• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integral
11 // constant values and operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_APINT_H
16 #define LLVM_APINT_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <climits>
23 #include <cstring>
24 #include <string>
25 
26 namespace llvm {
27   class Deserializer;
28   class FoldingSetNodeID;
29   class Serializer;
30   class StringRef;
31   class hash_code;
32   class raw_ostream;
33 
34   template<typename T>
35   class SmallVectorImpl;
36 
37   // An unsigned host type used as a single part of a multi-part
38   // bignum.
39   typedef uint64_t integerPart;
40 
41   const unsigned int host_char_bit = 8;
42   const unsigned int integerPartWidth = host_char_bit *
43     static_cast<unsigned int>(sizeof(integerPart));
44 
45 //===----------------------------------------------------------------------===//
46 //                              APInt Class
47 //===----------------------------------------------------------------------===//
48 
49 /// APInt - This class represents arbitrary precision constant integral values.
50 /// It is a functional replacement for common case unsigned integer type like
51 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
52 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
53 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
54 /// and methods to manipulate integer values of any bit-width. It supports both
55 /// the typical integer arithmetic and comparison operations as well as bitwise
56 /// manipulation.
57 ///
58 /// The class has several invariants worth noting:
59 ///   * All bit, byte, and word positions are zero-based.
60 ///   * Once the bit width is set, it doesn't change except by the Truncate,
61 ///     SignExtend, or ZeroExtend operations.
62 ///   * All binary operators must be on APInt instances of the same bit width.
63 ///     Attempting to use these operators on instances with different bit
64 ///     widths will yield an assertion.
65 ///   * The value is stored canonically as an unsigned value. For operations
66 ///     where it makes a difference, there are both signed and unsigned variants
67 ///     of the operation. For example, sdiv and udiv. However, because the bit
68 ///     widths must be the same, operations such as Mul and Add produce the same
69 ///     results regardless of whether the values are interpreted as signed or
70 ///     not.
71 ///   * In general, the class tries to follow the style of computation that LLVM
72 ///     uses in its IR. This simplifies its use for LLVM.
73 ///
74 /// @brief Class for arbitrary precision integers.
75 class APInt {
76   unsigned BitWidth;      ///< The number of bits in this APInt.
77 
78   /// This union is used to store the integer value. When the
79   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80   union {
81     uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
82     uint64_t *pVal;  ///< Used to store the >64 bits integer value.
83   };
84 
85   /// This enum is used to hold the constants we needed for APInt.
86   enum {
87     /// Bits in a word
88     APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
89                           CHAR_BIT,
90     /// Byte size of a word
91     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92   };
93 
94   /// This constructor is used only internally for speed of construction of
95   /// temporaries. It is unsafe for general use so it is not public.
96   /// @brief Fast internal constructor
APInt(uint64_t * val,unsigned bits)97   APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
98 
99   /// @returns true if the number of bits <= 64, false otherwise.
100   /// @brief Determine if this APInt just has one word to store value.
isSingleWord()101   bool isSingleWord() const {
102     return BitWidth <= APINT_BITS_PER_WORD;
103   }
104 
105   /// @returns the word position for the specified bit position.
106   /// @brief Determine which word a bit is in.
whichWord(unsigned bitPosition)107   static unsigned whichWord(unsigned bitPosition) {
108     return bitPosition / APINT_BITS_PER_WORD;
109   }
110 
111   /// @returns the bit position in a word for the specified bit position
112   /// in the APInt.
113   /// @brief Determine which bit in a word a bit is in.
whichBit(unsigned bitPosition)114   static unsigned whichBit(unsigned bitPosition) {
115     return bitPosition % APINT_BITS_PER_WORD;
116   }
117 
118   /// This method generates and returns a uint64_t (word) mask for a single
119   /// bit at a specific bit position. This is used to mask the bit in the
120   /// corresponding word.
121   /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
122   /// @brief Get a single bit mask.
maskBit(unsigned bitPosition)123   static uint64_t maskBit(unsigned bitPosition) {
124     return 1ULL << whichBit(bitPosition);
125   }
126 
127   /// This method is used internally to clear the to "N" bits in the high order
128   /// word that are not used by the APInt. This is needed after the most
129   /// significant word is assigned a value to ensure that those bits are
130   /// zero'd out.
131   /// @brief Clear unused high order bits
clearUnusedBits()132   APInt& clearUnusedBits() {
133     // Compute how many bits are used in the final word
134     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
135     if (wordBits == 0)
136       // If all bits are used, we want to leave the value alone. This also
137       // avoids the undefined behavior of >> when the shift is the same size as
138       // the word size (64).
139       return *this;
140 
141     // Mask out the high bits.
142     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
143     if (isSingleWord())
144       VAL &= mask;
145     else
146       pVal[getNumWords() - 1] &= mask;
147     return *this;
148   }
149 
150   /// @returns the corresponding word for the specified bit position.
151   /// @brief Get the word corresponding to a bit position
getWord(unsigned bitPosition)152   uint64_t getWord(unsigned bitPosition) const {
153     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
154   }
155 
156   /// Converts a string into a number.  The string must be non-empty
157   /// and well-formed as a number of the given base. The bit-width
158   /// must be sufficient to hold the result.
159   ///
160   /// This is used by the constructors that take string arguments.
161   ///
162   /// StringRef::getAsInteger is superficially similar but (1) does
163   /// not assume that the string is well-formed and (2) grows the
164   /// result to hold the input.
165   ///
166   /// @param radix 2, 8, 10, 16, or 36
167   /// @brief Convert a char array into an APInt
168   void fromString(unsigned numBits, StringRef str, uint8_t radix);
169 
170   /// This is used by the toString method to divide by the radix. It simply
171   /// provides a more convenient form of divide for internal use since KnuthDiv
172   /// has specific constraints on its inputs. If those constraints are not met
173   /// then it provides a simpler form of divide.
174   /// @brief An internal division function for dividing APInts.
175   static void divide(const APInt LHS, unsigned lhsWords,
176                      const APInt &RHS, unsigned rhsWords,
177                      APInt *Quotient, APInt *Remainder);
178 
179   /// out-of-line slow case for inline constructor
180   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
181 
182   /// shared code between two array constructors
183   void initFromArray(ArrayRef<uint64_t> array);
184 
185   /// out-of-line slow case for inline copy constructor
186   void initSlowCase(const APInt& that);
187 
188   /// out-of-line slow case for shl
189   APInt shlSlowCase(unsigned shiftAmt) const;
190 
191   /// out-of-line slow case for operator&
192   APInt AndSlowCase(const APInt& RHS) const;
193 
194   /// out-of-line slow case for operator|
195   APInt OrSlowCase(const APInt& RHS) const;
196 
197   /// out-of-line slow case for operator^
198   APInt XorSlowCase(const APInt& RHS) const;
199 
200   /// out-of-line slow case for operator=
201   APInt& AssignSlowCase(const APInt& RHS);
202 
203   /// out-of-line slow case for operator==
204   bool EqualSlowCase(const APInt& RHS) const;
205 
206   /// out-of-line slow case for operator==
207   bool EqualSlowCase(uint64_t Val) const;
208 
209   /// out-of-line slow case for countLeadingZeros
210   unsigned countLeadingZerosSlowCase() const;
211 
212   /// out-of-line slow case for countTrailingOnes
213   unsigned countTrailingOnesSlowCase() const;
214 
215   /// out-of-line slow case for countPopulation
216   unsigned countPopulationSlowCase() const;
217 
218 public:
219   /// @name Constructors
220   /// @{
221   /// If isSigned is true then val is treated as if it were a signed value
222   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
223   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
224   /// the range of val are zero filled).
225   /// @param numBits the bit width of the constructed APInt
226   /// @param val the initial value of the APInt
227   /// @param isSigned how to treat signedness of val
228   /// @brief Create a new APInt of numBits width, initialized as val.
229   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)230     : BitWidth(numBits), VAL(0) {
231     assert(BitWidth && "bitwidth too small");
232     if (isSingleWord())
233       VAL = val;
234     else
235       initSlowCase(numBits, val, isSigned);
236     clearUnusedBits();
237   }
238 
239   /// Note that bigVal.size() can be smaller or larger than the corresponding
240   /// bit width but any extraneous bits will be dropped.
241   /// @param numBits the bit width of the constructed APInt
242   /// @param bigVal a sequence of words to form the initial value of the APInt
243   /// @brief Construct an APInt of numBits width, initialized as bigVal[].
244   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
245   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
246   /// deprecated because this constructor is prone to ambiguity with the
247   /// APInt(unsigned, uint64_t, bool) constructor.
248   ///
249   /// If this overload is ever deleted, care should be taken to prevent calls
250   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
251   /// constructor.
252   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
253 
254   /// This constructor interprets the string \arg str in the given radix. The
255   /// interpretation stops when the first character that is not suitable for the
256   /// radix is encountered, or the end of the string. Acceptable radix values
257   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
258   /// string to require more bits than numBits.
259   ///
260   /// @param numBits the bit width of the constructed APInt
261   /// @param str the string to be interpreted
262   /// @param radix the radix to use for the conversion
263   /// @brief Construct an APInt from a string representation.
264   APInt(unsigned numBits, StringRef str, uint8_t radix);
265 
266   /// Simply makes *this a copy of that.
267   /// @brief Copy Constructor.
APInt(const APInt & that)268   APInt(const APInt& that)
269     : BitWidth(that.BitWidth), VAL(0) {
270     assert(BitWidth && "bitwidth too small");
271     if (isSingleWord())
272       VAL = that.VAL;
273     else
274       initSlowCase(that);
275   }
276 
277 #if LLVM_USE_RVALUE_REFERENCES
278   /// @brief Move Constructor.
APInt(APInt && that)279   APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
280     that.BitWidth = 0;
281   }
282 #endif
283 
284   /// @brief Destructor.
~APInt()285   ~APInt() {
286     if (!isSingleWord())
287       delete [] pVal;
288   }
289 
290   /// Default constructor that creates an uninitialized APInt.  This is useful
291   ///  for object deserialization (pair this with the static method Read).
APInt()292   explicit APInt() : BitWidth(1) {}
293 
294   /// Profile - Used to insert APInt objects, or objects that contain APInt
295   ///  objects, into FoldingSets.
296   void Profile(FoldingSetNodeID& id) const;
297 
298   /// @}
299   /// @name Value Tests
300   /// @{
301   /// This tests the high bit of this APInt to determine if it is set.
302   /// @returns true if this APInt is negative, false otherwise
303   /// @brief Determine sign of this APInt.
isNegative()304   bool isNegative() const {
305     return (*this)[BitWidth - 1];
306   }
307 
308   /// This tests the high bit of the APInt to determine if it is unset.
309   /// @brief Determine if this APInt Value is non-negative (>= 0)
isNonNegative()310   bool isNonNegative() const {
311     return !isNegative();
312   }
313 
314   /// This tests if the value of this APInt is positive (> 0). Note
315   /// that 0 is not a positive value.
316   /// @returns true if this APInt is positive.
317   /// @brief Determine if this APInt Value is positive.
isStrictlyPositive()318   bool isStrictlyPositive() const {
319     return isNonNegative() && !!*this;
320   }
321 
322   /// This checks to see if the value has all bits of the APInt are set or not.
323   /// @brief Determine if all bits are set
isAllOnesValue()324   bool isAllOnesValue() const {
325     return countPopulation() == BitWidth;
326   }
327 
328   /// This checks to see if the value of this APInt is the maximum unsigned
329   /// value for the APInt's bit width.
330   /// @brief Determine if this is the largest unsigned value.
isMaxValue()331   bool isMaxValue() const {
332     return countPopulation() == BitWidth;
333   }
334 
335   /// This checks to see if the value of this APInt is the maximum signed
336   /// value for the APInt's bit width.
337   /// @brief Determine if this is the largest signed value.
isMaxSignedValue()338   bool isMaxSignedValue() const {
339     return BitWidth == 1 ? VAL == 0 :
340                           !isNegative() && countPopulation() == BitWidth - 1;
341   }
342 
343   /// This checks to see if the value of this APInt is the minimum unsigned
344   /// value for the APInt's bit width.
345   /// @brief Determine if this is the smallest unsigned value.
isMinValue()346   bool isMinValue() const {
347     return !*this;
348   }
349 
350   /// This checks to see if the value of this APInt is the minimum signed
351   /// value for the APInt's bit width.
352   /// @brief Determine if this is the smallest signed value.
isMinSignedValue()353   bool isMinSignedValue() const {
354     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
355   }
356 
357   /// @brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)358   bool isIntN(unsigned N) const {
359     assert(N && "N == 0 ???");
360     return getActiveBits() <= N;
361   }
362 
363   /// @brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)364   bool isSignedIntN(unsigned N) const {
365     assert(N && "N == 0 ???");
366     return getMinSignedBits() <= N;
367   }
368 
369   /// @returns true if the argument APInt value is a power of two > 0.
isPowerOf2()370   bool isPowerOf2() const {
371     if (isSingleWord())
372       return isPowerOf2_64(VAL);
373     return countPopulationSlowCase() == 1;
374   }
375 
376   /// isSignBit - Return true if this is the value returned by getSignBit.
isSignBit()377   bool isSignBit() const { return isMinSignedValue(); }
378 
379   /// This converts the APInt to a boolean value as a test against zero.
380   /// @brief Boolean conversion function.
getBoolValue()381   bool getBoolValue() const {
382     return !!*this;
383   }
384 
385   /// getLimitedValue - If this value is smaller than the specified limit,
386   /// return it, otherwise return the limit value.  This causes the value
387   /// to saturate to the limit.
388   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
389     return (getActiveBits() > 64 || getZExtValue() > Limit) ?
390       Limit :  getZExtValue();
391   }
392 
393   /// @}
394   /// @name Value Generators
395   /// @{
396   /// @brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)397   static APInt getMaxValue(unsigned numBits) {
398     return getAllOnesValue(numBits);
399   }
400 
401   /// @brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)402   static APInt getSignedMaxValue(unsigned numBits) {
403     APInt API = getAllOnesValue(numBits);
404     API.clearBit(numBits - 1);
405     return API;
406   }
407 
408   /// @brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)409   static APInt getMinValue(unsigned numBits) {
410     return APInt(numBits, 0);
411   }
412 
413   /// @brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)414   static APInt getSignedMinValue(unsigned numBits) {
415     APInt API(numBits, 0);
416     API.setBit(numBits - 1);
417     return API;
418   }
419 
420   /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
421   /// it helps code readability when we want to get a SignBit.
422   /// @brief Get the SignBit for a specific bit width.
getSignBit(unsigned BitWidth)423   static APInt getSignBit(unsigned BitWidth) {
424     return getSignedMinValue(BitWidth);
425   }
426 
427   /// @returns the all-ones value for an APInt of the specified bit-width.
428   /// @brief Get the all-ones value.
getAllOnesValue(unsigned numBits)429   static APInt getAllOnesValue(unsigned numBits) {
430     return APInt(numBits, -1ULL, true);
431   }
432 
433   /// @returns the '0' value for an APInt of the specified bit-width.
434   /// @brief Get the '0' value.
getNullValue(unsigned numBits)435   static APInt getNullValue(unsigned numBits) {
436     return APInt(numBits, 0);
437   }
438 
439   /// Get an APInt with the same BitWidth as this APInt, just zero mask
440   /// the low bits and right shift to the least significant bit.
441   /// @returns the high "numBits" bits of this APInt.
442   APInt getHiBits(unsigned numBits) const;
443 
444   /// Get an APInt with the same BitWidth as this APInt, just zero mask
445   /// the high bits.
446   /// @returns the low "numBits" bits of this APInt.
447   APInt getLoBits(unsigned numBits) const;
448 
449   /// getOneBitSet - Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)450   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
451     APInt Res(numBits, 0);
452     Res.setBit(BitNo);
453     return Res;
454   }
455 
456   /// Constructs an APInt value that has a contiguous range of bits set. The
457   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
458   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
459   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
460   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
461   /// @param numBits the intended bit width of the result
462   /// @param loBit the index of the lowest bit set.
463   /// @param hiBit the index of the highest bit set.
464   /// @returns An APInt value with the requested bits set.
465   /// @brief Get a value with a block of bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)466   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
467     assert(hiBit <= numBits && "hiBit out of range");
468     assert(loBit < numBits && "loBit out of range");
469     if (hiBit < loBit)
470       return getLowBitsSet(numBits, hiBit) |
471              getHighBitsSet(numBits, numBits-loBit);
472     return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
473   }
474 
475   /// Constructs an APInt value that has the top hiBitsSet bits set.
476   /// @param numBits the bitwidth of the result
477   /// @param hiBitsSet the number of high-order bits set in the result.
478   /// @brief Get a value with high bits set
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)479   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
480     assert(hiBitsSet <= numBits && "Too many bits to set!");
481     // Handle a degenerate case, to avoid shifting by word size
482     if (hiBitsSet == 0)
483       return APInt(numBits, 0);
484     unsigned shiftAmt = numBits - hiBitsSet;
485     // For small values, return quickly
486     if (numBits <= APINT_BITS_PER_WORD)
487       return APInt(numBits, ~0ULL << shiftAmt);
488     return getAllOnesValue(numBits).shl(shiftAmt);
489   }
490 
491   /// Constructs an APInt value that has the bottom loBitsSet bits set.
492   /// @param numBits the bitwidth of the result
493   /// @param loBitsSet the number of low-order bits set in the result.
494   /// @brief Get a value with low bits set
getLowBitsSet(unsigned numBits,unsigned loBitsSet)495   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
496     assert(loBitsSet <= numBits && "Too many bits to set!");
497     // Handle a degenerate case, to avoid shifting by word size
498     if (loBitsSet == 0)
499       return APInt(numBits, 0);
500     if (loBitsSet == APINT_BITS_PER_WORD)
501       return APInt(numBits, -1ULL);
502     // For small values, return quickly.
503     if (loBitsSet <= APINT_BITS_PER_WORD)
504       return APInt(numBits, -1ULL >> (APINT_BITS_PER_WORD - loBitsSet));
505     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
506   }
507 
508   /// \brief Determine if two APInts have the same value, after zero-extending
509   /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)510   static bool isSameValue(const APInt &I1, const APInt &I2) {
511     if (I1.getBitWidth() == I2.getBitWidth())
512       return I1 == I2;
513 
514     if (I1.getBitWidth() > I2.getBitWidth())
515       return I1 == I2.zext(I1.getBitWidth());
516 
517     return I1.zext(I2.getBitWidth()) == I2;
518   }
519 
520   /// \brief Overload to compute a hash_code for an APInt value.
521   friend hash_code hash_value(const APInt &Arg);
522 
523   /// This function returns a pointer to the internal storage of the APInt.
524   /// This is useful for writing out the APInt in binary form without any
525   /// conversions.
getRawData()526   const uint64_t* getRawData() const {
527     if (isSingleWord())
528       return &VAL;
529     return &pVal[0];
530   }
531 
532   /// @}
533   /// @name Unary Operators
534   /// @{
535   /// @returns a new APInt value representing *this incremented by one
536   /// @brief Postfix increment operator.
537   const APInt operator++(int) {
538     APInt API(*this);
539     ++(*this);
540     return API;
541   }
542 
543   /// @returns *this incremented by one
544   /// @brief Prefix increment operator.
545   APInt& operator++();
546 
547   /// @returns a new APInt representing *this decremented by one.
548   /// @brief Postfix decrement operator.
549   const APInt operator--(int) {
550     APInt API(*this);
551     --(*this);
552     return API;
553   }
554 
555   /// @returns *this decremented by one.
556   /// @brief Prefix decrement operator.
557   APInt& operator--();
558 
559   /// Performs a bitwise complement operation on this APInt.
560   /// @returns an APInt that is the bitwise complement of *this
561   /// @brief Unary bitwise complement operator.
562   APInt operator~() const {
563     APInt Result(*this);
564     Result.flipAllBits();
565     return Result;
566   }
567 
568   /// Negates *this using two's complement logic.
569   /// @returns An APInt value representing the negation of *this.
570   /// @brief Unary negation operator
571   APInt operator-() const {
572     return APInt(BitWidth, 0) - (*this);
573   }
574 
575   /// Performs logical negation operation on this APInt.
576   /// @returns true if *this is zero, false otherwise.
577   /// @brief Logical negation operator.
578   bool operator!() const {
579     if (isSingleWord())
580       return !VAL;
581 
582     for (unsigned i = 0; i != getNumWords(); ++i)
583       if (pVal[i])
584         return false;
585     return true;
586   }
587 
588   /// @}
589   /// @name Assignment Operators
590   /// @{
591   /// @returns *this after assignment of RHS.
592   /// @brief Copy assignment operator.
593   APInt& operator=(const APInt& RHS) {
594     // If the bitwidths are the same, we can avoid mucking with memory
595     if (isSingleWord() && RHS.isSingleWord()) {
596       VAL = RHS.VAL;
597       BitWidth = RHS.BitWidth;
598       return clearUnusedBits();
599     }
600 
601     return AssignSlowCase(RHS);
602   }
603 
604 #if LLVM_USE_RVALUE_REFERENCES
605   /// @brief Move assignment operator.
606   APInt& operator=(APInt&& that) {
607     if (!isSingleWord())
608       delete [] pVal;
609 
610     BitWidth = that.BitWidth;
611     VAL = that.VAL;
612 
613     that.BitWidth = 0;
614 
615     return *this;
616   }
617 #endif
618 
619   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
620   /// the bit width, the excess bits are truncated. If the bit width is larger
621   /// than 64, the value is zero filled in the unspecified high order bits.
622   /// @returns *this after assignment of RHS value.
623   /// @brief Assignment operator.
624   APInt& operator=(uint64_t RHS);
625 
626   /// Performs a bitwise AND operation on this APInt and RHS. The result is
627   /// assigned to *this.
628   /// @returns *this after ANDing with RHS.
629   /// @brief Bitwise AND assignment operator.
630   APInt& operator&=(const APInt& RHS);
631 
632   /// Performs a bitwise OR operation on this APInt and RHS. The result is
633   /// assigned *this;
634   /// @returns *this after ORing with RHS.
635   /// @brief Bitwise OR assignment operator.
636   APInt& operator|=(const APInt& RHS);
637 
638   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
639   /// logically zero-extended or truncated to match the bit-width of
640   /// the LHS.
641   ///
642   /// @brief Bitwise OR assignment operator.
643   APInt& operator|=(uint64_t RHS) {
644     if (isSingleWord()) {
645       VAL |= RHS;
646       clearUnusedBits();
647     } else {
648       pVal[0] |= RHS;
649     }
650     return *this;
651   }
652 
653   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
654   /// assigned to *this.
655   /// @returns *this after XORing with RHS.
656   /// @brief Bitwise XOR assignment operator.
657   APInt& operator^=(const APInt& RHS);
658 
659   /// Multiplies this APInt by RHS and assigns the result to *this.
660   /// @returns *this
661   /// @brief Multiplication assignment operator.
662   APInt& operator*=(const APInt& RHS);
663 
664   /// Adds RHS to *this and assigns the result to *this.
665   /// @returns *this
666   /// @brief Addition assignment operator.
667   APInt& operator+=(const APInt& RHS);
668 
669   /// Subtracts RHS from *this and assigns the result to *this.
670   /// @returns *this
671   /// @brief Subtraction assignment operator.
672   APInt& operator-=(const APInt& RHS);
673 
674   /// Shifts *this left by shiftAmt and assigns the result to *this.
675   /// @returns *this after shifting left by shiftAmt
676   /// @brief Left-shift assignment function.
677   APInt& operator<<=(unsigned shiftAmt) {
678     *this = shl(shiftAmt);
679     return *this;
680   }
681 
682   /// @}
683   /// @name Binary Operators
684   /// @{
685   /// Performs a bitwise AND operation on *this and RHS.
686   /// @returns An APInt value representing the bitwise AND of *this and RHS.
687   /// @brief Bitwise AND operator.
688   APInt operator&(const APInt& RHS) const {
689     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
690     if (isSingleWord())
691       return APInt(getBitWidth(), VAL & RHS.VAL);
692     return AndSlowCase(RHS);
693   }
And(const APInt & RHS)694   APInt And(const APInt& RHS) const {
695     return this->operator&(RHS);
696   }
697 
698   /// Performs a bitwise OR operation on *this and RHS.
699   /// @returns An APInt value representing the bitwise OR of *this and RHS.
700   /// @brief Bitwise OR operator.
701   APInt operator|(const APInt& RHS) const {
702     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
703     if (isSingleWord())
704       return APInt(getBitWidth(), VAL | RHS.VAL);
705     return OrSlowCase(RHS);
706   }
Or(const APInt & RHS)707   APInt Or(const APInt& RHS) const {
708     return this->operator|(RHS);
709   }
710 
711   /// Performs a bitwise XOR operation on *this and RHS.
712   /// @returns An APInt value representing the bitwise XOR of *this and RHS.
713   /// @brief Bitwise XOR operator.
714   APInt operator^(const APInt& RHS) const {
715     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
716     if (isSingleWord())
717       return APInt(BitWidth, VAL ^ RHS.VAL);
718     return XorSlowCase(RHS);
719   }
Xor(const APInt & RHS)720   APInt Xor(const APInt& RHS) const {
721     return this->operator^(RHS);
722   }
723 
724   /// Multiplies this APInt by RHS and returns the result.
725   /// @brief Multiplication operator.
726   APInt operator*(const APInt& RHS) const;
727 
728   /// Adds RHS to this APInt and returns the result.
729   /// @brief Addition operator.
730   APInt operator+(const APInt& RHS) const;
731   APInt operator+(uint64_t RHS) const {
732     return (*this) + APInt(BitWidth, RHS);
733   }
734 
735   /// Subtracts RHS from this APInt and returns the result.
736   /// @brief Subtraction operator.
737   APInt operator-(const APInt& RHS) const;
738   APInt operator-(uint64_t RHS) const {
739     return (*this) - APInt(BitWidth, RHS);
740   }
741 
742   APInt operator<<(unsigned Bits) const {
743     return shl(Bits);
744   }
745 
746   APInt operator<<(const APInt &Bits) const {
747     return shl(Bits);
748   }
749 
750   /// Arithmetic right-shift this APInt by shiftAmt.
751   /// @brief Arithmetic right-shift function.
752   APInt ashr(unsigned shiftAmt) const;
753 
754   /// Logical right-shift this APInt by shiftAmt.
755   /// @brief Logical right-shift function.
756   APInt lshr(unsigned shiftAmt) const;
757 
758   /// Left-shift this APInt by shiftAmt.
759   /// @brief Left-shift function.
shl(unsigned shiftAmt)760   APInt shl(unsigned shiftAmt) const {
761     assert(shiftAmt <= BitWidth && "Invalid shift amount");
762     if (isSingleWord()) {
763       if (shiftAmt == BitWidth)
764         return APInt(BitWidth, 0); // avoid undefined shift results
765       return APInt(BitWidth, VAL << shiftAmt);
766     }
767     return shlSlowCase(shiftAmt);
768   }
769 
770   /// @brief Rotate left by rotateAmt.
771   APInt rotl(unsigned rotateAmt) const;
772 
773   /// @brief Rotate right by rotateAmt.
774   APInt rotr(unsigned rotateAmt) const;
775 
776   /// Arithmetic right-shift this APInt by shiftAmt.
777   /// @brief Arithmetic right-shift function.
778   APInt ashr(const APInt &shiftAmt) const;
779 
780   /// Logical right-shift this APInt by shiftAmt.
781   /// @brief Logical right-shift function.
782   APInt lshr(const APInt &shiftAmt) const;
783 
784   /// Left-shift this APInt by shiftAmt.
785   /// @brief Left-shift function.
786   APInt shl(const APInt &shiftAmt) const;
787 
788   /// @brief Rotate left by rotateAmt.
789   APInt rotl(const APInt &rotateAmt) const;
790 
791   /// @brief Rotate right by rotateAmt.
792   APInt rotr(const APInt &rotateAmt) const;
793 
794   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
795   /// RHS are treated as unsigned quantities for purposes of this division.
796   /// @returns a new APInt value containing the division result
797   /// @brief Unsigned division operation.
798   APInt udiv(const APInt &RHS) const;
799 
800   /// Signed divide this APInt by APInt RHS.
801   /// @brief Signed division function for APInt.
sdiv(const APInt & RHS)802   APInt sdiv(const APInt &RHS) const {
803     if (isNegative())
804       if (RHS.isNegative())
805         return (-(*this)).udiv(-RHS);
806       else
807         return -((-(*this)).udiv(RHS));
808     else if (RHS.isNegative())
809       return -(this->udiv(-RHS));
810     return this->udiv(RHS);
811   }
812 
813   /// Perform an unsigned remainder operation on this APInt with RHS being the
814   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
815   /// of this operation. Note that this is a true remainder operation and not
816   /// a modulo operation because the sign follows the sign of the dividend
817   /// which is *this.
818   /// @returns a new APInt value containing the remainder result
819   /// @brief Unsigned remainder operation.
820   APInt urem(const APInt &RHS) const;
821 
822   /// Signed remainder operation on APInt.
823   /// @brief Function for signed remainder operation.
srem(const APInt & RHS)824   APInt srem(const APInt &RHS) const {
825     if (isNegative())
826       if (RHS.isNegative())
827         return -((-(*this)).urem(-RHS));
828       else
829         return -((-(*this)).urem(RHS));
830     else if (RHS.isNegative())
831       return this->urem(-RHS);
832     return this->urem(RHS);
833   }
834 
835   /// Sometimes it is convenient to divide two APInt values and obtain both the
836   /// quotient and remainder. This function does both operations in the same
837   /// computation making it a little more efficient. The pair of input arguments
838   /// may overlap with the pair of output arguments. It is safe to call
839   /// udivrem(X, Y, X, Y), for example.
840   /// @brief Dual division/remainder interface.
841   static void udivrem(const APInt &LHS, const APInt &RHS,
842                       APInt &Quotient, APInt &Remainder);
843 
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)844   static void sdivrem(const APInt &LHS, const APInt &RHS,
845                       APInt &Quotient, APInt &Remainder) {
846     if (LHS.isNegative()) {
847       if (RHS.isNegative())
848         APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
849       else {
850         APInt::udivrem(-LHS, RHS, Quotient, Remainder);
851         Quotient = -Quotient;
852       }
853       Remainder = -Remainder;
854     } else if (RHS.isNegative()) {
855       APInt::udivrem(LHS, -RHS, Quotient, Remainder);
856       Quotient = -Quotient;
857     } else {
858       APInt::udivrem(LHS, RHS, Quotient, Remainder);
859     }
860   }
861 
862 
863   // Operations that return overflow indicators.
864   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
865   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
866   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
867   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
868   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
869   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
870   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
871   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
872 
873   /// @returns the bit value at bitPosition
874   /// @brief Array-indexing support.
875   bool operator[](unsigned bitPosition) const {
876     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
877     return (maskBit(bitPosition) &
878             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
879   }
880 
881   /// @}
882   /// @name Comparison Operators
883   /// @{
884   /// Compares this APInt with RHS for the validity of the equality
885   /// relationship.
886   /// @brief Equality operator.
887   bool operator==(const APInt& RHS) const {
888     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
889     if (isSingleWord())
890       return VAL == RHS.VAL;
891     return EqualSlowCase(RHS);
892   }
893 
894   /// Compares this APInt with a uint64_t for the validity of the equality
895   /// relationship.
896   /// @returns true if *this == Val
897   /// @brief Equality operator.
898   bool operator==(uint64_t Val) const {
899     if (isSingleWord())
900       return VAL == Val;
901     return EqualSlowCase(Val);
902   }
903 
904   /// Compares this APInt with RHS for the validity of the equality
905   /// relationship.
906   /// @returns true if *this == Val
907   /// @brief Equality comparison.
eq(const APInt & RHS)908   bool eq(const APInt &RHS) const {
909     return (*this) == RHS;
910   }
911 
912   /// Compares this APInt with RHS for the validity of the inequality
913   /// relationship.
914   /// @returns true if *this != Val
915   /// @brief Inequality operator.
916   bool operator!=(const APInt& RHS) const {
917     return !((*this) == RHS);
918   }
919 
920   /// Compares this APInt with a uint64_t for the validity of the inequality
921   /// relationship.
922   /// @returns true if *this != Val
923   /// @brief Inequality operator.
924   bool operator!=(uint64_t Val) const {
925     return !((*this) == Val);
926   }
927 
928   /// Compares this APInt with RHS for the validity of the inequality
929   /// relationship.
930   /// @returns true if *this != Val
931   /// @brief Inequality comparison
ne(const APInt & RHS)932   bool ne(const APInt &RHS) const {
933     return !((*this) == RHS);
934   }
935 
936   /// Regards both *this and RHS as unsigned quantities and compares them for
937   /// the validity of the less-than relationship.
938   /// @returns true if *this < RHS when both are considered unsigned.
939   /// @brief Unsigned less than comparison
940   bool ult(const APInt &RHS) const;
941 
942   /// Regards both *this as an unsigned quantity and compares it with RHS for
943   /// the validity of the less-than relationship.
944   /// @returns true if *this < RHS when considered unsigned.
945   /// @brief Unsigned less than comparison
ult(uint64_t RHS)946   bool ult(uint64_t RHS) const {
947     return ult(APInt(getBitWidth(), RHS));
948   }
949 
950   /// Regards both *this and RHS as signed quantities and compares them for
951   /// validity of the less-than relationship.
952   /// @returns true if *this < RHS when both are considered signed.
953   /// @brief Signed less than comparison
954   bool slt(const APInt& RHS) const;
955 
956   /// Regards both *this as a signed quantity and compares it with RHS for
957   /// the validity of the less-than relationship.
958   /// @returns true if *this < RHS when considered signed.
959   /// @brief Signed less than comparison
slt(uint64_t RHS)960   bool slt(uint64_t RHS) const {
961     return slt(APInt(getBitWidth(), RHS));
962   }
963 
964   /// Regards both *this and RHS as unsigned quantities and compares them for
965   /// validity of the less-or-equal relationship.
966   /// @returns true if *this <= RHS when both are considered unsigned.
967   /// @brief Unsigned less or equal comparison
ule(const APInt & RHS)968   bool ule(const APInt& RHS) const {
969     return ult(RHS) || eq(RHS);
970   }
971 
972   /// Regards both *this as an unsigned quantity and compares it with RHS for
973   /// the validity of the less-or-equal relationship.
974   /// @returns true if *this <= RHS when considered unsigned.
975   /// @brief Unsigned less or equal comparison
ule(uint64_t RHS)976   bool ule(uint64_t RHS) const {
977     return ule(APInt(getBitWidth(), RHS));
978   }
979 
980   /// Regards both *this and RHS as signed quantities and compares them for
981   /// validity of the less-or-equal relationship.
982   /// @returns true if *this <= RHS when both are considered signed.
983   /// @brief Signed less or equal comparison
sle(const APInt & RHS)984   bool sle(const APInt& RHS) const {
985     return slt(RHS) || eq(RHS);
986   }
987 
988   /// Regards both *this as a signed quantity and compares it with RHS for
989   /// the validity of the less-or-equal relationship.
990   /// @returns true if *this <= RHS when considered signed.
991   /// @brief Signed less or equal comparison
sle(uint64_t RHS)992   bool sle(uint64_t RHS) const {
993     return sle(APInt(getBitWidth(), RHS));
994   }
995 
996   /// Regards both *this and RHS as unsigned quantities and compares them for
997   /// the validity of the greater-than relationship.
998   /// @returns true if *this > RHS when both are considered unsigned.
999   /// @brief Unsigned greather than comparison
ugt(const APInt & RHS)1000   bool ugt(const APInt& RHS) const {
1001     return !ult(RHS) && !eq(RHS);
1002   }
1003 
1004   /// Regards both *this as an unsigned quantity and compares it with RHS for
1005   /// the validity of the greater-than relationship.
1006   /// @returns true if *this > RHS when considered unsigned.
1007   /// @brief Unsigned greater than comparison
ugt(uint64_t RHS)1008   bool ugt(uint64_t RHS) const {
1009     return ugt(APInt(getBitWidth(), RHS));
1010   }
1011 
1012   /// Regards both *this and RHS as signed quantities and compares them for
1013   /// the validity of the greater-than relationship.
1014   /// @returns true if *this > RHS when both are considered signed.
1015   /// @brief Signed greather than comparison
sgt(const APInt & RHS)1016   bool sgt(const APInt& RHS) const {
1017     return !slt(RHS) && !eq(RHS);
1018   }
1019 
1020   /// Regards both *this as a signed quantity and compares it with RHS for
1021   /// the validity of the greater-than relationship.
1022   /// @returns true if *this > RHS when considered signed.
1023   /// @brief Signed greater than comparison
sgt(uint64_t RHS)1024   bool sgt(uint64_t RHS) const {
1025     return sgt(APInt(getBitWidth(), RHS));
1026   }
1027 
1028   /// Regards both *this and RHS as unsigned quantities and compares them for
1029   /// validity of the greater-or-equal relationship.
1030   /// @returns true if *this >= RHS when both are considered unsigned.
1031   /// @brief Unsigned greater or equal comparison
uge(const APInt & RHS)1032   bool uge(const APInt& RHS) const {
1033     return !ult(RHS);
1034   }
1035 
1036   /// Regards both *this as an unsigned quantity and compares it with RHS for
1037   /// the validity of the greater-or-equal relationship.
1038   /// @returns true if *this >= RHS when considered unsigned.
1039   /// @brief Unsigned greater or equal comparison
uge(uint64_t RHS)1040   bool uge(uint64_t RHS) const {
1041     return uge(APInt(getBitWidth(), RHS));
1042   }
1043 
1044   /// Regards both *this and RHS as signed quantities and compares them for
1045   /// validity of the greater-or-equal relationship.
1046   /// @returns true if *this >= RHS when both are considered signed.
1047   /// @brief Signed greather or equal comparison
sge(const APInt & RHS)1048   bool sge(const APInt& RHS) const {
1049     return !slt(RHS);
1050   }
1051 
1052   /// Regards both *this as a signed quantity and compares it with RHS for
1053   /// the validity of the greater-or-equal relationship.
1054   /// @returns true if *this >= RHS when considered signed.
1055   /// @brief Signed greater or equal comparison
sge(uint64_t RHS)1056   bool sge(uint64_t RHS) const {
1057     return sge(APInt(getBitWidth(), RHS));
1058   }
1059 
1060 
1061 
1062 
1063   /// This operation tests if there are any pairs of corresponding bits
1064   /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1065   bool intersects(const APInt &RHS) const {
1066     return (*this & RHS) != 0;
1067   }
1068 
1069   /// @}
1070   /// @name Resizing Operators
1071   /// @{
1072   /// Truncate the APInt to a specified width. It is an error to specify a width
1073   /// that is greater than or equal to the current width.
1074   /// @brief Truncate to new width.
1075   APInt trunc(unsigned width) const;
1076 
1077   /// This operation sign extends the APInt to a new width. If the high order
1078   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1079   /// It is an error to specify a width that is less than or equal to the
1080   /// current width.
1081   /// @brief Sign extend to a new width.
1082   APInt sext(unsigned width) const;
1083 
1084   /// This operation zero extends the APInt to a new width. The high order bits
1085   /// are filled with 0 bits.  It is an error to specify a width that is less
1086   /// than or equal to the current width.
1087   /// @brief Zero extend to a new width.
1088   APInt zext(unsigned width) const;
1089 
1090   /// Make this APInt have the bit width given by \p width. The value is sign
1091   /// extended, truncated, or left alone to make it that width.
1092   /// @brief Sign extend or truncate to width
1093   APInt sextOrTrunc(unsigned width) const;
1094 
1095   /// Make this APInt have the bit width given by \p width. The value is zero
1096   /// extended, truncated, or left alone to make it that width.
1097   /// @brief Zero extend or truncate to width
1098   APInt zextOrTrunc(unsigned width) const;
1099 
1100   /// Make this APInt have the bit width given by \p width. The value is sign
1101   /// extended, or left alone to make it that width.
1102   /// @brief Sign extend or truncate to width
1103   APInt sextOrSelf(unsigned width) const;
1104 
1105   /// Make this APInt have the bit width given by \p width. The value is zero
1106   /// extended, or left alone to make it that width.
1107   /// @brief Zero extend or truncate to width
1108   APInt zextOrSelf(unsigned width) const;
1109 
1110   /// @}
1111   /// @name Bit Manipulation Operators
1112   /// @{
1113   /// @brief Set every bit to 1.
setAllBits()1114   void setAllBits() {
1115     if (isSingleWord())
1116       VAL = -1ULL;
1117     else {
1118       // Set all the bits in all the words.
1119       for (unsigned i = 0; i < getNumWords(); ++i)
1120         pVal[i] = -1ULL;
1121     }
1122     // Clear the unused ones
1123     clearUnusedBits();
1124   }
1125 
1126   /// Set the given bit to 1 whose position is given as "bitPosition".
1127   /// @brief Set a given bit to 1.
1128   void setBit(unsigned bitPosition);
1129 
1130   /// @brief Set every bit to 0.
clearAllBits()1131   void clearAllBits() {
1132     if (isSingleWord())
1133       VAL = 0;
1134     else
1135       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1136   }
1137 
1138   /// Set the given bit to 0 whose position is given as "bitPosition".
1139   /// @brief Set a given bit to 0.
1140   void clearBit(unsigned bitPosition);
1141 
1142   /// @brief Toggle every bit to its opposite value.
flipAllBits()1143   void flipAllBits() {
1144     if (isSingleWord())
1145       VAL ^= -1ULL;
1146     else {
1147       for (unsigned i = 0; i < getNumWords(); ++i)
1148         pVal[i] ^= -1ULL;
1149     }
1150     clearUnusedBits();
1151   }
1152 
1153   /// Toggle a given bit to its opposite value whose position is given
1154   /// as "bitPosition".
1155   /// @brief Toggles a given bit to its opposite value.
1156   void flipBit(unsigned bitPosition);
1157 
1158   /// @}
1159   /// @name Value Characterization Functions
1160   /// @{
1161 
1162   /// @returns the total number of bits.
getBitWidth()1163   unsigned getBitWidth() const {
1164     return BitWidth;
1165   }
1166 
1167   /// Here one word's bitwidth equals to that of uint64_t.
1168   /// @returns the number of words to hold the integer value of this APInt.
1169   /// @brief Get the number of words.
getNumWords()1170   unsigned getNumWords() const {
1171     return getNumWords(BitWidth);
1172   }
1173 
1174   /// Here one word's bitwidth equals to that of uint64_t.
1175   /// @returns the number of words to hold the integer value with a
1176   /// given bit width.
1177   /// @brief Get the number of words.
getNumWords(unsigned BitWidth)1178   static unsigned getNumWords(unsigned BitWidth) {
1179     return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1180   }
1181 
1182   /// This function returns the number of active bits which is defined as the
1183   /// bit width minus the number of leading zeros. This is used in several
1184   /// computations to see how "wide" the value is.
1185   /// @brief Compute the number of active bits in the value
getActiveBits()1186   unsigned getActiveBits() const {
1187     return BitWidth - countLeadingZeros();
1188   }
1189 
1190   /// This function returns the number of active words in the value of this
1191   /// APInt. This is used in conjunction with getActiveData to extract the raw
1192   /// value of the APInt.
getActiveWords()1193   unsigned getActiveWords() const {
1194     return whichWord(getActiveBits()-1) + 1;
1195   }
1196 
1197   /// Computes the minimum bit width for this APInt while considering it to be
1198   /// a signed (and probably negative) value. If the value is not negative,
1199   /// this function returns the same value as getActiveBits()+1. Otherwise, it
1200   /// returns the smallest bit width that will retain the negative value. For
1201   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1202   /// for -1, this function will always return 1.
1203   /// @brief Get the minimum bit size for this signed APInt
getMinSignedBits()1204   unsigned getMinSignedBits() const {
1205     if (isNegative())
1206       return BitWidth - countLeadingOnes() + 1;
1207     return getActiveBits()+1;
1208   }
1209 
1210   /// This method attempts to return the value of this APInt as a zero extended
1211   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1212   /// uint64_t. Otherwise an assertion will result.
1213   /// @brief Get zero extended value
getZExtValue()1214   uint64_t getZExtValue() const {
1215     if (isSingleWord())
1216       return VAL;
1217     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1218     return pVal[0];
1219   }
1220 
1221   /// This method attempts to return the value of this APInt as a sign extended
1222   /// int64_t. The bit width must be <= 64 or the value must fit within an
1223   /// int64_t. Otherwise an assertion will result.
1224   /// @brief Get sign extended value
getSExtValue()1225   int64_t getSExtValue() const {
1226     if (isSingleWord())
1227       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1228                      (APINT_BITS_PER_WORD - BitWidth);
1229     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1230     return int64_t(pVal[0]);
1231   }
1232 
1233   /// This method determines how many bits are required to hold the APInt
1234   /// equivalent of the string given by \arg str.
1235   /// @brief Get bits required for string value.
1236   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1237 
1238   /// countLeadingZeros - This function is an APInt version of the
1239   /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1240   /// of zeros from the most significant bit to the first one bit.
1241   /// @returns BitWidth if the value is zero, otherwise
1242   /// returns the number of zeros from the most significant bit to the first
1243   /// one bits.
countLeadingZeros()1244   unsigned countLeadingZeros() const {
1245     if (isSingleWord()) {
1246       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1247       return CountLeadingZeros_64(VAL) - unusedBits;
1248     }
1249     return countLeadingZerosSlowCase();
1250   }
1251 
1252   /// countLeadingOnes - This function is an APInt version of the
1253   /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1254   /// of ones from the most significant bit to the first zero bit.
1255   /// @returns 0 if the high order bit is not set, otherwise
1256   /// returns the number of 1 bits from the most significant to the least
1257   /// @brief Count the number of leading one bits.
1258   unsigned countLeadingOnes() const;
1259 
1260   /// Computes the number of leading bits of this APInt that are equal to its
1261   /// sign bit.
getNumSignBits()1262   unsigned getNumSignBits() const {
1263     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1264   }
1265 
1266   /// countTrailingZeros - This function is an APInt version of the
1267   /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1268   /// the number of zeros from the least significant bit to the first set bit.
1269   /// @returns BitWidth if the value is zero, otherwise
1270   /// returns the number of zeros from the least significant bit to the first
1271   /// one bit.
1272   /// @brief Count the number of trailing zero bits.
1273   unsigned countTrailingZeros() const;
1274 
1275   /// countTrailingOnes - This function is an APInt version of the
1276   /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1277   /// the number of ones from the least significant bit to the first zero bit.
1278   /// @returns BitWidth if the value is all ones, otherwise
1279   /// returns the number of ones from the least significant bit to the first
1280   /// zero bit.
1281   /// @brief Count the number of trailing one bits.
countTrailingOnes()1282   unsigned countTrailingOnes() const {
1283     if (isSingleWord())
1284       return CountTrailingOnes_64(VAL);
1285     return countTrailingOnesSlowCase();
1286   }
1287 
1288   /// countPopulation - This function is an APInt version of the
1289   /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1290   /// of 1 bits in the APInt value.
1291   /// @returns 0 if the value is zero, otherwise returns the number of set
1292   /// bits.
1293   /// @brief Count the number of bits set.
countPopulation()1294   unsigned countPopulation() const {
1295     if (isSingleWord())
1296       return CountPopulation_64(VAL);
1297     return countPopulationSlowCase();
1298   }
1299 
1300   /// @}
1301   /// @name Conversion Functions
1302   /// @{
1303   void print(raw_ostream &OS, bool isSigned) const;
1304 
1305   /// toString - Converts an APInt to a string and append it to Str.  Str is
1306   /// commonly a SmallString.
1307   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1308                 bool formatAsCLiteral = false) const;
1309 
1310   /// Considers the APInt to be unsigned and converts it into a string in the
1311   /// radix given. The radix can be 2, 8, 10 16, or 36.
1312   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1313     toString(Str, Radix, false, false);
1314   }
1315 
1316   /// Considers the APInt to be signed and converts it into a string in the
1317   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1318   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1319     toString(Str, Radix, true, false);
1320   }
1321 
1322   /// toString - This returns the APInt as a std::string.  Note that this is an
1323   /// inefficient method.  It is better to pass in a SmallVector/SmallString
1324   /// to the methods above to avoid thrashing the heap for the string.
1325   std::string toString(unsigned Radix, bool Signed) const;
1326 
1327 
1328   /// @returns a byte-swapped representation of this APInt Value.
1329   APInt byteSwap() const;
1330 
1331   /// @brief Converts this APInt to a double value.
1332   double roundToDouble(bool isSigned) const;
1333 
1334   /// @brief Converts this unsigned APInt to a double value.
roundToDouble()1335   double roundToDouble() const {
1336     return roundToDouble(false);
1337   }
1338 
1339   /// @brief Converts this signed APInt to a double value.
signedRoundToDouble()1340   double signedRoundToDouble() const {
1341     return roundToDouble(true);
1342   }
1343 
1344   /// The conversion does not do a translation from integer to double, it just
1345   /// re-interprets the bits as a double. Note that it is valid to do this on
1346   /// any bit width. Exactly 64 bits will be translated.
1347   /// @brief Converts APInt bits to a double
bitsToDouble()1348   double bitsToDouble() const {
1349     union {
1350       uint64_t I;
1351       double D;
1352     } T;
1353     T.I = (isSingleWord() ? VAL : pVal[0]);
1354     return T.D;
1355   }
1356 
1357   /// The conversion does not do a translation from integer to float, it just
1358   /// re-interprets the bits as a float. Note that it is valid to do this on
1359   /// any bit width. Exactly 32 bits will be translated.
1360   /// @brief Converts APInt bits to a double
bitsToFloat()1361   float bitsToFloat() const {
1362     union {
1363       unsigned I;
1364       float F;
1365     } T;
1366     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1367     return T.F;
1368   }
1369 
1370   /// The conversion does not do a translation from double to integer, it just
1371   /// re-interprets the bits of the double.
1372   /// @brief Converts a double to APInt bits.
doubleToBits(double V)1373   static APInt doubleToBits(double V) {
1374     union {
1375       uint64_t I;
1376       double D;
1377     } T;
1378     T.D = V;
1379     return APInt(sizeof T * CHAR_BIT, T.I);
1380   }
1381 
1382   /// The conversion does not do a translation from float to integer, it just
1383   /// re-interprets the bits of the float.
1384   /// @brief Converts a float to APInt bits.
floatToBits(float V)1385   static APInt floatToBits(float V) {
1386     union {
1387       unsigned I;
1388       float F;
1389     } T;
1390     T.F = V;
1391     return APInt(sizeof T * CHAR_BIT, T.I);
1392   }
1393 
1394   /// @}
1395   /// @name Mathematics Operations
1396   /// @{
1397 
1398   /// @returns the floor log base 2 of this APInt.
logBase2()1399   unsigned logBase2() const {
1400     return BitWidth - 1 - countLeadingZeros();
1401   }
1402 
1403   /// @returns the ceil log base 2 of this APInt.
ceilLogBase2()1404   unsigned ceilLogBase2() const {
1405     return BitWidth - (*this - 1).countLeadingZeros();
1406   }
1407 
1408   /// @returns the log base 2 of this APInt if its an exact power of two, -1
1409   /// otherwise
exactLogBase2()1410   int32_t exactLogBase2() const {
1411     if (!isPowerOf2())
1412       return -1;
1413     return logBase2();
1414   }
1415 
1416   /// @brief Compute the square root
1417   APInt sqrt() const;
1418 
1419   /// If *this is < 0 then return -(*this), otherwise *this;
1420   /// @brief Get the absolute value;
abs()1421   APInt abs() const {
1422     if (isNegative())
1423       return -(*this);
1424     return *this;
1425   }
1426 
1427   /// @returns the multiplicative inverse for a given modulo.
1428   APInt multiplicativeInverse(const APInt& modulo) const;
1429 
1430   /// @}
1431   /// @name Support for division by constant
1432   /// @{
1433 
1434   /// Calculate the magic number for signed division by a constant.
1435   struct ms;
1436   ms magic() const;
1437 
1438   /// Calculate the magic number for unsigned division by a constant.
1439   struct mu;
1440   mu magicu(unsigned LeadingZeros = 0) const;
1441 
1442   /// @}
1443   /// @name Building-block Operations for APInt and APFloat
1444   /// @{
1445 
1446   // These building block operations operate on a representation of
1447   // arbitrary precision, two's-complement, bignum integer values.
1448   // They should be sufficient to implement APInt and APFloat bignum
1449   // requirements.  Inputs are generally a pointer to the base of an
1450   // array of integer parts, representing an unsigned bignum, and a
1451   // count of how many parts there are.
1452 
1453   /// Sets the least significant part of a bignum to the input value,
1454   /// and zeroes out higher parts.  */
1455   static void tcSet(integerPart *, integerPart, unsigned int);
1456 
1457   /// Assign one bignum to another.
1458   static void tcAssign(integerPart *, const integerPart *, unsigned int);
1459 
1460   /// Returns true if a bignum is zero, false otherwise.
1461   static bool tcIsZero(const integerPart *, unsigned int);
1462 
1463   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1464   static int tcExtractBit(const integerPart *, unsigned int bit);
1465 
1466   /// Copy the bit vector of width srcBITS from SRC, starting at bit
1467   /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1468   /// becomes the least significant bit of DST.  All high bits above
1469   /// srcBITS in DST are zero-filled.
1470   static void tcExtract(integerPart *, unsigned int dstCount,
1471                         const integerPart *,
1472                         unsigned int srcBits, unsigned int srcLSB);
1473 
1474   /// Set the given bit of a bignum.  Zero-based.
1475   static void tcSetBit(integerPart *, unsigned int bit);
1476 
1477   /// Clear the given bit of a bignum.  Zero-based.
1478   static void tcClearBit(integerPart *, unsigned int bit);
1479 
1480   /// Returns the bit number of the least or most significant set bit
1481   /// of a number.  If the input number has no bits set -1U is
1482   /// returned.
1483   static unsigned int tcLSB(const integerPart *, unsigned int);
1484   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1485 
1486   /// Negate a bignum in-place.
1487   static void tcNegate(integerPart *, unsigned int);
1488 
1489   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1490   /// carry flag.
1491   static integerPart tcAdd(integerPart *, const integerPart *,
1492                            integerPart carry, unsigned);
1493 
1494   /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1495   /// carry flag.
1496   static integerPart tcSubtract(integerPart *, const integerPart *,
1497                                 integerPart carry, unsigned);
1498 
1499   ///  DST += SRC * MULTIPLIER + PART   if add is true
1500   ///  DST  = SRC * MULTIPLIER + PART   if add is false
1501   ///
1502   ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1503   ///  they must start at the same point, i.e. DST == SRC.
1504   ///
1505   ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1506   ///  returned.  Otherwise DST is filled with the least significant
1507   ///  DSTPARTS parts of the result, and if all of the omitted higher
1508   ///  parts were zero return zero, otherwise overflow occurred and
1509   ///  return one.
1510   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1511                             integerPart multiplier, integerPart carry,
1512                             unsigned int srcParts, unsigned int dstParts,
1513                             bool add);
1514 
1515   /// DST = LHS * RHS, where DST has the same width as the operands
1516   /// and is filled with the least significant parts of the result.
1517   /// Returns one if overflow occurred, otherwise zero.  DST must be
1518   /// disjoint from both operands.
1519   static int tcMultiply(integerPart *, const integerPart *,
1520                         const integerPart *, unsigned);
1521 
1522   /// DST = LHS * RHS, where DST has width the sum of the widths of
1523   /// the operands.  No overflow occurs.  DST must be disjoint from
1524   /// both operands. Returns the number of parts required to hold the
1525   /// result.
1526   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1527                                      const integerPart *, unsigned, unsigned);
1528 
1529   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1530   /// Otherwise set LHS to LHS / RHS with the fractional part
1531   /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1532   ///
1533   ///  OLD_LHS = RHS * LHS + REMAINDER
1534   ///
1535   ///  SCRATCH is a bignum of the same size as the operands and result
1536   ///  for use by the routine; its contents need not be initialized
1537   ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1538   ///  distinct.
1539   static int tcDivide(integerPart *lhs, const integerPart *rhs,
1540                       integerPart *remainder, integerPart *scratch,
1541                       unsigned int parts);
1542 
1543   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1544   /// There are no restrictions on COUNT.
1545   static void tcShiftLeft(integerPart *, unsigned int parts,
1546                           unsigned int count);
1547 
1548   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1549   /// There are no restrictions on COUNT.
1550   static void tcShiftRight(integerPart *, unsigned int parts,
1551                            unsigned int count);
1552 
1553   /// The obvious AND, OR and XOR and complement operations.
1554   static void tcAnd(integerPart *, const integerPart *, unsigned int);
1555   static void tcOr(integerPart *, const integerPart *, unsigned int);
1556   static void tcXor(integerPart *, const integerPart *, unsigned int);
1557   static void tcComplement(integerPart *, unsigned int);
1558 
1559   /// Comparison (unsigned) of two bignums.
1560   static int tcCompare(const integerPart *, const integerPart *,
1561                        unsigned int);
1562 
1563   /// Increment a bignum in-place.  Return the carry flag.
1564   static integerPart tcIncrement(integerPart *, unsigned int);
1565 
1566   /// Set the least significant BITS and clear the rest.
1567   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1568                                         unsigned int bits);
1569 
1570   /// @brief debug method
1571   void dump() const;
1572 
1573   /// @}
1574 };
1575 
1576 /// Magic data for optimising signed division by a constant.
1577 struct APInt::ms {
1578   APInt m;  ///< magic number
1579   unsigned s;  ///< shift amount
1580 };
1581 
1582 /// Magic data for optimising unsigned division by a constant.
1583 struct APInt::mu {
1584   APInt m;     ///< magic number
1585   bool a;      ///< add indicator
1586   unsigned s;  ///< shift amount
1587 };
1588 
1589 inline bool operator==(uint64_t V1, const APInt& V2) {
1590   return V2 == V1;
1591 }
1592 
1593 inline bool operator!=(uint64_t V1, const APInt& V2) {
1594   return V2 != V1;
1595 }
1596 
1597 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1598   I.print(OS, true);
1599   return OS;
1600 }
1601 
1602 namespace APIntOps {
1603 
1604 /// @brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1605 inline APInt smin(const APInt &A, const APInt &B) {
1606   return A.slt(B) ? A : B;
1607 }
1608 
1609 /// @brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1610 inline APInt smax(const APInt &A, const APInt &B) {
1611   return A.sgt(B) ? A : B;
1612 }
1613 
1614 /// @brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1615 inline APInt umin(const APInt &A, const APInt &B) {
1616   return A.ult(B) ? A : B;
1617 }
1618 
1619 /// @brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1620 inline APInt umax(const APInt &A, const APInt &B) {
1621   return A.ugt(B) ? A : B;
1622 }
1623 
1624 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1625 inline bool isIntN(unsigned N, const APInt& APIVal) {
1626   return APIVal.isIntN(N);
1627 }
1628 
1629 /// @brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1630 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1631   return APIVal.isSignedIntN(N);
1632 }
1633 
1634 /// @returns true if the argument APInt value is a sequence of ones
1635 /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1636 inline bool isMask(unsigned numBits, const APInt& APIVal) {
1637   return numBits <= APIVal.getBitWidth() &&
1638     APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1639 }
1640 
1641 /// @returns true if the argument APInt value contains a sequence of ones
1642 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1643 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1644   return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1645 }
1646 
1647 /// @returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1648 inline APInt byteSwap(const APInt& APIVal) {
1649   return APIVal.byteSwap();
1650 }
1651 
1652 /// @returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1653 inline unsigned logBase2(const APInt& APIVal) {
1654   return APIVal.logBase2();
1655 }
1656 
1657 /// GreatestCommonDivisor - This function returns the greatest common
1658 /// divisor of the two APInt values using Euclid's algorithm.
1659 /// @returns the greatest common divisor of Val1 and Val2
1660 /// @brief Compute GCD of two APInt values.
1661 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1662 
1663 /// Treats the APInt as an unsigned value for conversion purposes.
1664 /// @brief Converts the given APInt to a double value.
RoundAPIntToDouble(const APInt & APIVal)1665 inline double RoundAPIntToDouble(const APInt& APIVal) {
1666   return APIVal.roundToDouble();
1667 }
1668 
1669 /// Treats the APInt as a signed value for conversion purposes.
1670 /// @brief Converts the given APInt to a double value.
RoundSignedAPIntToDouble(const APInt & APIVal)1671 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1672   return APIVal.signedRoundToDouble();
1673 }
1674 
1675 /// @brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1676 inline float RoundAPIntToFloat(const APInt& APIVal) {
1677   return float(RoundAPIntToDouble(APIVal));
1678 }
1679 
1680 /// Treast the APInt as a signed value for conversion purposes.
1681 /// @brief Converts the given APInt to a float value.
RoundSignedAPIntToFloat(const APInt & APIVal)1682 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1683   return float(APIVal.signedRoundToDouble());
1684 }
1685 
1686 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1687 /// @brief Converts the given double value into a APInt.
1688 APInt RoundDoubleToAPInt(double Double, unsigned width);
1689 
1690 /// RoundFloatToAPInt - Converts a float value into an APInt value.
1691 /// @brief Converts a float value into a APInt.
RoundFloatToAPInt(float Float,unsigned width)1692 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1693   return RoundDoubleToAPInt(double(Float), width);
1694 }
1695 
1696 /// Arithmetic right-shift the APInt by shiftAmt.
1697 /// @brief Arithmetic right-shift function.
ashr(const APInt & LHS,unsigned shiftAmt)1698 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1699   return LHS.ashr(shiftAmt);
1700 }
1701 
1702 /// Logical right-shift the APInt by shiftAmt.
1703 /// @brief Logical right-shift function.
lshr(const APInt & LHS,unsigned shiftAmt)1704 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1705   return LHS.lshr(shiftAmt);
1706 }
1707 
1708 /// Left-shift the APInt by shiftAmt.
1709 /// @brief Left-shift function.
shl(const APInt & LHS,unsigned shiftAmt)1710 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1711   return LHS.shl(shiftAmt);
1712 }
1713 
1714 /// Signed divide APInt LHS by APInt RHS.
1715 /// @brief Signed division function for APInt.
sdiv(const APInt & LHS,const APInt & RHS)1716 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1717   return LHS.sdiv(RHS);
1718 }
1719 
1720 /// Unsigned divide APInt LHS by APInt RHS.
1721 /// @brief Unsigned division function for APInt.
udiv(const APInt & LHS,const APInt & RHS)1722 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1723   return LHS.udiv(RHS);
1724 }
1725 
1726 /// Signed remainder operation on APInt.
1727 /// @brief Function for signed remainder operation.
srem(const APInt & LHS,const APInt & RHS)1728 inline APInt srem(const APInt& LHS, const APInt& RHS) {
1729   return LHS.srem(RHS);
1730 }
1731 
1732 /// Unsigned remainder operation on APInt.
1733 /// @brief Function for unsigned remainder operation.
urem(const APInt & LHS,const APInt & RHS)1734 inline APInt urem(const APInt& LHS, const APInt& RHS) {
1735   return LHS.urem(RHS);
1736 }
1737 
1738 /// Performs multiplication on APInt values.
1739 /// @brief Function for multiplication operation.
mul(const APInt & LHS,const APInt & RHS)1740 inline APInt mul(const APInt& LHS, const APInt& RHS) {
1741   return LHS * RHS;
1742 }
1743 
1744 /// Performs addition on APInt values.
1745 /// @brief Function for addition operation.
add(const APInt & LHS,const APInt & RHS)1746 inline APInt add(const APInt& LHS, const APInt& RHS) {
1747   return LHS + RHS;
1748 }
1749 
1750 /// Performs subtraction on APInt values.
1751 /// @brief Function for subtraction operation.
sub(const APInt & LHS,const APInt & RHS)1752 inline APInt sub(const APInt& LHS, const APInt& RHS) {
1753   return LHS - RHS;
1754 }
1755 
1756 /// Performs bitwise AND operation on APInt LHS and
1757 /// APInt RHS.
1758 /// @brief Bitwise AND function for APInt.
And(const APInt & LHS,const APInt & RHS)1759 inline APInt And(const APInt& LHS, const APInt& RHS) {
1760   return LHS & RHS;
1761 }
1762 
1763 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
1764 /// @brief Bitwise OR function for APInt.
Or(const APInt & LHS,const APInt & RHS)1765 inline APInt Or(const APInt& LHS, const APInt& RHS) {
1766   return LHS | RHS;
1767 }
1768 
1769 /// Performs bitwise XOR operation on APInt.
1770 /// @brief Bitwise XOR function for APInt.
Xor(const APInt & LHS,const APInt & RHS)1771 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1772   return LHS ^ RHS;
1773 }
1774 
1775 /// Performs a bitwise complement operation on APInt.
1776 /// @brief Bitwise complement function.
Not(const APInt & APIVal)1777 inline APInt Not(const APInt& APIVal) {
1778   return ~APIVal;
1779 }
1780 
1781 } // End of APIntOps namespace
1782 
1783 } // End of llvm namespace
1784 
1785 #endif
1786