signed remainder operation.
srem(const APInt & LHS,const APInt & RHS)1728 inline APInt srem(const APInt& LHS, const APInt& RHS) {
1729 return LHS.srem(RHS);
1730 }
1731
1732 /// Unsigned remainder operation on APInt.
1733 /// @brief Function for unsigned remainder operation.
urem(const APInt & LHS,const APInt & RHS)1734 inline APInt urem(const APInt& LHS, const APInt& RHS) {
1735 return LHS.urem(RHS);
1736 }
1737
1738 /// Performs multiplication on APInt values.
1739 /// @brief Function for multiplication operation.
mul(const APInt & LHS,const APInt & RHS)1740 inline APInt mul(const APInt& LHS, const APInt& RHS) {
1741 return LHS * RHS;
1742 }
1743
1744 /// Performs addition on APInt values.
1745 /// @brief Function for addition operation.
add(const APInt & LHS,const APInt & RHS)1746 inline APInt add(const APInt& LHS, const APInt& RHS) {
1747 return LHS + RHS;
1748 }
1749
1750 /// Performs subtraction on APInt values.
1751 /// @brief Function for subtraction operation.
sub(const APInt & LHS,const APInt & RHS)1752 inline APInt sub(const APInt& LHS, const APInt& RHS) {
1753 return LHS - RHS;
1754 }
1755
1756 /// Performs bitwise AND operation on APInt LHS and
1757 /// APInt RHS.
1758 /// @brief Bitwise AND function for APInt.
And(const APInt & LHS,const APInt & RHS)1759 inline APInt And(const APInt& LHS, const APInt& RHS) {
1760 return LHS & RHS;
1761 }
1762
1763 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
1764 /// @brief Bitwise OR function for APInt.
Or(const APInt & LHS,const APInt & RHS)1765 inline APInt Or(const APInt& LHS, const APInt& RHS) {
1766 return LHS | RHS;
1767 }
1768
1769 /// Performs bitwise XOR operation on APInt.
1770 /// @brief Bitwise XOR function for APInt.
Xor(const APInt & LHS,const APInt & RHS)1771 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1772 return LHS ^ RHS;
1773 }
1774
1775 /// Performs a bitwise complement operation on APInt.
1776 /// @brief Bitwise complement function.
Not(const APInt & APIVal)1777 inline APInt Not(const APInt& APIVal) {
1778 return ~APIVal;
1779 }
1780
1781 } // End of APIntOps namespace
1782
1783 } // End of llvm namespace
1784
1785 #endif
1786