1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DelayedDiagnostic.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/Sema/ScopeInfo.h"
19 #include "clang/Sema/AnalysisBasedWarnings.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTMutationListener.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/EvaluatedExprVisitor.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExprObjC.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/SourceManager.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/Lex/LiteralSupport.h"
36 #include "clang/Lex/Preprocessor.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/Designator.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/SemaFixItUtils.h"
43 #include "clang/Sema/Template.h"
44 #include "TreeTransform.h"
45 using namespace clang;
46 using namespace sema;
47
48 /// \brief Determine whether the use of this declaration is valid, without
49 /// emitting diagnostics.
CanUseDecl(NamedDecl * D)50 bool Sema::CanUseDecl(NamedDecl *D) {
51 // See if this is an auto-typed variable whose initializer we are parsing.
52 if (ParsingInitForAutoVars.count(D))
53 return false;
54
55 // See if this is a deleted function.
56 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57 if (FD->isDeleted())
58 return false;
59 }
60
61 // See if this function is unavailable.
62 if (D->getAvailability() == AR_Unavailable &&
63 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64 return false;
65
66 return true;
67 }
68
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)69 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
70 // Warn if this is used but marked unused.
71 if (D->hasAttr<UnusedAttr>()) {
72 const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
73 if (!DC->hasAttr<UnusedAttr>())
74 S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
75 }
76 }
77
DiagnoseAvailabilityOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)78 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
79 NamedDecl *D, SourceLocation Loc,
80 const ObjCInterfaceDecl *UnknownObjCClass) {
81 // See if this declaration is unavailable or deprecated.
82 std::string Message;
83 AvailabilityResult Result = D->getAvailability(&Message);
84 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
85 if (Result == AR_Available) {
86 const DeclContext *DC = ECD->getDeclContext();
87 if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
88 Result = TheEnumDecl->getAvailability(&Message);
89 }
90
91 switch (Result) {
92 case AR_Available:
93 case AR_NotYetIntroduced:
94 break;
95
96 case AR_Deprecated:
97 S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
98 break;
99
100 case AR_Unavailable:
101 if (S.getCurContextAvailability() != AR_Unavailable) {
102 if (Message.empty()) {
103 if (!UnknownObjCClass)
104 S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
105 else
106 S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
107 << D->getDeclName();
108 }
109 else
110 S.Diag(Loc, diag::err_unavailable_message)
111 << D->getDeclName() << Message;
112 S.Diag(D->getLocation(), diag::note_unavailable_here)
113 << isa<FunctionDecl>(D) << false;
114 }
115 break;
116 }
117 return Result;
118 }
119
120 /// \brief Emit a note explaining that this function is deleted or unavailable.
NoteDeletedFunction(FunctionDecl * Decl)121 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
122 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
123
124 if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
125 // If the method was explicitly defaulted, point at that declaration.
126 if (!Method->isImplicit())
127 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
128
129 // Try to diagnose why this special member function was implicitly
130 // deleted. This might fail, if that reason no longer applies.
131 CXXSpecialMember CSM = getSpecialMember(Method);
132 if (CSM != CXXInvalid)
133 ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
134
135 return;
136 }
137
138 Diag(Decl->getLocation(), diag::note_unavailable_here)
139 << 1 << Decl->isDeleted();
140 }
141
142 /// \brief Determine whether a FunctionDecl was ever declared with an
143 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)144 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
145 for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
146 E = D->redecls_end();
147 I != E; ++I) {
148 if (I->getStorageClassAsWritten() != SC_None)
149 return true;
150 }
151 return false;
152 }
153
154 /// \brief Check whether we're in an extern inline function and referring to a
155 /// variable or function with internal linkage (C11 6.7.4p3).
156 ///
157 /// This is only a warning because we used to silently accept this code, but
158 /// in many cases it will not behave correctly. This is not enabled in C++ mode
159 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
160 /// and so while there may still be user mistakes, most of the time we can't
161 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)162 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
163 const NamedDecl *D,
164 SourceLocation Loc) {
165 // This is disabled under C++; there are too many ways for this to fire in
166 // contexts where the warning is a false positive, or where it is technically
167 // correct but benign.
168 if (S.getLangOpts().CPlusPlus)
169 return;
170
171 // Check if this is an inlined function or method.
172 FunctionDecl *Current = S.getCurFunctionDecl();
173 if (!Current)
174 return;
175 if (!Current->isInlined())
176 return;
177 if (Current->getLinkage() != ExternalLinkage)
178 return;
179
180 // Check if the decl has internal linkage.
181 if (D->getLinkage() != InternalLinkage)
182 return;
183
184 // Downgrade from ExtWarn to Extension if
185 // (1) the supposedly external inline function is in the main file,
186 // and probably won't be included anywhere else.
187 // (2) the thing we're referencing is a pure function.
188 // (3) the thing we're referencing is another inline function.
189 // This last can give us false negatives, but it's better than warning on
190 // wrappers for simple C library functions.
191 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
192 bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
193 if (!DowngradeWarning && UsedFn)
194 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
195
196 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
197 : diag::warn_internal_in_extern_inline)
198 << /*IsVar=*/!UsedFn << D;
199
200 // Suggest "static" on the inline function, if possible.
201 if (!hasAnyExplicitStorageClass(Current)) {
202 const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
203 SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
204 S.Diag(DeclBegin, diag::note_convert_inline_to_static)
205 << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
206 }
207
208 S.Diag(D->getCanonicalDecl()->getLocation(),
209 diag::note_internal_decl_declared_here)
210 << D;
211 }
212
213 /// \brief Determine whether the use of this declaration is valid, and
214 /// emit any corresponding diagnostics.
215 ///
216 /// This routine diagnoses various problems with referencing
217 /// declarations that can occur when using a declaration. For example,
218 /// it might warn if a deprecated or unavailable declaration is being
219 /// used, or produce an error (and return true) if a C++0x deleted
220 /// function is being used.
221 ///
222 /// \returns true if there was an error (this declaration cannot be
223 /// referenced), false otherwise.
224 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass)225 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
226 const ObjCInterfaceDecl *UnknownObjCClass) {
227 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
228 // If there were any diagnostics suppressed by template argument deduction,
229 // emit them now.
230 llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
231 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
232 if (Pos != SuppressedDiagnostics.end()) {
233 SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
234 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
235 Diag(Suppressed[I].first, Suppressed[I].second);
236
237 // Clear out the list of suppressed diagnostics, so that we don't emit
238 // them again for this specialization. However, we don't obsolete this
239 // entry from the table, because we want to avoid ever emitting these
240 // diagnostics again.
241 Suppressed.clear();
242 }
243 }
244
245 // See if this is an auto-typed variable whose initializer we are parsing.
246 if (ParsingInitForAutoVars.count(D)) {
247 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
248 << D->getDeclName();
249 return true;
250 }
251
252 // See if this is a deleted function.
253 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
254 if (FD->isDeleted()) {
255 Diag(Loc, diag::err_deleted_function_use);
256 NoteDeletedFunction(FD);
257 return true;
258 }
259 }
260 DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
261
262 DiagnoseUnusedOfDecl(*this, D, Loc);
263
264 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
265
266 return false;
267 }
268
269 /// \brief Retrieve the message suffix that should be added to a
270 /// diagnostic complaining about the given function being deleted or
271 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)272 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
273 // FIXME: C++0x implicitly-deleted special member functions could be
274 // detected here so that we could improve diagnostics to say, e.g.,
275 // "base class 'A' had a deleted copy constructor".
276 if (FD->isDeleted())
277 return std::string();
278
279 std::string Message;
280 if (FD->getAvailability(&Message))
281 return ": " + Message;
282
283 return std::string();
284 }
285
286 /// DiagnoseSentinelCalls - This routine checks whether a call or
287 /// message-send is to a declaration with the sentinel attribute, and
288 /// if so, it checks that the requirements of the sentinel are
289 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,Expr ** args,unsigned numArgs)290 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
291 Expr **args, unsigned numArgs) {
292 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
293 if (!attr)
294 return;
295
296 // The number of formal parameters of the declaration.
297 unsigned numFormalParams;
298
299 // The kind of declaration. This is also an index into a %select in
300 // the diagnostic.
301 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
302
303 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
304 numFormalParams = MD->param_size();
305 calleeType = CT_Method;
306 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
307 numFormalParams = FD->param_size();
308 calleeType = CT_Function;
309 } else if (isa<VarDecl>(D)) {
310 QualType type = cast<ValueDecl>(D)->getType();
311 const FunctionType *fn = 0;
312 if (const PointerType *ptr = type->getAs<PointerType>()) {
313 fn = ptr->getPointeeType()->getAs<FunctionType>();
314 if (!fn) return;
315 calleeType = CT_Function;
316 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
317 fn = ptr->getPointeeType()->castAs<FunctionType>();
318 calleeType = CT_Block;
319 } else {
320 return;
321 }
322
323 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
324 numFormalParams = proto->getNumArgs();
325 } else {
326 numFormalParams = 0;
327 }
328 } else {
329 return;
330 }
331
332 // "nullPos" is the number of formal parameters at the end which
333 // effectively count as part of the variadic arguments. This is
334 // useful if you would prefer to not have *any* formal parameters,
335 // but the language forces you to have at least one.
336 unsigned nullPos = attr->getNullPos();
337 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
338 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
339
340 // The number of arguments which should follow the sentinel.
341 unsigned numArgsAfterSentinel = attr->getSentinel();
342
343 // If there aren't enough arguments for all the formal parameters,
344 // the sentinel, and the args after the sentinel, complain.
345 if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
346 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
347 Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
348 return;
349 }
350
351 // Otherwise, find the sentinel expression.
352 Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
353 if (!sentinelExpr) return;
354 if (sentinelExpr->isValueDependent()) return;
355 if (Context.isSentinelNullExpr(sentinelExpr)) return;
356
357 // Pick a reasonable string to insert. Optimistically use 'nil' or
358 // 'NULL' if those are actually defined in the context. Only use
359 // 'nil' for ObjC methods, where it's much more likely that the
360 // variadic arguments form a list of object pointers.
361 SourceLocation MissingNilLoc
362 = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
363 std::string NullValue;
364 if (calleeType == CT_Method &&
365 PP.getIdentifierInfo("nil")->hasMacroDefinition())
366 NullValue = "nil";
367 else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
368 NullValue = "NULL";
369 else
370 NullValue = "(void*) 0";
371
372 if (MissingNilLoc.isInvalid())
373 Diag(Loc, diag::warn_missing_sentinel) << calleeType;
374 else
375 Diag(MissingNilLoc, diag::warn_missing_sentinel)
376 << calleeType
377 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
378 Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
379 }
380
getExprRange(Expr * E) const381 SourceRange Sema::getExprRange(Expr *E) const {
382 return E ? E->getSourceRange() : SourceRange();
383 }
384
385 //===----------------------------------------------------------------------===//
386 // Standard Promotions and Conversions
387 //===----------------------------------------------------------------------===//
388
389 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E)390 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
391 // Handle any placeholder expressions which made it here.
392 if (E->getType()->isPlaceholderType()) {
393 ExprResult result = CheckPlaceholderExpr(E);
394 if (result.isInvalid()) return ExprError();
395 E = result.take();
396 }
397
398 QualType Ty = E->getType();
399 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
400
401 if (Ty->isFunctionType())
402 E = ImpCastExprToType(E, Context.getPointerType(Ty),
403 CK_FunctionToPointerDecay).take();
404 else if (Ty->isArrayType()) {
405 // In C90 mode, arrays only promote to pointers if the array expression is
406 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
407 // type 'array of type' is converted to an expression that has type 'pointer
408 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
409 // that has type 'array of type' ...". The relevant change is "an lvalue"
410 // (C90) to "an expression" (C99).
411 //
412 // C++ 4.2p1:
413 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
414 // T" can be converted to an rvalue of type "pointer to T".
415 //
416 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
417 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
418 CK_ArrayToPointerDecay).take();
419 }
420 return Owned(E);
421 }
422
CheckForNullPointerDereference(Sema & S,Expr * E)423 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
424 // Check to see if we are dereferencing a null pointer. If so,
425 // and if not volatile-qualified, this is undefined behavior that the
426 // optimizer will delete, so warn about it. People sometimes try to use this
427 // to get a deterministic trap and are surprised by clang's behavior. This
428 // only handles the pattern "*null", which is a very syntactic check.
429 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
430 if (UO->getOpcode() == UO_Deref &&
431 UO->getSubExpr()->IgnoreParenCasts()->
432 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
433 !UO->getType().isVolatileQualified()) {
434 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
435 S.PDiag(diag::warn_indirection_through_null)
436 << UO->getSubExpr()->getSourceRange());
437 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
438 S.PDiag(diag::note_indirection_through_null));
439 }
440 }
441
DefaultLvalueConversion(Expr * E)442 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
443 // Handle any placeholder expressions which made it here.
444 if (E->getType()->isPlaceholderType()) {
445 ExprResult result = CheckPlaceholderExpr(E);
446 if (result.isInvalid()) return ExprError();
447 E = result.take();
448 }
449
450 // C++ [conv.lval]p1:
451 // A glvalue of a non-function, non-array type T can be
452 // converted to a prvalue.
453 if (!E->isGLValue()) return Owned(E);
454
455 QualType T = E->getType();
456 assert(!T.isNull() && "r-value conversion on typeless expression?");
457
458 // We don't want to throw lvalue-to-rvalue casts on top of
459 // expressions of certain types in C++.
460 if (getLangOpts().CPlusPlus &&
461 (E->getType() == Context.OverloadTy ||
462 T->isDependentType() ||
463 T->isRecordType()))
464 return Owned(E);
465
466 // The C standard is actually really unclear on this point, and
467 // DR106 tells us what the result should be but not why. It's
468 // generally best to say that void types just doesn't undergo
469 // lvalue-to-rvalue at all. Note that expressions of unqualified
470 // 'void' type are never l-values, but qualified void can be.
471 if (T->isVoidType())
472 return Owned(E);
473
474 CheckForNullPointerDereference(*this, E);
475
476 // C++ [conv.lval]p1:
477 // [...] If T is a non-class type, the type of the prvalue is the
478 // cv-unqualified version of T. Otherwise, the type of the
479 // rvalue is T.
480 //
481 // C99 6.3.2.1p2:
482 // If the lvalue has qualified type, the value has the unqualified
483 // version of the type of the lvalue; otherwise, the value has the
484 // type of the lvalue.
485 if (T.hasQualifiers())
486 T = T.getUnqualifiedType();
487
488 UpdateMarkingForLValueToRValue(E);
489
490 ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
491 E, 0, VK_RValue));
492
493 // C11 6.3.2.1p2:
494 // ... if the lvalue has atomic type, the value has the non-atomic version
495 // of the type of the lvalue ...
496 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
497 T = Atomic->getValueType().getUnqualifiedType();
498 Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
499 Res.get(), 0, VK_RValue));
500 }
501
502 return Res;
503 }
504
DefaultFunctionArrayLvalueConversion(Expr * E)505 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
506 ExprResult Res = DefaultFunctionArrayConversion(E);
507 if (Res.isInvalid())
508 return ExprError();
509 Res = DefaultLvalueConversion(Res.take());
510 if (Res.isInvalid())
511 return ExprError();
512 return Res;
513 }
514
515
516 /// UsualUnaryConversions - Performs various conversions that are common to most
517 /// operators (C99 6.3). The conversions of array and function types are
518 /// sometimes suppressed. For example, the array->pointer conversion doesn't
519 /// apply if the array is an argument to the sizeof or address (&) operators.
520 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)521 ExprResult Sema::UsualUnaryConversions(Expr *E) {
522 // First, convert to an r-value.
523 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
524 if (Res.isInvalid())
525 return Owned(E);
526 E = Res.take();
527
528 QualType Ty = E->getType();
529 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
530
531 // Half FP is a bit different: it's a storage-only type, meaning that any
532 // "use" of it should be promoted to float.
533 if (Ty->isHalfType())
534 return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
535
536 // Try to perform integral promotions if the object has a theoretically
537 // promotable type.
538 if (Ty->isIntegralOrUnscopedEnumerationType()) {
539 // C99 6.3.1.1p2:
540 //
541 // The following may be used in an expression wherever an int or
542 // unsigned int may be used:
543 // - an object or expression with an integer type whose integer
544 // conversion rank is less than or equal to the rank of int
545 // and unsigned int.
546 // - A bit-field of type _Bool, int, signed int, or unsigned int.
547 //
548 // If an int can represent all values of the original type, the
549 // value is converted to an int; otherwise, it is converted to an
550 // unsigned int. These are called the integer promotions. All
551 // other types are unchanged by the integer promotions.
552
553 QualType PTy = Context.isPromotableBitField(E);
554 if (!PTy.isNull()) {
555 E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
556 return Owned(E);
557 }
558 if (Ty->isPromotableIntegerType()) {
559 QualType PT = Context.getPromotedIntegerType(Ty);
560 E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
561 return Owned(E);
562 }
563 }
564 return Owned(E);
565 }
566
567 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
568 /// do not have a prototype. Arguments that have type float are promoted to
569 /// double. All other argument types are converted by UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)570 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
571 QualType Ty = E->getType();
572 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
573
574 ExprResult Res = UsualUnaryConversions(E);
575 if (Res.isInvalid())
576 return Owned(E);
577 E = Res.take();
578
579 // If this is a 'float' (CVR qualified or typedef) promote to double.
580 if (Ty->isSpecificBuiltinType(BuiltinType::Float))
581 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
582
583 // C++ performs lvalue-to-rvalue conversion as a default argument
584 // promotion, even on class types, but note:
585 // C++11 [conv.lval]p2:
586 // When an lvalue-to-rvalue conversion occurs in an unevaluated
587 // operand or a subexpression thereof the value contained in the
588 // referenced object is not accessed. Otherwise, if the glvalue
589 // has a class type, the conversion copy-initializes a temporary
590 // of type T from the glvalue and the result of the conversion
591 // is a prvalue for the temporary.
592 // FIXME: add some way to gate this entire thing for correctness in
593 // potentially potentially evaluated contexts.
594 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
595 ExprResult Temp = PerformCopyInitialization(
596 InitializedEntity::InitializeTemporary(E->getType()),
597 E->getExprLoc(),
598 Owned(E));
599 if (Temp.isInvalid())
600 return ExprError();
601 E = Temp.get();
602 }
603
604 return Owned(E);
605 }
606
607 /// Determine the degree of POD-ness for an expression.
608 /// Incomplete types are considered POD, since this check can be performed
609 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)610 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
611 if (Ty->isIncompleteType()) {
612 if (Ty->isObjCObjectType())
613 return VAK_Invalid;
614 return VAK_Valid;
615 }
616
617 if (Ty.isCXX98PODType(Context))
618 return VAK_Valid;
619
620 // C++0x [expr.call]p7:
621 // Passing a potentially-evaluated argument of class type (Clause 9)
622 // having a non-trivial copy constructor, a non-trivial move constructor,
623 // or a non-trivial destructor, with no corresponding parameter,
624 // is conditionally-supported with implementation-defined semantics.
625 if (getLangOpts().CPlusPlus0x && !Ty->isDependentType())
626 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
627 if (Record->hasTrivialCopyConstructor() &&
628 Record->hasTrivialMoveConstructor() &&
629 Record->hasTrivialDestructor())
630 return VAK_ValidInCXX11;
631
632 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
633 return VAK_Valid;
634 return VAK_Invalid;
635 }
636
variadicArgumentPODCheck(const Expr * E,VariadicCallType CT)637 bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
638 // Don't allow one to pass an Objective-C interface to a vararg.
639 const QualType & Ty = E->getType();
640
641 // Complain about passing non-POD types through varargs.
642 switch (isValidVarArgType(Ty)) {
643 case VAK_Valid:
644 break;
645 case VAK_ValidInCXX11:
646 DiagRuntimeBehavior(E->getLocStart(), 0,
647 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
648 << E->getType() << CT);
649 break;
650 case VAK_Invalid: {
651 if (Ty->isObjCObjectType())
652 return DiagRuntimeBehavior(E->getLocStart(), 0,
653 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
654 << Ty << CT);
655
656 return DiagRuntimeBehavior(E->getLocStart(), 0,
657 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
658 << getLangOpts().CPlusPlus0x << Ty << CT);
659 }
660 }
661 // c++ rules are enforced elsewhere.
662 return false;
663 }
664
665 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
666 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)667 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
668 FunctionDecl *FDecl) {
669 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
670 // Strip the unbridged-cast placeholder expression off, if applicable.
671 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
672 (CT == VariadicMethod ||
673 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
674 E = stripARCUnbridgedCast(E);
675
676 // Otherwise, do normal placeholder checking.
677 } else {
678 ExprResult ExprRes = CheckPlaceholderExpr(E);
679 if (ExprRes.isInvalid())
680 return ExprError();
681 E = ExprRes.take();
682 }
683 }
684
685 ExprResult ExprRes = DefaultArgumentPromotion(E);
686 if (ExprRes.isInvalid())
687 return ExprError();
688 E = ExprRes.take();
689
690 // Diagnostics regarding non-POD argument types are
691 // emitted along with format string checking in Sema::CheckFunctionCall().
692 if (isValidVarArgType(E->getType()) == VAK_Invalid) {
693 // Turn this into a trap.
694 CXXScopeSpec SS;
695 SourceLocation TemplateKWLoc;
696 UnqualifiedId Name;
697 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
698 E->getLocStart());
699 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
700 Name, true, false);
701 if (TrapFn.isInvalid())
702 return ExprError();
703
704 ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
705 E->getLocStart(), MultiExprArg(),
706 E->getLocEnd());
707 if (Call.isInvalid())
708 return ExprError();
709
710 ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
711 Call.get(), E);
712 if (Comma.isInvalid())
713 return ExprError();
714 return Comma.get();
715 }
716
717 if (!getLangOpts().CPlusPlus &&
718 RequireCompleteType(E->getExprLoc(), E->getType(),
719 diag::err_call_incomplete_argument))
720 return ExprError();
721
722 return Owned(E);
723 }
724
725 /// \brief Converts an integer to complex float type. Helper function of
726 /// UsualArithmeticConversions()
727 ///
728 /// \return false if the integer expression is an integer type and is
729 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)730 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
731 ExprResult &ComplexExpr,
732 QualType IntTy,
733 QualType ComplexTy,
734 bool SkipCast) {
735 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
736 if (SkipCast) return false;
737 if (IntTy->isIntegerType()) {
738 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
739 IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
740 IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
741 CK_FloatingRealToComplex);
742 } else {
743 assert(IntTy->isComplexIntegerType());
744 IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
745 CK_IntegralComplexToFloatingComplex);
746 }
747 return false;
748 }
749
750 /// \brief Takes two complex float types and converts them to the same type.
751 /// Helper function of UsualArithmeticConversions()
752 static QualType
handleComplexFloatToComplexFloatConverstion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)753 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
754 ExprResult &RHS, QualType LHSType,
755 QualType RHSType,
756 bool IsCompAssign) {
757 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
758
759 if (order < 0) {
760 // _Complex float -> _Complex double
761 if (!IsCompAssign)
762 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
763 return RHSType;
764 }
765 if (order > 0)
766 // _Complex float -> _Complex double
767 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
768 return LHSType;
769 }
770
771 /// \brief Converts otherExpr to complex float and promotes complexExpr if
772 /// necessary. Helper function of UsualArithmeticConversions()
handleOtherComplexFloatConversion(Sema & S,ExprResult & ComplexExpr,ExprResult & OtherExpr,QualType ComplexTy,QualType OtherTy,bool ConvertComplexExpr,bool ConvertOtherExpr)773 static QualType handleOtherComplexFloatConversion(Sema &S,
774 ExprResult &ComplexExpr,
775 ExprResult &OtherExpr,
776 QualType ComplexTy,
777 QualType OtherTy,
778 bool ConvertComplexExpr,
779 bool ConvertOtherExpr) {
780 int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
781
782 // If just the complexExpr is complex, the otherExpr needs to be converted,
783 // and the complexExpr might need to be promoted.
784 if (order > 0) { // complexExpr is wider
785 // float -> _Complex double
786 if (ConvertOtherExpr) {
787 QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
788 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
789 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
790 CK_FloatingRealToComplex);
791 }
792 return ComplexTy;
793 }
794
795 // otherTy is at least as wide. Find its corresponding complex type.
796 QualType result = (order == 0 ? ComplexTy :
797 S.Context.getComplexType(OtherTy));
798
799 // double -> _Complex double
800 if (ConvertOtherExpr)
801 OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
802 CK_FloatingRealToComplex);
803
804 // _Complex float -> _Complex double
805 if (ConvertComplexExpr && order < 0)
806 ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
807 CK_FloatingComplexCast);
808
809 return result;
810 }
811
812 /// \brief Handle arithmetic conversion with complex types. Helper function of
813 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)814 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
815 ExprResult &RHS, QualType LHSType,
816 QualType RHSType,
817 bool IsCompAssign) {
818 // if we have an integer operand, the result is the complex type.
819 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
820 /*skipCast*/false))
821 return LHSType;
822 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
823 /*skipCast*/IsCompAssign))
824 return RHSType;
825
826 // This handles complex/complex, complex/float, or float/complex.
827 // When both operands are complex, the shorter operand is converted to the
828 // type of the longer, and that is the type of the result. This corresponds
829 // to what is done when combining two real floating-point operands.
830 // The fun begins when size promotion occur across type domains.
831 // From H&S 6.3.4: When one operand is complex and the other is a real
832 // floating-point type, the less precise type is converted, within it's
833 // real or complex domain, to the precision of the other type. For example,
834 // when combining a "long double" with a "double _Complex", the
835 // "double _Complex" is promoted to "long double _Complex".
836
837 bool LHSComplexFloat = LHSType->isComplexType();
838 bool RHSComplexFloat = RHSType->isComplexType();
839
840 // If both are complex, just cast to the more precise type.
841 if (LHSComplexFloat && RHSComplexFloat)
842 return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
843 LHSType, RHSType,
844 IsCompAssign);
845
846 // If only one operand is complex, promote it if necessary and convert the
847 // other operand to complex.
848 if (LHSComplexFloat)
849 return handleOtherComplexFloatConversion(
850 S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
851 /*convertOtherExpr*/ true);
852
853 assert(RHSComplexFloat);
854 return handleOtherComplexFloatConversion(
855 S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
856 /*convertOtherExpr*/ !IsCompAssign);
857 }
858
859 /// \brief Hande arithmetic conversion from integer to float. Helper function
860 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)861 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
862 ExprResult &IntExpr,
863 QualType FloatTy, QualType IntTy,
864 bool ConvertFloat, bool ConvertInt) {
865 if (IntTy->isIntegerType()) {
866 if (ConvertInt)
867 // Convert intExpr to the lhs floating point type.
868 IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
869 CK_IntegralToFloating);
870 return FloatTy;
871 }
872
873 // Convert both sides to the appropriate complex float.
874 assert(IntTy->isComplexIntegerType());
875 QualType result = S.Context.getComplexType(FloatTy);
876
877 // _Complex int -> _Complex float
878 if (ConvertInt)
879 IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
880 CK_IntegralComplexToFloatingComplex);
881
882 // float -> _Complex float
883 if (ConvertFloat)
884 FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
885 CK_FloatingRealToComplex);
886
887 return result;
888 }
889
890 /// \brief Handle arithmethic conversion with floating point types. Helper
891 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)892 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
893 ExprResult &RHS, QualType LHSType,
894 QualType RHSType, bool IsCompAssign) {
895 bool LHSFloat = LHSType->isRealFloatingType();
896 bool RHSFloat = RHSType->isRealFloatingType();
897
898 // If we have two real floating types, convert the smaller operand
899 // to the bigger result.
900 if (LHSFloat && RHSFloat) {
901 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
902 if (order > 0) {
903 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
904 return LHSType;
905 }
906
907 assert(order < 0 && "illegal float comparison");
908 if (!IsCompAssign)
909 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
910 return RHSType;
911 }
912
913 if (LHSFloat)
914 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
915 /*convertFloat=*/!IsCompAssign,
916 /*convertInt=*/ true);
917 assert(RHSFloat);
918 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
919 /*convertInt=*/ true,
920 /*convertFloat=*/!IsCompAssign);
921 }
922
923 /// \brief Handle conversions with GCC complex int extension. Helper function
924 /// of UsualArithmeticConversions()
925 // FIXME: if the operands are (int, _Complex long), we currently
926 // don't promote the complex. Also, signedness?
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)927 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
928 ExprResult &RHS, QualType LHSType,
929 QualType RHSType,
930 bool IsCompAssign) {
931 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
932 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
933
934 if (LHSComplexInt && RHSComplexInt) {
935 int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
936 RHSComplexInt->getElementType());
937 assert(order && "inequal types with equal element ordering");
938 if (order > 0) {
939 // _Complex int -> _Complex long
940 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
941 return LHSType;
942 }
943
944 if (!IsCompAssign)
945 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
946 return RHSType;
947 }
948
949 if (LHSComplexInt) {
950 // int -> _Complex int
951 // FIXME: This needs to take integer ranks into account
952 RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
953 CK_IntegralCast);
954 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
955 return LHSType;
956 }
957
958 assert(RHSComplexInt);
959 // int -> _Complex int
960 // FIXME: This needs to take integer ranks into account
961 if (!IsCompAssign) {
962 LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
963 CK_IntegralCast);
964 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
965 }
966 return RHSType;
967 }
968
969 /// \brief Handle integer arithmetic conversions. Helper function of
970 /// UsualArithmeticConversions()
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)971 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
972 ExprResult &RHS, QualType LHSType,
973 QualType RHSType, bool IsCompAssign) {
974 // The rules for this case are in C99 6.3.1.8
975 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
976 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
977 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
978 if (LHSSigned == RHSSigned) {
979 // Same signedness; use the higher-ranked type
980 if (order >= 0) {
981 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
982 return LHSType;
983 } else if (!IsCompAssign)
984 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
985 return RHSType;
986 } else if (order != (LHSSigned ? 1 : -1)) {
987 // The unsigned type has greater than or equal rank to the
988 // signed type, so use the unsigned type
989 if (RHSSigned) {
990 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
991 return LHSType;
992 } else if (!IsCompAssign)
993 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
994 return RHSType;
995 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
996 // The two types are different widths; if we are here, that
997 // means the signed type is larger than the unsigned type, so
998 // use the signed type.
999 if (LHSSigned) {
1000 RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
1001 return LHSType;
1002 } else if (!IsCompAssign)
1003 LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
1004 return RHSType;
1005 } else {
1006 // The signed type is higher-ranked than the unsigned type,
1007 // but isn't actually any bigger (like unsigned int and long
1008 // on most 32-bit systems). Use the unsigned type corresponding
1009 // to the signed type.
1010 QualType result =
1011 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1012 RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
1013 if (!IsCompAssign)
1014 LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
1015 return result;
1016 }
1017 }
1018
1019 /// UsualArithmeticConversions - Performs various conversions that are common to
1020 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1021 /// routine returns the first non-arithmetic type found. The client is
1022 /// responsible for emitting appropriate error diagnostics.
1023 /// FIXME: verify the conversion rules for "complex int" are consistent with
1024 /// GCC.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,bool IsCompAssign)1025 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1026 bool IsCompAssign) {
1027 if (!IsCompAssign) {
1028 LHS = UsualUnaryConversions(LHS.take());
1029 if (LHS.isInvalid())
1030 return QualType();
1031 }
1032
1033 RHS = UsualUnaryConversions(RHS.take());
1034 if (RHS.isInvalid())
1035 return QualType();
1036
1037 // For conversion purposes, we ignore any qualifiers.
1038 // For example, "const float" and "float" are equivalent.
1039 QualType LHSType =
1040 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1041 QualType RHSType =
1042 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1043
1044 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1045 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1046 LHSType = AtomicLHS->getValueType();
1047
1048 // If both types are identical, no conversion is needed.
1049 if (LHSType == RHSType)
1050 return LHSType;
1051
1052 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1053 // The caller can deal with this (e.g. pointer + int).
1054 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1055 return QualType();
1056
1057 // Apply unary and bitfield promotions to the LHS's type.
1058 QualType LHSUnpromotedType = LHSType;
1059 if (LHSType->isPromotableIntegerType())
1060 LHSType = Context.getPromotedIntegerType(LHSType);
1061 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1062 if (!LHSBitfieldPromoteTy.isNull())
1063 LHSType = LHSBitfieldPromoteTy;
1064 if (LHSType != LHSUnpromotedType && !IsCompAssign)
1065 LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1066
1067 // If both types are identical, no conversion is needed.
1068 if (LHSType == RHSType)
1069 return LHSType;
1070
1071 // At this point, we have two different arithmetic types.
1072
1073 // Handle complex types first (C99 6.3.1.8p1).
1074 if (LHSType->isComplexType() || RHSType->isComplexType())
1075 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1076 IsCompAssign);
1077
1078 // Now handle "real" floating types (i.e. float, double, long double).
1079 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1080 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1081 IsCompAssign);
1082
1083 // Handle GCC complex int extension.
1084 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1085 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1086 IsCompAssign);
1087
1088 // Finally, we have two differing integer types.
1089 return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
1090 IsCompAssign);
1091 }
1092
1093 //===----------------------------------------------------------------------===//
1094 // Semantic Analysis for various Expression Types
1095 //===----------------------------------------------------------------------===//
1096
1097
1098 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,MultiTypeArg ArgTypes,MultiExprArg ArgExprs)1099 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1100 SourceLocation DefaultLoc,
1101 SourceLocation RParenLoc,
1102 Expr *ControllingExpr,
1103 MultiTypeArg ArgTypes,
1104 MultiExprArg ArgExprs) {
1105 unsigned NumAssocs = ArgTypes.size();
1106 assert(NumAssocs == ArgExprs.size());
1107
1108 ParsedType *ParsedTypes = ArgTypes.data();
1109 Expr **Exprs = ArgExprs.data();
1110
1111 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1112 for (unsigned i = 0; i < NumAssocs; ++i) {
1113 if (ParsedTypes[i])
1114 (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1115 else
1116 Types[i] = 0;
1117 }
1118
1119 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1120 ControllingExpr, Types, Exprs,
1121 NumAssocs);
1122 delete [] Types;
1123 return ER;
1124 }
1125
1126 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,TypeSourceInfo ** Types,Expr ** Exprs,unsigned NumAssocs)1127 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1128 SourceLocation DefaultLoc,
1129 SourceLocation RParenLoc,
1130 Expr *ControllingExpr,
1131 TypeSourceInfo **Types,
1132 Expr **Exprs,
1133 unsigned NumAssocs) {
1134 bool TypeErrorFound = false,
1135 IsResultDependent = ControllingExpr->isTypeDependent(),
1136 ContainsUnexpandedParameterPack
1137 = ControllingExpr->containsUnexpandedParameterPack();
1138
1139 for (unsigned i = 0; i < NumAssocs; ++i) {
1140 if (Exprs[i]->containsUnexpandedParameterPack())
1141 ContainsUnexpandedParameterPack = true;
1142
1143 if (Types[i]) {
1144 if (Types[i]->getType()->containsUnexpandedParameterPack())
1145 ContainsUnexpandedParameterPack = true;
1146
1147 if (Types[i]->getType()->isDependentType()) {
1148 IsResultDependent = true;
1149 } else {
1150 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1151 // complete object type other than a variably modified type."
1152 unsigned D = 0;
1153 if (Types[i]->getType()->isIncompleteType())
1154 D = diag::err_assoc_type_incomplete;
1155 else if (!Types[i]->getType()->isObjectType())
1156 D = diag::err_assoc_type_nonobject;
1157 else if (Types[i]->getType()->isVariablyModifiedType())
1158 D = diag::err_assoc_type_variably_modified;
1159
1160 if (D != 0) {
1161 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1162 << Types[i]->getTypeLoc().getSourceRange()
1163 << Types[i]->getType();
1164 TypeErrorFound = true;
1165 }
1166
1167 // C11 6.5.1.1p2 "No two generic associations in the same generic
1168 // selection shall specify compatible types."
1169 for (unsigned j = i+1; j < NumAssocs; ++j)
1170 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1171 Context.typesAreCompatible(Types[i]->getType(),
1172 Types[j]->getType())) {
1173 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1174 diag::err_assoc_compatible_types)
1175 << Types[j]->getTypeLoc().getSourceRange()
1176 << Types[j]->getType()
1177 << Types[i]->getType();
1178 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1179 diag::note_compat_assoc)
1180 << Types[i]->getTypeLoc().getSourceRange()
1181 << Types[i]->getType();
1182 TypeErrorFound = true;
1183 }
1184 }
1185 }
1186 }
1187 if (TypeErrorFound)
1188 return ExprError();
1189
1190 // If we determined that the generic selection is result-dependent, don't
1191 // try to compute the result expression.
1192 if (IsResultDependent)
1193 return Owned(new (Context) GenericSelectionExpr(
1194 Context, KeyLoc, ControllingExpr,
1195 llvm::makeArrayRef(Types, NumAssocs),
1196 llvm::makeArrayRef(Exprs, NumAssocs),
1197 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1198
1199 SmallVector<unsigned, 1> CompatIndices;
1200 unsigned DefaultIndex = -1U;
1201 for (unsigned i = 0; i < NumAssocs; ++i) {
1202 if (!Types[i])
1203 DefaultIndex = i;
1204 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1205 Types[i]->getType()))
1206 CompatIndices.push_back(i);
1207 }
1208
1209 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1210 // type compatible with at most one of the types named in its generic
1211 // association list."
1212 if (CompatIndices.size() > 1) {
1213 // We strip parens here because the controlling expression is typically
1214 // parenthesized in macro definitions.
1215 ControllingExpr = ControllingExpr->IgnoreParens();
1216 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1217 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1218 << (unsigned) CompatIndices.size();
1219 for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1220 E = CompatIndices.end(); I != E; ++I) {
1221 Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1222 diag::note_compat_assoc)
1223 << Types[*I]->getTypeLoc().getSourceRange()
1224 << Types[*I]->getType();
1225 }
1226 return ExprError();
1227 }
1228
1229 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1230 // its controlling expression shall have type compatible with exactly one of
1231 // the types named in its generic association list."
1232 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1233 // We strip parens here because the controlling expression is typically
1234 // parenthesized in macro definitions.
1235 ControllingExpr = ControllingExpr->IgnoreParens();
1236 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1237 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1238 return ExprError();
1239 }
1240
1241 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1242 // type name that is compatible with the type of the controlling expression,
1243 // then the result expression of the generic selection is the expression
1244 // in that generic association. Otherwise, the result expression of the
1245 // generic selection is the expression in the default generic association."
1246 unsigned ResultIndex =
1247 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1248
1249 return Owned(new (Context) GenericSelectionExpr(
1250 Context, KeyLoc, ControllingExpr,
1251 llvm::makeArrayRef(Types, NumAssocs),
1252 llvm::makeArrayRef(Exprs, NumAssocs),
1253 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1254 ResultIndex));
1255 }
1256
1257 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1258 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1259 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1260 unsigned Offset) {
1261 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1262 S.getLangOpts());
1263 }
1264
1265 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1266 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1267 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1268 IdentifierInfo *UDSuffix,
1269 SourceLocation UDSuffixLoc,
1270 ArrayRef<Expr*> Args,
1271 SourceLocation LitEndLoc) {
1272 assert(Args.size() <= 2 && "too many arguments for literal operator");
1273
1274 QualType ArgTy[2];
1275 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1276 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1277 if (ArgTy[ArgIdx]->isArrayType())
1278 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1279 }
1280
1281 DeclarationName OpName =
1282 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1283 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1284 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1285
1286 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1287 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1288 /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1289 return ExprError();
1290
1291 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1292 }
1293
1294 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1295 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1296 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1297 /// multiple tokens. However, the common case is that StringToks points to one
1298 /// string.
1299 ///
1300 ExprResult
ActOnStringLiteral(const Token * StringToks,unsigned NumStringToks,Scope * UDLScope)1301 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1302 Scope *UDLScope) {
1303 assert(NumStringToks && "Must have at least one string!");
1304
1305 StringLiteralParser Literal(StringToks, NumStringToks, PP);
1306 if (Literal.hadError)
1307 return ExprError();
1308
1309 SmallVector<SourceLocation, 4> StringTokLocs;
1310 for (unsigned i = 0; i != NumStringToks; ++i)
1311 StringTokLocs.push_back(StringToks[i].getLocation());
1312
1313 QualType StrTy = Context.CharTy;
1314 if (Literal.isWide())
1315 StrTy = Context.getWCharType();
1316 else if (Literal.isUTF16())
1317 StrTy = Context.Char16Ty;
1318 else if (Literal.isUTF32())
1319 StrTy = Context.Char32Ty;
1320 else if (Literal.isPascal())
1321 StrTy = Context.UnsignedCharTy;
1322
1323 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1324 if (Literal.isWide())
1325 Kind = StringLiteral::Wide;
1326 else if (Literal.isUTF8())
1327 Kind = StringLiteral::UTF8;
1328 else if (Literal.isUTF16())
1329 Kind = StringLiteral::UTF16;
1330 else if (Literal.isUTF32())
1331 Kind = StringLiteral::UTF32;
1332
1333 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1334 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1335 StrTy.addConst();
1336
1337 // Get an array type for the string, according to C99 6.4.5. This includes
1338 // the nul terminator character as well as the string length for pascal
1339 // strings.
1340 StrTy = Context.getConstantArrayType(StrTy,
1341 llvm::APInt(32, Literal.GetNumStringChars()+1),
1342 ArrayType::Normal, 0);
1343
1344 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1345 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1346 Kind, Literal.Pascal, StrTy,
1347 &StringTokLocs[0],
1348 StringTokLocs.size());
1349 if (Literal.getUDSuffix().empty())
1350 return Owned(Lit);
1351
1352 // We're building a user-defined literal.
1353 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1354 SourceLocation UDSuffixLoc =
1355 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1356 Literal.getUDSuffixOffset());
1357
1358 // Make sure we're allowed user-defined literals here.
1359 if (!UDLScope)
1360 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1361
1362 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1363 // operator "" X (str, len)
1364 QualType SizeType = Context.getSizeType();
1365 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1366 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1367 StringTokLocs[0]);
1368 Expr *Args[] = { Lit, LenArg };
1369 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1370 Args, StringTokLocs.back());
1371 }
1372
1373 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1374 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1375 SourceLocation Loc,
1376 const CXXScopeSpec *SS) {
1377 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1378 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1379 }
1380
1381 /// BuildDeclRefExpr - Build an expression that references a
1382 /// declaration that does not require a closure capture.
1383 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS)1384 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1385 const DeclarationNameInfo &NameInfo,
1386 const CXXScopeSpec *SS) {
1387 if (getLangOpts().CUDA)
1388 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1389 if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1390 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1391 CalleeTarget = IdentifyCUDATarget(Callee);
1392 if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1393 Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1394 << CalleeTarget << D->getIdentifier() << CallerTarget;
1395 Diag(D->getLocation(), diag::note_previous_decl)
1396 << D->getIdentifier();
1397 return ExprError();
1398 }
1399 }
1400
1401 bool refersToEnclosingScope =
1402 (CurContext != D->getDeclContext() &&
1403 D->getDeclContext()->isFunctionOrMethod());
1404
1405 DeclRefExpr *E = DeclRefExpr::Create(Context,
1406 SS ? SS->getWithLocInContext(Context)
1407 : NestedNameSpecifierLoc(),
1408 SourceLocation(),
1409 D, refersToEnclosingScope,
1410 NameInfo, Ty, VK);
1411
1412 MarkDeclRefReferenced(E);
1413
1414 // Just in case we're building an illegal pointer-to-member.
1415 FieldDecl *FD = dyn_cast<FieldDecl>(D);
1416 if (FD && FD->isBitField())
1417 E->setObjectKind(OK_BitField);
1418
1419 return Owned(E);
1420 }
1421
1422 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1423 /// possibly a list of template arguments.
1424 ///
1425 /// If this produces template arguments, it is permitted to call
1426 /// DecomposeTemplateName.
1427 ///
1428 /// This actually loses a lot of source location information for
1429 /// non-standard name kinds; we should consider preserving that in
1430 /// some way.
1431 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1432 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1433 TemplateArgumentListInfo &Buffer,
1434 DeclarationNameInfo &NameInfo,
1435 const TemplateArgumentListInfo *&TemplateArgs) {
1436 if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1437 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1438 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1439
1440 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1441 Id.TemplateId->NumArgs);
1442 translateTemplateArguments(TemplateArgsPtr, Buffer);
1443
1444 TemplateName TName = Id.TemplateId->Template.get();
1445 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1446 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1447 TemplateArgs = &Buffer;
1448 } else {
1449 NameInfo = GetNameFromUnqualifiedId(Id);
1450 TemplateArgs = 0;
1451 }
1452 }
1453
1454 /// Diagnose an empty lookup.
1455 ///
1456 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,llvm::ArrayRef<Expr * > Args)1457 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1458 CorrectionCandidateCallback &CCC,
1459 TemplateArgumentListInfo *ExplicitTemplateArgs,
1460 llvm::ArrayRef<Expr *> Args) {
1461 DeclarationName Name = R.getLookupName();
1462
1463 unsigned diagnostic = diag::err_undeclared_var_use;
1464 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1465 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1466 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1467 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1468 diagnostic = diag::err_undeclared_use;
1469 diagnostic_suggest = diag::err_undeclared_use_suggest;
1470 }
1471
1472 // If the original lookup was an unqualified lookup, fake an
1473 // unqualified lookup. This is useful when (for example) the
1474 // original lookup would not have found something because it was a
1475 // dependent name.
1476 DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1477 ? CurContext : 0;
1478 while (DC) {
1479 if (isa<CXXRecordDecl>(DC)) {
1480 LookupQualifiedName(R, DC);
1481
1482 if (!R.empty()) {
1483 // Don't give errors about ambiguities in this lookup.
1484 R.suppressDiagnostics();
1485
1486 // During a default argument instantiation the CurContext points
1487 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1488 // function parameter list, hence add an explicit check.
1489 bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1490 ActiveTemplateInstantiations.back().Kind ==
1491 ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1492 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1493 bool isInstance = CurMethod &&
1494 CurMethod->isInstance() &&
1495 DC == CurMethod->getParent() && !isDefaultArgument;
1496
1497
1498 // Give a code modification hint to insert 'this->'.
1499 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1500 // Actually quite difficult!
1501 if (getLangOpts().MicrosoftMode)
1502 diagnostic = diag::warn_found_via_dependent_bases_lookup;
1503 if (isInstance) {
1504 Diag(R.getNameLoc(), diagnostic) << Name
1505 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1506 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1507 CallsUndergoingInstantiation.back()->getCallee());
1508
1509
1510 CXXMethodDecl *DepMethod;
1511 if (CurMethod->getTemplatedKind() ==
1512 FunctionDecl::TK_FunctionTemplateSpecialization)
1513 DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1514 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1515 else
1516 DepMethod = cast<CXXMethodDecl>(
1517 CurMethod->getInstantiatedFromMemberFunction());
1518 assert(DepMethod && "No template pattern found");
1519
1520 QualType DepThisType = DepMethod->getThisType(Context);
1521 CheckCXXThisCapture(R.getNameLoc());
1522 CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1523 R.getNameLoc(), DepThisType, false);
1524 TemplateArgumentListInfo TList;
1525 if (ULE->hasExplicitTemplateArgs())
1526 ULE->copyTemplateArgumentsInto(TList);
1527
1528 CXXScopeSpec SS;
1529 SS.Adopt(ULE->getQualifierLoc());
1530 CXXDependentScopeMemberExpr *DepExpr =
1531 CXXDependentScopeMemberExpr::Create(
1532 Context, DepThis, DepThisType, true, SourceLocation(),
1533 SS.getWithLocInContext(Context),
1534 ULE->getTemplateKeywordLoc(), 0,
1535 R.getLookupNameInfo(),
1536 ULE->hasExplicitTemplateArgs() ? &TList : 0);
1537 CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1538 } else {
1539 Diag(R.getNameLoc(), diagnostic) << Name;
1540 }
1541
1542 // Do we really want to note all of these?
1543 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1544 Diag((*I)->getLocation(), diag::note_dependent_var_use);
1545
1546 // Return true if we are inside a default argument instantiation
1547 // and the found name refers to an instance member function, otherwise
1548 // the function calling DiagnoseEmptyLookup will try to create an
1549 // implicit member call and this is wrong for default argument.
1550 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1551 Diag(R.getNameLoc(), diag::err_member_call_without_object);
1552 return true;
1553 }
1554
1555 // Tell the callee to try to recover.
1556 return false;
1557 }
1558
1559 R.clear();
1560 }
1561
1562 // In Microsoft mode, if we are performing lookup from within a friend
1563 // function definition declared at class scope then we must set
1564 // DC to the lexical parent to be able to search into the parent
1565 // class.
1566 if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1567 cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1568 DC->getLexicalParent()->isRecord())
1569 DC = DC->getLexicalParent();
1570 else
1571 DC = DC->getParent();
1572 }
1573
1574 // We didn't find anything, so try to correct for a typo.
1575 TypoCorrection Corrected;
1576 if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1577 S, &SS, CCC))) {
1578 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1579 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1580 R.setLookupName(Corrected.getCorrection());
1581
1582 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1583 if (Corrected.isOverloaded()) {
1584 OverloadCandidateSet OCS(R.getNameLoc());
1585 OverloadCandidateSet::iterator Best;
1586 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1587 CDEnd = Corrected.end();
1588 CD != CDEnd; ++CD) {
1589 if (FunctionTemplateDecl *FTD =
1590 dyn_cast<FunctionTemplateDecl>(*CD))
1591 AddTemplateOverloadCandidate(
1592 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1593 Args, OCS);
1594 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1595 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1596 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1597 Args, OCS);
1598 }
1599 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1600 case OR_Success:
1601 ND = Best->Function;
1602 break;
1603 default:
1604 break;
1605 }
1606 }
1607 R.addDecl(ND);
1608 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1609 if (SS.isEmpty())
1610 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1611 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1612 else
1613 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1614 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1615 << SS.getRange()
1616 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1617 if (ND)
1618 Diag(ND->getLocation(), diag::note_previous_decl)
1619 << CorrectedQuotedStr;
1620
1621 // Tell the callee to try to recover.
1622 return false;
1623 }
1624
1625 if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1626 // FIXME: If we ended up with a typo for a type name or
1627 // Objective-C class name, we're in trouble because the parser
1628 // is in the wrong place to recover. Suggest the typo
1629 // correction, but don't make it a fix-it since we're not going
1630 // to recover well anyway.
1631 if (SS.isEmpty())
1632 Diag(R.getNameLoc(), diagnostic_suggest)
1633 << Name << CorrectedQuotedStr;
1634 else
1635 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1636 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1637 << SS.getRange();
1638
1639 // Don't try to recover; it won't work.
1640 return true;
1641 }
1642 } else {
1643 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1644 // because we aren't able to recover.
1645 if (SS.isEmpty())
1646 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1647 else
1648 Diag(R.getNameLoc(), diag::err_no_member_suggest)
1649 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1650 << SS.getRange();
1651 return true;
1652 }
1653 }
1654 R.clear();
1655
1656 // Emit a special diagnostic for failed member lookups.
1657 // FIXME: computing the declaration context might fail here (?)
1658 if (!SS.isEmpty()) {
1659 Diag(R.getNameLoc(), diag::err_no_member)
1660 << Name << computeDeclContext(SS, false)
1661 << SS.getRange();
1662 return true;
1663 }
1664
1665 // Give up, we can't recover.
1666 Diag(R.getNameLoc(), diagnostic) << Name;
1667 return true;
1668 }
1669
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)1670 ExprResult Sema::ActOnIdExpression(Scope *S,
1671 CXXScopeSpec &SS,
1672 SourceLocation TemplateKWLoc,
1673 UnqualifiedId &Id,
1674 bool HasTrailingLParen,
1675 bool IsAddressOfOperand,
1676 CorrectionCandidateCallback *CCC) {
1677 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1678 "cannot be direct & operand and have a trailing lparen");
1679
1680 if (SS.isInvalid())
1681 return ExprError();
1682
1683 TemplateArgumentListInfo TemplateArgsBuffer;
1684
1685 // Decompose the UnqualifiedId into the following data.
1686 DeclarationNameInfo NameInfo;
1687 const TemplateArgumentListInfo *TemplateArgs;
1688 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1689
1690 DeclarationName Name = NameInfo.getName();
1691 IdentifierInfo *II = Name.getAsIdentifierInfo();
1692 SourceLocation NameLoc = NameInfo.getLoc();
1693
1694 // C++ [temp.dep.expr]p3:
1695 // An id-expression is type-dependent if it contains:
1696 // -- an identifier that was declared with a dependent type,
1697 // (note: handled after lookup)
1698 // -- a template-id that is dependent,
1699 // (note: handled in BuildTemplateIdExpr)
1700 // -- a conversion-function-id that specifies a dependent type,
1701 // -- a nested-name-specifier that contains a class-name that
1702 // names a dependent type.
1703 // Determine whether this is a member of an unknown specialization;
1704 // we need to handle these differently.
1705 bool DependentID = false;
1706 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1707 Name.getCXXNameType()->isDependentType()) {
1708 DependentID = true;
1709 } else if (SS.isSet()) {
1710 if (DeclContext *DC = computeDeclContext(SS, false)) {
1711 if (RequireCompleteDeclContext(SS, DC))
1712 return ExprError();
1713 } else {
1714 DependentID = true;
1715 }
1716 }
1717
1718 if (DependentID)
1719 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1720 IsAddressOfOperand, TemplateArgs);
1721
1722 // Perform the required lookup.
1723 LookupResult R(*this, NameInfo,
1724 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1725 ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1726 if (TemplateArgs) {
1727 // Lookup the template name again to correctly establish the context in
1728 // which it was found. This is really unfortunate as we already did the
1729 // lookup to determine that it was a template name in the first place. If
1730 // this becomes a performance hit, we can work harder to preserve those
1731 // results until we get here but it's likely not worth it.
1732 bool MemberOfUnknownSpecialization;
1733 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1734 MemberOfUnknownSpecialization);
1735
1736 if (MemberOfUnknownSpecialization ||
1737 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1738 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1739 IsAddressOfOperand, TemplateArgs);
1740 } else {
1741 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1742 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1743
1744 // If the result might be in a dependent base class, this is a dependent
1745 // id-expression.
1746 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1747 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1748 IsAddressOfOperand, TemplateArgs);
1749
1750 // If this reference is in an Objective-C method, then we need to do
1751 // some special Objective-C lookup, too.
1752 if (IvarLookupFollowUp) {
1753 ExprResult E(LookupInObjCMethod(R, S, II, true));
1754 if (E.isInvalid())
1755 return ExprError();
1756
1757 if (Expr *Ex = E.takeAs<Expr>())
1758 return Owned(Ex);
1759 }
1760 }
1761
1762 if (R.isAmbiguous())
1763 return ExprError();
1764
1765 // Determine whether this name might be a candidate for
1766 // argument-dependent lookup.
1767 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1768
1769 if (R.empty() && !ADL) {
1770 // Otherwise, this could be an implicitly declared function reference (legal
1771 // in C90, extension in C99, forbidden in C++).
1772 if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1773 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1774 if (D) R.addDecl(D);
1775 }
1776
1777 // If this name wasn't predeclared and if this is not a function
1778 // call, diagnose the problem.
1779 if (R.empty()) {
1780
1781 // In Microsoft mode, if we are inside a template class member function
1782 // and we can't resolve an identifier then assume the identifier is type
1783 // dependent. The goal is to postpone name lookup to instantiation time
1784 // to be able to search into type dependent base classes.
1785 if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1786 isa<CXXMethodDecl>(CurContext))
1787 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1788 IsAddressOfOperand, TemplateArgs);
1789
1790 CorrectionCandidateCallback DefaultValidator;
1791 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1792 return ExprError();
1793
1794 assert(!R.empty() &&
1795 "DiagnoseEmptyLookup returned false but added no results");
1796
1797 // If we found an Objective-C instance variable, let
1798 // LookupInObjCMethod build the appropriate expression to
1799 // reference the ivar.
1800 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1801 R.clear();
1802 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1803 // In a hopelessly buggy code, Objective-C instance variable
1804 // lookup fails and no expression will be built to reference it.
1805 if (!E.isInvalid() && !E.get())
1806 return ExprError();
1807 return E;
1808 }
1809 }
1810 }
1811
1812 // This is guaranteed from this point on.
1813 assert(!R.empty() || ADL);
1814
1815 // Check whether this might be a C++ implicit instance member access.
1816 // C++ [class.mfct.non-static]p3:
1817 // When an id-expression that is not part of a class member access
1818 // syntax and not used to form a pointer to member is used in the
1819 // body of a non-static member function of class X, if name lookup
1820 // resolves the name in the id-expression to a non-static non-type
1821 // member of some class C, the id-expression is transformed into a
1822 // class member access expression using (*this) as the
1823 // postfix-expression to the left of the . operator.
1824 //
1825 // But we don't actually need to do this for '&' operands if R
1826 // resolved to a function or overloaded function set, because the
1827 // expression is ill-formed if it actually works out to be a
1828 // non-static member function:
1829 //
1830 // C++ [expr.ref]p4:
1831 // Otherwise, if E1.E2 refers to a non-static member function. . .
1832 // [t]he expression can be used only as the left-hand operand of a
1833 // member function call.
1834 //
1835 // There are other safeguards against such uses, but it's important
1836 // to get this right here so that we don't end up making a
1837 // spuriously dependent expression if we're inside a dependent
1838 // instance method.
1839 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1840 bool MightBeImplicitMember;
1841 if (!IsAddressOfOperand)
1842 MightBeImplicitMember = true;
1843 else if (!SS.isEmpty())
1844 MightBeImplicitMember = false;
1845 else if (R.isOverloadedResult())
1846 MightBeImplicitMember = false;
1847 else if (R.isUnresolvableResult())
1848 MightBeImplicitMember = true;
1849 else
1850 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1851 isa<IndirectFieldDecl>(R.getFoundDecl());
1852
1853 if (MightBeImplicitMember)
1854 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1855 R, TemplateArgs);
1856 }
1857
1858 if (TemplateArgs || TemplateKWLoc.isValid())
1859 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1860
1861 return BuildDeclarationNameExpr(SS, R, ADL);
1862 }
1863
1864 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1865 /// declaration name, generally during template instantiation.
1866 /// There's a large number of things which don't need to be done along
1867 /// this path.
1868 ExprResult
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo)1869 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1870 const DeclarationNameInfo &NameInfo) {
1871 DeclContext *DC;
1872 if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1873 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1874 NameInfo, /*TemplateArgs=*/0);
1875
1876 if (RequireCompleteDeclContext(SS, DC))
1877 return ExprError();
1878
1879 LookupResult R(*this, NameInfo, LookupOrdinaryName);
1880 LookupQualifiedName(R, DC);
1881
1882 if (R.isAmbiguous())
1883 return ExprError();
1884
1885 if (R.empty()) {
1886 Diag(NameInfo.getLoc(), diag::err_no_member)
1887 << NameInfo.getName() << DC << SS.getRange();
1888 return ExprError();
1889 }
1890
1891 return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1892 }
1893
1894 /// LookupInObjCMethod - The parser has read a name in, and Sema has
1895 /// detected that we're currently inside an ObjC method. Perform some
1896 /// additional lookup.
1897 ///
1898 /// Ideally, most of this would be done by lookup, but there's
1899 /// actually quite a lot of extra work involved.
1900 ///
1901 /// Returns a null sentinel to indicate trivial success.
1902 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)1903 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1904 IdentifierInfo *II, bool AllowBuiltinCreation) {
1905 SourceLocation Loc = Lookup.getNameLoc();
1906 ObjCMethodDecl *CurMethod = getCurMethodDecl();
1907
1908 // There are two cases to handle here. 1) scoped lookup could have failed,
1909 // in which case we should look for an ivar. 2) scoped lookup could have
1910 // found a decl, but that decl is outside the current instance method (i.e.
1911 // a global variable). In these two cases, we do a lookup for an ivar with
1912 // this name, if the lookup sucedes, we replace it our current decl.
1913
1914 // If we're in a class method, we don't normally want to look for
1915 // ivars. But if we don't find anything else, and there's an
1916 // ivar, that's an error.
1917 bool IsClassMethod = CurMethod->isClassMethod();
1918
1919 bool LookForIvars;
1920 if (Lookup.empty())
1921 LookForIvars = true;
1922 else if (IsClassMethod)
1923 LookForIvars = false;
1924 else
1925 LookForIvars = (Lookup.isSingleResult() &&
1926 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1927 ObjCInterfaceDecl *IFace = 0;
1928 if (LookForIvars) {
1929 IFace = CurMethod->getClassInterface();
1930 ObjCInterfaceDecl *ClassDeclared;
1931 ObjCIvarDecl *IV = 0;
1932 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1933 // Diagnose using an ivar in a class method.
1934 if (IsClassMethod)
1935 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1936 << IV->getDeclName());
1937
1938 // If we're referencing an invalid decl, just return this as a silent
1939 // error node. The error diagnostic was already emitted on the decl.
1940 if (IV->isInvalidDecl())
1941 return ExprError();
1942
1943 // Check if referencing a field with __attribute__((deprecated)).
1944 if (DiagnoseUseOfDecl(IV, Loc))
1945 return ExprError();
1946
1947 // Diagnose the use of an ivar outside of the declaring class.
1948 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1949 !declaresSameEntity(ClassDeclared, IFace) &&
1950 !getLangOpts().DebuggerSupport)
1951 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1952
1953 // FIXME: This should use a new expr for a direct reference, don't
1954 // turn this into Self->ivar, just return a BareIVarExpr or something.
1955 IdentifierInfo &II = Context.Idents.get("self");
1956 UnqualifiedId SelfName;
1957 SelfName.setIdentifier(&II, SourceLocation());
1958 SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1959 CXXScopeSpec SelfScopeSpec;
1960 SourceLocation TemplateKWLoc;
1961 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1962 SelfName, false, false);
1963 if (SelfExpr.isInvalid())
1964 return ExprError();
1965
1966 SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1967 if (SelfExpr.isInvalid())
1968 return ExprError();
1969
1970 MarkAnyDeclReferenced(Loc, IV);
1971
1972 ObjCMethodFamily MF = CurMethod->getMethodFamily();
1973 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize)
1974 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
1975 return Owned(new (Context)
1976 ObjCIvarRefExpr(IV, IV->getType(), Loc,
1977 SelfExpr.take(), true, true));
1978 }
1979 } else if (CurMethod->isInstanceMethod()) {
1980 // We should warn if a local variable hides an ivar.
1981 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1982 ObjCInterfaceDecl *ClassDeclared;
1983 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1984 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1985 declaresSameEntity(IFace, ClassDeclared))
1986 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1987 }
1988 }
1989 } else if (Lookup.isSingleResult() &&
1990 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1991 // If accessing a stand-alone ivar in a class method, this is an error.
1992 if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1993 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1994 << IV->getDeclName());
1995 }
1996
1997 if (Lookup.empty() && II && AllowBuiltinCreation) {
1998 // FIXME. Consolidate this with similar code in LookupName.
1999 if (unsigned BuiltinID = II->getBuiltinID()) {
2000 if (!(getLangOpts().CPlusPlus &&
2001 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2002 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2003 S, Lookup.isForRedeclaration(),
2004 Lookup.getNameLoc());
2005 if (D) Lookup.addDecl(D);
2006 }
2007 }
2008 }
2009 // Sentinel value saying that we didn't do anything special.
2010 return Owned((Expr*) 0);
2011 }
2012
2013 /// \brief Cast a base object to a member's actual type.
2014 ///
2015 /// Logically this happens in three phases:
2016 ///
2017 /// * First we cast from the base type to the naming class.
2018 /// The naming class is the class into which we were looking
2019 /// when we found the member; it's the qualifier type if a
2020 /// qualifier was provided, and otherwise it's the base type.
2021 ///
2022 /// * Next we cast from the naming class to the declaring class.
2023 /// If the member we found was brought into a class's scope by
2024 /// a using declaration, this is that class; otherwise it's
2025 /// the class declaring the member.
2026 ///
2027 /// * Finally we cast from the declaring class to the "true"
2028 /// declaring class of the member. This conversion does not
2029 /// obey access control.
2030 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)2031 Sema::PerformObjectMemberConversion(Expr *From,
2032 NestedNameSpecifier *Qualifier,
2033 NamedDecl *FoundDecl,
2034 NamedDecl *Member) {
2035 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2036 if (!RD)
2037 return Owned(From);
2038
2039 QualType DestRecordType;
2040 QualType DestType;
2041 QualType FromRecordType;
2042 QualType FromType = From->getType();
2043 bool PointerConversions = false;
2044 if (isa<FieldDecl>(Member)) {
2045 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2046
2047 if (FromType->getAs<PointerType>()) {
2048 DestType = Context.getPointerType(DestRecordType);
2049 FromRecordType = FromType->getPointeeType();
2050 PointerConversions = true;
2051 } else {
2052 DestType = DestRecordType;
2053 FromRecordType = FromType;
2054 }
2055 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2056 if (Method->isStatic())
2057 return Owned(From);
2058
2059 DestType = Method->getThisType(Context);
2060 DestRecordType = DestType->getPointeeType();
2061
2062 if (FromType->getAs<PointerType>()) {
2063 FromRecordType = FromType->getPointeeType();
2064 PointerConversions = true;
2065 } else {
2066 FromRecordType = FromType;
2067 DestType = DestRecordType;
2068 }
2069 } else {
2070 // No conversion necessary.
2071 return Owned(From);
2072 }
2073
2074 if (DestType->isDependentType() || FromType->isDependentType())
2075 return Owned(From);
2076
2077 // If the unqualified types are the same, no conversion is necessary.
2078 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2079 return Owned(From);
2080
2081 SourceRange FromRange = From->getSourceRange();
2082 SourceLocation FromLoc = FromRange.getBegin();
2083
2084 ExprValueKind VK = From->getValueKind();
2085
2086 // C++ [class.member.lookup]p8:
2087 // [...] Ambiguities can often be resolved by qualifying a name with its
2088 // class name.
2089 //
2090 // If the member was a qualified name and the qualified referred to a
2091 // specific base subobject type, we'll cast to that intermediate type
2092 // first and then to the object in which the member is declared. That allows
2093 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2094 //
2095 // class Base { public: int x; };
2096 // class Derived1 : public Base { };
2097 // class Derived2 : public Base { };
2098 // class VeryDerived : public Derived1, public Derived2 { void f(); };
2099 //
2100 // void VeryDerived::f() {
2101 // x = 17; // error: ambiguous base subobjects
2102 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
2103 // }
2104 if (Qualifier) {
2105 QualType QType = QualType(Qualifier->getAsType(), 0);
2106 assert(!QType.isNull() && "lookup done with dependent qualifier?");
2107 assert(QType->isRecordType() && "lookup done with non-record type");
2108
2109 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2110
2111 // In C++98, the qualifier type doesn't actually have to be a base
2112 // type of the object type, in which case we just ignore it.
2113 // Otherwise build the appropriate casts.
2114 if (IsDerivedFrom(FromRecordType, QRecordType)) {
2115 CXXCastPath BasePath;
2116 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2117 FromLoc, FromRange, &BasePath))
2118 return ExprError();
2119
2120 if (PointerConversions)
2121 QType = Context.getPointerType(QType);
2122 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2123 VK, &BasePath).take();
2124
2125 FromType = QType;
2126 FromRecordType = QRecordType;
2127
2128 // If the qualifier type was the same as the destination type,
2129 // we're done.
2130 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2131 return Owned(From);
2132 }
2133 }
2134
2135 bool IgnoreAccess = false;
2136
2137 // If we actually found the member through a using declaration, cast
2138 // down to the using declaration's type.
2139 //
2140 // Pointer equality is fine here because only one declaration of a
2141 // class ever has member declarations.
2142 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2143 assert(isa<UsingShadowDecl>(FoundDecl));
2144 QualType URecordType = Context.getTypeDeclType(
2145 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2146
2147 // We only need to do this if the naming-class to declaring-class
2148 // conversion is non-trivial.
2149 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2150 assert(IsDerivedFrom(FromRecordType, URecordType));
2151 CXXCastPath BasePath;
2152 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2153 FromLoc, FromRange, &BasePath))
2154 return ExprError();
2155
2156 QualType UType = URecordType;
2157 if (PointerConversions)
2158 UType = Context.getPointerType(UType);
2159 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2160 VK, &BasePath).take();
2161 FromType = UType;
2162 FromRecordType = URecordType;
2163 }
2164
2165 // We don't do access control for the conversion from the
2166 // declaring class to the true declaring class.
2167 IgnoreAccess = true;
2168 }
2169
2170 CXXCastPath BasePath;
2171 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2172 FromLoc, FromRange, &BasePath,
2173 IgnoreAccess))
2174 return ExprError();
2175
2176 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2177 VK, &BasePath);
2178 }
2179
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2180 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2181 const LookupResult &R,
2182 bool HasTrailingLParen) {
2183 // Only when used directly as the postfix-expression of a call.
2184 if (!HasTrailingLParen)
2185 return false;
2186
2187 // Never if a scope specifier was provided.
2188 if (SS.isSet())
2189 return false;
2190
2191 // Only in C++ or ObjC++.
2192 if (!getLangOpts().CPlusPlus)
2193 return false;
2194
2195 // Turn off ADL when we find certain kinds of declarations during
2196 // normal lookup:
2197 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2198 NamedDecl *D = *I;
2199
2200 // C++0x [basic.lookup.argdep]p3:
2201 // -- a declaration of a class member
2202 // Since using decls preserve this property, we check this on the
2203 // original decl.
2204 if (D->isCXXClassMember())
2205 return false;
2206
2207 // C++0x [basic.lookup.argdep]p3:
2208 // -- a block-scope function declaration that is not a
2209 // using-declaration
2210 // NOTE: we also trigger this for function templates (in fact, we
2211 // don't check the decl type at all, since all other decl types
2212 // turn off ADL anyway).
2213 if (isa<UsingShadowDecl>(D))
2214 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2215 else if (D->getDeclContext()->isFunctionOrMethod())
2216 return false;
2217
2218 // C++0x [basic.lookup.argdep]p3:
2219 // -- a declaration that is neither a function or a function
2220 // template
2221 // And also for builtin functions.
2222 if (isa<FunctionDecl>(D)) {
2223 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2224
2225 // But also builtin functions.
2226 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2227 return false;
2228 } else if (!isa<FunctionTemplateDecl>(D))
2229 return false;
2230 }
2231
2232 return true;
2233 }
2234
2235
2236 /// Diagnoses obvious problems with the use of the given declaration
2237 /// as an expression. This is only actually called for lookups that
2238 /// were not overloaded, and it doesn't promise that the declaration
2239 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2240 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2241 if (isa<TypedefNameDecl>(D)) {
2242 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2243 return true;
2244 }
2245
2246 if (isa<ObjCInterfaceDecl>(D)) {
2247 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2248 return true;
2249 }
2250
2251 if (isa<NamespaceDecl>(D)) {
2252 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2253 return true;
2254 }
2255
2256 return false;
2257 }
2258
2259 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL)2260 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2261 LookupResult &R,
2262 bool NeedsADL) {
2263 // If this is a single, fully-resolved result and we don't need ADL,
2264 // just build an ordinary singleton decl ref.
2265 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2266 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2267 R.getFoundDecl());
2268
2269 // We only need to check the declaration if there's exactly one
2270 // result, because in the overloaded case the results can only be
2271 // functions and function templates.
2272 if (R.isSingleResult() &&
2273 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2274 return ExprError();
2275
2276 // Otherwise, just build an unresolved lookup expression. Suppress
2277 // any lookup-related diagnostics; we'll hash these out later, when
2278 // we've picked a target.
2279 R.suppressDiagnostics();
2280
2281 UnresolvedLookupExpr *ULE
2282 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2283 SS.getWithLocInContext(Context),
2284 R.getLookupNameInfo(),
2285 NeedsADL, R.isOverloadedResult(),
2286 R.begin(), R.end());
2287
2288 return Owned(ULE);
2289 }
2290
2291 /// \brief Complete semantic analysis for a reference to the given declaration.
2292 ExprResult
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D)2293 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2294 const DeclarationNameInfo &NameInfo,
2295 NamedDecl *D) {
2296 assert(D && "Cannot refer to a NULL declaration");
2297 assert(!isa<FunctionTemplateDecl>(D) &&
2298 "Cannot refer unambiguously to a function template");
2299
2300 SourceLocation Loc = NameInfo.getLoc();
2301 if (CheckDeclInExpr(*this, Loc, D))
2302 return ExprError();
2303
2304 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2305 // Specifically diagnose references to class templates that are missing
2306 // a template argument list.
2307 Diag(Loc, diag::err_template_decl_ref)
2308 << Template << SS.getRange();
2309 Diag(Template->getLocation(), diag::note_template_decl_here);
2310 return ExprError();
2311 }
2312
2313 // Make sure that we're referring to a value.
2314 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2315 if (!VD) {
2316 Diag(Loc, diag::err_ref_non_value)
2317 << D << SS.getRange();
2318 Diag(D->getLocation(), diag::note_declared_at);
2319 return ExprError();
2320 }
2321
2322 // Check whether this declaration can be used. Note that we suppress
2323 // this check when we're going to perform argument-dependent lookup
2324 // on this function name, because this might not be the function
2325 // that overload resolution actually selects.
2326 if (DiagnoseUseOfDecl(VD, Loc))
2327 return ExprError();
2328
2329 // Only create DeclRefExpr's for valid Decl's.
2330 if (VD->isInvalidDecl())
2331 return ExprError();
2332
2333 // Handle members of anonymous structs and unions. If we got here,
2334 // and the reference is to a class member indirect field, then this
2335 // must be the subject of a pointer-to-member expression.
2336 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2337 if (!indirectField->isCXXClassMember())
2338 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2339 indirectField);
2340
2341 {
2342 QualType type = VD->getType();
2343 ExprValueKind valueKind = VK_RValue;
2344
2345 switch (D->getKind()) {
2346 // Ignore all the non-ValueDecl kinds.
2347 #define ABSTRACT_DECL(kind)
2348 #define VALUE(type, base)
2349 #define DECL(type, base) \
2350 case Decl::type:
2351 #include "clang/AST/DeclNodes.inc"
2352 llvm_unreachable("invalid value decl kind");
2353
2354 // These shouldn't make it here.
2355 case Decl::ObjCAtDefsField:
2356 case Decl::ObjCIvar:
2357 llvm_unreachable("forming non-member reference to ivar?");
2358
2359 // Enum constants are always r-values and never references.
2360 // Unresolved using declarations are dependent.
2361 case Decl::EnumConstant:
2362 case Decl::UnresolvedUsingValue:
2363 valueKind = VK_RValue;
2364 break;
2365
2366 // Fields and indirect fields that got here must be for
2367 // pointer-to-member expressions; we just call them l-values for
2368 // internal consistency, because this subexpression doesn't really
2369 // exist in the high-level semantics.
2370 case Decl::Field:
2371 case Decl::IndirectField:
2372 assert(getLangOpts().CPlusPlus &&
2373 "building reference to field in C?");
2374
2375 // These can't have reference type in well-formed programs, but
2376 // for internal consistency we do this anyway.
2377 type = type.getNonReferenceType();
2378 valueKind = VK_LValue;
2379 break;
2380
2381 // Non-type template parameters are either l-values or r-values
2382 // depending on the type.
2383 case Decl::NonTypeTemplateParm: {
2384 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2385 type = reftype->getPointeeType();
2386 valueKind = VK_LValue; // even if the parameter is an r-value reference
2387 break;
2388 }
2389
2390 // For non-references, we need to strip qualifiers just in case
2391 // the template parameter was declared as 'const int' or whatever.
2392 valueKind = VK_RValue;
2393 type = type.getUnqualifiedType();
2394 break;
2395 }
2396
2397 case Decl::Var:
2398 // In C, "extern void blah;" is valid and is an r-value.
2399 if (!getLangOpts().CPlusPlus &&
2400 !type.hasQualifiers() &&
2401 type->isVoidType()) {
2402 valueKind = VK_RValue;
2403 break;
2404 }
2405 // fallthrough
2406
2407 case Decl::ImplicitParam:
2408 case Decl::ParmVar: {
2409 // These are always l-values.
2410 valueKind = VK_LValue;
2411 type = type.getNonReferenceType();
2412
2413 // FIXME: Does the addition of const really only apply in
2414 // potentially-evaluated contexts? Since the variable isn't actually
2415 // captured in an unevaluated context, it seems that the answer is no.
2416 if (!isUnevaluatedContext()) {
2417 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2418 if (!CapturedType.isNull())
2419 type = CapturedType;
2420 }
2421
2422 break;
2423 }
2424
2425 case Decl::Function: {
2426 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2427 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2428 type = Context.BuiltinFnTy;
2429 valueKind = VK_RValue;
2430 break;
2431 }
2432 }
2433
2434 const FunctionType *fty = type->castAs<FunctionType>();
2435
2436 // If we're referring to a function with an __unknown_anytype
2437 // result type, make the entire expression __unknown_anytype.
2438 if (fty->getResultType() == Context.UnknownAnyTy) {
2439 type = Context.UnknownAnyTy;
2440 valueKind = VK_RValue;
2441 break;
2442 }
2443
2444 // Functions are l-values in C++.
2445 if (getLangOpts().CPlusPlus) {
2446 valueKind = VK_LValue;
2447 break;
2448 }
2449
2450 // C99 DR 316 says that, if a function type comes from a
2451 // function definition (without a prototype), that type is only
2452 // used for checking compatibility. Therefore, when referencing
2453 // the function, we pretend that we don't have the full function
2454 // type.
2455 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2456 isa<FunctionProtoType>(fty))
2457 type = Context.getFunctionNoProtoType(fty->getResultType(),
2458 fty->getExtInfo());
2459
2460 // Functions are r-values in C.
2461 valueKind = VK_RValue;
2462 break;
2463 }
2464
2465 case Decl::CXXMethod:
2466 // If we're referring to a method with an __unknown_anytype
2467 // result type, make the entire expression __unknown_anytype.
2468 // This should only be possible with a type written directly.
2469 if (const FunctionProtoType *proto
2470 = dyn_cast<FunctionProtoType>(VD->getType()))
2471 if (proto->getResultType() == Context.UnknownAnyTy) {
2472 type = Context.UnknownAnyTy;
2473 valueKind = VK_RValue;
2474 break;
2475 }
2476
2477 // C++ methods are l-values if static, r-values if non-static.
2478 if (cast<CXXMethodDecl>(VD)->isStatic()) {
2479 valueKind = VK_LValue;
2480 break;
2481 }
2482 // fallthrough
2483
2484 case Decl::CXXConversion:
2485 case Decl::CXXDestructor:
2486 case Decl::CXXConstructor:
2487 valueKind = VK_RValue;
2488 break;
2489 }
2490
2491 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2492 }
2493 }
2494
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)2495 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2496 PredefinedExpr::IdentType IT;
2497
2498 switch (Kind) {
2499 default: llvm_unreachable("Unknown simple primary expr!");
2500 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2501 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2502 case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2503 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2504 }
2505
2506 // Pre-defined identifiers are of type char[x], where x is the length of the
2507 // string.
2508
2509 Decl *currentDecl = getCurFunctionOrMethodDecl();
2510 if (!currentDecl && getCurBlock())
2511 currentDecl = getCurBlock()->TheDecl;
2512 if (!currentDecl) {
2513 Diag(Loc, diag::ext_predef_outside_function);
2514 currentDecl = Context.getTranslationUnitDecl();
2515 }
2516
2517 QualType ResTy;
2518 if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2519 ResTy = Context.DependentTy;
2520 } else {
2521 unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2522
2523 llvm::APInt LengthI(32, Length + 1);
2524 if (IT == PredefinedExpr::LFunction)
2525 ResTy = Context.WCharTy.withConst();
2526 else
2527 ResTy = Context.CharTy.withConst();
2528 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2529 }
2530 return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2531 }
2532
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)2533 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2534 SmallString<16> CharBuffer;
2535 bool Invalid = false;
2536 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2537 if (Invalid)
2538 return ExprError();
2539
2540 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2541 PP, Tok.getKind());
2542 if (Literal.hadError())
2543 return ExprError();
2544
2545 QualType Ty;
2546 if (Literal.isWide())
2547 Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2548 else if (Literal.isUTF16())
2549 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2550 else if (Literal.isUTF32())
2551 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2552 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2553 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
2554 else
2555 Ty = Context.CharTy; // 'x' -> char in C++
2556
2557 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2558 if (Literal.isWide())
2559 Kind = CharacterLiteral::Wide;
2560 else if (Literal.isUTF16())
2561 Kind = CharacterLiteral::UTF16;
2562 else if (Literal.isUTF32())
2563 Kind = CharacterLiteral::UTF32;
2564
2565 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2566 Tok.getLocation());
2567
2568 if (Literal.getUDSuffix().empty())
2569 return Owned(Lit);
2570
2571 // We're building a user-defined literal.
2572 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2573 SourceLocation UDSuffixLoc =
2574 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2575
2576 // Make sure we're allowed user-defined literals here.
2577 if (!UDLScope)
2578 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2579
2580 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2581 // operator "" X (ch)
2582 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2583 llvm::makeArrayRef(&Lit, 1),
2584 Tok.getLocation());
2585 }
2586
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)2587 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2588 unsigned IntSize = Context.getTargetInfo().getIntWidth();
2589 return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2590 Context.IntTy, Loc));
2591 }
2592
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)2593 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2594 QualType Ty, SourceLocation Loc) {
2595 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2596
2597 using llvm::APFloat;
2598 APFloat Val(Format);
2599
2600 APFloat::opStatus result = Literal.GetFloatValue(Val);
2601
2602 // Overflow is always an error, but underflow is only an error if
2603 // we underflowed to zero (APFloat reports denormals as underflow).
2604 if ((result & APFloat::opOverflow) ||
2605 ((result & APFloat::opUnderflow) && Val.isZero())) {
2606 unsigned diagnostic;
2607 SmallString<20> buffer;
2608 if (result & APFloat::opOverflow) {
2609 diagnostic = diag::warn_float_overflow;
2610 APFloat::getLargest(Format).toString(buffer);
2611 } else {
2612 diagnostic = diag::warn_float_underflow;
2613 APFloat::getSmallest(Format).toString(buffer);
2614 }
2615
2616 S.Diag(Loc, diagnostic)
2617 << Ty
2618 << StringRef(buffer.data(), buffer.size());
2619 }
2620
2621 bool isExact = (result == APFloat::opOK);
2622 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2623 }
2624
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)2625 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2626 // Fast path for a single digit (which is quite common). A single digit
2627 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2628 if (Tok.getLength() == 1) {
2629 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2630 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2631 }
2632
2633 SmallString<512> IntegerBuffer;
2634 // Add padding so that NumericLiteralParser can overread by one character.
2635 IntegerBuffer.resize(Tok.getLength()+1);
2636 const char *ThisTokBegin = &IntegerBuffer[0];
2637
2638 // Get the spelling of the token, which eliminates trigraphs, etc.
2639 bool Invalid = false;
2640 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2641 if (Invalid)
2642 return ExprError();
2643
2644 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2645 Tok.getLocation(), PP);
2646 if (Literal.hadError)
2647 return ExprError();
2648
2649 if (Literal.hasUDSuffix()) {
2650 // We're building a user-defined literal.
2651 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2652 SourceLocation UDSuffixLoc =
2653 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2654
2655 // Make sure we're allowed user-defined literals here.
2656 if (!UDLScope)
2657 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2658
2659 QualType CookedTy;
2660 if (Literal.isFloatingLiteral()) {
2661 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2662 // long double, the literal is treated as a call of the form
2663 // operator "" X (f L)
2664 CookedTy = Context.LongDoubleTy;
2665 } else {
2666 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2667 // unsigned long long, the literal is treated as a call of the form
2668 // operator "" X (n ULL)
2669 CookedTy = Context.UnsignedLongLongTy;
2670 }
2671
2672 DeclarationName OpName =
2673 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2674 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2675 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2676
2677 // Perform literal operator lookup to determine if we're building a raw
2678 // literal or a cooked one.
2679 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2680 switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2681 /*AllowRawAndTemplate*/true)) {
2682 case LOLR_Error:
2683 return ExprError();
2684
2685 case LOLR_Cooked: {
2686 Expr *Lit;
2687 if (Literal.isFloatingLiteral()) {
2688 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2689 } else {
2690 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2691 if (Literal.GetIntegerValue(ResultVal))
2692 Diag(Tok.getLocation(), diag::warn_integer_too_large);
2693 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2694 Tok.getLocation());
2695 }
2696 return BuildLiteralOperatorCall(R, OpNameInfo,
2697 llvm::makeArrayRef(&Lit, 1),
2698 Tok.getLocation());
2699 }
2700
2701 case LOLR_Raw: {
2702 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2703 // literal is treated as a call of the form
2704 // operator "" X ("n")
2705 SourceLocation TokLoc = Tok.getLocation();
2706 unsigned Length = Literal.getUDSuffixOffset();
2707 QualType StrTy = Context.getConstantArrayType(
2708 Context.CharTy, llvm::APInt(32, Length + 1),
2709 ArrayType::Normal, 0);
2710 Expr *Lit = StringLiteral::Create(
2711 Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2712 /*Pascal*/false, StrTy, &TokLoc, 1);
2713 return BuildLiteralOperatorCall(R, OpNameInfo,
2714 llvm::makeArrayRef(&Lit, 1), TokLoc);
2715 }
2716
2717 case LOLR_Template:
2718 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2719 // template), L is treated as a call fo the form
2720 // operator "" X <'c1', 'c2', ... 'ck'>()
2721 // where n is the source character sequence c1 c2 ... ck.
2722 TemplateArgumentListInfo ExplicitArgs;
2723 unsigned CharBits = Context.getIntWidth(Context.CharTy);
2724 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2725 llvm::APSInt Value(CharBits, CharIsUnsigned);
2726 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2727 Value = ThisTokBegin[I];
2728 TemplateArgument Arg(Context, Value, Context.CharTy);
2729 TemplateArgumentLocInfo ArgInfo;
2730 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2731 }
2732 return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2733 Tok.getLocation(), &ExplicitArgs);
2734 }
2735
2736 llvm_unreachable("unexpected literal operator lookup result");
2737 }
2738
2739 Expr *Res;
2740
2741 if (Literal.isFloatingLiteral()) {
2742 QualType Ty;
2743 if (Literal.isFloat)
2744 Ty = Context.FloatTy;
2745 else if (!Literal.isLong)
2746 Ty = Context.DoubleTy;
2747 else
2748 Ty = Context.LongDoubleTy;
2749
2750 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2751
2752 if (Ty == Context.DoubleTy) {
2753 if (getLangOpts().SinglePrecisionConstants) {
2754 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2755 } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2756 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2757 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2758 }
2759 }
2760 } else if (!Literal.isIntegerLiteral()) {
2761 return ExprError();
2762 } else {
2763 QualType Ty;
2764
2765 // long long is a C99 feature.
2766 if (!getLangOpts().C99 && Literal.isLongLong)
2767 Diag(Tok.getLocation(),
2768 getLangOpts().CPlusPlus0x ?
2769 diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2770
2771 // Get the value in the widest-possible width.
2772 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2773 // The microsoft literal suffix extensions support 128-bit literals, which
2774 // may be wider than [u]intmax_t.
2775 if (Literal.isMicrosoftInteger && MaxWidth < 128)
2776 MaxWidth = 128;
2777 llvm::APInt ResultVal(MaxWidth, 0);
2778
2779 if (Literal.GetIntegerValue(ResultVal)) {
2780 // If this value didn't fit into uintmax_t, warn and force to ull.
2781 Diag(Tok.getLocation(), diag::warn_integer_too_large);
2782 Ty = Context.UnsignedLongLongTy;
2783 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2784 "long long is not intmax_t?");
2785 } else {
2786 // If this value fits into a ULL, try to figure out what else it fits into
2787 // according to the rules of C99 6.4.4.1p5.
2788
2789 // Octal, Hexadecimal, and integers with a U suffix are allowed to
2790 // be an unsigned int.
2791 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2792
2793 // Check from smallest to largest, picking the smallest type we can.
2794 unsigned Width = 0;
2795 if (!Literal.isLong && !Literal.isLongLong) {
2796 // Are int/unsigned possibilities?
2797 unsigned IntSize = Context.getTargetInfo().getIntWidth();
2798
2799 // Does it fit in a unsigned int?
2800 if (ResultVal.isIntN(IntSize)) {
2801 // Does it fit in a signed int?
2802 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2803 Ty = Context.IntTy;
2804 else if (AllowUnsigned)
2805 Ty = Context.UnsignedIntTy;
2806 Width = IntSize;
2807 }
2808 }
2809
2810 // Are long/unsigned long possibilities?
2811 if (Ty.isNull() && !Literal.isLongLong) {
2812 unsigned LongSize = Context.getTargetInfo().getLongWidth();
2813
2814 // Does it fit in a unsigned long?
2815 if (ResultVal.isIntN(LongSize)) {
2816 // Does it fit in a signed long?
2817 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2818 Ty = Context.LongTy;
2819 else if (AllowUnsigned)
2820 Ty = Context.UnsignedLongTy;
2821 Width = LongSize;
2822 }
2823 }
2824
2825 // Check long long if needed.
2826 if (Ty.isNull()) {
2827 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2828
2829 // Does it fit in a unsigned long long?
2830 if (ResultVal.isIntN(LongLongSize)) {
2831 // Does it fit in a signed long long?
2832 // To be compatible with MSVC, hex integer literals ending with the
2833 // LL or i64 suffix are always signed in Microsoft mode.
2834 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2835 (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2836 Ty = Context.LongLongTy;
2837 else if (AllowUnsigned)
2838 Ty = Context.UnsignedLongLongTy;
2839 Width = LongLongSize;
2840 }
2841 }
2842
2843 // If it doesn't fit in unsigned long long, and we're using Microsoft
2844 // extensions, then its a 128-bit integer literal.
2845 if (Ty.isNull() && Literal.isMicrosoftInteger) {
2846 if (Literal.isUnsigned)
2847 Ty = Context.UnsignedInt128Ty;
2848 else
2849 Ty = Context.Int128Ty;
2850 Width = 128;
2851 }
2852
2853 // If we still couldn't decide a type, we probably have something that
2854 // does not fit in a signed long long, but has no U suffix.
2855 if (Ty.isNull()) {
2856 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2857 Ty = Context.UnsignedLongLongTy;
2858 Width = Context.getTargetInfo().getLongLongWidth();
2859 }
2860
2861 if (ResultVal.getBitWidth() != Width)
2862 ResultVal = ResultVal.trunc(Width);
2863 }
2864 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2865 }
2866
2867 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2868 if (Literal.isImaginary)
2869 Res = new (Context) ImaginaryLiteral(Res,
2870 Context.getComplexType(Res->getType()));
2871
2872 return Owned(Res);
2873 }
2874
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)2875 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2876 assert((E != 0) && "ActOnParenExpr() missing expr");
2877 return Owned(new (Context) ParenExpr(L, R, E));
2878 }
2879
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)2880 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2881 SourceLocation Loc,
2882 SourceRange ArgRange) {
2883 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2884 // scalar or vector data type argument..."
2885 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2886 // type (C99 6.2.5p18) or void.
2887 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2888 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2889 << T << ArgRange;
2890 return true;
2891 }
2892
2893 assert((T->isVoidType() || !T->isIncompleteType()) &&
2894 "Scalar types should always be complete");
2895 return false;
2896 }
2897
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2898 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2899 SourceLocation Loc,
2900 SourceRange ArgRange,
2901 UnaryExprOrTypeTrait TraitKind) {
2902 // C99 6.5.3.4p1:
2903 if (T->isFunctionType()) {
2904 // alignof(function) is allowed as an extension.
2905 if (TraitKind == UETT_SizeOf)
2906 S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2907 return false;
2908 }
2909
2910 // Allow sizeof(void)/alignof(void) as an extension.
2911 if (T->isVoidType()) {
2912 S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2913 return false;
2914 }
2915
2916 return true;
2917 }
2918
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)2919 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2920 SourceLocation Loc,
2921 SourceRange ArgRange,
2922 UnaryExprOrTypeTrait TraitKind) {
2923 // Reject sizeof(interface) and sizeof(interface<proto>) if the
2924 // runtime doesn't allow it.
2925 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
2926 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2927 << T << (TraitKind == UETT_SizeOf)
2928 << ArgRange;
2929 return true;
2930 }
2931
2932 return false;
2933 }
2934
2935 /// \brief Check the constrains on expression operands to unary type expression
2936 /// and type traits.
2937 ///
2938 /// Completes any types necessary and validates the constraints on the operand
2939 /// expression. The logic mostly mirrors the type-based overload, but may modify
2940 /// the expression as it completes the type for that expression through template
2941 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)2942 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2943 UnaryExprOrTypeTrait ExprKind) {
2944 QualType ExprTy = E->getType();
2945
2946 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2947 // the result is the size of the referenced type."
2948 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2949 // result shall be the alignment of the referenced type."
2950 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2951 ExprTy = Ref->getPointeeType();
2952
2953 if (ExprKind == UETT_VecStep)
2954 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2955 E->getSourceRange());
2956
2957 // Whitelist some types as extensions
2958 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2959 E->getSourceRange(), ExprKind))
2960 return false;
2961
2962 if (RequireCompleteExprType(E,
2963 diag::err_sizeof_alignof_incomplete_type,
2964 ExprKind, E->getSourceRange()))
2965 return true;
2966
2967 // Completeing the expression's type may have changed it.
2968 ExprTy = E->getType();
2969 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2970 ExprTy = Ref->getPointeeType();
2971
2972 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2973 E->getSourceRange(), ExprKind))
2974 return true;
2975
2976 if (ExprKind == UETT_SizeOf) {
2977 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2978 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2979 QualType OType = PVD->getOriginalType();
2980 QualType Type = PVD->getType();
2981 if (Type->isPointerType() && OType->isArrayType()) {
2982 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2983 << Type << OType;
2984 Diag(PVD->getLocation(), diag::note_declared_at);
2985 }
2986 }
2987 }
2988 }
2989
2990 return false;
2991 }
2992
2993 /// \brief Check the constraints on operands to unary expression and type
2994 /// traits.
2995 ///
2996 /// This will complete any types necessary, and validate the various constraints
2997 /// on those operands.
2998 ///
2999 /// The UsualUnaryConversions() function is *not* called by this routine.
3000 /// C99 6.3.2.1p[2-4] all state:
3001 /// Except when it is the operand of the sizeof operator ...
3002 ///
3003 /// C++ [expr.sizeof]p4
3004 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3005 /// standard conversions are not applied to the operand of sizeof.
3006 ///
3007 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)3008 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3009 SourceLocation OpLoc,
3010 SourceRange ExprRange,
3011 UnaryExprOrTypeTrait ExprKind) {
3012 if (ExprType->isDependentType())
3013 return false;
3014
3015 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3016 // the result is the size of the referenced type."
3017 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3018 // result shall be the alignment of the referenced type."
3019 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3020 ExprType = Ref->getPointeeType();
3021
3022 if (ExprKind == UETT_VecStep)
3023 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3024
3025 // Whitelist some types as extensions
3026 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3027 ExprKind))
3028 return false;
3029
3030 if (RequireCompleteType(OpLoc, ExprType,
3031 diag::err_sizeof_alignof_incomplete_type,
3032 ExprKind, ExprRange))
3033 return true;
3034
3035 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3036 ExprKind))
3037 return true;
3038
3039 return false;
3040 }
3041
CheckAlignOfExpr(Sema & S,Expr * E)3042 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3043 E = E->IgnoreParens();
3044
3045 // alignof decl is always ok.
3046 if (isa<DeclRefExpr>(E))
3047 return false;
3048
3049 // Cannot know anything else if the expression is dependent.
3050 if (E->isTypeDependent())
3051 return false;
3052
3053 if (E->getBitField()) {
3054 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3055 << 1 << E->getSourceRange();
3056 return true;
3057 }
3058
3059 // Alignment of a field access is always okay, so long as it isn't a
3060 // bit-field.
3061 if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3062 if (isa<FieldDecl>(ME->getMemberDecl()))
3063 return false;
3064
3065 return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3066 }
3067
CheckVecStepExpr(Expr * E)3068 bool Sema::CheckVecStepExpr(Expr *E) {
3069 E = E->IgnoreParens();
3070
3071 // Cannot know anything else if the expression is dependent.
3072 if (E->isTypeDependent())
3073 return false;
3074
3075 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3076 }
3077
3078 /// \brief Build a sizeof or alignof expression given a type operand.
3079 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)3080 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3081 SourceLocation OpLoc,
3082 UnaryExprOrTypeTrait ExprKind,
3083 SourceRange R) {
3084 if (!TInfo)
3085 return ExprError();
3086
3087 QualType T = TInfo->getType();
3088
3089 if (!T->isDependentType() &&
3090 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3091 return ExprError();
3092
3093 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3094 return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3095 Context.getSizeType(),
3096 OpLoc, R.getEnd()));
3097 }
3098
3099 /// \brief Build a sizeof or alignof expression given an expression
3100 /// operand.
3101 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)3102 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3103 UnaryExprOrTypeTrait ExprKind) {
3104 ExprResult PE = CheckPlaceholderExpr(E);
3105 if (PE.isInvalid())
3106 return ExprError();
3107
3108 E = PE.get();
3109
3110 // Verify that the operand is valid.
3111 bool isInvalid = false;
3112 if (E->isTypeDependent()) {
3113 // Delay type-checking for type-dependent expressions.
3114 } else if (ExprKind == UETT_AlignOf) {
3115 isInvalid = CheckAlignOfExpr(*this, E);
3116 } else if (ExprKind == UETT_VecStep) {
3117 isInvalid = CheckVecStepExpr(E);
3118 } else if (E->getBitField()) { // C99 6.5.3.4p1.
3119 Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3120 isInvalid = true;
3121 } else {
3122 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3123 }
3124
3125 if (isInvalid)
3126 return ExprError();
3127
3128 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3129 PE = TranformToPotentiallyEvaluated(E);
3130 if (PE.isInvalid()) return ExprError();
3131 E = PE.take();
3132 }
3133
3134 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3135 return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3136 ExprKind, E, Context.getSizeType(), OpLoc,
3137 E->getSourceRange().getEnd()));
3138 }
3139
3140 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3141 /// expr and the same for @c alignof and @c __alignof
3142 /// Note that the ArgRange is invalid if isType is false.
3143 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,const SourceRange & ArgRange)3144 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3145 UnaryExprOrTypeTrait ExprKind, bool IsType,
3146 void *TyOrEx, const SourceRange &ArgRange) {
3147 // If error parsing type, ignore.
3148 if (TyOrEx == 0) return ExprError();
3149
3150 if (IsType) {
3151 TypeSourceInfo *TInfo;
3152 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3153 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3154 }
3155
3156 Expr *ArgEx = (Expr *)TyOrEx;
3157 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3158 return Result;
3159 }
3160
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)3161 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3162 bool IsReal) {
3163 if (V.get()->isTypeDependent())
3164 return S.Context.DependentTy;
3165
3166 // _Real and _Imag are only l-values for normal l-values.
3167 if (V.get()->getObjectKind() != OK_Ordinary) {
3168 V = S.DefaultLvalueConversion(V.take());
3169 if (V.isInvalid())
3170 return QualType();
3171 }
3172
3173 // These operators return the element type of a complex type.
3174 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3175 return CT->getElementType();
3176
3177 // Otherwise they pass through real integer and floating point types here.
3178 if (V.get()->getType()->isArithmeticType())
3179 return V.get()->getType();
3180
3181 // Test for placeholders.
3182 ExprResult PR = S.CheckPlaceholderExpr(V.get());
3183 if (PR.isInvalid()) return QualType();
3184 if (PR.get() != V.get()) {
3185 V = PR;
3186 return CheckRealImagOperand(S, V, Loc, IsReal);
3187 }
3188
3189 // Reject anything else.
3190 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3191 << (IsReal ? "__real" : "__imag");
3192 return QualType();
3193 }
3194
3195
3196
3197 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)3198 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3199 tok::TokenKind Kind, Expr *Input) {
3200 UnaryOperatorKind Opc;
3201 switch (Kind) {
3202 default: llvm_unreachable("Unknown unary op!");
3203 case tok::plusplus: Opc = UO_PostInc; break;
3204 case tok::minusminus: Opc = UO_PostDec; break;
3205 }
3206
3207 // Since this might is a postfix expression, get rid of ParenListExprs.
3208 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3209 if (Result.isInvalid()) return ExprError();
3210 Input = Result.take();
3211
3212 return BuildUnaryOp(S, OpLoc, Opc, Input);
3213 }
3214
3215 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3216 ///
3217 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)3218 static bool checkArithmeticOnObjCPointer(Sema &S,
3219 SourceLocation opLoc,
3220 Expr *op) {
3221 assert(op->getType()->isObjCObjectPointerType());
3222 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3223 return false;
3224
3225 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3226 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3227 << op->getSourceRange();
3228 return true;
3229 }
3230
3231 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3232 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3233 Expr *Idx, SourceLocation RLoc) {
3234 // Since this might be a postfix expression, get rid of ParenListExprs.
3235 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3236 if (Result.isInvalid()) return ExprError();
3237 Base = Result.take();
3238
3239 Expr *LHSExp = Base, *RHSExp = Idx;
3240
3241 if (getLangOpts().CPlusPlus &&
3242 (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3243 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3244 Context.DependentTy,
3245 VK_LValue, OK_Ordinary,
3246 RLoc));
3247 }
3248
3249 if (getLangOpts().CPlusPlus &&
3250 (LHSExp->getType()->isRecordType() ||
3251 LHSExp->getType()->isEnumeralType() ||
3252 RHSExp->getType()->isRecordType() ||
3253 RHSExp->getType()->isEnumeralType()) &&
3254 !LHSExp->getType()->isObjCObjectPointerType()) {
3255 return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3256 }
3257
3258 return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3259 }
3260
3261 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)3262 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3263 Expr *Idx, SourceLocation RLoc) {
3264 Expr *LHSExp = Base;
3265 Expr *RHSExp = Idx;
3266
3267 // Perform default conversions.
3268 if (!LHSExp->getType()->getAs<VectorType>()) {
3269 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3270 if (Result.isInvalid())
3271 return ExprError();
3272 LHSExp = Result.take();
3273 }
3274 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3275 if (Result.isInvalid())
3276 return ExprError();
3277 RHSExp = Result.take();
3278
3279 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3280 ExprValueKind VK = VK_LValue;
3281 ExprObjectKind OK = OK_Ordinary;
3282
3283 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3284 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3285 // in the subscript position. As a result, we need to derive the array base
3286 // and index from the expression types.
3287 Expr *BaseExpr, *IndexExpr;
3288 QualType ResultType;
3289 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3290 BaseExpr = LHSExp;
3291 IndexExpr = RHSExp;
3292 ResultType = Context.DependentTy;
3293 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3294 BaseExpr = LHSExp;
3295 IndexExpr = RHSExp;
3296 ResultType = PTy->getPointeeType();
3297 } else if (const ObjCObjectPointerType *PTy =
3298 LHSTy->getAs<ObjCObjectPointerType>()) {
3299 BaseExpr = LHSExp;
3300 IndexExpr = RHSExp;
3301
3302 // Use custom logic if this should be the pseudo-object subscript
3303 // expression.
3304 if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3305 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3306
3307 ResultType = PTy->getPointeeType();
3308 if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3309 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3310 << ResultType << BaseExpr->getSourceRange();
3311 return ExprError();
3312 }
3313 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3314 // Handle the uncommon case of "123[Ptr]".
3315 BaseExpr = RHSExp;
3316 IndexExpr = LHSExp;
3317 ResultType = PTy->getPointeeType();
3318 } else if (const ObjCObjectPointerType *PTy =
3319 RHSTy->getAs<ObjCObjectPointerType>()) {
3320 // Handle the uncommon case of "123[Ptr]".
3321 BaseExpr = RHSExp;
3322 IndexExpr = LHSExp;
3323 ResultType = PTy->getPointeeType();
3324 if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3325 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3326 << ResultType << BaseExpr->getSourceRange();
3327 return ExprError();
3328 }
3329 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3330 BaseExpr = LHSExp; // vectors: V[123]
3331 IndexExpr = RHSExp;
3332 VK = LHSExp->getValueKind();
3333 if (VK != VK_RValue)
3334 OK = OK_VectorComponent;
3335
3336 // FIXME: need to deal with const...
3337 ResultType = VTy->getElementType();
3338 } else if (LHSTy->isArrayType()) {
3339 // If we see an array that wasn't promoted by
3340 // DefaultFunctionArrayLvalueConversion, it must be an array that
3341 // wasn't promoted because of the C90 rule that doesn't
3342 // allow promoting non-lvalue arrays. Warn, then
3343 // force the promotion here.
3344 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3345 LHSExp->getSourceRange();
3346 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3347 CK_ArrayToPointerDecay).take();
3348 LHSTy = LHSExp->getType();
3349
3350 BaseExpr = LHSExp;
3351 IndexExpr = RHSExp;
3352 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3353 } else if (RHSTy->isArrayType()) {
3354 // Same as previous, except for 123[f().a] case
3355 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3356 RHSExp->getSourceRange();
3357 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3358 CK_ArrayToPointerDecay).take();
3359 RHSTy = RHSExp->getType();
3360
3361 BaseExpr = RHSExp;
3362 IndexExpr = LHSExp;
3363 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3364 } else {
3365 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3366 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3367 }
3368 // C99 6.5.2.1p1
3369 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3370 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3371 << IndexExpr->getSourceRange());
3372
3373 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3374 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3375 && !IndexExpr->isTypeDependent())
3376 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3377
3378 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3379 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3380 // type. Note that Functions are not objects, and that (in C99 parlance)
3381 // incomplete types are not object types.
3382 if (ResultType->isFunctionType()) {
3383 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3384 << ResultType << BaseExpr->getSourceRange();
3385 return ExprError();
3386 }
3387
3388 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3389 // GNU extension: subscripting on pointer to void
3390 Diag(LLoc, diag::ext_gnu_subscript_void_type)
3391 << BaseExpr->getSourceRange();
3392
3393 // C forbids expressions of unqualified void type from being l-values.
3394 // See IsCForbiddenLValueType.
3395 if (!ResultType.hasQualifiers()) VK = VK_RValue;
3396 } else if (!ResultType->isDependentType() &&
3397 RequireCompleteType(LLoc, ResultType,
3398 diag::err_subscript_incomplete_type, BaseExpr))
3399 return ExprError();
3400
3401 assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3402 !ResultType.isCForbiddenLValueType());
3403
3404 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3405 ResultType, VK, OK, RLoc));
3406 }
3407
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)3408 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3409 FunctionDecl *FD,
3410 ParmVarDecl *Param) {
3411 if (Param->hasUnparsedDefaultArg()) {
3412 Diag(CallLoc,
3413 diag::err_use_of_default_argument_to_function_declared_later) <<
3414 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3415 Diag(UnparsedDefaultArgLocs[Param],
3416 diag::note_default_argument_declared_here);
3417 return ExprError();
3418 }
3419
3420 if (Param->hasUninstantiatedDefaultArg()) {
3421 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3422
3423 EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3424 Param);
3425
3426 // Instantiate the expression.
3427 MultiLevelTemplateArgumentList ArgList
3428 = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3429
3430 std::pair<const TemplateArgument *, unsigned> Innermost
3431 = ArgList.getInnermost();
3432 InstantiatingTemplate Inst(*this, CallLoc, Param,
3433 ArrayRef<TemplateArgument>(Innermost.first,
3434 Innermost.second));
3435 if (Inst)
3436 return ExprError();
3437
3438 ExprResult Result;
3439 {
3440 // C++ [dcl.fct.default]p5:
3441 // The names in the [default argument] expression are bound, and
3442 // the semantic constraints are checked, at the point where the
3443 // default argument expression appears.
3444 ContextRAII SavedContext(*this, FD);
3445 LocalInstantiationScope Local(*this);
3446 Result = SubstExpr(UninstExpr, ArgList);
3447 }
3448 if (Result.isInvalid())
3449 return ExprError();
3450
3451 // Check the expression as an initializer for the parameter.
3452 InitializedEntity Entity
3453 = InitializedEntity::InitializeParameter(Context, Param);
3454 InitializationKind Kind
3455 = InitializationKind::CreateCopy(Param->getLocation(),
3456 /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3457 Expr *ResultE = Result.takeAs<Expr>();
3458
3459 InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3460 Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3461 if (Result.isInvalid())
3462 return ExprError();
3463
3464 Expr *Arg = Result.takeAs<Expr>();
3465 CheckImplicitConversions(Arg, Param->getOuterLocStart());
3466 // Build the default argument expression.
3467 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3468 }
3469
3470 // If the default expression creates temporaries, we need to
3471 // push them to the current stack of expression temporaries so they'll
3472 // be properly destroyed.
3473 // FIXME: We should really be rebuilding the default argument with new
3474 // bound temporaries; see the comment in PR5810.
3475 // We don't need to do that with block decls, though, because
3476 // blocks in default argument expression can never capture anything.
3477 if (isa<ExprWithCleanups>(Param->getInit())) {
3478 // Set the "needs cleanups" bit regardless of whether there are
3479 // any explicit objects.
3480 ExprNeedsCleanups = true;
3481
3482 // Append all the objects to the cleanup list. Right now, this
3483 // should always be a no-op, because blocks in default argument
3484 // expressions should never be able to capture anything.
3485 assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3486 "default argument expression has capturing blocks?");
3487 }
3488
3489 // We already type-checked the argument, so we know it works.
3490 // Just mark all of the declarations in this potentially-evaluated expression
3491 // as being "referenced".
3492 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3493 /*SkipLocalVariables=*/true);
3494 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3495 }
3496
3497
3498 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)3499 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3500 Expr *Fn) {
3501 if (Proto && Proto->isVariadic()) {
3502 if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3503 return VariadicConstructor;
3504 else if (Fn && Fn->getType()->isBlockPointerType())
3505 return VariadicBlock;
3506 else if (FDecl) {
3507 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3508 if (Method->isInstance())
3509 return VariadicMethod;
3510 }
3511 return VariadicFunction;
3512 }
3513 return VariadicDoesNotApply;
3514 }
3515
3516 /// ConvertArgumentsForCall - Converts the arguments specified in
3517 /// Args/NumArgs to the parameter types of the function FDecl with
3518 /// function prototype Proto. Call is the call expression itself, and
3519 /// Fn is the function expression. For a C++ member function, this
3520 /// routine does not attempt to convert the object argument. Returns
3521 /// true if the call is ill-formed.
3522 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,bool IsExecConfig)3523 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3524 FunctionDecl *FDecl,
3525 const FunctionProtoType *Proto,
3526 Expr **Args, unsigned NumArgs,
3527 SourceLocation RParenLoc,
3528 bool IsExecConfig) {
3529 // Bail out early if calling a builtin with custom typechecking.
3530 // We don't need to do this in the
3531 if (FDecl)
3532 if (unsigned ID = FDecl->getBuiltinID())
3533 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3534 return false;
3535
3536 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3537 // assignment, to the types of the corresponding parameter, ...
3538 unsigned NumArgsInProto = Proto->getNumArgs();
3539 bool Invalid = false;
3540 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3541 unsigned FnKind = Fn->getType()->isBlockPointerType()
3542 ? 1 /* block */
3543 : (IsExecConfig ? 3 /* kernel function (exec config) */
3544 : 0 /* function */);
3545
3546 // If too few arguments are available (and we don't have default
3547 // arguments for the remaining parameters), don't make the call.
3548 if (NumArgs < NumArgsInProto) {
3549 if (NumArgs < MinArgs) {
3550 if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3551 Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3552 ? diag::err_typecheck_call_too_few_args_one
3553 : diag::err_typecheck_call_too_few_args_at_least_one)
3554 << FnKind
3555 << FDecl->getParamDecl(0) << Fn->getSourceRange();
3556 else
3557 Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3558 ? diag::err_typecheck_call_too_few_args
3559 : diag::err_typecheck_call_too_few_args_at_least)
3560 << FnKind
3561 << MinArgs << NumArgs << Fn->getSourceRange();
3562
3563 // Emit the location of the prototype.
3564 if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3565 Diag(FDecl->getLocStart(), diag::note_callee_decl)
3566 << FDecl;
3567
3568 return true;
3569 }
3570 Call->setNumArgs(Context, NumArgsInProto);
3571 }
3572
3573 // If too many are passed and not variadic, error on the extras and drop
3574 // them.
3575 if (NumArgs > NumArgsInProto) {
3576 if (!Proto->isVariadic()) {
3577 if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3578 Diag(Args[NumArgsInProto]->getLocStart(),
3579 MinArgs == NumArgsInProto
3580 ? diag::err_typecheck_call_too_many_args_one
3581 : diag::err_typecheck_call_too_many_args_at_most_one)
3582 << FnKind
3583 << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3584 << SourceRange(Args[NumArgsInProto]->getLocStart(),
3585 Args[NumArgs-1]->getLocEnd());
3586 else
3587 Diag(Args[NumArgsInProto]->getLocStart(),
3588 MinArgs == NumArgsInProto
3589 ? diag::err_typecheck_call_too_many_args
3590 : diag::err_typecheck_call_too_many_args_at_most)
3591 << FnKind
3592 << NumArgsInProto << NumArgs << Fn->getSourceRange()
3593 << SourceRange(Args[NumArgsInProto]->getLocStart(),
3594 Args[NumArgs-1]->getLocEnd());
3595
3596 // Emit the location of the prototype.
3597 if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3598 Diag(FDecl->getLocStart(), diag::note_callee_decl)
3599 << FDecl;
3600
3601 // This deletes the extra arguments.
3602 Call->setNumArgs(Context, NumArgsInProto);
3603 return true;
3604 }
3605 }
3606 SmallVector<Expr *, 8> AllArgs;
3607 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3608
3609 Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3610 Proto, 0, Args, NumArgs, AllArgs, CallType);
3611 if (Invalid)
3612 return true;
3613 unsigned TotalNumArgs = AllArgs.size();
3614 for (unsigned i = 0; i < TotalNumArgs; ++i)
3615 Call->setArg(i, AllArgs[i]);
3616
3617 return false;
3618 }
3619
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstProtoArg,Expr ** Args,unsigned NumArgs,SmallVector<Expr *,8> & AllArgs,VariadicCallType CallType,bool AllowExplicit)3620 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3621 FunctionDecl *FDecl,
3622 const FunctionProtoType *Proto,
3623 unsigned FirstProtoArg,
3624 Expr **Args, unsigned NumArgs,
3625 SmallVector<Expr *, 8> &AllArgs,
3626 VariadicCallType CallType,
3627 bool AllowExplicit) {
3628 unsigned NumArgsInProto = Proto->getNumArgs();
3629 unsigned NumArgsToCheck = NumArgs;
3630 bool Invalid = false;
3631 if (NumArgs != NumArgsInProto)
3632 // Use default arguments for missing arguments
3633 NumArgsToCheck = NumArgsInProto;
3634 unsigned ArgIx = 0;
3635 // Continue to check argument types (even if we have too few/many args).
3636 for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3637 QualType ProtoArgType = Proto->getArgType(i);
3638
3639 Expr *Arg;
3640 ParmVarDecl *Param;
3641 if (ArgIx < NumArgs) {
3642 Arg = Args[ArgIx++];
3643
3644 if (RequireCompleteType(Arg->getLocStart(),
3645 ProtoArgType,
3646 diag::err_call_incomplete_argument, Arg))
3647 return true;
3648
3649 // Pass the argument
3650 Param = 0;
3651 if (FDecl && i < FDecl->getNumParams())
3652 Param = FDecl->getParamDecl(i);
3653
3654 // Strip the unbridged-cast placeholder expression off, if applicable.
3655 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3656 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3657 (!Param || !Param->hasAttr<CFConsumedAttr>()))
3658 Arg = stripARCUnbridgedCast(Arg);
3659
3660 InitializedEntity Entity =
3661 Param? InitializedEntity::InitializeParameter(Context, Param)
3662 : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3663 Proto->isArgConsumed(i));
3664 ExprResult ArgE = PerformCopyInitialization(Entity,
3665 SourceLocation(),
3666 Owned(Arg),
3667 /*TopLevelOfInitList=*/false,
3668 AllowExplicit);
3669 if (ArgE.isInvalid())
3670 return true;
3671
3672 Arg = ArgE.takeAs<Expr>();
3673 } else {
3674 Param = FDecl->getParamDecl(i);
3675
3676 ExprResult ArgExpr =
3677 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3678 if (ArgExpr.isInvalid())
3679 return true;
3680
3681 Arg = ArgExpr.takeAs<Expr>();
3682 }
3683
3684 // Check for array bounds violations for each argument to the call. This
3685 // check only triggers warnings when the argument isn't a more complex Expr
3686 // with its own checking, such as a BinaryOperator.
3687 CheckArrayAccess(Arg);
3688
3689 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3690 CheckStaticArrayArgument(CallLoc, Param, Arg);
3691
3692 AllArgs.push_back(Arg);
3693 }
3694
3695 // If this is a variadic call, handle args passed through "...".
3696 if (CallType != VariadicDoesNotApply) {
3697 // Assume that extern "C" functions with variadic arguments that
3698 // return __unknown_anytype aren't *really* variadic.
3699 if (Proto->getResultType() == Context.UnknownAnyTy &&
3700 FDecl && FDecl->isExternC()) {
3701 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3702 ExprResult arg;
3703 if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3704 arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3705 else
3706 arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3707 Invalid |= arg.isInvalid();
3708 AllArgs.push_back(arg.take());
3709 }
3710
3711 // Otherwise do argument promotion, (C99 6.5.2.2p7).
3712 } else {
3713 for (unsigned i = ArgIx; i != NumArgs; ++i) {
3714 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3715 FDecl);
3716 Invalid |= Arg.isInvalid();
3717 AllArgs.push_back(Arg.take());
3718 }
3719 }
3720
3721 // Check for array bounds violations.
3722 for (unsigned i = ArgIx; i != NumArgs; ++i)
3723 CheckArrayAccess(Args[i]);
3724 }
3725 return Invalid;
3726 }
3727
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)3728 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3729 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3730 if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3731 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3732 << ATL->getLocalSourceRange();
3733 }
3734
3735 /// CheckStaticArrayArgument - If the given argument corresponds to a static
3736 /// array parameter, check that it is non-null, and that if it is formed by
3737 /// array-to-pointer decay, the underlying array is sufficiently large.
3738 ///
3739 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3740 /// array type derivation, then for each call to the function, the value of the
3741 /// corresponding actual argument shall provide access to the first element of
3742 /// an array with at least as many elements as specified by the size expression.
3743 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)3744 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3745 ParmVarDecl *Param,
3746 const Expr *ArgExpr) {
3747 // Static array parameters are not supported in C++.
3748 if (!Param || getLangOpts().CPlusPlus)
3749 return;
3750
3751 QualType OrigTy = Param->getOriginalType();
3752
3753 const ArrayType *AT = Context.getAsArrayType(OrigTy);
3754 if (!AT || AT->getSizeModifier() != ArrayType::Static)
3755 return;
3756
3757 if (ArgExpr->isNullPointerConstant(Context,
3758 Expr::NPC_NeverValueDependent)) {
3759 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3760 DiagnoseCalleeStaticArrayParam(*this, Param);
3761 return;
3762 }
3763
3764 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3765 if (!CAT)
3766 return;
3767
3768 const ConstantArrayType *ArgCAT =
3769 Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3770 if (!ArgCAT)
3771 return;
3772
3773 if (ArgCAT->getSize().ult(CAT->getSize())) {
3774 Diag(CallLoc, diag::warn_static_array_too_small)
3775 << ArgExpr->getSourceRange()
3776 << (unsigned) ArgCAT->getSize().getZExtValue()
3777 << (unsigned) CAT->getSize().getZExtValue();
3778 DiagnoseCalleeStaticArrayParam(*this, Param);
3779 }
3780 }
3781
3782 /// Given a function expression of unknown-any type, try to rebuild it
3783 /// to have a function type.
3784 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3785
3786 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3787 /// This provides the location of the left/right parens and a list of comma
3788 /// locations.
3789 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)3790 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3791 MultiExprArg ArgExprs, SourceLocation RParenLoc,
3792 Expr *ExecConfig, bool IsExecConfig) {
3793 // Since this might be a postfix expression, get rid of ParenListExprs.
3794 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3795 if (Result.isInvalid()) return ExprError();
3796 Fn = Result.take();
3797
3798 if (getLangOpts().CPlusPlus) {
3799 // If this is a pseudo-destructor expression, build the call immediately.
3800 if (isa<CXXPseudoDestructorExpr>(Fn)) {
3801 if (!ArgExprs.empty()) {
3802 // Pseudo-destructor calls should not have any arguments.
3803 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3804 << FixItHint::CreateRemoval(
3805 SourceRange(ArgExprs[0]->getLocStart(),
3806 ArgExprs.back()->getLocEnd()));
3807 }
3808
3809 return Owned(new (Context) CallExpr(Context, Fn, MultiExprArg(),
3810 Context.VoidTy, VK_RValue,
3811 RParenLoc));
3812 }
3813
3814 // Determine whether this is a dependent call inside a C++ template,
3815 // in which case we won't do any semantic analysis now.
3816 // FIXME: Will need to cache the results of name lookup (including ADL) in
3817 // Fn.
3818 bool Dependent = false;
3819 if (Fn->isTypeDependent())
3820 Dependent = true;
3821 else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
3822 Dependent = true;
3823
3824 if (Dependent) {
3825 if (ExecConfig) {
3826 return Owned(new (Context) CUDAKernelCallExpr(
3827 Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
3828 Context.DependentTy, VK_RValue, RParenLoc));
3829 } else {
3830 return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
3831 Context.DependentTy, VK_RValue,
3832 RParenLoc));
3833 }
3834 }
3835
3836 // Determine whether this is a call to an object (C++ [over.call.object]).
3837 if (Fn->getType()->isRecordType())
3838 return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
3839 ArgExprs.data(),
3840 ArgExprs.size(), RParenLoc));
3841
3842 if (Fn->getType() == Context.UnknownAnyTy) {
3843 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3844 if (result.isInvalid()) return ExprError();
3845 Fn = result.take();
3846 }
3847
3848 if (Fn->getType() == Context.BoundMemberTy) {
3849 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3850 ArgExprs.size(), RParenLoc);
3851 }
3852 }
3853
3854 // Check for overloaded calls. This can happen even in C due to extensions.
3855 if (Fn->getType() == Context.OverloadTy) {
3856 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3857
3858 // We aren't supposed to apply this logic for if there's an '&' involved.
3859 if (!find.HasFormOfMemberPointer) {
3860 OverloadExpr *ovl = find.Expression;
3861 if (isa<UnresolvedLookupExpr>(ovl)) {
3862 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3863 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs.data(),
3864 ArgExprs.size(), RParenLoc, ExecConfig);
3865 } else {
3866 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3867 ArgExprs.size(), RParenLoc);
3868 }
3869 }
3870 }
3871
3872 // If we're directly calling a function, get the appropriate declaration.
3873 if (Fn->getType() == Context.UnknownAnyTy) {
3874 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3875 if (result.isInvalid()) return ExprError();
3876 Fn = result.take();
3877 }
3878
3879 Expr *NakedFn = Fn->IgnoreParens();
3880
3881 NamedDecl *NDecl = 0;
3882 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3883 if (UnOp->getOpcode() == UO_AddrOf)
3884 NakedFn = UnOp->getSubExpr()->IgnoreParens();
3885
3886 if (isa<DeclRefExpr>(NakedFn))
3887 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3888 else if (isa<MemberExpr>(NakedFn))
3889 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3890
3891 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs.data(),
3892 ArgExprs.size(), RParenLoc, ExecConfig,
3893 IsExecConfig);
3894 }
3895
3896 ExprResult
ActOnCUDAExecConfigExpr(Scope * S,SourceLocation LLLLoc,MultiExprArg ExecConfig,SourceLocation GGGLoc)3897 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3898 MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3899 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3900 if (!ConfigDecl)
3901 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3902 << "cudaConfigureCall");
3903 QualType ConfigQTy = ConfigDecl->getType();
3904
3905 DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3906 ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3907 MarkFunctionReferenced(LLLLoc, ConfigDecl);
3908
3909 return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3910 /*IsExecConfig=*/true);
3911 }
3912
3913 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3914 ///
3915 /// __builtin_astype( value, dst type )
3916 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)3917 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3918 SourceLocation BuiltinLoc,
3919 SourceLocation RParenLoc) {
3920 ExprValueKind VK = VK_RValue;
3921 ExprObjectKind OK = OK_Ordinary;
3922 QualType DstTy = GetTypeFromParser(ParsedDestTy);
3923 QualType SrcTy = E->getType();
3924 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3925 return ExprError(Diag(BuiltinLoc,
3926 diag::err_invalid_astype_of_different_size)
3927 << DstTy
3928 << SrcTy
3929 << E->getSourceRange());
3930 return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3931 RParenLoc));
3932 }
3933
3934 /// BuildResolvedCallExpr - Build a call to a resolved expression,
3935 /// i.e. an expression not of \p OverloadTy. The expression should
3936 /// unary-convert to an expression of function-pointer or
3937 /// block-pointer type.
3938 ///
3939 /// \param NDecl the declaration being called, if available
3940 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,Expr ** Args,unsigned NumArgs,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig)3941 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3942 SourceLocation LParenLoc,
3943 Expr **Args, unsigned NumArgs,
3944 SourceLocation RParenLoc,
3945 Expr *Config, bool IsExecConfig) {
3946 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3947 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3948
3949 // Promote the function operand.
3950 // We special-case function promotion here because we only allow promoting
3951 // builtin functions to function pointers in the callee of a call.
3952 ExprResult Result;
3953 if (BuiltinID &&
3954 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
3955 Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
3956 CK_BuiltinFnToFnPtr).take();
3957 } else {
3958 Result = UsualUnaryConversions(Fn);
3959 }
3960 if (Result.isInvalid())
3961 return ExprError();
3962 Fn = Result.take();
3963
3964 // Make the call expr early, before semantic checks. This guarantees cleanup
3965 // of arguments and function on error.
3966 CallExpr *TheCall;
3967 if (Config)
3968 TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3969 cast<CallExpr>(Config),
3970 llvm::makeArrayRef(Args,NumArgs),
3971 Context.BoolTy,
3972 VK_RValue,
3973 RParenLoc);
3974 else
3975 TheCall = new (Context) CallExpr(Context, Fn,
3976 llvm::makeArrayRef(Args, NumArgs),
3977 Context.BoolTy,
3978 VK_RValue,
3979 RParenLoc);
3980
3981 // Bail out early if calling a builtin with custom typechecking.
3982 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3983 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3984
3985 retry:
3986 const FunctionType *FuncT;
3987 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3988 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3989 // have type pointer to function".
3990 FuncT = PT->getPointeeType()->getAs<FunctionType>();
3991 if (FuncT == 0)
3992 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3993 << Fn->getType() << Fn->getSourceRange());
3994 } else if (const BlockPointerType *BPT =
3995 Fn->getType()->getAs<BlockPointerType>()) {
3996 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3997 } else {
3998 // Handle calls to expressions of unknown-any type.
3999 if (Fn->getType() == Context.UnknownAnyTy) {
4000 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4001 if (rewrite.isInvalid()) return ExprError();
4002 Fn = rewrite.take();
4003 TheCall->setCallee(Fn);
4004 goto retry;
4005 }
4006
4007 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4008 << Fn->getType() << Fn->getSourceRange());
4009 }
4010
4011 if (getLangOpts().CUDA) {
4012 if (Config) {
4013 // CUDA: Kernel calls must be to global functions
4014 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4015 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4016 << FDecl->getName() << Fn->getSourceRange());
4017
4018 // CUDA: Kernel function must have 'void' return type
4019 if (!FuncT->getResultType()->isVoidType())
4020 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4021 << Fn->getType() << Fn->getSourceRange());
4022 } else {
4023 // CUDA: Calls to global functions must be configured
4024 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4025 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4026 << FDecl->getName() << Fn->getSourceRange());
4027 }
4028 }
4029
4030 // Check for a valid return type
4031 if (CheckCallReturnType(FuncT->getResultType(),
4032 Fn->getLocStart(), TheCall,
4033 FDecl))
4034 return ExprError();
4035
4036 // We know the result type of the call, set it.
4037 TheCall->setType(FuncT->getCallResultType(Context));
4038 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4039
4040 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4041 if (Proto) {
4042 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4043 RParenLoc, IsExecConfig))
4044 return ExprError();
4045 } else {
4046 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4047
4048 if (FDecl) {
4049 // Check if we have too few/too many template arguments, based
4050 // on our knowledge of the function definition.
4051 const FunctionDecl *Def = 0;
4052 if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4053 Proto = Def->getType()->getAs<FunctionProtoType>();
4054 if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4055 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4056 << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4057 }
4058
4059 // If the function we're calling isn't a function prototype, but we have
4060 // a function prototype from a prior declaratiom, use that prototype.
4061 if (!FDecl->hasPrototype())
4062 Proto = FDecl->getType()->getAs<FunctionProtoType>();
4063 }
4064
4065 // Promote the arguments (C99 6.5.2.2p6).
4066 for (unsigned i = 0; i != NumArgs; i++) {
4067 Expr *Arg = Args[i];
4068
4069 if (Proto && i < Proto->getNumArgs()) {
4070 InitializedEntity Entity
4071 = InitializedEntity::InitializeParameter(Context,
4072 Proto->getArgType(i),
4073 Proto->isArgConsumed(i));
4074 ExprResult ArgE = PerformCopyInitialization(Entity,
4075 SourceLocation(),
4076 Owned(Arg));
4077 if (ArgE.isInvalid())
4078 return true;
4079
4080 Arg = ArgE.takeAs<Expr>();
4081
4082 } else {
4083 ExprResult ArgE = DefaultArgumentPromotion(Arg);
4084
4085 if (ArgE.isInvalid())
4086 return true;
4087
4088 Arg = ArgE.takeAs<Expr>();
4089 }
4090
4091 if (RequireCompleteType(Arg->getLocStart(),
4092 Arg->getType(),
4093 diag::err_call_incomplete_argument, Arg))
4094 return ExprError();
4095
4096 TheCall->setArg(i, Arg);
4097 }
4098 }
4099
4100 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4101 if (!Method->isStatic())
4102 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4103 << Fn->getSourceRange());
4104
4105 // Check for sentinels
4106 if (NDecl)
4107 DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4108
4109 // Do special checking on direct calls to functions.
4110 if (FDecl) {
4111 if (CheckFunctionCall(FDecl, TheCall, Proto))
4112 return ExprError();
4113
4114 if (BuiltinID)
4115 return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4116 } else if (NDecl) {
4117 if (CheckBlockCall(NDecl, TheCall, Proto))
4118 return ExprError();
4119 }
4120
4121 return MaybeBindToTemporary(TheCall);
4122 }
4123
4124 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)4125 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4126 SourceLocation RParenLoc, Expr *InitExpr) {
4127 assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4128 // FIXME: put back this assert when initializers are worked out.
4129 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4130
4131 TypeSourceInfo *TInfo;
4132 QualType literalType = GetTypeFromParser(Ty, &TInfo);
4133 if (!TInfo)
4134 TInfo = Context.getTrivialTypeSourceInfo(literalType);
4135
4136 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4137 }
4138
4139 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)4140 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4141 SourceLocation RParenLoc, Expr *LiteralExpr) {
4142 QualType literalType = TInfo->getType();
4143
4144 if (literalType->isArrayType()) {
4145 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4146 diag::err_illegal_decl_array_incomplete_type,
4147 SourceRange(LParenLoc,
4148 LiteralExpr->getSourceRange().getEnd())))
4149 return ExprError();
4150 if (literalType->isVariableArrayType())
4151 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4152 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4153 } else if (!literalType->isDependentType() &&
4154 RequireCompleteType(LParenLoc, literalType,
4155 diag::err_typecheck_decl_incomplete_type,
4156 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4157 return ExprError();
4158
4159 InitializedEntity Entity
4160 = InitializedEntity::InitializeTemporary(literalType);
4161 InitializationKind Kind
4162 = InitializationKind::CreateCStyleCast(LParenLoc,
4163 SourceRange(LParenLoc, RParenLoc),
4164 /*InitList=*/true);
4165 InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4166 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4167 &literalType);
4168 if (Result.isInvalid())
4169 return ExprError();
4170 LiteralExpr = Result.get();
4171
4172 bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4173 if (isFileScope) { // 6.5.2.5p3
4174 if (CheckForConstantInitializer(LiteralExpr, literalType))
4175 return ExprError();
4176 }
4177
4178 // In C, compound literals are l-values for some reason.
4179 ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4180
4181 return MaybeBindToTemporary(
4182 new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4183 VK, LiteralExpr, isFileScope));
4184 }
4185
4186 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)4187 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4188 SourceLocation RBraceLoc) {
4189 // Immediately handle non-overload placeholders. Overloads can be
4190 // resolved contextually, but everything else here can't.
4191 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4192 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4193 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4194
4195 // Ignore failures; dropping the entire initializer list because
4196 // of one failure would be terrible for indexing/etc.
4197 if (result.isInvalid()) continue;
4198
4199 InitArgList[I] = result.take();
4200 }
4201 }
4202
4203 // Semantic analysis for initializers is done by ActOnDeclarator() and
4204 // CheckInitializer() - it requires knowledge of the object being intialized.
4205
4206 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4207 RBraceLoc);
4208 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4209 return Owned(E);
4210 }
4211
4212 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(Sema & S,ExprResult & E)4213 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4214 assert(E.get()->getType()->isBlockPointerType());
4215 assert(E.get()->isRValue());
4216
4217 // Only do this in an r-value context.
4218 if (!S.getLangOpts().ObjCAutoRefCount) return;
4219
4220 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4221 CK_ARCExtendBlockObject, E.get(),
4222 /*base path*/ 0, VK_RValue);
4223 S.ExprNeedsCleanups = true;
4224 }
4225
4226 /// Prepare a conversion of the given expression to an ObjC object
4227 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)4228 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4229 QualType type = E.get()->getType();
4230 if (type->isObjCObjectPointerType()) {
4231 return CK_BitCast;
4232 } else if (type->isBlockPointerType()) {
4233 maybeExtendBlockObject(*this, E);
4234 return CK_BlockPointerToObjCPointerCast;
4235 } else {
4236 assert(type->isPointerType());
4237 return CK_CPointerToObjCPointerCast;
4238 }
4239 }
4240
4241 /// Prepares for a scalar cast, performing all the necessary stages
4242 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)4243 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4244 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4245 // Also, callers should have filtered out the invalid cases with
4246 // pointers. Everything else should be possible.
4247
4248 QualType SrcTy = Src.get()->getType();
4249 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4250 return CK_NoOp;
4251
4252 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4253 case Type::STK_MemberPointer:
4254 llvm_unreachable("member pointer type in C");
4255
4256 case Type::STK_CPointer:
4257 case Type::STK_BlockPointer:
4258 case Type::STK_ObjCObjectPointer:
4259 switch (DestTy->getScalarTypeKind()) {
4260 case Type::STK_CPointer:
4261 return CK_BitCast;
4262 case Type::STK_BlockPointer:
4263 return (SrcKind == Type::STK_BlockPointer
4264 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4265 case Type::STK_ObjCObjectPointer:
4266 if (SrcKind == Type::STK_ObjCObjectPointer)
4267 return CK_BitCast;
4268 if (SrcKind == Type::STK_CPointer)
4269 return CK_CPointerToObjCPointerCast;
4270 maybeExtendBlockObject(*this, Src);
4271 return CK_BlockPointerToObjCPointerCast;
4272 case Type::STK_Bool:
4273 return CK_PointerToBoolean;
4274 case Type::STK_Integral:
4275 return CK_PointerToIntegral;
4276 case Type::STK_Floating:
4277 case Type::STK_FloatingComplex:
4278 case Type::STK_IntegralComplex:
4279 case Type::STK_MemberPointer:
4280 llvm_unreachable("illegal cast from pointer");
4281 }
4282 llvm_unreachable("Should have returned before this");
4283
4284 case Type::STK_Bool: // casting from bool is like casting from an integer
4285 case Type::STK_Integral:
4286 switch (DestTy->getScalarTypeKind()) {
4287 case Type::STK_CPointer:
4288 case Type::STK_ObjCObjectPointer:
4289 case Type::STK_BlockPointer:
4290 if (Src.get()->isNullPointerConstant(Context,
4291 Expr::NPC_ValueDependentIsNull))
4292 return CK_NullToPointer;
4293 return CK_IntegralToPointer;
4294 case Type::STK_Bool:
4295 return CK_IntegralToBoolean;
4296 case Type::STK_Integral:
4297 return CK_IntegralCast;
4298 case Type::STK_Floating:
4299 return CK_IntegralToFloating;
4300 case Type::STK_IntegralComplex:
4301 Src = ImpCastExprToType(Src.take(),
4302 DestTy->castAs<ComplexType>()->getElementType(),
4303 CK_IntegralCast);
4304 return CK_IntegralRealToComplex;
4305 case Type::STK_FloatingComplex:
4306 Src = ImpCastExprToType(Src.take(),
4307 DestTy->castAs<ComplexType>()->getElementType(),
4308 CK_IntegralToFloating);
4309 return CK_FloatingRealToComplex;
4310 case Type::STK_MemberPointer:
4311 llvm_unreachable("member pointer type in C");
4312 }
4313 llvm_unreachable("Should have returned before this");
4314
4315 case Type::STK_Floating:
4316 switch (DestTy->getScalarTypeKind()) {
4317 case Type::STK_Floating:
4318 return CK_FloatingCast;
4319 case Type::STK_Bool:
4320 return CK_FloatingToBoolean;
4321 case Type::STK_Integral:
4322 return CK_FloatingToIntegral;
4323 case Type::STK_FloatingComplex:
4324 Src = ImpCastExprToType(Src.take(),
4325 DestTy->castAs<ComplexType>()->getElementType(),
4326 CK_FloatingCast);
4327 return CK_FloatingRealToComplex;
4328 case Type::STK_IntegralComplex:
4329 Src = ImpCastExprToType(Src.take(),
4330 DestTy->castAs<ComplexType>()->getElementType(),
4331 CK_FloatingToIntegral);
4332 return CK_IntegralRealToComplex;
4333 case Type::STK_CPointer:
4334 case Type::STK_ObjCObjectPointer:
4335 case Type::STK_BlockPointer:
4336 llvm_unreachable("valid float->pointer cast?");
4337 case Type::STK_MemberPointer:
4338 llvm_unreachable("member pointer type in C");
4339 }
4340 llvm_unreachable("Should have returned before this");
4341
4342 case Type::STK_FloatingComplex:
4343 switch (DestTy->getScalarTypeKind()) {
4344 case Type::STK_FloatingComplex:
4345 return CK_FloatingComplexCast;
4346 case Type::STK_IntegralComplex:
4347 return CK_FloatingComplexToIntegralComplex;
4348 case Type::STK_Floating: {
4349 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4350 if (Context.hasSameType(ET, DestTy))
4351 return CK_FloatingComplexToReal;
4352 Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4353 return CK_FloatingCast;
4354 }
4355 case Type::STK_Bool:
4356 return CK_FloatingComplexToBoolean;
4357 case Type::STK_Integral:
4358 Src = ImpCastExprToType(Src.take(),
4359 SrcTy->castAs<ComplexType>()->getElementType(),
4360 CK_FloatingComplexToReal);
4361 return CK_FloatingToIntegral;
4362 case Type::STK_CPointer:
4363 case Type::STK_ObjCObjectPointer:
4364 case Type::STK_BlockPointer:
4365 llvm_unreachable("valid complex float->pointer cast?");
4366 case Type::STK_MemberPointer:
4367 llvm_unreachable("member pointer type in C");
4368 }
4369 llvm_unreachable("Should have returned before this");
4370
4371 case Type::STK_IntegralComplex:
4372 switch (DestTy->getScalarTypeKind()) {
4373 case Type::STK_FloatingComplex:
4374 return CK_IntegralComplexToFloatingComplex;
4375 case Type::STK_IntegralComplex:
4376 return CK_IntegralComplexCast;
4377 case Type::STK_Integral: {
4378 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4379 if (Context.hasSameType(ET, DestTy))
4380 return CK_IntegralComplexToReal;
4381 Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4382 return CK_IntegralCast;
4383 }
4384 case Type::STK_Bool:
4385 return CK_IntegralComplexToBoolean;
4386 case Type::STK_Floating:
4387 Src = ImpCastExprToType(Src.take(),
4388 SrcTy->castAs<ComplexType>()->getElementType(),
4389 CK_IntegralComplexToReal);
4390 return CK_IntegralToFloating;
4391 case Type::STK_CPointer:
4392 case Type::STK_ObjCObjectPointer:
4393 case Type::STK_BlockPointer:
4394 llvm_unreachable("valid complex int->pointer cast?");
4395 case Type::STK_MemberPointer:
4396 llvm_unreachable("member pointer type in C");
4397 }
4398 llvm_unreachable("Should have returned before this");
4399 }
4400
4401 llvm_unreachable("Unhandled scalar cast");
4402 }
4403
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)4404 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4405 CastKind &Kind) {
4406 assert(VectorTy->isVectorType() && "Not a vector type!");
4407
4408 if (Ty->isVectorType() || Ty->isIntegerType()) {
4409 if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4410 return Diag(R.getBegin(),
4411 Ty->isVectorType() ?
4412 diag::err_invalid_conversion_between_vectors :
4413 diag::err_invalid_conversion_between_vector_and_integer)
4414 << VectorTy << Ty << R;
4415 } else
4416 return Diag(R.getBegin(),
4417 diag::err_invalid_conversion_between_vector_and_scalar)
4418 << VectorTy << Ty << R;
4419
4420 Kind = CK_BitCast;
4421 return false;
4422 }
4423
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)4424 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4425 Expr *CastExpr, CastKind &Kind) {
4426 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4427
4428 QualType SrcTy = CastExpr->getType();
4429
4430 // If SrcTy is a VectorType, the total size must match to explicitly cast to
4431 // an ExtVectorType.
4432 // In OpenCL, casts between vectors of different types are not allowed.
4433 // (See OpenCL 6.2).
4434 if (SrcTy->isVectorType()) {
4435 if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4436 || (getLangOpts().OpenCL &&
4437 (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4438 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4439 << DestTy << SrcTy << R;
4440 return ExprError();
4441 }
4442 Kind = CK_BitCast;
4443 return Owned(CastExpr);
4444 }
4445
4446 // All non-pointer scalars can be cast to ExtVector type. The appropriate
4447 // conversion will take place first from scalar to elt type, and then
4448 // splat from elt type to vector.
4449 if (SrcTy->isPointerType())
4450 return Diag(R.getBegin(),
4451 diag::err_invalid_conversion_between_vector_and_scalar)
4452 << DestTy << SrcTy << R;
4453
4454 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4455 ExprResult CastExprRes = Owned(CastExpr);
4456 CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4457 if (CastExprRes.isInvalid())
4458 return ExprError();
4459 CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4460
4461 Kind = CK_VectorSplat;
4462 return Owned(CastExpr);
4463 }
4464
4465 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)4466 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4467 Declarator &D, ParsedType &Ty,
4468 SourceLocation RParenLoc, Expr *CastExpr) {
4469 assert(!D.isInvalidType() && (CastExpr != 0) &&
4470 "ActOnCastExpr(): missing type or expr");
4471
4472 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4473 if (D.isInvalidType())
4474 return ExprError();
4475
4476 if (getLangOpts().CPlusPlus) {
4477 // Check that there are no default arguments (C++ only).
4478 CheckExtraCXXDefaultArguments(D);
4479 }
4480
4481 checkUnusedDeclAttributes(D);
4482
4483 QualType castType = castTInfo->getType();
4484 Ty = CreateParsedType(castType, castTInfo);
4485
4486 bool isVectorLiteral = false;
4487
4488 // Check for an altivec or OpenCL literal,
4489 // i.e. all the elements are integer constants.
4490 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4491 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4492 if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4493 && castType->isVectorType() && (PE || PLE)) {
4494 if (PLE && PLE->getNumExprs() == 0) {
4495 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4496 return ExprError();
4497 }
4498 if (PE || PLE->getNumExprs() == 1) {
4499 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4500 if (!E->getType()->isVectorType())
4501 isVectorLiteral = true;
4502 }
4503 else
4504 isVectorLiteral = true;
4505 }
4506
4507 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4508 // then handle it as such.
4509 if (isVectorLiteral)
4510 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4511
4512 // If the Expr being casted is a ParenListExpr, handle it specially.
4513 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4514 // sequence of BinOp comma operators.
4515 if (isa<ParenListExpr>(CastExpr)) {
4516 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4517 if (Result.isInvalid()) return ExprError();
4518 CastExpr = Result.take();
4519 }
4520
4521 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4522 }
4523
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)4524 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4525 SourceLocation RParenLoc, Expr *E,
4526 TypeSourceInfo *TInfo) {
4527 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4528 "Expected paren or paren list expression");
4529
4530 Expr **exprs;
4531 unsigned numExprs;
4532 Expr *subExpr;
4533 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4534 exprs = PE->getExprs();
4535 numExprs = PE->getNumExprs();
4536 } else {
4537 subExpr = cast<ParenExpr>(E)->getSubExpr();
4538 exprs = &subExpr;
4539 numExprs = 1;
4540 }
4541
4542 QualType Ty = TInfo->getType();
4543 assert(Ty->isVectorType() && "Expected vector type");
4544
4545 SmallVector<Expr *, 8> initExprs;
4546 const VectorType *VTy = Ty->getAs<VectorType>();
4547 unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4548
4549 // '(...)' form of vector initialization in AltiVec: the number of
4550 // initializers must be one or must match the size of the vector.
4551 // If a single value is specified in the initializer then it will be
4552 // replicated to all the components of the vector
4553 if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4554 // The number of initializers must be one or must match the size of the
4555 // vector. If a single value is specified in the initializer then it will
4556 // be replicated to all the components of the vector
4557 if (numExprs == 1) {
4558 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4559 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4560 if (Literal.isInvalid())
4561 return ExprError();
4562 Literal = ImpCastExprToType(Literal.take(), ElemTy,
4563 PrepareScalarCast(Literal, ElemTy));
4564 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4565 }
4566 else if (numExprs < numElems) {
4567 Diag(E->getExprLoc(),
4568 diag::err_incorrect_number_of_vector_initializers);
4569 return ExprError();
4570 }
4571 else
4572 initExprs.append(exprs, exprs + numExprs);
4573 }
4574 else {
4575 // For OpenCL, when the number of initializers is a single value,
4576 // it will be replicated to all components of the vector.
4577 if (getLangOpts().OpenCL &&
4578 VTy->getVectorKind() == VectorType::GenericVector &&
4579 numExprs == 1) {
4580 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4581 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4582 if (Literal.isInvalid())
4583 return ExprError();
4584 Literal = ImpCastExprToType(Literal.take(), ElemTy,
4585 PrepareScalarCast(Literal, ElemTy));
4586 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4587 }
4588
4589 initExprs.append(exprs, exprs + numExprs);
4590 }
4591 // FIXME: This means that pretty-printing the final AST will produce curly
4592 // braces instead of the original commas.
4593 InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4594 initExprs, RParenLoc);
4595 initE->setType(Ty);
4596 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4597 }
4598
4599 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4600 /// the ParenListExpr into a sequence of comma binary operators.
4601 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)4602 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4603 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4604 if (!E)
4605 return Owned(OrigExpr);
4606
4607 ExprResult Result(E->getExpr(0));
4608
4609 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4610 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4611 E->getExpr(i));
4612
4613 if (Result.isInvalid()) return ExprError();
4614
4615 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4616 }
4617
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)4618 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4619 SourceLocation R,
4620 MultiExprArg Val) {
4621 assert(Val.data() != 0 && "ActOnParenOrParenListExpr() missing expr list");
4622 Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
4623 return Owned(expr);
4624 }
4625
4626 /// \brief Emit a specialized diagnostic when one expression is a null pointer
4627 /// constant and the other is not a pointer. Returns true if a diagnostic is
4628 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)4629 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4630 SourceLocation QuestionLoc) {
4631 Expr *NullExpr = LHSExpr;
4632 Expr *NonPointerExpr = RHSExpr;
4633 Expr::NullPointerConstantKind NullKind =
4634 NullExpr->isNullPointerConstant(Context,
4635 Expr::NPC_ValueDependentIsNotNull);
4636
4637 if (NullKind == Expr::NPCK_NotNull) {
4638 NullExpr = RHSExpr;
4639 NonPointerExpr = LHSExpr;
4640 NullKind =
4641 NullExpr->isNullPointerConstant(Context,
4642 Expr::NPC_ValueDependentIsNotNull);
4643 }
4644
4645 if (NullKind == Expr::NPCK_NotNull)
4646 return false;
4647
4648 if (NullKind == Expr::NPCK_ZeroExpression)
4649 return false;
4650
4651 if (NullKind == Expr::NPCK_ZeroLiteral) {
4652 // In this case, check to make sure that we got here from a "NULL"
4653 // string in the source code.
4654 NullExpr = NullExpr->IgnoreParenImpCasts();
4655 SourceLocation loc = NullExpr->getExprLoc();
4656 if (!findMacroSpelling(loc, "NULL"))
4657 return false;
4658 }
4659
4660 int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4661 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4662 << NonPointerExpr->getType() << DiagType
4663 << NonPointerExpr->getSourceRange();
4664 return true;
4665 }
4666
4667 /// \brief Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond)4668 static bool checkCondition(Sema &S, Expr *Cond) {
4669 QualType CondTy = Cond->getType();
4670
4671 // C99 6.5.15p2
4672 if (CondTy->isScalarType()) return false;
4673
4674 // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4675 if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4676 return false;
4677
4678 // Emit the proper error message.
4679 S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4680 diag::err_typecheck_cond_expect_scalar :
4681 diag::err_typecheck_cond_expect_scalar_or_vector)
4682 << CondTy;
4683 return true;
4684 }
4685
4686 /// \brief Return false if the two expressions can be converted to a vector,
4687 /// true otherwise
checkConditionalConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy)4688 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4689 ExprResult &RHS,
4690 QualType CondTy) {
4691 // Both operands should be of scalar type.
4692 if (!LHS.get()->getType()->isScalarType()) {
4693 S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4694 << CondTy;
4695 return true;
4696 }
4697 if (!RHS.get()->getType()->isScalarType()) {
4698 S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4699 << CondTy;
4700 return true;
4701 }
4702
4703 // Implicity convert these scalars to the type of the condition.
4704 LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4705 RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4706 return false;
4707 }
4708
4709 /// \brief Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)4710 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4711 ExprResult &RHS) {
4712 Expr *LHSExpr = LHS.get();
4713 Expr *RHSExpr = RHS.get();
4714
4715 if (!LHSExpr->getType()->isVoidType())
4716 S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4717 << RHSExpr->getSourceRange();
4718 if (!RHSExpr->getType()->isVoidType())
4719 S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4720 << LHSExpr->getSourceRange();
4721 LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4722 RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4723 return S.Context.VoidTy;
4724 }
4725
4726 /// \brief Return false if the NullExpr can be promoted to PointerTy,
4727 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)4728 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4729 QualType PointerTy) {
4730 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4731 !NullExpr.get()->isNullPointerConstant(S.Context,
4732 Expr::NPC_ValueDependentIsNull))
4733 return true;
4734
4735 NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4736 return false;
4737 }
4738
4739 /// \brief Checks compatibility between two pointers and return the resulting
4740 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4741 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4742 ExprResult &RHS,
4743 SourceLocation Loc) {
4744 QualType LHSTy = LHS.get()->getType();
4745 QualType RHSTy = RHS.get()->getType();
4746
4747 if (S.Context.hasSameType(LHSTy, RHSTy)) {
4748 // Two identical pointers types are always compatible.
4749 return LHSTy;
4750 }
4751
4752 QualType lhptee, rhptee;
4753
4754 // Get the pointee types.
4755 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4756 lhptee = LHSBTy->getPointeeType();
4757 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4758 } else {
4759 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4760 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4761 }
4762
4763 // C99 6.5.15p6: If both operands are pointers to compatible types or to
4764 // differently qualified versions of compatible types, the result type is
4765 // a pointer to an appropriately qualified version of the composite
4766 // type.
4767
4768 // Only CVR-qualifiers exist in the standard, and the differently-qualified
4769 // clause doesn't make sense for our extensions. E.g. address space 2 should
4770 // be incompatible with address space 3: they may live on different devices or
4771 // anything.
4772 Qualifiers lhQual = lhptee.getQualifiers();
4773 Qualifiers rhQual = rhptee.getQualifiers();
4774
4775 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4776 lhQual.removeCVRQualifiers();
4777 rhQual.removeCVRQualifiers();
4778
4779 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4780 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4781
4782 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4783
4784 if (CompositeTy.isNull()) {
4785 S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4786 << LHSTy << RHSTy << LHS.get()->getSourceRange()
4787 << RHS.get()->getSourceRange();
4788 // In this situation, we assume void* type. No especially good
4789 // reason, but this is what gcc does, and we do have to pick
4790 // to get a consistent AST.
4791 QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4792 LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4793 RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4794 return incompatTy;
4795 }
4796
4797 // The pointer types are compatible.
4798 QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4799 ResultTy = S.Context.getPointerType(ResultTy);
4800
4801 LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4802 RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4803 return ResultTy;
4804 }
4805
4806 /// \brief Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4807 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4808 ExprResult &LHS,
4809 ExprResult &RHS,
4810 SourceLocation Loc) {
4811 QualType LHSTy = LHS.get()->getType();
4812 QualType RHSTy = RHS.get()->getType();
4813
4814 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4815 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4816 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4817 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4818 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4819 return destType;
4820 }
4821 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4822 << LHSTy << RHSTy << LHS.get()->getSourceRange()
4823 << RHS.get()->getSourceRange();
4824 return QualType();
4825 }
4826
4827 // We have 2 block pointer types.
4828 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4829 }
4830
4831 /// \brief Return the resulting type when the operands are both pointers.
4832 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)4833 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4834 ExprResult &RHS,
4835 SourceLocation Loc) {
4836 // get the pointer types
4837 QualType LHSTy = LHS.get()->getType();
4838 QualType RHSTy = RHS.get()->getType();
4839
4840 // get the "pointed to" types
4841 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4842 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4843
4844 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4845 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4846 // Figure out necessary qualifiers (C99 6.5.15p6)
4847 QualType destPointee
4848 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4849 QualType destType = S.Context.getPointerType(destPointee);
4850 // Add qualifiers if necessary.
4851 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4852 // Promote to void*.
4853 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4854 return destType;
4855 }
4856 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4857 QualType destPointee
4858 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4859 QualType destType = S.Context.getPointerType(destPointee);
4860 // Add qualifiers if necessary.
4861 RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4862 // Promote to void*.
4863 LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4864 return destType;
4865 }
4866
4867 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4868 }
4869
4870 /// \brief Return false if the first expression is not an integer and the second
4871 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)4872 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4873 Expr* PointerExpr, SourceLocation Loc,
4874 bool IsIntFirstExpr) {
4875 if (!PointerExpr->getType()->isPointerType() ||
4876 !Int.get()->getType()->isIntegerType())
4877 return false;
4878
4879 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4880 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4881
4882 S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4883 << Expr1->getType() << Expr2->getType()
4884 << Expr1->getSourceRange() << Expr2->getSourceRange();
4885 Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4886 CK_IntegralToPointer);
4887 return true;
4888 }
4889
4890 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4891 /// In that case, LHS = cond.
4892 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4893 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4894 ExprResult &RHS, ExprValueKind &VK,
4895 ExprObjectKind &OK,
4896 SourceLocation QuestionLoc) {
4897
4898 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4899 if (!LHSResult.isUsable()) return QualType();
4900 LHS = LHSResult;
4901
4902 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4903 if (!RHSResult.isUsable()) return QualType();
4904 RHS = RHSResult;
4905
4906 // C++ is sufficiently different to merit its own checker.
4907 if (getLangOpts().CPlusPlus)
4908 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4909
4910 VK = VK_RValue;
4911 OK = OK_Ordinary;
4912
4913 Cond = UsualUnaryConversions(Cond.take());
4914 if (Cond.isInvalid())
4915 return QualType();
4916 LHS = UsualUnaryConversions(LHS.take());
4917 if (LHS.isInvalid())
4918 return QualType();
4919 RHS = UsualUnaryConversions(RHS.take());
4920 if (RHS.isInvalid())
4921 return QualType();
4922
4923 QualType CondTy = Cond.get()->getType();
4924 QualType LHSTy = LHS.get()->getType();
4925 QualType RHSTy = RHS.get()->getType();
4926
4927 // first, check the condition.
4928 if (checkCondition(*this, Cond.get()))
4929 return QualType();
4930
4931 // Now check the two expressions.
4932 if (LHSTy->isVectorType() || RHSTy->isVectorType())
4933 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4934
4935 // OpenCL: If the condition is a vector, and both operands are scalar,
4936 // attempt to implicity convert them to the vector type to act like the
4937 // built in select.
4938 if (getLangOpts().OpenCL && CondTy->isVectorType())
4939 if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4940 return QualType();
4941
4942 // If both operands have arithmetic type, do the usual arithmetic conversions
4943 // to find a common type: C99 6.5.15p3,5.
4944 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4945 UsualArithmeticConversions(LHS, RHS);
4946 if (LHS.isInvalid() || RHS.isInvalid())
4947 return QualType();
4948 return LHS.get()->getType();
4949 }
4950
4951 // If both operands are the same structure or union type, the result is that
4952 // type.
4953 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
4954 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4955 if (LHSRT->getDecl() == RHSRT->getDecl())
4956 // "If both the operands have structure or union type, the result has
4957 // that type." This implies that CV qualifiers are dropped.
4958 return LHSTy.getUnqualifiedType();
4959 // FIXME: Type of conditional expression must be complete in C mode.
4960 }
4961
4962 // C99 6.5.15p5: "If both operands have void type, the result has void type."
4963 // The following || allows only one side to be void (a GCC-ism).
4964 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4965 return checkConditionalVoidType(*this, LHS, RHS);
4966 }
4967
4968 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4969 // the type of the other operand."
4970 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4971 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4972
4973 // All objective-c pointer type analysis is done here.
4974 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4975 QuestionLoc);
4976 if (LHS.isInvalid() || RHS.isInvalid())
4977 return QualType();
4978 if (!compositeType.isNull())
4979 return compositeType;
4980
4981
4982 // Handle block pointer types.
4983 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4984 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4985 QuestionLoc);
4986
4987 // Check constraints for C object pointers types (C99 6.5.15p3,6).
4988 if (LHSTy->isPointerType() && RHSTy->isPointerType())
4989 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4990 QuestionLoc);
4991
4992 // GCC compatibility: soften pointer/integer mismatch. Note that
4993 // null pointers have been filtered out by this point.
4994 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4995 /*isIntFirstExpr=*/true))
4996 return RHSTy;
4997 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4998 /*isIntFirstExpr=*/false))
4999 return LHSTy;
5000
5001 // Emit a better diagnostic if one of the expressions is a null pointer
5002 // constant and the other is not a pointer type. In this case, the user most
5003 // likely forgot to take the address of the other expression.
5004 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5005 return QualType();
5006
5007 // Otherwise, the operands are not compatible.
5008 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5009 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5010 << RHS.get()->getSourceRange();
5011 return QualType();
5012 }
5013
5014 /// FindCompositeObjCPointerType - Helper method to find composite type of
5015 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5016 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5017 SourceLocation QuestionLoc) {
5018 QualType LHSTy = LHS.get()->getType();
5019 QualType RHSTy = RHS.get()->getType();
5020
5021 // Handle things like Class and struct objc_class*. Here we case the result
5022 // to the pseudo-builtin, because that will be implicitly cast back to the
5023 // redefinition type if an attempt is made to access its fields.
5024 if (LHSTy->isObjCClassType() &&
5025 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5026 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5027 return LHSTy;
5028 }
5029 if (RHSTy->isObjCClassType() &&
5030 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5031 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5032 return RHSTy;
5033 }
5034 // And the same for struct objc_object* / id
5035 if (LHSTy->isObjCIdType() &&
5036 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5037 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5038 return LHSTy;
5039 }
5040 if (RHSTy->isObjCIdType() &&
5041 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5042 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5043 return RHSTy;
5044 }
5045 // And the same for struct objc_selector* / SEL
5046 if (Context.isObjCSelType(LHSTy) &&
5047 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5048 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5049 return LHSTy;
5050 }
5051 if (Context.isObjCSelType(RHSTy) &&
5052 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5053 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5054 return RHSTy;
5055 }
5056 // Check constraints for Objective-C object pointers types.
5057 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5058
5059 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5060 // Two identical object pointer types are always compatible.
5061 return LHSTy;
5062 }
5063 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5064 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5065 QualType compositeType = LHSTy;
5066
5067 // If both operands are interfaces and either operand can be
5068 // assigned to the other, use that type as the composite
5069 // type. This allows
5070 // xxx ? (A*) a : (B*) b
5071 // where B is a subclass of A.
5072 //
5073 // Additionally, as for assignment, if either type is 'id'
5074 // allow silent coercion. Finally, if the types are
5075 // incompatible then make sure to use 'id' as the composite
5076 // type so the result is acceptable for sending messages to.
5077
5078 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5079 // It could return the composite type.
5080 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5081 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5082 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5083 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5084 } else if ((LHSTy->isObjCQualifiedIdType() ||
5085 RHSTy->isObjCQualifiedIdType()) &&
5086 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5087 // Need to handle "id<xx>" explicitly.
5088 // GCC allows qualified id and any Objective-C type to devolve to
5089 // id. Currently localizing to here until clear this should be
5090 // part of ObjCQualifiedIdTypesAreCompatible.
5091 compositeType = Context.getObjCIdType();
5092 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5093 compositeType = Context.getObjCIdType();
5094 } else if (!(compositeType =
5095 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5096 ;
5097 else {
5098 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5099 << LHSTy << RHSTy
5100 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5101 QualType incompatTy = Context.getObjCIdType();
5102 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5103 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5104 return incompatTy;
5105 }
5106 // The object pointer types are compatible.
5107 LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5108 RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5109 return compositeType;
5110 }
5111 // Check Objective-C object pointer types and 'void *'
5112 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5113 if (getLangOpts().ObjCAutoRefCount) {
5114 // ARC forbids the implicit conversion of object pointers to 'void *',
5115 // so these types are not compatible.
5116 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5117 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5118 LHS = RHS = true;
5119 return QualType();
5120 }
5121 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5122 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5123 QualType destPointee
5124 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5125 QualType destType = Context.getPointerType(destPointee);
5126 // Add qualifiers if necessary.
5127 LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5128 // Promote to void*.
5129 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5130 return destType;
5131 }
5132 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5133 if (getLangOpts().ObjCAutoRefCount) {
5134 // ARC forbids the implicit conversion of object pointers to 'void *',
5135 // so these types are not compatible.
5136 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5137 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5138 LHS = RHS = true;
5139 return QualType();
5140 }
5141 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5142 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5143 QualType destPointee
5144 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5145 QualType destType = Context.getPointerType(destPointee);
5146 // Add qualifiers if necessary.
5147 RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5148 // Promote to void*.
5149 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5150 return destType;
5151 }
5152 return QualType();
5153 }
5154
5155 /// SuggestParentheses - Emit a note with a fixit hint that wraps
5156 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)5157 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5158 const PartialDiagnostic &Note,
5159 SourceRange ParenRange) {
5160 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5161 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5162 EndLoc.isValid()) {
5163 Self.Diag(Loc, Note)
5164 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5165 << FixItHint::CreateInsertion(EndLoc, ")");
5166 } else {
5167 // We can't display the parentheses, so just show the bare note.
5168 Self.Diag(Loc, Note) << ParenRange;
5169 }
5170 }
5171
IsArithmeticOp(BinaryOperatorKind Opc)5172 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5173 return Opc >= BO_Mul && Opc <= BO_Shr;
5174 }
5175
5176 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5177 /// expression, either using a built-in or overloaded operator,
5178 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5179 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)5180 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5181 Expr **RHSExprs) {
5182 // Don't strip parenthesis: we should not warn if E is in parenthesis.
5183 E = E->IgnoreImpCasts();
5184 E = E->IgnoreConversionOperator();
5185 E = E->IgnoreImpCasts();
5186
5187 // Built-in binary operator.
5188 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5189 if (IsArithmeticOp(OP->getOpcode())) {
5190 *Opcode = OP->getOpcode();
5191 *RHSExprs = OP->getRHS();
5192 return true;
5193 }
5194 }
5195
5196 // Overloaded operator.
5197 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5198 if (Call->getNumArgs() != 2)
5199 return false;
5200
5201 // Make sure this is really a binary operator that is safe to pass into
5202 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5203 OverloadedOperatorKind OO = Call->getOperator();
5204 if (OO < OO_Plus || OO > OO_Arrow)
5205 return false;
5206
5207 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5208 if (IsArithmeticOp(OpKind)) {
5209 *Opcode = OpKind;
5210 *RHSExprs = Call->getArg(1);
5211 return true;
5212 }
5213 }
5214
5215 return false;
5216 }
5217
IsLogicOp(BinaryOperatorKind Opc)5218 static bool IsLogicOp(BinaryOperatorKind Opc) {
5219 return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5220 }
5221
5222 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5223 /// or is a logical expression such as (x==y) which has int type, but is
5224 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)5225 static bool ExprLooksBoolean(Expr *E) {
5226 E = E->IgnoreParenImpCasts();
5227
5228 if (E->getType()->isBooleanType())
5229 return true;
5230 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5231 return IsLogicOp(OP->getOpcode());
5232 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5233 return OP->getOpcode() == UO_LNot;
5234
5235 return false;
5236 }
5237
5238 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5239 /// and binary operator are mixed in a way that suggests the programmer assumed
5240 /// the conditional operator has higher precedence, for example:
5241 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)5242 static void DiagnoseConditionalPrecedence(Sema &Self,
5243 SourceLocation OpLoc,
5244 Expr *Condition,
5245 Expr *LHSExpr,
5246 Expr *RHSExpr) {
5247 BinaryOperatorKind CondOpcode;
5248 Expr *CondRHS;
5249
5250 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5251 return;
5252 if (!ExprLooksBoolean(CondRHS))
5253 return;
5254
5255 // The condition is an arithmetic binary expression, with a right-
5256 // hand side that looks boolean, so warn.
5257
5258 Self.Diag(OpLoc, diag::warn_precedence_conditional)
5259 << Condition->getSourceRange()
5260 << BinaryOperator::getOpcodeStr(CondOpcode);
5261
5262 SuggestParentheses(Self, OpLoc,
5263 Self.PDiag(diag::note_precedence_conditional_silence)
5264 << BinaryOperator::getOpcodeStr(CondOpcode),
5265 SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5266
5267 SuggestParentheses(Self, OpLoc,
5268 Self.PDiag(diag::note_precedence_conditional_first),
5269 SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5270 }
5271
5272 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5273 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)5274 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5275 SourceLocation ColonLoc,
5276 Expr *CondExpr, Expr *LHSExpr,
5277 Expr *RHSExpr) {
5278 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5279 // was the condition.
5280 OpaqueValueExpr *opaqueValue = 0;
5281 Expr *commonExpr = 0;
5282 if (LHSExpr == 0) {
5283 commonExpr = CondExpr;
5284
5285 // We usually want to apply unary conversions *before* saving, except
5286 // in the special case of a C++ l-value conditional.
5287 if (!(getLangOpts().CPlusPlus
5288 && !commonExpr->isTypeDependent()
5289 && commonExpr->getValueKind() == RHSExpr->getValueKind()
5290 && commonExpr->isGLValue()
5291 && commonExpr->isOrdinaryOrBitFieldObject()
5292 && RHSExpr->isOrdinaryOrBitFieldObject()
5293 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5294 ExprResult commonRes = UsualUnaryConversions(commonExpr);
5295 if (commonRes.isInvalid())
5296 return ExprError();
5297 commonExpr = commonRes.take();
5298 }
5299
5300 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5301 commonExpr->getType(),
5302 commonExpr->getValueKind(),
5303 commonExpr->getObjectKind(),
5304 commonExpr);
5305 LHSExpr = CondExpr = opaqueValue;
5306 }
5307
5308 ExprValueKind VK = VK_RValue;
5309 ExprObjectKind OK = OK_Ordinary;
5310 ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5311 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5312 VK, OK, QuestionLoc);
5313 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5314 RHS.isInvalid())
5315 return ExprError();
5316
5317 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5318 RHS.get());
5319
5320 if (!commonExpr)
5321 return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5322 LHS.take(), ColonLoc,
5323 RHS.take(), result, VK, OK));
5324
5325 return Owned(new (Context)
5326 BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5327 RHS.take(), QuestionLoc, ColonLoc, result, VK,
5328 OK));
5329 }
5330
5331 // checkPointerTypesForAssignment - This is a very tricky routine (despite
5332 // being closely modeled after the C99 spec:-). The odd characteristic of this
5333 // routine is it effectively iqnores the qualifiers on the top level pointee.
5334 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5335 // FIXME: add a couple examples in this comment.
5336 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5337 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5338 assert(LHSType.isCanonical() && "LHS not canonicalized!");
5339 assert(RHSType.isCanonical() && "RHS not canonicalized!");
5340
5341 // get the "pointed to" type (ignoring qualifiers at the top level)
5342 const Type *lhptee, *rhptee;
5343 Qualifiers lhq, rhq;
5344 llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5345 llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5346
5347 Sema::AssignConvertType ConvTy = Sema::Compatible;
5348
5349 // C99 6.5.16.1p1: This following citation is common to constraints
5350 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5351 // qualifiers of the type *pointed to* by the right;
5352 Qualifiers lq;
5353
5354 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5355 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5356 lhq.compatiblyIncludesObjCLifetime(rhq)) {
5357 // Ignore lifetime for further calculation.
5358 lhq.removeObjCLifetime();
5359 rhq.removeObjCLifetime();
5360 }
5361
5362 if (!lhq.compatiblyIncludes(rhq)) {
5363 // Treat address-space mismatches as fatal. TODO: address subspaces
5364 if (lhq.getAddressSpace() != rhq.getAddressSpace())
5365 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5366
5367 // It's okay to add or remove GC or lifetime qualifiers when converting to
5368 // and from void*.
5369 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5370 .compatiblyIncludes(
5371 rhq.withoutObjCGCAttr().withoutObjCLifetime())
5372 && (lhptee->isVoidType() || rhptee->isVoidType()))
5373 ; // keep old
5374
5375 // Treat lifetime mismatches as fatal.
5376 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5377 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5378
5379 // For GCC compatibility, other qualifier mismatches are treated
5380 // as still compatible in C.
5381 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5382 }
5383
5384 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5385 // incomplete type and the other is a pointer to a qualified or unqualified
5386 // version of void...
5387 if (lhptee->isVoidType()) {
5388 if (rhptee->isIncompleteOrObjectType())
5389 return ConvTy;
5390
5391 // As an extension, we allow cast to/from void* to function pointer.
5392 assert(rhptee->isFunctionType());
5393 return Sema::FunctionVoidPointer;
5394 }
5395
5396 if (rhptee->isVoidType()) {
5397 if (lhptee->isIncompleteOrObjectType())
5398 return ConvTy;
5399
5400 // As an extension, we allow cast to/from void* to function pointer.
5401 assert(lhptee->isFunctionType());
5402 return Sema::FunctionVoidPointer;
5403 }
5404
5405 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5406 // unqualified versions of compatible types, ...
5407 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5408 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5409 // Check if the pointee types are compatible ignoring the sign.
5410 // We explicitly check for char so that we catch "char" vs
5411 // "unsigned char" on systems where "char" is unsigned.
5412 if (lhptee->isCharType())
5413 ltrans = S.Context.UnsignedCharTy;
5414 else if (lhptee->hasSignedIntegerRepresentation())
5415 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5416
5417 if (rhptee->isCharType())
5418 rtrans = S.Context.UnsignedCharTy;
5419 else if (rhptee->hasSignedIntegerRepresentation())
5420 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5421
5422 if (ltrans == rtrans) {
5423 // Types are compatible ignoring the sign. Qualifier incompatibility
5424 // takes priority over sign incompatibility because the sign
5425 // warning can be disabled.
5426 if (ConvTy != Sema::Compatible)
5427 return ConvTy;
5428
5429 return Sema::IncompatiblePointerSign;
5430 }
5431
5432 // If we are a multi-level pointer, it's possible that our issue is simply
5433 // one of qualification - e.g. char ** -> const char ** is not allowed. If
5434 // the eventual target type is the same and the pointers have the same
5435 // level of indirection, this must be the issue.
5436 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5437 do {
5438 lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5439 rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5440 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5441
5442 if (lhptee == rhptee)
5443 return Sema::IncompatibleNestedPointerQualifiers;
5444 }
5445
5446 // General pointer incompatibility takes priority over qualifiers.
5447 return Sema::IncompatiblePointer;
5448 }
5449 if (!S.getLangOpts().CPlusPlus &&
5450 S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5451 return Sema::IncompatiblePointer;
5452 return ConvTy;
5453 }
5454
5455 /// checkBlockPointerTypesForAssignment - This routine determines whether two
5456 /// block pointer types are compatible or whether a block and normal pointer
5457 /// are compatible. It is more restrict than comparing two function pointer
5458 // types.
5459 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5460 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5461 QualType RHSType) {
5462 assert(LHSType.isCanonical() && "LHS not canonicalized!");
5463 assert(RHSType.isCanonical() && "RHS not canonicalized!");
5464
5465 QualType lhptee, rhptee;
5466
5467 // get the "pointed to" type (ignoring qualifiers at the top level)
5468 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5469 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5470
5471 // In C++, the types have to match exactly.
5472 if (S.getLangOpts().CPlusPlus)
5473 return Sema::IncompatibleBlockPointer;
5474
5475 Sema::AssignConvertType ConvTy = Sema::Compatible;
5476
5477 // For blocks we enforce that qualifiers are identical.
5478 if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5479 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5480
5481 if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5482 return Sema::IncompatibleBlockPointer;
5483
5484 return ConvTy;
5485 }
5486
5487 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5488 /// for assignment compatibility.
5489 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)5490 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5491 QualType RHSType) {
5492 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5493 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5494
5495 if (LHSType->isObjCBuiltinType()) {
5496 // Class is not compatible with ObjC object pointers.
5497 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5498 !RHSType->isObjCQualifiedClassType())
5499 return Sema::IncompatiblePointer;
5500 return Sema::Compatible;
5501 }
5502 if (RHSType->isObjCBuiltinType()) {
5503 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5504 !LHSType->isObjCQualifiedClassType())
5505 return Sema::IncompatiblePointer;
5506 return Sema::Compatible;
5507 }
5508 QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5509 QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5510
5511 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5512 // make an exception for id<P>
5513 !LHSType->isObjCQualifiedIdType())
5514 return Sema::CompatiblePointerDiscardsQualifiers;
5515
5516 if (S.Context.typesAreCompatible(LHSType, RHSType))
5517 return Sema::Compatible;
5518 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5519 return Sema::IncompatibleObjCQualifiedId;
5520 return Sema::IncompatiblePointer;
5521 }
5522
5523 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)5524 Sema::CheckAssignmentConstraints(SourceLocation Loc,
5525 QualType LHSType, QualType RHSType) {
5526 // Fake up an opaque expression. We don't actually care about what
5527 // cast operations are required, so if CheckAssignmentConstraints
5528 // adds casts to this they'll be wasted, but fortunately that doesn't
5529 // usually happen on valid code.
5530 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5531 ExprResult RHSPtr = &RHSExpr;
5532 CastKind K = CK_Invalid;
5533
5534 return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5535 }
5536
5537 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5538 /// has code to accommodate several GCC extensions when type checking
5539 /// pointers. Here are some objectionable examples that GCC considers warnings:
5540 ///
5541 /// int a, *pint;
5542 /// short *pshort;
5543 /// struct foo *pfoo;
5544 ///
5545 /// pint = pshort; // warning: assignment from incompatible pointer type
5546 /// a = pint; // warning: assignment makes integer from pointer without a cast
5547 /// pint = a; // warning: assignment makes pointer from integer without a cast
5548 /// pint = pfoo; // warning: assignment from incompatible pointer type
5549 ///
5550 /// As a result, the code for dealing with pointers is more complex than the
5551 /// C99 spec dictates.
5552 ///
5553 /// Sets 'Kind' for any result kind except Incompatible.
5554 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind)5555 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5556 CastKind &Kind) {
5557 QualType RHSType = RHS.get()->getType();
5558 QualType OrigLHSType = LHSType;
5559
5560 // Get canonical types. We're not formatting these types, just comparing
5561 // them.
5562 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5563 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5564
5565
5566 // Common case: no conversion required.
5567 if (LHSType == RHSType) {
5568 Kind = CK_NoOp;
5569 return Compatible;
5570 }
5571
5572 // If we have an atomic type, try a non-atomic assignment, then just add an
5573 // atomic qualification step.
5574 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5575 Sema::AssignConvertType result =
5576 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5577 if (result != Compatible)
5578 return result;
5579 if (Kind != CK_NoOp)
5580 RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5581 Kind = CK_NonAtomicToAtomic;
5582 return Compatible;
5583 }
5584
5585 // If the left-hand side is a reference type, then we are in a
5586 // (rare!) case where we've allowed the use of references in C,
5587 // e.g., as a parameter type in a built-in function. In this case,
5588 // just make sure that the type referenced is compatible with the
5589 // right-hand side type. The caller is responsible for adjusting
5590 // LHSType so that the resulting expression does not have reference
5591 // type.
5592 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5593 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5594 Kind = CK_LValueBitCast;
5595 return Compatible;
5596 }
5597 return Incompatible;
5598 }
5599
5600 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5601 // to the same ExtVector type.
5602 if (LHSType->isExtVectorType()) {
5603 if (RHSType->isExtVectorType())
5604 return Incompatible;
5605 if (RHSType->isArithmeticType()) {
5606 // CK_VectorSplat does T -> vector T, so first cast to the
5607 // element type.
5608 QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5609 if (elType != RHSType) {
5610 Kind = PrepareScalarCast(RHS, elType);
5611 RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5612 }
5613 Kind = CK_VectorSplat;
5614 return Compatible;
5615 }
5616 }
5617
5618 // Conversions to or from vector type.
5619 if (LHSType->isVectorType() || RHSType->isVectorType()) {
5620 if (LHSType->isVectorType() && RHSType->isVectorType()) {
5621 // Allow assignments of an AltiVec vector type to an equivalent GCC
5622 // vector type and vice versa
5623 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5624 Kind = CK_BitCast;
5625 return Compatible;
5626 }
5627
5628 // If we are allowing lax vector conversions, and LHS and RHS are both
5629 // vectors, the total size only needs to be the same. This is a bitcast;
5630 // no bits are changed but the result type is different.
5631 if (getLangOpts().LaxVectorConversions &&
5632 (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5633 Kind = CK_BitCast;
5634 return IncompatibleVectors;
5635 }
5636 }
5637 return Incompatible;
5638 }
5639
5640 // Arithmetic conversions.
5641 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5642 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5643 Kind = PrepareScalarCast(RHS, LHSType);
5644 return Compatible;
5645 }
5646
5647 // Conversions to normal pointers.
5648 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5649 // U* -> T*
5650 if (isa<PointerType>(RHSType)) {
5651 Kind = CK_BitCast;
5652 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5653 }
5654
5655 // int -> T*
5656 if (RHSType->isIntegerType()) {
5657 Kind = CK_IntegralToPointer; // FIXME: null?
5658 return IntToPointer;
5659 }
5660
5661 // C pointers are not compatible with ObjC object pointers,
5662 // with two exceptions:
5663 if (isa<ObjCObjectPointerType>(RHSType)) {
5664 // - conversions to void*
5665 if (LHSPointer->getPointeeType()->isVoidType()) {
5666 Kind = CK_BitCast;
5667 return Compatible;
5668 }
5669
5670 // - conversions from 'Class' to the redefinition type
5671 if (RHSType->isObjCClassType() &&
5672 Context.hasSameType(LHSType,
5673 Context.getObjCClassRedefinitionType())) {
5674 Kind = CK_BitCast;
5675 return Compatible;
5676 }
5677
5678 Kind = CK_BitCast;
5679 return IncompatiblePointer;
5680 }
5681
5682 // U^ -> void*
5683 if (RHSType->getAs<BlockPointerType>()) {
5684 if (LHSPointer->getPointeeType()->isVoidType()) {
5685 Kind = CK_BitCast;
5686 return Compatible;
5687 }
5688 }
5689
5690 return Incompatible;
5691 }
5692
5693 // Conversions to block pointers.
5694 if (isa<BlockPointerType>(LHSType)) {
5695 // U^ -> T^
5696 if (RHSType->isBlockPointerType()) {
5697 Kind = CK_BitCast;
5698 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5699 }
5700
5701 // int or null -> T^
5702 if (RHSType->isIntegerType()) {
5703 Kind = CK_IntegralToPointer; // FIXME: null
5704 return IntToBlockPointer;
5705 }
5706
5707 // id -> T^
5708 if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5709 Kind = CK_AnyPointerToBlockPointerCast;
5710 return Compatible;
5711 }
5712
5713 // void* -> T^
5714 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5715 if (RHSPT->getPointeeType()->isVoidType()) {
5716 Kind = CK_AnyPointerToBlockPointerCast;
5717 return Compatible;
5718 }
5719
5720 return Incompatible;
5721 }
5722
5723 // Conversions to Objective-C pointers.
5724 if (isa<ObjCObjectPointerType>(LHSType)) {
5725 // A* -> B*
5726 if (RHSType->isObjCObjectPointerType()) {
5727 Kind = CK_BitCast;
5728 Sema::AssignConvertType result =
5729 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5730 if (getLangOpts().ObjCAutoRefCount &&
5731 result == Compatible &&
5732 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5733 result = IncompatibleObjCWeakRef;
5734 return result;
5735 }
5736
5737 // int or null -> A*
5738 if (RHSType->isIntegerType()) {
5739 Kind = CK_IntegralToPointer; // FIXME: null
5740 return IntToPointer;
5741 }
5742
5743 // In general, C pointers are not compatible with ObjC object pointers,
5744 // with two exceptions:
5745 if (isa<PointerType>(RHSType)) {
5746 Kind = CK_CPointerToObjCPointerCast;
5747
5748 // - conversions from 'void*'
5749 if (RHSType->isVoidPointerType()) {
5750 return Compatible;
5751 }
5752
5753 // - conversions to 'Class' from its redefinition type
5754 if (LHSType->isObjCClassType() &&
5755 Context.hasSameType(RHSType,
5756 Context.getObjCClassRedefinitionType())) {
5757 return Compatible;
5758 }
5759
5760 return IncompatiblePointer;
5761 }
5762
5763 // T^ -> A*
5764 if (RHSType->isBlockPointerType()) {
5765 maybeExtendBlockObject(*this, RHS);
5766 Kind = CK_BlockPointerToObjCPointerCast;
5767 return Compatible;
5768 }
5769
5770 return Incompatible;
5771 }
5772
5773 // Conversions from pointers that are not covered by the above.
5774 if (isa<PointerType>(RHSType)) {
5775 // T* -> _Bool
5776 if (LHSType == Context.BoolTy) {
5777 Kind = CK_PointerToBoolean;
5778 return Compatible;
5779 }
5780
5781 // T* -> int
5782 if (LHSType->isIntegerType()) {
5783 Kind = CK_PointerToIntegral;
5784 return PointerToInt;
5785 }
5786
5787 return Incompatible;
5788 }
5789
5790 // Conversions from Objective-C pointers that are not covered by the above.
5791 if (isa<ObjCObjectPointerType>(RHSType)) {
5792 // T* -> _Bool
5793 if (LHSType == Context.BoolTy) {
5794 Kind = CK_PointerToBoolean;
5795 return Compatible;
5796 }
5797
5798 // T* -> int
5799 if (LHSType->isIntegerType()) {
5800 Kind = CK_PointerToIntegral;
5801 return PointerToInt;
5802 }
5803
5804 return Incompatible;
5805 }
5806
5807 // struct A -> struct B
5808 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5809 if (Context.typesAreCompatible(LHSType, RHSType)) {
5810 Kind = CK_NoOp;
5811 return Compatible;
5812 }
5813 }
5814
5815 return Incompatible;
5816 }
5817
5818 /// \brief Constructs a transparent union from an expression that is
5819 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)5820 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5821 ExprResult &EResult, QualType UnionType,
5822 FieldDecl *Field) {
5823 // Build an initializer list that designates the appropriate member
5824 // of the transparent union.
5825 Expr *E = EResult.take();
5826 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5827 E, SourceLocation());
5828 Initializer->setType(UnionType);
5829 Initializer->setInitializedFieldInUnion(Field);
5830
5831 // Build a compound literal constructing a value of the transparent
5832 // union type from this initializer list.
5833 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5834 EResult = S.Owned(
5835 new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5836 VK_RValue, Initializer, false));
5837 }
5838
5839 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)5840 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5841 ExprResult &RHS) {
5842 QualType RHSType = RHS.get()->getType();
5843
5844 // If the ArgType is a Union type, we want to handle a potential
5845 // transparent_union GCC extension.
5846 const RecordType *UT = ArgType->getAsUnionType();
5847 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5848 return Incompatible;
5849
5850 // The field to initialize within the transparent union.
5851 RecordDecl *UD = UT->getDecl();
5852 FieldDecl *InitField = 0;
5853 // It's compatible if the expression matches any of the fields.
5854 for (RecordDecl::field_iterator it = UD->field_begin(),
5855 itend = UD->field_end();
5856 it != itend; ++it) {
5857 if (it->getType()->isPointerType()) {
5858 // If the transparent union contains a pointer type, we allow:
5859 // 1) void pointer
5860 // 2) null pointer constant
5861 if (RHSType->isPointerType())
5862 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5863 RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5864 InitField = *it;
5865 break;
5866 }
5867
5868 if (RHS.get()->isNullPointerConstant(Context,
5869 Expr::NPC_ValueDependentIsNull)) {
5870 RHS = ImpCastExprToType(RHS.take(), it->getType(),
5871 CK_NullToPointer);
5872 InitField = *it;
5873 break;
5874 }
5875 }
5876
5877 CastKind Kind = CK_Invalid;
5878 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5879 == Compatible) {
5880 RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5881 InitField = *it;
5882 break;
5883 }
5884 }
5885
5886 if (!InitField)
5887 return Incompatible;
5888
5889 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5890 return Compatible;
5891 }
5892
5893 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & RHS,bool Diagnose)5894 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5895 bool Diagnose) {
5896 if (getLangOpts().CPlusPlus) {
5897 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5898 // C++ 5.17p3: If the left operand is not of class type, the
5899 // expression is implicitly converted (C++ 4) to the
5900 // cv-unqualified type of the left operand.
5901 ExprResult Res;
5902 if (Diagnose) {
5903 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5904 AA_Assigning);
5905 } else {
5906 ImplicitConversionSequence ICS =
5907 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5908 /*SuppressUserConversions=*/false,
5909 /*AllowExplicit=*/false,
5910 /*InOverloadResolution=*/false,
5911 /*CStyle=*/false,
5912 /*AllowObjCWritebackConversion=*/false);
5913 if (ICS.isFailure())
5914 return Incompatible;
5915 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5916 ICS, AA_Assigning);
5917 }
5918 if (Res.isInvalid())
5919 return Incompatible;
5920 Sema::AssignConvertType result = Compatible;
5921 if (getLangOpts().ObjCAutoRefCount &&
5922 !CheckObjCARCUnavailableWeakConversion(LHSType,
5923 RHS.get()->getType()))
5924 result = IncompatibleObjCWeakRef;
5925 RHS = Res;
5926 return result;
5927 }
5928
5929 // FIXME: Currently, we fall through and treat C++ classes like C
5930 // structures.
5931 // FIXME: We also fall through for atomics; not sure what should
5932 // happen there, though.
5933 }
5934
5935 // C99 6.5.16.1p1: the left operand is a pointer and the right is
5936 // a null pointer constant.
5937 if ((LHSType->isPointerType() ||
5938 LHSType->isObjCObjectPointerType() ||
5939 LHSType->isBlockPointerType())
5940 && RHS.get()->isNullPointerConstant(Context,
5941 Expr::NPC_ValueDependentIsNull)) {
5942 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5943 return Compatible;
5944 }
5945
5946 // This check seems unnatural, however it is necessary to ensure the proper
5947 // conversion of functions/arrays. If the conversion were done for all
5948 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5949 // expressions that suppress this implicit conversion (&, sizeof).
5950 //
5951 // Suppress this for references: C++ 8.5.3p5.
5952 if (!LHSType->isReferenceType()) {
5953 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5954 if (RHS.isInvalid())
5955 return Incompatible;
5956 }
5957
5958 CastKind Kind = CK_Invalid;
5959 Sema::AssignConvertType result =
5960 CheckAssignmentConstraints(LHSType, RHS, Kind);
5961
5962 // C99 6.5.16.1p2: The value of the right operand is converted to the
5963 // type of the assignment expression.
5964 // CheckAssignmentConstraints allows the left-hand side to be a reference,
5965 // so that we can use references in built-in functions even in C.
5966 // The getNonReferenceType() call makes sure that the resulting expression
5967 // does not have reference type.
5968 if (result != Incompatible && RHS.get()->getType() != LHSType)
5969 RHS = ImpCastExprToType(RHS.take(),
5970 LHSType.getNonLValueExprType(Context), Kind);
5971 return result;
5972 }
5973
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)5974 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5975 ExprResult &RHS) {
5976 Diag(Loc, diag::err_typecheck_invalid_operands)
5977 << LHS.get()->getType() << RHS.get()->getType()
5978 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5979 return QualType();
5980 }
5981
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)5982 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5983 SourceLocation Loc, bool IsCompAssign) {
5984 if (!IsCompAssign) {
5985 LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5986 if (LHS.isInvalid())
5987 return QualType();
5988 }
5989 RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5990 if (RHS.isInvalid())
5991 return QualType();
5992
5993 // For conversion purposes, we ignore any qualifiers.
5994 // For example, "const float" and "float" are equivalent.
5995 QualType LHSType =
5996 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5997 QualType RHSType =
5998 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5999
6000 // If the vector types are identical, return.
6001 if (LHSType == RHSType)
6002 return LHSType;
6003
6004 // Handle the case of equivalent AltiVec and GCC vector types
6005 if (LHSType->isVectorType() && RHSType->isVectorType() &&
6006 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6007 if (LHSType->isExtVectorType()) {
6008 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6009 return LHSType;
6010 }
6011
6012 if (!IsCompAssign)
6013 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6014 return RHSType;
6015 }
6016
6017 if (getLangOpts().LaxVectorConversions &&
6018 Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6019 // If we are allowing lax vector conversions, and LHS and RHS are both
6020 // vectors, the total size only needs to be the same. This is a
6021 // bitcast; no bits are changed but the result type is different.
6022 // FIXME: Should we really be allowing this?
6023 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6024 return LHSType;
6025 }
6026
6027 // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6028 // swap back (so that we don't reverse the inputs to a subtract, for instance.
6029 bool swapped = false;
6030 if (RHSType->isExtVectorType() && !IsCompAssign) {
6031 swapped = true;
6032 std::swap(RHS, LHS);
6033 std::swap(RHSType, LHSType);
6034 }
6035
6036 // Handle the case of an ext vector and scalar.
6037 if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6038 QualType EltTy = LV->getElementType();
6039 if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6040 int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6041 if (order > 0)
6042 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6043 if (order >= 0) {
6044 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6045 if (swapped) std::swap(RHS, LHS);
6046 return LHSType;
6047 }
6048 }
6049 if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6050 RHSType->isRealFloatingType()) {
6051 int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6052 if (order > 0)
6053 RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6054 if (order >= 0) {
6055 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6056 if (swapped) std::swap(RHS, LHS);
6057 return LHSType;
6058 }
6059 }
6060 }
6061
6062 // Vectors of different size or scalar and non-ext-vector are errors.
6063 if (swapped) std::swap(RHS, LHS);
6064 Diag(Loc, diag::err_typecheck_vector_not_convertable)
6065 << LHS.get()->getType() << RHS.get()->getType()
6066 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6067 return QualType();
6068 }
6069
6070 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
6071 // expression. These are mainly cases where the null pointer is used as an
6072 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)6073 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6074 SourceLocation Loc, bool IsCompare) {
6075 // The canonical way to check for a GNU null is with isNullPointerConstant,
6076 // but we use a bit of a hack here for speed; this is a relatively
6077 // hot path, and isNullPointerConstant is slow.
6078 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6079 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6080
6081 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6082
6083 // Avoid analyzing cases where the result will either be invalid (and
6084 // diagnosed as such) or entirely valid and not something to warn about.
6085 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6086 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6087 return;
6088
6089 // Comparison operations would not make sense with a null pointer no matter
6090 // what the other expression is.
6091 if (!IsCompare) {
6092 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6093 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6094 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6095 return;
6096 }
6097
6098 // The rest of the operations only make sense with a null pointer
6099 // if the other expression is a pointer.
6100 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6101 NonNullType->canDecayToPointerType())
6102 return;
6103
6104 S.Diag(Loc, diag::warn_null_in_comparison_operation)
6105 << LHSNull /* LHS is NULL */ << NonNullType
6106 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6107 }
6108
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)6109 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6110 SourceLocation Loc,
6111 bool IsCompAssign, bool IsDiv) {
6112 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6113
6114 if (LHS.get()->getType()->isVectorType() ||
6115 RHS.get()->getType()->isVectorType())
6116 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6117
6118 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6119 if (LHS.isInvalid() || RHS.isInvalid())
6120 return QualType();
6121
6122
6123 if (compType.isNull() || !compType->isArithmeticType())
6124 return InvalidOperands(Loc, LHS, RHS);
6125
6126 // Check for division by zero.
6127 if (IsDiv &&
6128 RHS.get()->isNullPointerConstant(Context,
6129 Expr::NPC_ValueDependentIsNotNull))
6130 DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6131 << RHS.get()->getSourceRange());
6132
6133 return compType;
6134 }
6135
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)6136 QualType Sema::CheckRemainderOperands(
6137 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6138 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6139
6140 if (LHS.get()->getType()->isVectorType() ||
6141 RHS.get()->getType()->isVectorType()) {
6142 if (LHS.get()->getType()->hasIntegerRepresentation() &&
6143 RHS.get()->getType()->hasIntegerRepresentation())
6144 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6145 return InvalidOperands(Loc, LHS, RHS);
6146 }
6147
6148 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6149 if (LHS.isInvalid() || RHS.isInvalid())
6150 return QualType();
6151
6152 if (compType.isNull() || !compType->isIntegerType())
6153 return InvalidOperands(Loc, LHS, RHS);
6154
6155 // Check for remainder by zero.
6156 if (RHS.get()->isNullPointerConstant(Context,
6157 Expr::NPC_ValueDependentIsNotNull))
6158 DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6159 << RHS.get()->getSourceRange());
6160
6161 return compType;
6162 }
6163
6164 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6165 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6166 Expr *LHSExpr, Expr *RHSExpr) {
6167 S.Diag(Loc, S.getLangOpts().CPlusPlus
6168 ? diag::err_typecheck_pointer_arith_void_type
6169 : diag::ext_gnu_void_ptr)
6170 << 1 /* two pointers */ << LHSExpr->getSourceRange()
6171 << RHSExpr->getSourceRange();
6172 }
6173
6174 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6175 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6176 Expr *Pointer) {
6177 S.Diag(Loc, S.getLangOpts().CPlusPlus
6178 ? diag::err_typecheck_pointer_arith_void_type
6179 : diag::ext_gnu_void_ptr)
6180 << 0 /* one pointer */ << Pointer->getSourceRange();
6181 }
6182
6183 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)6184 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6185 Expr *LHS, Expr *RHS) {
6186 assert(LHS->getType()->isAnyPointerType());
6187 assert(RHS->getType()->isAnyPointerType());
6188 S.Diag(Loc, S.getLangOpts().CPlusPlus
6189 ? diag::err_typecheck_pointer_arith_function_type
6190 : diag::ext_gnu_ptr_func_arith)
6191 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6192 // We only show the second type if it differs from the first.
6193 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6194 RHS->getType())
6195 << RHS->getType()->getPointeeType()
6196 << LHS->getSourceRange() << RHS->getSourceRange();
6197 }
6198
6199 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)6200 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6201 Expr *Pointer) {
6202 assert(Pointer->getType()->isAnyPointerType());
6203 S.Diag(Loc, S.getLangOpts().CPlusPlus
6204 ? diag::err_typecheck_pointer_arith_function_type
6205 : diag::ext_gnu_ptr_func_arith)
6206 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6207 << 0 /* one pointer, so only one type */
6208 << Pointer->getSourceRange();
6209 }
6210
6211 /// \brief Emit error if Operand is incomplete pointer type
6212 ///
6213 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)6214 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6215 Expr *Operand) {
6216 assert(Operand->getType()->isAnyPointerType() &&
6217 !Operand->getType()->isDependentType());
6218 QualType PointeeTy = Operand->getType()->getPointeeType();
6219 return S.RequireCompleteType(Loc, PointeeTy,
6220 diag::err_typecheck_arithmetic_incomplete_type,
6221 PointeeTy, Operand->getSourceRange());
6222 }
6223
6224 /// \brief Check the validity of an arithmetic pointer operand.
6225 ///
6226 /// If the operand has pointer type, this code will check for pointer types
6227 /// which are invalid in arithmetic operations. These will be diagnosed
6228 /// appropriately, including whether or not the use is supported as an
6229 /// extension.
6230 ///
6231 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)6232 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6233 Expr *Operand) {
6234 if (!Operand->getType()->isAnyPointerType()) return true;
6235
6236 QualType PointeeTy = Operand->getType()->getPointeeType();
6237 if (PointeeTy->isVoidType()) {
6238 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6239 return !S.getLangOpts().CPlusPlus;
6240 }
6241 if (PointeeTy->isFunctionType()) {
6242 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6243 return !S.getLangOpts().CPlusPlus;
6244 }
6245
6246 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6247
6248 return true;
6249 }
6250
6251 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6252 /// operands.
6253 ///
6254 /// This routine will diagnose any invalid arithmetic on pointer operands much
6255 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
6256 /// for emitting a single diagnostic even for operations where both LHS and RHS
6257 /// are (potentially problematic) pointers.
6258 ///
6259 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6260 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6261 Expr *LHSExpr, Expr *RHSExpr) {
6262 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6263 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6264 if (!isLHSPointer && !isRHSPointer) return true;
6265
6266 QualType LHSPointeeTy, RHSPointeeTy;
6267 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6268 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6269
6270 // Check for arithmetic on pointers to incomplete types.
6271 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6272 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6273 if (isLHSVoidPtr || isRHSVoidPtr) {
6274 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6275 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6276 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6277
6278 return !S.getLangOpts().CPlusPlus;
6279 }
6280
6281 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6282 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6283 if (isLHSFuncPtr || isRHSFuncPtr) {
6284 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6285 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6286 RHSExpr);
6287 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6288
6289 return !S.getLangOpts().CPlusPlus;
6290 }
6291
6292 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6293 return false;
6294 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6295 return false;
6296
6297 return true;
6298 }
6299
6300 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6301 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)6302 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6303 Expr *LHSExpr, Expr *RHSExpr) {
6304 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6305 Expr* IndexExpr = RHSExpr;
6306 if (!StrExpr) {
6307 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6308 IndexExpr = LHSExpr;
6309 }
6310
6311 bool IsStringPlusInt = StrExpr &&
6312 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6313 if (!IsStringPlusInt)
6314 return;
6315
6316 llvm::APSInt index;
6317 if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6318 unsigned StrLenWithNull = StrExpr->getLength() + 1;
6319 if (index.isNonNegative() &&
6320 index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6321 index.isUnsigned()))
6322 return;
6323 }
6324
6325 SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6326 Self.Diag(OpLoc, diag::warn_string_plus_int)
6327 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6328
6329 // Only print a fixit for "str" + int, not for int + "str".
6330 if (IndexExpr == RHSExpr) {
6331 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6332 Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6333 << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6334 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6335 << FixItHint::CreateInsertion(EndLoc, "]");
6336 } else
6337 Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6338 }
6339
6340 /// \brief Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)6341 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6342 Expr *LHSExpr, Expr *RHSExpr) {
6343 assert(LHSExpr->getType()->isAnyPointerType());
6344 assert(RHSExpr->getType()->isAnyPointerType());
6345 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6346 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6347 << RHSExpr->getSourceRange();
6348 }
6349
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType * CompLHSTy)6350 QualType Sema::CheckAdditionOperands( // C99 6.5.6
6351 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6352 QualType* CompLHSTy) {
6353 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6354
6355 if (LHS.get()->getType()->isVectorType() ||
6356 RHS.get()->getType()->isVectorType()) {
6357 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6358 if (CompLHSTy) *CompLHSTy = compType;
6359 return compType;
6360 }
6361
6362 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6363 if (LHS.isInvalid() || RHS.isInvalid())
6364 return QualType();
6365
6366 // Diagnose "string literal" '+' int.
6367 if (Opc == BO_Add)
6368 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6369
6370 // handle the common case first (both operands are arithmetic).
6371 if (!compType.isNull() && compType->isArithmeticType()) {
6372 if (CompLHSTy) *CompLHSTy = compType;
6373 return compType;
6374 }
6375
6376 // Type-checking. Ultimately the pointer's going to be in PExp;
6377 // note that we bias towards the LHS being the pointer.
6378 Expr *PExp = LHS.get(), *IExp = RHS.get();
6379
6380 bool isObjCPointer;
6381 if (PExp->getType()->isPointerType()) {
6382 isObjCPointer = false;
6383 } else if (PExp->getType()->isObjCObjectPointerType()) {
6384 isObjCPointer = true;
6385 } else {
6386 std::swap(PExp, IExp);
6387 if (PExp->getType()->isPointerType()) {
6388 isObjCPointer = false;
6389 } else if (PExp->getType()->isObjCObjectPointerType()) {
6390 isObjCPointer = true;
6391 } else {
6392 return InvalidOperands(Loc, LHS, RHS);
6393 }
6394 }
6395 assert(PExp->getType()->isAnyPointerType());
6396
6397 if (!IExp->getType()->isIntegerType())
6398 return InvalidOperands(Loc, LHS, RHS);
6399
6400 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6401 return QualType();
6402
6403 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6404 return QualType();
6405
6406 // Check array bounds for pointer arithemtic
6407 CheckArrayAccess(PExp, IExp);
6408
6409 if (CompLHSTy) {
6410 QualType LHSTy = Context.isPromotableBitField(LHS.get());
6411 if (LHSTy.isNull()) {
6412 LHSTy = LHS.get()->getType();
6413 if (LHSTy->isPromotableIntegerType())
6414 LHSTy = Context.getPromotedIntegerType(LHSTy);
6415 }
6416 *CompLHSTy = LHSTy;
6417 }
6418
6419 return PExp->getType();
6420 }
6421
6422 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)6423 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6424 SourceLocation Loc,
6425 QualType* CompLHSTy) {
6426 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6427
6428 if (LHS.get()->getType()->isVectorType() ||
6429 RHS.get()->getType()->isVectorType()) {
6430 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6431 if (CompLHSTy) *CompLHSTy = compType;
6432 return compType;
6433 }
6434
6435 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6436 if (LHS.isInvalid() || RHS.isInvalid())
6437 return QualType();
6438
6439 // Enforce type constraints: C99 6.5.6p3.
6440
6441 // Handle the common case first (both operands are arithmetic).
6442 if (!compType.isNull() && compType->isArithmeticType()) {
6443 if (CompLHSTy) *CompLHSTy = compType;
6444 return compType;
6445 }
6446
6447 // Either ptr - int or ptr - ptr.
6448 if (LHS.get()->getType()->isAnyPointerType()) {
6449 QualType lpointee = LHS.get()->getType()->getPointeeType();
6450
6451 // Diagnose bad cases where we step over interface counts.
6452 if (LHS.get()->getType()->isObjCObjectPointerType() &&
6453 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
6454 return QualType();
6455
6456 // The result type of a pointer-int computation is the pointer type.
6457 if (RHS.get()->getType()->isIntegerType()) {
6458 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6459 return QualType();
6460
6461 // Check array bounds for pointer arithemtic
6462 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6463 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6464
6465 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6466 return LHS.get()->getType();
6467 }
6468
6469 // Handle pointer-pointer subtractions.
6470 if (const PointerType *RHSPTy
6471 = RHS.get()->getType()->getAs<PointerType>()) {
6472 QualType rpointee = RHSPTy->getPointeeType();
6473
6474 if (getLangOpts().CPlusPlus) {
6475 // Pointee types must be the same: C++ [expr.add]
6476 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6477 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6478 }
6479 } else {
6480 // Pointee types must be compatible C99 6.5.6p3
6481 if (!Context.typesAreCompatible(
6482 Context.getCanonicalType(lpointee).getUnqualifiedType(),
6483 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6484 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6485 return QualType();
6486 }
6487 }
6488
6489 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6490 LHS.get(), RHS.get()))
6491 return QualType();
6492
6493 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6494 return Context.getPointerDiffType();
6495 }
6496 }
6497
6498 return InvalidOperands(Loc, LHS, RHS);
6499 }
6500
isScopedEnumerationType(QualType T)6501 static bool isScopedEnumerationType(QualType T) {
6502 if (const EnumType *ET = dyn_cast<EnumType>(T))
6503 return ET->getDecl()->isScoped();
6504 return false;
6505 }
6506
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,QualType LHSType)6507 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6508 SourceLocation Loc, unsigned Opc,
6509 QualType LHSType) {
6510 llvm::APSInt Right;
6511 // Check right/shifter operand
6512 if (RHS.get()->isValueDependent() ||
6513 !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6514 return;
6515
6516 if (Right.isNegative()) {
6517 S.DiagRuntimeBehavior(Loc, RHS.get(),
6518 S.PDiag(diag::warn_shift_negative)
6519 << RHS.get()->getSourceRange());
6520 return;
6521 }
6522 llvm::APInt LeftBits(Right.getBitWidth(),
6523 S.Context.getTypeSize(LHS.get()->getType()));
6524 if (Right.uge(LeftBits)) {
6525 S.DiagRuntimeBehavior(Loc, RHS.get(),
6526 S.PDiag(diag::warn_shift_gt_typewidth)
6527 << RHS.get()->getSourceRange());
6528 return;
6529 }
6530 if (Opc != BO_Shl)
6531 return;
6532
6533 // When left shifting an ICE which is signed, we can check for overflow which
6534 // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6535 // integers have defined behavior modulo one more than the maximum value
6536 // representable in the result type, so never warn for those.
6537 llvm::APSInt Left;
6538 if (LHS.get()->isValueDependent() ||
6539 !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6540 LHSType->hasUnsignedIntegerRepresentation())
6541 return;
6542 llvm::APInt ResultBits =
6543 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6544 if (LeftBits.uge(ResultBits))
6545 return;
6546 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6547 Result = Result.shl(Right);
6548
6549 // Print the bit representation of the signed integer as an unsigned
6550 // hexadecimal number.
6551 SmallString<40> HexResult;
6552 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6553
6554 // If we are only missing a sign bit, this is less likely to result in actual
6555 // bugs -- if the result is cast back to an unsigned type, it will have the
6556 // expected value. Thus we place this behind a different warning that can be
6557 // turned off separately if needed.
6558 if (LeftBits == ResultBits - 1) {
6559 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6560 << HexResult.str() << LHSType
6561 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6562 return;
6563 }
6564
6565 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6566 << HexResult.str() << Result.getMinSignedBits() << LHSType
6567 << Left.getBitWidth() << LHS.get()->getSourceRange()
6568 << RHS.get()->getSourceRange();
6569 }
6570
6571 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc,bool IsCompAssign)6572 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6573 SourceLocation Loc, unsigned Opc,
6574 bool IsCompAssign) {
6575 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6576
6577 // C99 6.5.7p2: Each of the operands shall have integer type.
6578 if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6579 !RHS.get()->getType()->hasIntegerRepresentation())
6580 return InvalidOperands(Loc, LHS, RHS);
6581
6582 // C++0x: Don't allow scoped enums. FIXME: Use something better than
6583 // hasIntegerRepresentation() above instead of this.
6584 if (isScopedEnumerationType(LHS.get()->getType()) ||
6585 isScopedEnumerationType(RHS.get()->getType())) {
6586 return InvalidOperands(Loc, LHS, RHS);
6587 }
6588
6589 // Vector shifts promote their scalar inputs to vector type.
6590 if (LHS.get()->getType()->isVectorType() ||
6591 RHS.get()->getType()->isVectorType())
6592 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6593
6594 // Shifts don't perform usual arithmetic conversions, they just do integer
6595 // promotions on each operand. C99 6.5.7p3
6596
6597 // For the LHS, do usual unary conversions, but then reset them away
6598 // if this is a compound assignment.
6599 ExprResult OldLHS = LHS;
6600 LHS = UsualUnaryConversions(LHS.take());
6601 if (LHS.isInvalid())
6602 return QualType();
6603 QualType LHSType = LHS.get()->getType();
6604 if (IsCompAssign) LHS = OldLHS;
6605
6606 // The RHS is simpler.
6607 RHS = UsualUnaryConversions(RHS.take());
6608 if (RHS.isInvalid())
6609 return QualType();
6610
6611 // Sanity-check shift operands
6612 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6613
6614 // "The type of the result is that of the promoted left operand."
6615 return LHSType;
6616 }
6617
IsWithinTemplateSpecialization(Decl * D)6618 static bool IsWithinTemplateSpecialization(Decl *D) {
6619 if (DeclContext *DC = D->getDeclContext()) {
6620 if (isa<ClassTemplateSpecializationDecl>(DC))
6621 return true;
6622 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6623 return FD->isFunctionTemplateSpecialization();
6624 }
6625 return false;
6626 }
6627
6628 /// If two different enums are compared, raise a warning.
checkEnumComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6629 static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6630 ExprResult &RHS) {
6631 QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6632 QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6633
6634 const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6635 if (!LHSEnumType)
6636 return;
6637 const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6638 if (!RHSEnumType)
6639 return;
6640
6641 // Ignore anonymous enums.
6642 if (!LHSEnumType->getDecl()->getIdentifier())
6643 return;
6644 if (!RHSEnumType->getDecl()->getIdentifier())
6645 return;
6646
6647 if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6648 return;
6649
6650 S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6651 << LHSStrippedType << RHSStrippedType
6652 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6653 }
6654
6655 /// \brief Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6656 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6657 ExprResult &LHS, ExprResult &RHS,
6658 bool IsError) {
6659 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6660 : diag::ext_typecheck_comparison_of_distinct_pointers)
6661 << LHS.get()->getType() << RHS.get()->getType()
6662 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6663 }
6664
6665 /// \brief Returns false if the pointers are converted to a composite type,
6666 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)6667 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6668 ExprResult &LHS, ExprResult &RHS) {
6669 // C++ [expr.rel]p2:
6670 // [...] Pointer conversions (4.10) and qualification
6671 // conversions (4.4) are performed on pointer operands (or on
6672 // a pointer operand and a null pointer constant) to bring
6673 // them to their composite pointer type. [...]
6674 //
6675 // C++ [expr.eq]p1 uses the same notion for (in)equality
6676 // comparisons of pointers.
6677
6678 // C++ [expr.eq]p2:
6679 // In addition, pointers to members can be compared, or a pointer to
6680 // member and a null pointer constant. Pointer to member conversions
6681 // (4.11) and qualification conversions (4.4) are performed to bring
6682 // them to a common type. If one operand is a null pointer constant,
6683 // the common type is the type of the other operand. Otherwise, the
6684 // common type is a pointer to member type similar (4.4) to the type
6685 // of one of the operands, with a cv-qualification signature (4.4)
6686 // that is the union of the cv-qualification signatures of the operand
6687 // types.
6688
6689 QualType LHSType = LHS.get()->getType();
6690 QualType RHSType = RHS.get()->getType();
6691 assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6692 (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6693
6694 bool NonStandardCompositeType = false;
6695 bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6696 QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6697 if (T.isNull()) {
6698 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6699 return true;
6700 }
6701
6702 if (NonStandardCompositeType)
6703 S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6704 << LHSType << RHSType << T << LHS.get()->getSourceRange()
6705 << RHS.get()->getSourceRange();
6706
6707 LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6708 RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6709 return false;
6710 }
6711
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)6712 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6713 ExprResult &LHS,
6714 ExprResult &RHS,
6715 bool IsError) {
6716 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6717 : diag::ext_typecheck_comparison_of_fptr_to_void)
6718 << LHS.get()->getType() << RHS.get()->getType()
6719 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6720 }
6721
isObjCObjectLiteral(ExprResult & E)6722 static bool isObjCObjectLiteral(ExprResult &E) {
6723 switch (E.get()->getStmtClass()) {
6724 case Stmt::ObjCArrayLiteralClass:
6725 case Stmt::ObjCDictionaryLiteralClass:
6726 case Stmt::ObjCStringLiteralClass:
6727 case Stmt::ObjCBoxedExprClass:
6728 return true;
6729 default:
6730 // Note that ObjCBoolLiteral is NOT an object literal!
6731 return false;
6732 }
6733 }
6734
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)6735 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6736 // Get the LHS object's interface type.
6737 QualType Type = LHS->getType();
6738 QualType InterfaceType;
6739 if (const ObjCObjectPointerType *PTy = Type->getAs<ObjCObjectPointerType>()) {
6740 InterfaceType = PTy->getPointeeType();
6741 if (const ObjCObjectType *iQFaceTy =
6742 InterfaceType->getAsObjCQualifiedInterfaceType())
6743 InterfaceType = iQFaceTy->getBaseType();
6744 } else {
6745 // If this is not actually an Objective-C object, bail out.
6746 return false;
6747 }
6748
6749 // If the RHS isn't an Objective-C object, bail out.
6750 if (!RHS->getType()->isObjCObjectPointerType())
6751 return false;
6752
6753 // Try to find the -isEqual: method.
6754 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
6755 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
6756 InterfaceType,
6757 /*instance=*/true);
6758 if (!Method) {
6759 if (Type->isObjCIdType()) {
6760 // For 'id', just check the global pool.
6761 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
6762 /*receiverId=*/true,
6763 /*warn=*/false);
6764 } else {
6765 // Check protocols.
6766 Method = S.LookupMethodInQualifiedType(IsEqualSel,
6767 cast<ObjCObjectPointerType>(Type),
6768 /*instance=*/true);
6769 }
6770 }
6771
6772 if (!Method)
6773 return false;
6774
6775 QualType T = Method->param_begin()[0]->getType();
6776 if (!T->isObjCObjectPointerType())
6777 return false;
6778
6779 QualType R = Method->getResultType();
6780 if (!R->isScalarType())
6781 return false;
6782
6783 return true;
6784 }
6785
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)6786 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
6787 ExprResult &LHS, ExprResult &RHS,
6788 BinaryOperator::Opcode Opc){
6789 Expr *Literal;
6790 Expr *Other;
6791 if (isObjCObjectLiteral(LHS)) {
6792 Literal = LHS.get();
6793 Other = RHS.get();
6794 } else {
6795 Literal = RHS.get();
6796 Other = LHS.get();
6797 }
6798
6799 // Don't warn on comparisons against nil.
6800 Other = Other->IgnoreParenCasts();
6801 if (Other->isNullPointerConstant(S.getASTContext(),
6802 Expr::NPC_ValueDependentIsNotNull))
6803 return;
6804
6805 // This should be kept in sync with warn_objc_literal_comparison.
6806 // LK_String should always be last, since it has its own warning flag.
6807 enum {
6808 LK_Array,
6809 LK_Dictionary,
6810 LK_Numeric,
6811 LK_Boxed,
6812 LK_String
6813 } LiteralKind;
6814
6815 switch (Literal->getStmtClass()) {
6816 case Stmt::ObjCStringLiteralClass:
6817 // "string literal"
6818 LiteralKind = LK_String;
6819 break;
6820 case Stmt::ObjCArrayLiteralClass:
6821 // "array literal"
6822 LiteralKind = LK_Array;
6823 break;
6824 case Stmt::ObjCDictionaryLiteralClass:
6825 // "dictionary literal"
6826 LiteralKind = LK_Dictionary;
6827 break;
6828 case Stmt::ObjCBoxedExprClass: {
6829 Expr *Inner = cast<ObjCBoxedExpr>(Literal)->getSubExpr();
6830 switch (Inner->getStmtClass()) {
6831 case Stmt::IntegerLiteralClass:
6832 case Stmt::FloatingLiteralClass:
6833 case Stmt::CharacterLiteralClass:
6834 case Stmt::ObjCBoolLiteralExprClass:
6835 case Stmt::CXXBoolLiteralExprClass:
6836 // "numeric literal"
6837 LiteralKind = LK_Numeric;
6838 break;
6839 case Stmt::ImplicitCastExprClass: {
6840 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
6841 // Boolean literals can be represented by implicit casts.
6842 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) {
6843 LiteralKind = LK_Numeric;
6844 break;
6845 }
6846 // FALLTHROUGH
6847 }
6848 default:
6849 // "boxed expression"
6850 LiteralKind = LK_Boxed;
6851 break;
6852 }
6853 break;
6854 }
6855 default:
6856 llvm_unreachable("Unknown Objective-C object literal kind");
6857 }
6858
6859 if (LiteralKind == LK_String)
6860 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
6861 << Literal->getSourceRange();
6862 else
6863 S.Diag(Loc, diag::warn_objc_literal_comparison)
6864 << LiteralKind << Literal->getSourceRange();
6865
6866 if (BinaryOperator::isEqualityOp(Opc) &&
6867 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
6868 SourceLocation Start = LHS.get()->getLocStart();
6869 SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
6870 SourceRange OpRange(Loc, S.PP.getLocForEndOfToken(Loc));
6871
6872 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
6873 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
6874 << FixItHint::CreateReplacement(OpRange, "isEqual:")
6875 << FixItHint::CreateInsertion(End, "]");
6876 }
6877 }
6878
6879 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned OpaqueOpc,bool IsRelational)6880 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6881 SourceLocation Loc, unsigned OpaqueOpc,
6882 bool IsRelational) {
6883 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6884
6885 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6886
6887 // Handle vector comparisons separately.
6888 if (LHS.get()->getType()->isVectorType() ||
6889 RHS.get()->getType()->isVectorType())
6890 return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6891
6892 QualType LHSType = LHS.get()->getType();
6893 QualType RHSType = RHS.get()->getType();
6894
6895 Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6896 Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6897
6898 checkEnumComparison(*this, Loc, LHS, RHS);
6899
6900 if (!LHSType->hasFloatingRepresentation() &&
6901 !(LHSType->isBlockPointerType() && IsRelational) &&
6902 !LHS.get()->getLocStart().isMacroID() &&
6903 !RHS.get()->getLocStart().isMacroID()) {
6904 // For non-floating point types, check for self-comparisons of the form
6905 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
6906 // often indicate logic errors in the program.
6907 //
6908 // NOTE: Don't warn about comparison expressions resulting from macro
6909 // expansion. Also don't warn about comparisons which are only self
6910 // comparisons within a template specialization. The warnings should catch
6911 // obvious cases in the definition of the template anyways. The idea is to
6912 // warn when the typed comparison operator will always evaluate to the same
6913 // result.
6914 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6915 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6916 if (DRL->getDecl() == DRR->getDecl() &&
6917 !IsWithinTemplateSpecialization(DRL->getDecl())) {
6918 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6919 << 0 // self-
6920 << (Opc == BO_EQ
6921 || Opc == BO_LE
6922 || Opc == BO_GE));
6923 } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6924 !DRL->getDecl()->getType()->isReferenceType() &&
6925 !DRR->getDecl()->getType()->isReferenceType()) {
6926 // what is it always going to eval to?
6927 char always_evals_to;
6928 switch(Opc) {
6929 case BO_EQ: // e.g. array1 == array2
6930 always_evals_to = 0; // false
6931 break;
6932 case BO_NE: // e.g. array1 != array2
6933 always_evals_to = 1; // true
6934 break;
6935 default:
6936 // best we can say is 'a constant'
6937 always_evals_to = 2; // e.g. array1 <= array2
6938 break;
6939 }
6940 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6941 << 1 // array
6942 << always_evals_to);
6943 }
6944 }
6945 }
6946
6947 if (isa<CastExpr>(LHSStripped))
6948 LHSStripped = LHSStripped->IgnoreParenCasts();
6949 if (isa<CastExpr>(RHSStripped))
6950 RHSStripped = RHSStripped->IgnoreParenCasts();
6951
6952 // Warn about comparisons against a string constant (unless the other
6953 // operand is null), the user probably wants strcmp.
6954 Expr *literalString = 0;
6955 Expr *literalStringStripped = 0;
6956 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6957 !RHSStripped->isNullPointerConstant(Context,
6958 Expr::NPC_ValueDependentIsNull)) {
6959 literalString = LHS.get();
6960 literalStringStripped = LHSStripped;
6961 } else if ((isa<StringLiteral>(RHSStripped) ||
6962 isa<ObjCEncodeExpr>(RHSStripped)) &&
6963 !LHSStripped->isNullPointerConstant(Context,
6964 Expr::NPC_ValueDependentIsNull)) {
6965 literalString = RHS.get();
6966 literalStringStripped = RHSStripped;
6967 }
6968
6969 if (literalString) {
6970 std::string resultComparison;
6971 switch (Opc) {
6972 case BO_LT: resultComparison = ") < 0"; break;
6973 case BO_GT: resultComparison = ") > 0"; break;
6974 case BO_LE: resultComparison = ") <= 0"; break;
6975 case BO_GE: resultComparison = ") >= 0"; break;
6976 case BO_EQ: resultComparison = ") == 0"; break;
6977 case BO_NE: resultComparison = ") != 0"; break;
6978 default: llvm_unreachable("Invalid comparison operator");
6979 }
6980
6981 DiagRuntimeBehavior(Loc, 0,
6982 PDiag(diag::warn_stringcompare)
6983 << isa<ObjCEncodeExpr>(literalStringStripped)
6984 << literalString->getSourceRange());
6985 }
6986 }
6987
6988 // C99 6.5.8p3 / C99 6.5.9p4
6989 if (LHS.get()->getType()->isArithmeticType() &&
6990 RHS.get()->getType()->isArithmeticType()) {
6991 UsualArithmeticConversions(LHS, RHS);
6992 if (LHS.isInvalid() || RHS.isInvalid())
6993 return QualType();
6994 }
6995 else {
6996 LHS = UsualUnaryConversions(LHS.take());
6997 if (LHS.isInvalid())
6998 return QualType();
6999
7000 RHS = UsualUnaryConversions(RHS.take());
7001 if (RHS.isInvalid())
7002 return QualType();
7003 }
7004
7005 LHSType = LHS.get()->getType();
7006 RHSType = RHS.get()->getType();
7007
7008 // The result of comparisons is 'bool' in C++, 'int' in C.
7009 QualType ResultTy = Context.getLogicalOperationType();
7010
7011 if (IsRelational) {
7012 if (LHSType->isRealType() && RHSType->isRealType())
7013 return ResultTy;
7014 } else {
7015 // Check for comparisons of floating point operands using != and ==.
7016 if (LHSType->hasFloatingRepresentation())
7017 CheckFloatComparison(Loc, LHS.get(), RHS.get());
7018
7019 if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7020 return ResultTy;
7021 }
7022
7023 bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7024 Expr::NPC_ValueDependentIsNull);
7025 bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7026 Expr::NPC_ValueDependentIsNull);
7027
7028 // All of the following pointer-related warnings are GCC extensions, except
7029 // when handling null pointer constants.
7030 if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7031 QualType LCanPointeeTy =
7032 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7033 QualType RCanPointeeTy =
7034 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7035
7036 if (getLangOpts().CPlusPlus) {
7037 if (LCanPointeeTy == RCanPointeeTy)
7038 return ResultTy;
7039 if (!IsRelational &&
7040 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7041 // Valid unless comparison between non-null pointer and function pointer
7042 // This is a gcc extension compatibility comparison.
7043 // In a SFINAE context, we treat this as a hard error to maintain
7044 // conformance with the C++ standard.
7045 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7046 && !LHSIsNull && !RHSIsNull) {
7047 diagnoseFunctionPointerToVoidComparison(
7048 *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
7049
7050 if (isSFINAEContext())
7051 return QualType();
7052
7053 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7054 return ResultTy;
7055 }
7056 }
7057
7058 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7059 return QualType();
7060 else
7061 return ResultTy;
7062 }
7063 // C99 6.5.9p2 and C99 6.5.8p2
7064 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7065 RCanPointeeTy.getUnqualifiedType())) {
7066 // Valid unless a relational comparison of function pointers
7067 if (IsRelational && LCanPointeeTy->isFunctionType()) {
7068 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7069 << LHSType << RHSType << LHS.get()->getSourceRange()
7070 << RHS.get()->getSourceRange();
7071 }
7072 } else if (!IsRelational &&
7073 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7074 // Valid unless comparison between non-null pointer and function pointer
7075 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7076 && !LHSIsNull && !RHSIsNull)
7077 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7078 /*isError*/false);
7079 } else {
7080 // Invalid
7081 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7082 }
7083 if (LCanPointeeTy != RCanPointeeTy) {
7084 if (LHSIsNull && !RHSIsNull)
7085 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7086 else
7087 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7088 }
7089 return ResultTy;
7090 }
7091
7092 if (getLangOpts().CPlusPlus) {
7093 // Comparison of nullptr_t with itself.
7094 if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7095 return ResultTy;
7096
7097 // Comparison of pointers with null pointer constants and equality
7098 // comparisons of member pointers to null pointer constants.
7099 if (RHSIsNull &&
7100 ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7101 (!IsRelational &&
7102 (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7103 RHS = ImpCastExprToType(RHS.take(), LHSType,
7104 LHSType->isMemberPointerType()
7105 ? CK_NullToMemberPointer
7106 : CK_NullToPointer);
7107 return ResultTy;
7108 }
7109 if (LHSIsNull &&
7110 ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7111 (!IsRelational &&
7112 (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7113 LHS = ImpCastExprToType(LHS.take(), RHSType,
7114 RHSType->isMemberPointerType()
7115 ? CK_NullToMemberPointer
7116 : CK_NullToPointer);
7117 return ResultTy;
7118 }
7119
7120 // Comparison of member pointers.
7121 if (!IsRelational &&
7122 LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7123 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7124 return QualType();
7125 else
7126 return ResultTy;
7127 }
7128
7129 // Handle scoped enumeration types specifically, since they don't promote
7130 // to integers.
7131 if (LHS.get()->getType()->isEnumeralType() &&
7132 Context.hasSameUnqualifiedType(LHS.get()->getType(),
7133 RHS.get()->getType()))
7134 return ResultTy;
7135 }
7136
7137 // Handle block pointer types.
7138 if (!IsRelational && LHSType->isBlockPointerType() &&
7139 RHSType->isBlockPointerType()) {
7140 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7141 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7142
7143 if (!LHSIsNull && !RHSIsNull &&
7144 !Context.typesAreCompatible(lpointee, rpointee)) {
7145 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7146 << LHSType << RHSType << LHS.get()->getSourceRange()
7147 << RHS.get()->getSourceRange();
7148 }
7149 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7150 return ResultTy;
7151 }
7152
7153 // Allow block pointers to be compared with null pointer constants.
7154 if (!IsRelational
7155 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7156 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7157 if (!LHSIsNull && !RHSIsNull) {
7158 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7159 ->getPointeeType()->isVoidType())
7160 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7161 ->getPointeeType()->isVoidType())))
7162 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7163 << LHSType << RHSType << LHS.get()->getSourceRange()
7164 << RHS.get()->getSourceRange();
7165 }
7166 if (LHSIsNull && !RHSIsNull)
7167 LHS = ImpCastExprToType(LHS.take(), RHSType,
7168 RHSType->isPointerType() ? CK_BitCast
7169 : CK_AnyPointerToBlockPointerCast);
7170 else
7171 RHS = ImpCastExprToType(RHS.take(), LHSType,
7172 LHSType->isPointerType() ? CK_BitCast
7173 : CK_AnyPointerToBlockPointerCast);
7174 return ResultTy;
7175 }
7176
7177 if (LHSType->isObjCObjectPointerType() ||
7178 RHSType->isObjCObjectPointerType()) {
7179 const PointerType *LPT = LHSType->getAs<PointerType>();
7180 const PointerType *RPT = RHSType->getAs<PointerType>();
7181 if (LPT || RPT) {
7182 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7183 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7184
7185 if (!LPtrToVoid && !RPtrToVoid &&
7186 !Context.typesAreCompatible(LHSType, RHSType)) {
7187 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7188 /*isError*/false);
7189 }
7190 if (LHSIsNull && !RHSIsNull)
7191 LHS = ImpCastExprToType(LHS.take(), RHSType,
7192 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7193 else
7194 RHS = ImpCastExprToType(RHS.take(), LHSType,
7195 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7196 return ResultTy;
7197 }
7198 if (LHSType->isObjCObjectPointerType() &&
7199 RHSType->isObjCObjectPointerType()) {
7200 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7201 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7202 /*isError*/false);
7203 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7204 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7205
7206 if (LHSIsNull && !RHSIsNull)
7207 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7208 else
7209 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7210 return ResultTy;
7211 }
7212 }
7213 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7214 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7215 unsigned DiagID = 0;
7216 bool isError = false;
7217 if ((LHSIsNull && LHSType->isIntegerType()) ||
7218 (RHSIsNull && RHSType->isIntegerType())) {
7219 if (IsRelational && !getLangOpts().CPlusPlus)
7220 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7221 } else if (IsRelational && !getLangOpts().CPlusPlus)
7222 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7223 else if (getLangOpts().CPlusPlus) {
7224 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7225 isError = true;
7226 } else
7227 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7228
7229 if (DiagID) {
7230 Diag(Loc, DiagID)
7231 << LHSType << RHSType << LHS.get()->getSourceRange()
7232 << RHS.get()->getSourceRange();
7233 if (isError)
7234 return QualType();
7235 }
7236
7237 if (LHSType->isIntegerType())
7238 LHS = ImpCastExprToType(LHS.take(), RHSType,
7239 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7240 else
7241 RHS = ImpCastExprToType(RHS.take(), LHSType,
7242 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7243 return ResultTy;
7244 }
7245
7246 // Handle block pointers.
7247 if (!IsRelational && RHSIsNull
7248 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7249 RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7250 return ResultTy;
7251 }
7252 if (!IsRelational && LHSIsNull
7253 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7254 LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7255 return ResultTy;
7256 }
7257
7258 return InvalidOperands(Loc, LHS, RHS);
7259 }
7260
7261
7262 // Return a signed type that is of identical size and number of elements.
7263 // For floating point vectors, return an integer type of identical size
7264 // and number of elements.
GetSignedVectorType(QualType V)7265 QualType Sema::GetSignedVectorType(QualType V) {
7266 const VectorType *VTy = V->getAs<VectorType>();
7267 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7268 if (TypeSize == Context.getTypeSize(Context.CharTy))
7269 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7270 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7271 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7272 else if (TypeSize == Context.getTypeSize(Context.IntTy))
7273 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7274 else if (TypeSize == Context.getTypeSize(Context.LongTy))
7275 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7276 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7277 "Unhandled vector element size in vector compare");
7278 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7279 }
7280
7281 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
7282 /// operates on extended vector types. Instead of producing an IntTy result,
7283 /// like a scalar comparison, a vector comparison produces a vector of integer
7284 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsRelational)7285 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7286 SourceLocation Loc,
7287 bool IsRelational) {
7288 // Check to make sure we're operating on vectors of the same type and width,
7289 // Allowing one side to be a scalar of element type.
7290 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7291 if (vType.isNull())
7292 return vType;
7293
7294 QualType LHSType = LHS.get()->getType();
7295
7296 // If AltiVec, the comparison results in a numeric type, i.e.
7297 // bool for C++, int for C
7298 if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7299 return Context.getLogicalOperationType();
7300
7301 // For non-floating point types, check for self-comparisons of the form
7302 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
7303 // often indicate logic errors in the program.
7304 if (!LHSType->hasFloatingRepresentation()) {
7305 if (DeclRefExpr* DRL
7306 = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7307 if (DeclRefExpr* DRR
7308 = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7309 if (DRL->getDecl() == DRR->getDecl())
7310 DiagRuntimeBehavior(Loc, 0,
7311 PDiag(diag::warn_comparison_always)
7312 << 0 // self-
7313 << 2 // "a constant"
7314 );
7315 }
7316
7317 // Check for comparisons of floating point operands using != and ==.
7318 if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7319 assert (RHS.get()->getType()->hasFloatingRepresentation());
7320 CheckFloatComparison(Loc, LHS.get(), RHS.get());
7321 }
7322
7323 // Return a signed type for the vector.
7324 return GetSignedVectorType(LHSType);
7325 }
7326
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7327 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7328 SourceLocation Loc) {
7329 // Ensure that either both operands are of the same vector type, or
7330 // one operand is of a vector type and the other is of its element type.
7331 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7332 if (vType.isNull() || vType->isFloatingType())
7333 return InvalidOperands(Loc, LHS, RHS);
7334
7335 return GetSignedVectorType(LHS.get()->getType());
7336 }
7337
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)7338 inline QualType Sema::CheckBitwiseOperands(
7339 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7340 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7341
7342 if (LHS.get()->getType()->isVectorType() ||
7343 RHS.get()->getType()->isVectorType()) {
7344 if (LHS.get()->getType()->hasIntegerRepresentation() &&
7345 RHS.get()->getType()->hasIntegerRepresentation())
7346 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7347
7348 return InvalidOperands(Loc, LHS, RHS);
7349 }
7350
7351 ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7352 QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7353 IsCompAssign);
7354 if (LHSResult.isInvalid() || RHSResult.isInvalid())
7355 return QualType();
7356 LHS = LHSResult.take();
7357 RHS = RHSResult.take();
7358
7359 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7360 return compType;
7361 return InvalidOperands(Loc, LHS, RHS);
7362 }
7363
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,unsigned Opc)7364 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7365 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7366
7367 // Check vector operands differently.
7368 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7369 return CheckVectorLogicalOperands(LHS, RHS, Loc);
7370
7371 // Diagnose cases where the user write a logical and/or but probably meant a
7372 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
7373 // is a constant.
7374 if (LHS.get()->getType()->isIntegerType() &&
7375 !LHS.get()->getType()->isBooleanType() &&
7376 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7377 // Don't warn in macros or template instantiations.
7378 !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7379 // If the RHS can be constant folded, and if it constant folds to something
7380 // that isn't 0 or 1 (which indicate a potential logical operation that
7381 // happened to fold to true/false) then warn.
7382 // Parens on the RHS are ignored.
7383 llvm::APSInt Result;
7384 if (RHS.get()->EvaluateAsInt(Result, Context))
7385 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7386 (Result != 0 && Result != 1)) {
7387 Diag(Loc, diag::warn_logical_instead_of_bitwise)
7388 << RHS.get()->getSourceRange()
7389 << (Opc == BO_LAnd ? "&&" : "||");
7390 // Suggest replacing the logical operator with the bitwise version
7391 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7392 << (Opc == BO_LAnd ? "&" : "|")
7393 << FixItHint::CreateReplacement(SourceRange(
7394 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7395 getLangOpts())),
7396 Opc == BO_LAnd ? "&" : "|");
7397 if (Opc == BO_LAnd)
7398 // Suggest replacing "Foo() && kNonZero" with "Foo()"
7399 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7400 << FixItHint::CreateRemoval(
7401 SourceRange(
7402 Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7403 0, getSourceManager(),
7404 getLangOpts()),
7405 RHS.get()->getLocEnd()));
7406 }
7407 }
7408
7409 if (!Context.getLangOpts().CPlusPlus) {
7410 LHS = UsualUnaryConversions(LHS.take());
7411 if (LHS.isInvalid())
7412 return QualType();
7413
7414 RHS = UsualUnaryConversions(RHS.take());
7415 if (RHS.isInvalid())
7416 return QualType();
7417
7418 if (!LHS.get()->getType()->isScalarType() ||
7419 !RHS.get()->getType()->isScalarType())
7420 return InvalidOperands(Loc, LHS, RHS);
7421
7422 return Context.IntTy;
7423 }
7424
7425 // The following is safe because we only use this method for
7426 // non-overloadable operands.
7427
7428 // C++ [expr.log.and]p1
7429 // C++ [expr.log.or]p1
7430 // The operands are both contextually converted to type bool.
7431 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7432 if (LHSRes.isInvalid())
7433 return InvalidOperands(Loc, LHS, RHS);
7434 LHS = LHSRes;
7435
7436 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7437 if (RHSRes.isInvalid())
7438 return InvalidOperands(Loc, LHS, RHS);
7439 RHS = RHSRes;
7440
7441 // C++ [expr.log.and]p2
7442 // C++ [expr.log.or]p2
7443 // The result is a bool.
7444 return Context.BoolTy;
7445 }
7446
7447 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7448 /// is a read-only property; return true if so. A readonly property expression
7449 /// depends on various declarations and thus must be treated specially.
7450 ///
IsReadonlyProperty(Expr * E,Sema & S)7451 static bool IsReadonlyProperty(Expr *E, Sema &S) {
7452 const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7453 if (!PropExpr) return false;
7454 if (PropExpr->isImplicitProperty()) return false;
7455
7456 ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7457 QualType BaseType = PropExpr->isSuperReceiver() ?
7458 PropExpr->getSuperReceiverType() :
7459 PropExpr->getBase()->getType();
7460
7461 if (const ObjCObjectPointerType *OPT =
7462 BaseType->getAsObjCInterfacePointerType())
7463 if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7464 if (S.isPropertyReadonly(PDecl, IFace))
7465 return true;
7466 return false;
7467 }
7468
IsReadonlyMessage(Expr * E,Sema & S)7469 static bool IsReadonlyMessage(Expr *E, Sema &S) {
7470 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7471 if (!ME) return false;
7472 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7473 ObjCMessageExpr *Base =
7474 dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7475 if (!Base) return false;
7476 return Base->getMethodDecl() != 0;
7477 }
7478
7479 /// Is the given expression (which must be 'const') a reference to a
7480 /// variable which was originally non-const, but which has become
7481 /// 'const' due to being captured within a block?
7482 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)7483 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7484 assert(E->isLValue() && E->getType().isConstQualified());
7485 E = E->IgnoreParens();
7486
7487 // Must be a reference to a declaration from an enclosing scope.
7488 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7489 if (!DRE) return NCCK_None;
7490 if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7491
7492 // The declaration must be a variable which is not declared 'const'.
7493 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7494 if (!var) return NCCK_None;
7495 if (var->getType().isConstQualified()) return NCCK_None;
7496 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7497
7498 // Decide whether the first capture was for a block or a lambda.
7499 DeclContext *DC = S.CurContext;
7500 while (DC->getParent() != var->getDeclContext())
7501 DC = DC->getParent();
7502 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7503 }
7504
7505 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
7506 /// emit an error and return true. If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)7507 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7508 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7509 SourceLocation OrigLoc = Loc;
7510 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7511 &Loc);
7512 if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7513 IsLV = Expr::MLV_ReadonlyProperty;
7514 else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7515 IsLV = Expr::MLV_InvalidMessageExpression;
7516 if (IsLV == Expr::MLV_Valid)
7517 return false;
7518
7519 unsigned Diag = 0;
7520 bool NeedType = false;
7521 switch (IsLV) { // C99 6.5.16p2
7522 case Expr::MLV_ConstQualified:
7523 Diag = diag::err_typecheck_assign_const;
7524
7525 // Use a specialized diagnostic when we're assigning to an object
7526 // from an enclosing function or block.
7527 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7528 if (NCCK == NCCK_Block)
7529 Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7530 else
7531 Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7532 break;
7533 }
7534
7535 // In ARC, use some specialized diagnostics for occasions where we
7536 // infer 'const'. These are always pseudo-strong variables.
7537 if (S.getLangOpts().ObjCAutoRefCount) {
7538 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7539 if (declRef && isa<VarDecl>(declRef->getDecl())) {
7540 VarDecl *var = cast<VarDecl>(declRef->getDecl());
7541
7542 // Use the normal diagnostic if it's pseudo-__strong but the
7543 // user actually wrote 'const'.
7544 if (var->isARCPseudoStrong() &&
7545 (!var->getTypeSourceInfo() ||
7546 !var->getTypeSourceInfo()->getType().isConstQualified())) {
7547 // There are two pseudo-strong cases:
7548 // - self
7549 ObjCMethodDecl *method = S.getCurMethodDecl();
7550 if (method && var == method->getSelfDecl())
7551 Diag = method->isClassMethod()
7552 ? diag::err_typecheck_arc_assign_self_class_method
7553 : diag::err_typecheck_arc_assign_self;
7554
7555 // - fast enumeration variables
7556 else
7557 Diag = diag::err_typecheck_arr_assign_enumeration;
7558
7559 SourceRange Assign;
7560 if (Loc != OrigLoc)
7561 Assign = SourceRange(OrigLoc, OrigLoc);
7562 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7563 // We need to preserve the AST regardless, so migration tool
7564 // can do its job.
7565 return false;
7566 }
7567 }
7568 }
7569
7570 break;
7571 case Expr::MLV_ArrayType:
7572 case Expr::MLV_ArrayTemporary:
7573 Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7574 NeedType = true;
7575 break;
7576 case Expr::MLV_NotObjectType:
7577 Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7578 NeedType = true;
7579 break;
7580 case Expr::MLV_LValueCast:
7581 Diag = diag::err_typecheck_lvalue_casts_not_supported;
7582 break;
7583 case Expr::MLV_Valid:
7584 llvm_unreachable("did not take early return for MLV_Valid");
7585 case Expr::MLV_InvalidExpression:
7586 case Expr::MLV_MemberFunction:
7587 case Expr::MLV_ClassTemporary:
7588 Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7589 break;
7590 case Expr::MLV_IncompleteType:
7591 case Expr::MLV_IncompleteVoidType:
7592 return S.RequireCompleteType(Loc, E->getType(),
7593 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7594 case Expr::MLV_DuplicateVectorComponents:
7595 Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7596 break;
7597 case Expr::MLV_ReadonlyProperty:
7598 case Expr::MLV_NoSetterProperty:
7599 llvm_unreachable("readonly properties should be processed differently");
7600 case Expr::MLV_InvalidMessageExpression:
7601 Diag = diag::error_readonly_message_assignment;
7602 break;
7603 case Expr::MLV_SubObjCPropertySetting:
7604 Diag = diag::error_no_subobject_property_setting;
7605 break;
7606 }
7607
7608 SourceRange Assign;
7609 if (Loc != OrigLoc)
7610 Assign = SourceRange(OrigLoc, OrigLoc);
7611 if (NeedType)
7612 S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7613 else
7614 S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7615 return true;
7616 }
7617
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)7618 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7619 SourceLocation Loc,
7620 Sema &Sema) {
7621 // C / C++ fields
7622 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7623 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7624 if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7625 if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7626 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7627 }
7628
7629 // Objective-C instance variables
7630 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7631 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7632 if (OL && OR && OL->getDecl() == OR->getDecl()) {
7633 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7634 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7635 if (RL && RR && RL->getDecl() == RR->getDecl())
7636 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7637 }
7638 }
7639
7640 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)7641 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7642 SourceLocation Loc,
7643 QualType CompoundType) {
7644 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7645
7646 // Verify that LHS is a modifiable lvalue, and emit error if not.
7647 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7648 return QualType();
7649
7650 QualType LHSType = LHSExpr->getType();
7651 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7652 CompoundType;
7653 AssignConvertType ConvTy;
7654 if (CompoundType.isNull()) {
7655 Expr *RHSCheck = RHS.get();
7656
7657 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7658
7659 QualType LHSTy(LHSType);
7660 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7661 if (RHS.isInvalid())
7662 return QualType();
7663 // Special case of NSObject attributes on c-style pointer types.
7664 if (ConvTy == IncompatiblePointer &&
7665 ((Context.isObjCNSObjectType(LHSType) &&
7666 RHSType->isObjCObjectPointerType()) ||
7667 (Context.isObjCNSObjectType(RHSType) &&
7668 LHSType->isObjCObjectPointerType())))
7669 ConvTy = Compatible;
7670
7671 if (ConvTy == Compatible &&
7672 LHSType->isObjCObjectType())
7673 Diag(Loc, diag::err_objc_object_assignment)
7674 << LHSType;
7675
7676 // If the RHS is a unary plus or minus, check to see if they = and + are
7677 // right next to each other. If so, the user may have typo'd "x =+ 4"
7678 // instead of "x += 4".
7679 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7680 RHSCheck = ICE->getSubExpr();
7681 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7682 if ((UO->getOpcode() == UO_Plus ||
7683 UO->getOpcode() == UO_Minus) &&
7684 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7685 // Only if the two operators are exactly adjacent.
7686 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7687 // And there is a space or other character before the subexpr of the
7688 // unary +/-. We don't want to warn on "x=-1".
7689 Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7690 UO->getSubExpr()->getLocStart().isFileID()) {
7691 Diag(Loc, diag::warn_not_compound_assign)
7692 << (UO->getOpcode() == UO_Plus ? "+" : "-")
7693 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7694 }
7695 }
7696
7697 if (ConvTy == Compatible) {
7698 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7699 checkRetainCycles(LHSExpr, RHS.get());
7700 else if (getLangOpts().ObjCAutoRefCount)
7701 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7702 }
7703 } else {
7704 // Compound assignment "x += y"
7705 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7706 }
7707
7708 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7709 RHS.get(), AA_Assigning))
7710 return QualType();
7711
7712 CheckForNullPointerDereference(*this, LHSExpr);
7713
7714 // C99 6.5.16p3: The type of an assignment expression is the type of the
7715 // left operand unless the left operand has qualified type, in which case
7716 // it is the unqualified version of the type of the left operand.
7717 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7718 // is converted to the type of the assignment expression (above).
7719 // C++ 5.17p1: the type of the assignment expression is that of its left
7720 // operand.
7721 return (getLangOpts().CPlusPlus
7722 ? LHSType : LHSType.getUnqualifiedType());
7723 }
7724
7725 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7726 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7727 SourceLocation Loc) {
7728 LHS = S.CheckPlaceholderExpr(LHS.take());
7729 RHS = S.CheckPlaceholderExpr(RHS.take());
7730 if (LHS.isInvalid() || RHS.isInvalid())
7731 return QualType();
7732
7733 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7734 // operands, but not unary promotions.
7735 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7736
7737 // So we treat the LHS as a ignored value, and in C++ we allow the
7738 // containing site to determine what should be done with the RHS.
7739 LHS = S.IgnoredValueConversions(LHS.take());
7740 if (LHS.isInvalid())
7741 return QualType();
7742
7743 S.DiagnoseUnusedExprResult(LHS.get());
7744
7745 if (!S.getLangOpts().CPlusPlus) {
7746 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7747 if (RHS.isInvalid())
7748 return QualType();
7749 if (!RHS.get()->getType()->isVoidType())
7750 S.RequireCompleteType(Loc, RHS.get()->getType(),
7751 diag::err_incomplete_type);
7752 }
7753
7754 return RHS.get()->getType();
7755 }
7756
7757 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7758 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)7759 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7760 ExprValueKind &VK,
7761 SourceLocation OpLoc,
7762 bool IsInc, bool IsPrefix) {
7763 if (Op->isTypeDependent())
7764 return S.Context.DependentTy;
7765
7766 QualType ResType = Op->getType();
7767 // Atomic types can be used for increment / decrement where the non-atomic
7768 // versions can, so ignore the _Atomic() specifier for the purpose of
7769 // checking.
7770 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7771 ResType = ResAtomicType->getValueType();
7772
7773 assert(!ResType.isNull() && "no type for increment/decrement expression");
7774
7775 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7776 // Decrement of bool is not allowed.
7777 if (!IsInc) {
7778 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7779 return QualType();
7780 }
7781 // Increment of bool sets it to true, but is deprecated.
7782 S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7783 } else if (ResType->isRealType()) {
7784 // OK!
7785 } else if (ResType->isPointerType()) {
7786 // C99 6.5.2.4p2, 6.5.6p2
7787 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7788 return QualType();
7789 } else if (ResType->isObjCObjectPointerType()) {
7790 // On modern runtimes, ObjC pointer arithmetic is forbidden.
7791 // Otherwise, we just need a complete type.
7792 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
7793 checkArithmeticOnObjCPointer(S, OpLoc, Op))
7794 return QualType();
7795 } else if (ResType->isAnyComplexType()) {
7796 // C99 does not support ++/-- on complex types, we allow as an extension.
7797 S.Diag(OpLoc, diag::ext_integer_increment_complex)
7798 << ResType << Op->getSourceRange();
7799 } else if (ResType->isPlaceholderType()) {
7800 ExprResult PR = S.CheckPlaceholderExpr(Op);
7801 if (PR.isInvalid()) return QualType();
7802 return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7803 IsInc, IsPrefix);
7804 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7805 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7806 } else {
7807 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7808 << ResType << int(IsInc) << Op->getSourceRange();
7809 return QualType();
7810 }
7811 // At this point, we know we have a real, complex or pointer type.
7812 // Now make sure the operand is a modifiable lvalue.
7813 if (CheckForModifiableLvalue(Op, OpLoc, S))
7814 return QualType();
7815 // In C++, a prefix increment is the same type as the operand. Otherwise
7816 // (in C or with postfix), the increment is the unqualified type of the
7817 // operand.
7818 if (IsPrefix && S.getLangOpts().CPlusPlus) {
7819 VK = VK_LValue;
7820 return ResType;
7821 } else {
7822 VK = VK_RValue;
7823 return ResType.getUnqualifiedType();
7824 }
7825 }
7826
7827
7828 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7829 /// This routine allows us to typecheck complex/recursive expressions
7830 /// where the declaration is needed for type checking. We only need to
7831 /// handle cases when the expression references a function designator
7832 /// or is an lvalue. Here are some examples:
7833 /// - &(x) => x
7834 /// - &*****f => f for f a function designator.
7835 /// - &s.xx => s
7836 /// - &s.zz[1].yy -> s, if zz is an array
7837 /// - *(x + 1) -> x, if x is an array
7838 /// - &"123"[2] -> 0
7839 /// - & __real__ x -> x
getPrimaryDecl(Expr * E)7840 static ValueDecl *getPrimaryDecl(Expr *E) {
7841 switch (E->getStmtClass()) {
7842 case Stmt::DeclRefExprClass:
7843 return cast<DeclRefExpr>(E)->getDecl();
7844 case Stmt::MemberExprClass:
7845 // If this is an arrow operator, the address is an offset from
7846 // the base's value, so the object the base refers to is
7847 // irrelevant.
7848 if (cast<MemberExpr>(E)->isArrow())
7849 return 0;
7850 // Otherwise, the expression refers to a part of the base
7851 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7852 case Stmt::ArraySubscriptExprClass: {
7853 // FIXME: This code shouldn't be necessary! We should catch the implicit
7854 // promotion of register arrays earlier.
7855 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7856 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7857 if (ICE->getSubExpr()->getType()->isArrayType())
7858 return getPrimaryDecl(ICE->getSubExpr());
7859 }
7860 return 0;
7861 }
7862 case Stmt::UnaryOperatorClass: {
7863 UnaryOperator *UO = cast<UnaryOperator>(E);
7864
7865 switch(UO->getOpcode()) {
7866 case UO_Real:
7867 case UO_Imag:
7868 case UO_Extension:
7869 return getPrimaryDecl(UO->getSubExpr());
7870 default:
7871 return 0;
7872 }
7873 }
7874 case Stmt::ParenExprClass:
7875 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7876 case Stmt::ImplicitCastExprClass:
7877 // If the result of an implicit cast is an l-value, we care about
7878 // the sub-expression; otherwise, the result here doesn't matter.
7879 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7880 default:
7881 return 0;
7882 }
7883 }
7884
7885 namespace {
7886 enum {
7887 AO_Bit_Field = 0,
7888 AO_Vector_Element = 1,
7889 AO_Property_Expansion = 2,
7890 AO_Register_Variable = 3,
7891 AO_No_Error = 4
7892 };
7893 }
7894 /// \brief Diagnose invalid operand for address of operations.
7895 ///
7896 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)7897 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7898 Expr *E, unsigned Type) {
7899 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7900 }
7901
7902 /// CheckAddressOfOperand - The operand of & must be either a function
7903 /// designator or an lvalue designating an object. If it is an lvalue, the
7904 /// object cannot be declared with storage class register or be a bit field.
7905 /// Note: The usual conversions are *not* applied to the operand of the &
7906 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7907 /// In C++, the operand might be an overloaded function name, in which case
7908 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(Sema & S,ExprResult & OrigOp,SourceLocation OpLoc)7909 static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7910 SourceLocation OpLoc) {
7911 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7912 if (PTy->getKind() == BuiltinType::Overload) {
7913 if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7914 S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7915 << OrigOp.get()->getSourceRange();
7916 return QualType();
7917 }
7918
7919 return S.Context.OverloadTy;
7920 }
7921
7922 if (PTy->getKind() == BuiltinType::UnknownAny)
7923 return S.Context.UnknownAnyTy;
7924
7925 if (PTy->getKind() == BuiltinType::BoundMember) {
7926 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7927 << OrigOp.get()->getSourceRange();
7928 return QualType();
7929 }
7930
7931 OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7932 if (OrigOp.isInvalid()) return QualType();
7933 }
7934
7935 if (OrigOp.get()->isTypeDependent())
7936 return S.Context.DependentTy;
7937
7938 assert(!OrigOp.get()->getType()->isPlaceholderType());
7939
7940 // Make sure to ignore parentheses in subsequent checks
7941 Expr *op = OrigOp.get()->IgnoreParens();
7942
7943 if (S.getLangOpts().C99) {
7944 // Implement C99-only parts of addressof rules.
7945 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7946 if (uOp->getOpcode() == UO_Deref)
7947 // Per C99 6.5.3.2, the address of a deref always returns a valid result
7948 // (assuming the deref expression is valid).
7949 return uOp->getSubExpr()->getType();
7950 }
7951 // Technically, there should be a check for array subscript
7952 // expressions here, but the result of one is always an lvalue anyway.
7953 }
7954 ValueDecl *dcl = getPrimaryDecl(op);
7955 Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7956 unsigned AddressOfError = AO_No_Error;
7957
7958 if (lval == Expr::LV_ClassTemporary) {
7959 bool sfinae = S.isSFINAEContext();
7960 S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7961 : diag::ext_typecheck_addrof_class_temporary)
7962 << op->getType() << op->getSourceRange();
7963 if (sfinae)
7964 return QualType();
7965 } else if (isa<ObjCSelectorExpr>(op)) {
7966 return S.Context.getPointerType(op->getType());
7967 } else if (lval == Expr::LV_MemberFunction) {
7968 // If it's an instance method, make a member pointer.
7969 // The expression must have exactly the form &A::foo.
7970
7971 // If the underlying expression isn't a decl ref, give up.
7972 if (!isa<DeclRefExpr>(op)) {
7973 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7974 << OrigOp.get()->getSourceRange();
7975 return QualType();
7976 }
7977 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7978 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7979
7980 // The id-expression was parenthesized.
7981 if (OrigOp.get() != DRE) {
7982 S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7983 << OrigOp.get()->getSourceRange();
7984
7985 // The method was named without a qualifier.
7986 } else if (!DRE->getQualifier()) {
7987 S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7988 << op->getSourceRange();
7989 }
7990
7991 return S.Context.getMemberPointerType(op->getType(),
7992 S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7993 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7994 // C99 6.5.3.2p1
7995 // The operand must be either an l-value or a function designator
7996 if (!op->getType()->isFunctionType()) {
7997 // Use a special diagnostic for loads from property references.
7998 if (isa<PseudoObjectExpr>(op)) {
7999 AddressOfError = AO_Property_Expansion;
8000 } else {
8001 // FIXME: emit more specific diag...
8002 S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8003 << op->getSourceRange();
8004 return QualType();
8005 }
8006 }
8007 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8008 // The operand cannot be a bit-field
8009 AddressOfError = AO_Bit_Field;
8010 } else if (op->getObjectKind() == OK_VectorComponent) {
8011 // The operand cannot be an element of a vector
8012 AddressOfError = AO_Vector_Element;
8013 } else if (dcl) { // C99 6.5.3.2p1
8014 // We have an lvalue with a decl. Make sure the decl is not declared
8015 // with the register storage-class specifier.
8016 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8017 // in C++ it is not error to take address of a register
8018 // variable (c++03 7.1.1P3)
8019 if (vd->getStorageClass() == SC_Register &&
8020 !S.getLangOpts().CPlusPlus) {
8021 AddressOfError = AO_Register_Variable;
8022 }
8023 } else if (isa<FunctionTemplateDecl>(dcl)) {
8024 return S.Context.OverloadTy;
8025 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8026 // Okay: we can take the address of a field.
8027 // Could be a pointer to member, though, if there is an explicit
8028 // scope qualifier for the class.
8029 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8030 DeclContext *Ctx = dcl->getDeclContext();
8031 if (Ctx && Ctx->isRecord()) {
8032 if (dcl->getType()->isReferenceType()) {
8033 S.Diag(OpLoc,
8034 diag::err_cannot_form_pointer_to_member_of_reference_type)
8035 << dcl->getDeclName() << dcl->getType();
8036 return QualType();
8037 }
8038
8039 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8040 Ctx = Ctx->getParent();
8041 return S.Context.getMemberPointerType(op->getType(),
8042 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8043 }
8044 }
8045 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8046 llvm_unreachable("Unknown/unexpected decl type");
8047 }
8048
8049 if (AddressOfError != AO_No_Error) {
8050 diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8051 return QualType();
8052 }
8053
8054 if (lval == Expr::LV_IncompleteVoidType) {
8055 // Taking the address of a void variable is technically illegal, but we
8056 // allow it in cases which are otherwise valid.
8057 // Example: "extern void x; void* y = &x;".
8058 S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8059 }
8060
8061 // If the operand has type "type", the result has type "pointer to type".
8062 if (op->getType()->isObjCObjectType())
8063 return S.Context.getObjCObjectPointerType(op->getType());
8064 return S.Context.getPointerType(op->getType());
8065 }
8066
8067 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)8068 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8069 SourceLocation OpLoc) {
8070 if (Op->isTypeDependent())
8071 return S.Context.DependentTy;
8072
8073 ExprResult ConvResult = S.UsualUnaryConversions(Op);
8074 if (ConvResult.isInvalid())
8075 return QualType();
8076 Op = ConvResult.take();
8077 QualType OpTy = Op->getType();
8078 QualType Result;
8079
8080 if (isa<CXXReinterpretCastExpr>(Op)) {
8081 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8082 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8083 Op->getSourceRange());
8084 }
8085
8086 // Note that per both C89 and C99, indirection is always legal, even if OpTy
8087 // is an incomplete type or void. It would be possible to warn about
8088 // dereferencing a void pointer, but it's completely well-defined, and such a
8089 // warning is unlikely to catch any mistakes.
8090 if (const PointerType *PT = OpTy->getAs<PointerType>())
8091 Result = PT->getPointeeType();
8092 else if (const ObjCObjectPointerType *OPT =
8093 OpTy->getAs<ObjCObjectPointerType>())
8094 Result = OPT->getPointeeType();
8095 else {
8096 ExprResult PR = S.CheckPlaceholderExpr(Op);
8097 if (PR.isInvalid()) return QualType();
8098 if (PR.take() != Op)
8099 return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8100 }
8101
8102 if (Result.isNull()) {
8103 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8104 << OpTy << Op->getSourceRange();
8105 return QualType();
8106 }
8107
8108 // Dereferences are usually l-values...
8109 VK = VK_LValue;
8110
8111 // ...except that certain expressions are never l-values in C.
8112 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8113 VK = VK_RValue;
8114
8115 return Result;
8116 }
8117
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)8118 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8119 tok::TokenKind Kind) {
8120 BinaryOperatorKind Opc;
8121 switch (Kind) {
8122 default: llvm_unreachable("Unknown binop!");
8123 case tok::periodstar: Opc = BO_PtrMemD; break;
8124 case tok::arrowstar: Opc = BO_PtrMemI; break;
8125 case tok::star: Opc = BO_Mul; break;
8126 case tok::slash: Opc = BO_Div; break;
8127 case tok::percent: Opc = BO_Rem; break;
8128 case tok::plus: Opc = BO_Add; break;
8129 case tok::minus: Opc = BO_Sub; break;
8130 case tok::lessless: Opc = BO_Shl; break;
8131 case tok::greatergreater: Opc = BO_Shr; break;
8132 case tok::lessequal: Opc = BO_LE; break;
8133 case tok::less: Opc = BO_LT; break;
8134 case tok::greaterequal: Opc = BO_GE; break;
8135 case tok::greater: Opc = BO_GT; break;
8136 case tok::exclaimequal: Opc = BO_NE; break;
8137 case tok::equalequal: Opc = BO_EQ; break;
8138 case tok::amp: Opc = BO_And; break;
8139 case tok::caret: Opc = BO_Xor; break;
8140 case tok::pipe: Opc = BO_Or; break;
8141 case tok::ampamp: Opc = BO_LAnd; break;
8142 case tok::pipepipe: Opc = BO_LOr; break;
8143 case tok::equal: Opc = BO_Assign; break;
8144 case tok::starequal: Opc = BO_MulAssign; break;
8145 case tok::slashequal: Opc = BO_DivAssign; break;
8146 case tok::percentequal: Opc = BO_RemAssign; break;
8147 case tok::plusequal: Opc = BO_AddAssign; break;
8148 case tok::minusequal: Opc = BO_SubAssign; break;
8149 case tok::lesslessequal: Opc = BO_ShlAssign; break;
8150 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
8151 case tok::ampequal: Opc = BO_AndAssign; break;
8152 case tok::caretequal: Opc = BO_XorAssign; break;
8153 case tok::pipeequal: Opc = BO_OrAssign; break;
8154 case tok::comma: Opc = BO_Comma; break;
8155 }
8156 return Opc;
8157 }
8158
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)8159 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8160 tok::TokenKind Kind) {
8161 UnaryOperatorKind Opc;
8162 switch (Kind) {
8163 default: llvm_unreachable("Unknown unary op!");
8164 case tok::plusplus: Opc = UO_PreInc; break;
8165 case tok::minusminus: Opc = UO_PreDec; break;
8166 case tok::amp: Opc = UO_AddrOf; break;
8167 case tok::star: Opc = UO_Deref; break;
8168 case tok::plus: Opc = UO_Plus; break;
8169 case tok::minus: Opc = UO_Minus; break;
8170 case tok::tilde: Opc = UO_Not; break;
8171 case tok::exclaim: Opc = UO_LNot; break;
8172 case tok::kw___real: Opc = UO_Real; break;
8173 case tok::kw___imag: Opc = UO_Imag; break;
8174 case tok::kw___extension__: Opc = UO_Extension; break;
8175 }
8176 return Opc;
8177 }
8178
8179 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8180 /// This warning is only emitted for builtin assignment operations. It is also
8181 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc)8182 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8183 SourceLocation OpLoc) {
8184 if (!S.ActiveTemplateInstantiations.empty())
8185 return;
8186 if (OpLoc.isInvalid() || OpLoc.isMacroID())
8187 return;
8188 LHSExpr = LHSExpr->IgnoreParenImpCasts();
8189 RHSExpr = RHSExpr->IgnoreParenImpCasts();
8190 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8191 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8192 if (!LHSDeclRef || !RHSDeclRef ||
8193 LHSDeclRef->getLocation().isMacroID() ||
8194 RHSDeclRef->getLocation().isMacroID())
8195 return;
8196 const ValueDecl *LHSDecl =
8197 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8198 const ValueDecl *RHSDecl =
8199 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8200 if (LHSDecl != RHSDecl)
8201 return;
8202 if (LHSDecl->getType().isVolatileQualified())
8203 return;
8204 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8205 if (RefTy->getPointeeType().isVolatileQualified())
8206 return;
8207
8208 S.Diag(OpLoc, diag::warn_self_assignment)
8209 << LHSDeclRef->getType()
8210 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8211 }
8212
8213 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
8214 /// operator @p Opc at location @c TokLoc. This routine only supports
8215 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8216 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8217 BinaryOperatorKind Opc,
8218 Expr *LHSExpr, Expr *RHSExpr) {
8219 if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
8220 // The syntax only allows initializer lists on the RHS of assignment,
8221 // so we don't need to worry about accepting invalid code for
8222 // non-assignment operators.
8223 // C++11 5.17p9:
8224 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8225 // of x = {} is x = T().
8226 InitializationKind Kind =
8227 InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8228 InitializedEntity Entity =
8229 InitializedEntity::InitializeTemporary(LHSExpr->getType());
8230 InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8231 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
8232 if (Init.isInvalid())
8233 return Init;
8234 RHSExpr = Init.take();
8235 }
8236
8237 ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8238 QualType ResultTy; // Result type of the binary operator.
8239 // The following two variables are used for compound assignment operators
8240 QualType CompLHSTy; // Type of LHS after promotions for computation
8241 QualType CompResultTy; // Type of computation result
8242 ExprValueKind VK = VK_RValue;
8243 ExprObjectKind OK = OK_Ordinary;
8244
8245 switch (Opc) {
8246 case BO_Assign:
8247 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8248 if (getLangOpts().CPlusPlus &&
8249 LHS.get()->getObjectKind() != OK_ObjCProperty) {
8250 VK = LHS.get()->getValueKind();
8251 OK = LHS.get()->getObjectKind();
8252 }
8253 if (!ResultTy.isNull())
8254 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8255 break;
8256 case BO_PtrMemD:
8257 case BO_PtrMemI:
8258 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8259 Opc == BO_PtrMemI);
8260 break;
8261 case BO_Mul:
8262 case BO_Div:
8263 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8264 Opc == BO_Div);
8265 break;
8266 case BO_Rem:
8267 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8268 break;
8269 case BO_Add:
8270 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8271 break;
8272 case BO_Sub:
8273 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8274 break;
8275 case BO_Shl:
8276 case BO_Shr:
8277 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8278 break;
8279 case BO_LE:
8280 case BO_LT:
8281 case BO_GE:
8282 case BO_GT:
8283 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8284 break;
8285 case BO_EQ:
8286 case BO_NE:
8287 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8288 break;
8289 case BO_And:
8290 case BO_Xor:
8291 case BO_Or:
8292 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8293 break;
8294 case BO_LAnd:
8295 case BO_LOr:
8296 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8297 break;
8298 case BO_MulAssign:
8299 case BO_DivAssign:
8300 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8301 Opc == BO_DivAssign);
8302 CompLHSTy = CompResultTy;
8303 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8304 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8305 break;
8306 case BO_RemAssign:
8307 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8308 CompLHSTy = CompResultTy;
8309 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8310 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8311 break;
8312 case BO_AddAssign:
8313 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8314 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8315 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8316 break;
8317 case BO_SubAssign:
8318 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8319 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8320 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8321 break;
8322 case BO_ShlAssign:
8323 case BO_ShrAssign:
8324 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8325 CompLHSTy = CompResultTy;
8326 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8327 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8328 break;
8329 case BO_AndAssign:
8330 case BO_XorAssign:
8331 case BO_OrAssign:
8332 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8333 CompLHSTy = CompResultTy;
8334 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8335 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8336 break;
8337 case BO_Comma:
8338 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8339 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8340 VK = RHS.get()->getValueKind();
8341 OK = RHS.get()->getObjectKind();
8342 }
8343 break;
8344 }
8345 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8346 return ExprError();
8347
8348 // Check for array bounds violations for both sides of the BinaryOperator
8349 CheckArrayAccess(LHS.get());
8350 CheckArrayAccess(RHS.get());
8351
8352 if (CompResultTy.isNull())
8353 return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8354 ResultTy, VK, OK, OpLoc));
8355 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8356 OK_ObjCProperty) {
8357 VK = VK_LValue;
8358 OK = LHS.get()->getObjectKind();
8359 }
8360 return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8361 ResultTy, VK, OK, CompLHSTy,
8362 CompResultTy, OpLoc));
8363 }
8364
8365 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8366 /// operators are mixed in a way that suggests that the programmer forgot that
8367 /// comparison operators have higher precedence. The most typical example of
8368 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8369 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8370 SourceLocation OpLoc, Expr *LHSExpr,
8371 Expr *RHSExpr) {
8372 typedef BinaryOperator BinOp;
8373 BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8374 RHSopc = static_cast<BinOp::Opcode>(-1);
8375 if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8376 LHSopc = BO->getOpcode();
8377 if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8378 RHSopc = BO->getOpcode();
8379
8380 // Subs are not binary operators.
8381 if (LHSopc == -1 && RHSopc == -1)
8382 return;
8383
8384 // Bitwise operations are sometimes used as eager logical ops.
8385 // Don't diagnose this.
8386 if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8387 (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8388 return;
8389
8390 bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8391 bool isRightComp = BinOp::isComparisonOp(RHSopc);
8392 if (!isLeftComp && !isRightComp) return;
8393
8394 SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8395 OpLoc)
8396 : SourceRange(OpLoc, RHSExpr->getLocEnd());
8397 std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8398 : BinOp::getOpcodeStr(RHSopc);
8399 SourceRange ParensRange = isLeftComp ?
8400 SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8401 RHSExpr->getLocEnd())
8402 : SourceRange(LHSExpr->getLocStart(),
8403 cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8404
8405 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8406 << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8407 SuggestParentheses(Self, OpLoc,
8408 Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8409 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8410 SuggestParentheses(Self, OpLoc,
8411 Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8412 ParensRange);
8413 }
8414
8415 /// \brief It accepts a '&' expr that is inside a '|' one.
8416 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8417 /// in parentheses.
8418 static void
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8419 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8420 BinaryOperator *Bop) {
8421 assert(Bop->getOpcode() == BO_And);
8422 Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8423 << Bop->getSourceRange() << OpLoc;
8424 SuggestParentheses(Self, Bop->getOperatorLoc(),
8425 Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8426 Bop->getSourceRange());
8427 }
8428
8429 /// \brief It accepts a '&&' expr that is inside a '||' one.
8430 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8431 /// in parentheses.
8432 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)8433 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8434 BinaryOperator *Bop) {
8435 assert(Bop->getOpcode() == BO_LAnd);
8436 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8437 << Bop->getSourceRange() << OpLoc;
8438 SuggestParentheses(Self, Bop->getOperatorLoc(),
8439 Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8440 Bop->getSourceRange());
8441 }
8442
8443 /// \brief Returns true if the given expression can be evaluated as a constant
8444 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)8445 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8446 bool Res;
8447 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8448 }
8449
8450 /// \brief Returns true if the given expression can be evaluated as a constant
8451 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)8452 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8453 bool Res;
8454 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8455 }
8456
8457 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8458 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8459 Expr *LHSExpr, Expr *RHSExpr) {
8460 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8461 if (Bop->getOpcode() == BO_LAnd) {
8462 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8463 if (EvaluatesAsFalse(S, RHSExpr))
8464 return;
8465 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8466 if (!EvaluatesAsTrue(S, Bop->getLHS()))
8467 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8468 } else if (Bop->getOpcode() == BO_LOr) {
8469 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8470 // If it's "a || b && 1 || c" we didn't warn earlier for
8471 // "a || b && 1", but warn now.
8472 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8473 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8474 }
8475 }
8476 }
8477 }
8478
8479 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8480 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8481 Expr *LHSExpr, Expr *RHSExpr) {
8482 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8483 if (Bop->getOpcode() == BO_LAnd) {
8484 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8485 if (EvaluatesAsFalse(S, LHSExpr))
8486 return;
8487 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8488 if (!EvaluatesAsTrue(S, Bop->getRHS()))
8489 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8490 }
8491 }
8492 }
8493
8494 /// \brief Look for '&' in the left or right hand of a '|' expr.
DiagnoseBitwiseAndInBitwiseOr(Sema & S,SourceLocation OpLoc,Expr * OrArg)8495 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8496 Expr *OrArg) {
8497 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8498 if (Bop->getOpcode() == BO_And)
8499 return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8500 }
8501 }
8502
8503 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8504 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)8505 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8506 SourceLocation OpLoc, Expr *LHSExpr,
8507 Expr *RHSExpr){
8508 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8509 if (BinaryOperator::isBitwiseOp(Opc))
8510 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8511
8512 // Diagnose "arg1 & arg2 | arg3"
8513 if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8514 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8515 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8516 }
8517
8518 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8519 // We don't warn for 'assert(a || b && "bad")' since this is safe.
8520 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8521 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8522 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8523 }
8524 }
8525
8526 // Binary Operators. 'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)8527 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8528 tok::TokenKind Kind,
8529 Expr *LHSExpr, Expr *RHSExpr) {
8530 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8531 assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8532 assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8533
8534 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8535 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8536
8537 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8538 }
8539
8540 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)8541 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8542 BinaryOperatorKind Opc,
8543 Expr *LHS, Expr *RHS) {
8544 // Find all of the overloaded operators visible from this
8545 // point. We perform both an operator-name lookup from the local
8546 // scope and an argument-dependent lookup based on the types of
8547 // the arguments.
8548 UnresolvedSet<16> Functions;
8549 OverloadedOperatorKind OverOp
8550 = BinaryOperator::getOverloadedOperator(Opc);
8551 if (Sc && OverOp != OO_None)
8552 S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8553 RHS->getType(), Functions);
8554
8555 // Build the (potentially-overloaded, potentially-dependent)
8556 // binary operation.
8557 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8558 }
8559
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)8560 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8561 BinaryOperatorKind Opc,
8562 Expr *LHSExpr, Expr *RHSExpr) {
8563 // We want to end up calling one of checkPseudoObjectAssignment
8564 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8565 // both expressions are overloadable or either is type-dependent),
8566 // or CreateBuiltinBinOp (in any other case). We also want to get
8567 // any placeholder types out of the way.
8568
8569 // Handle pseudo-objects in the LHS.
8570 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8571 // Assignments with a pseudo-object l-value need special analysis.
8572 if (pty->getKind() == BuiltinType::PseudoObject &&
8573 BinaryOperator::isAssignmentOp(Opc))
8574 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8575
8576 // Don't resolve overloads if the other type is overloadable.
8577 if (pty->getKind() == BuiltinType::Overload) {
8578 // We can't actually test that if we still have a placeholder,
8579 // though. Fortunately, none of the exceptions we see in that
8580 // code below are valid when the LHS is an overload set. Note
8581 // that an overload set can be dependently-typed, but it never
8582 // instantiates to having an overloadable type.
8583 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8584 if (resolvedRHS.isInvalid()) return ExprError();
8585 RHSExpr = resolvedRHS.take();
8586
8587 if (RHSExpr->isTypeDependent() ||
8588 RHSExpr->getType()->isOverloadableType())
8589 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8590 }
8591
8592 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8593 if (LHS.isInvalid()) return ExprError();
8594 LHSExpr = LHS.take();
8595 }
8596
8597 // Handle pseudo-objects in the RHS.
8598 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8599 // An overload in the RHS can potentially be resolved by the type
8600 // being assigned to.
8601 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8602 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8603 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8604
8605 if (LHSExpr->getType()->isOverloadableType())
8606 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8607
8608 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8609 }
8610
8611 // Don't resolve overloads if the other type is overloadable.
8612 if (pty->getKind() == BuiltinType::Overload &&
8613 LHSExpr->getType()->isOverloadableType())
8614 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8615
8616 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8617 if (!resolvedRHS.isUsable()) return ExprError();
8618 RHSExpr = resolvedRHS.take();
8619 }
8620
8621 if (getLangOpts().CPlusPlus) {
8622 // If either expression is type-dependent, always build an
8623 // overloaded op.
8624 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8625 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8626
8627 // Otherwise, build an overloaded op if either expression has an
8628 // overloadable type.
8629 if (LHSExpr->getType()->isOverloadableType() ||
8630 RHSExpr->getType()->isOverloadableType())
8631 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8632 }
8633
8634 // Build a built-in binary operation.
8635 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8636 }
8637
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)8638 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8639 UnaryOperatorKind Opc,
8640 Expr *InputExpr) {
8641 ExprResult Input = Owned(InputExpr);
8642 ExprValueKind VK = VK_RValue;
8643 ExprObjectKind OK = OK_Ordinary;
8644 QualType resultType;
8645 switch (Opc) {
8646 case UO_PreInc:
8647 case UO_PreDec:
8648 case UO_PostInc:
8649 case UO_PostDec:
8650 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8651 Opc == UO_PreInc ||
8652 Opc == UO_PostInc,
8653 Opc == UO_PreInc ||
8654 Opc == UO_PreDec);
8655 break;
8656 case UO_AddrOf:
8657 resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8658 break;
8659 case UO_Deref: {
8660 Input = DefaultFunctionArrayLvalueConversion(Input.take());
8661 if (Input.isInvalid()) return ExprError();
8662 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8663 break;
8664 }
8665 case UO_Plus:
8666 case UO_Minus:
8667 Input = UsualUnaryConversions(Input.take());
8668 if (Input.isInvalid()) return ExprError();
8669 resultType = Input.get()->getType();
8670 if (resultType->isDependentType())
8671 break;
8672 if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8673 resultType->isVectorType())
8674 break;
8675 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8676 resultType->isEnumeralType())
8677 break;
8678 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8679 Opc == UO_Plus &&
8680 resultType->isPointerType())
8681 break;
8682
8683 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8684 << resultType << Input.get()->getSourceRange());
8685
8686 case UO_Not: // bitwise complement
8687 Input = UsualUnaryConversions(Input.take());
8688 if (Input.isInvalid()) return ExprError();
8689 resultType = Input.get()->getType();
8690 if (resultType->isDependentType())
8691 break;
8692 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8693 if (resultType->isComplexType() || resultType->isComplexIntegerType())
8694 // C99 does not support '~' for complex conjugation.
8695 Diag(OpLoc, diag::ext_integer_complement_complex)
8696 << resultType << Input.get()->getSourceRange();
8697 else if (resultType->hasIntegerRepresentation())
8698 break;
8699 else {
8700 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8701 << resultType << Input.get()->getSourceRange());
8702 }
8703 break;
8704
8705 case UO_LNot: // logical negation
8706 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8707 Input = DefaultFunctionArrayLvalueConversion(Input.take());
8708 if (Input.isInvalid()) return ExprError();
8709 resultType = Input.get()->getType();
8710
8711 // Though we still have to promote half FP to float...
8712 if (resultType->isHalfType()) {
8713 Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8714 resultType = Context.FloatTy;
8715 }
8716
8717 if (resultType->isDependentType())
8718 break;
8719 if (resultType->isScalarType()) {
8720 // C99 6.5.3.3p1: ok, fallthrough;
8721 if (Context.getLangOpts().CPlusPlus) {
8722 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8723 // operand contextually converted to bool.
8724 Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8725 ScalarTypeToBooleanCastKind(resultType));
8726 }
8727 } else if (resultType->isExtVectorType()) {
8728 // Vector logical not returns the signed variant of the operand type.
8729 resultType = GetSignedVectorType(resultType);
8730 break;
8731 } else {
8732 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8733 << resultType << Input.get()->getSourceRange());
8734 }
8735
8736 // LNot always has type int. C99 6.5.3.3p5.
8737 // In C++, it's bool. C++ 5.3.1p8
8738 resultType = Context.getLogicalOperationType();
8739 break;
8740 case UO_Real:
8741 case UO_Imag:
8742 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8743 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8744 // complex l-values to ordinary l-values and all other values to r-values.
8745 if (Input.isInvalid()) return ExprError();
8746 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8747 if (Input.get()->getValueKind() != VK_RValue &&
8748 Input.get()->getObjectKind() == OK_Ordinary)
8749 VK = Input.get()->getValueKind();
8750 } else if (!getLangOpts().CPlusPlus) {
8751 // In C, a volatile scalar is read by __imag. In C++, it is not.
8752 Input = DefaultLvalueConversion(Input.take());
8753 }
8754 break;
8755 case UO_Extension:
8756 resultType = Input.get()->getType();
8757 VK = Input.get()->getValueKind();
8758 OK = Input.get()->getObjectKind();
8759 break;
8760 }
8761 if (resultType.isNull() || Input.isInvalid())
8762 return ExprError();
8763
8764 // Check for array bounds violations in the operand of the UnaryOperator,
8765 // except for the '*' and '&' operators that have to be handled specially
8766 // by CheckArrayAccess (as there are special cases like &array[arraysize]
8767 // that are explicitly defined as valid by the standard).
8768 if (Opc != UO_AddrOf && Opc != UO_Deref)
8769 CheckArrayAccess(Input.get());
8770
8771 return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8772 VK, OK, OpLoc));
8773 }
8774
8775 /// \brief Determine whether the given expression is a qualified member
8776 /// access expression, of a form that could be turned into a pointer to member
8777 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)8778 static bool isQualifiedMemberAccess(Expr *E) {
8779 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8780 if (!DRE->getQualifier())
8781 return false;
8782
8783 ValueDecl *VD = DRE->getDecl();
8784 if (!VD->isCXXClassMember())
8785 return false;
8786
8787 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8788 return true;
8789 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8790 return Method->isInstance();
8791
8792 return false;
8793 }
8794
8795 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8796 if (!ULE->getQualifier())
8797 return false;
8798
8799 for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8800 DEnd = ULE->decls_end();
8801 D != DEnd; ++D) {
8802 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8803 if (Method->isInstance())
8804 return true;
8805 } else {
8806 // Overload set does not contain methods.
8807 break;
8808 }
8809 }
8810
8811 return false;
8812 }
8813
8814 return false;
8815 }
8816
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)8817 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8818 UnaryOperatorKind Opc, Expr *Input) {
8819 // First things first: handle placeholders so that the
8820 // overloaded-operator check considers the right type.
8821 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8822 // Increment and decrement of pseudo-object references.
8823 if (pty->getKind() == BuiltinType::PseudoObject &&
8824 UnaryOperator::isIncrementDecrementOp(Opc))
8825 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8826
8827 // extension is always a builtin operator.
8828 if (Opc == UO_Extension)
8829 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8830
8831 // & gets special logic for several kinds of placeholder.
8832 // The builtin code knows what to do.
8833 if (Opc == UO_AddrOf &&
8834 (pty->getKind() == BuiltinType::Overload ||
8835 pty->getKind() == BuiltinType::UnknownAny ||
8836 pty->getKind() == BuiltinType::BoundMember))
8837 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8838
8839 // Anything else needs to be handled now.
8840 ExprResult Result = CheckPlaceholderExpr(Input);
8841 if (Result.isInvalid()) return ExprError();
8842 Input = Result.take();
8843 }
8844
8845 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8846 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8847 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8848 // Find all of the overloaded operators visible from this
8849 // point. We perform both an operator-name lookup from the local
8850 // scope and an argument-dependent lookup based on the types of
8851 // the arguments.
8852 UnresolvedSet<16> Functions;
8853 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8854 if (S && OverOp != OO_None)
8855 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8856 Functions);
8857
8858 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8859 }
8860
8861 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8862 }
8863
8864 // Unary Operators. 'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)8865 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8866 tok::TokenKind Op, Expr *Input) {
8867 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8868 }
8869
8870 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)8871 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8872 LabelDecl *TheDecl) {
8873 TheDecl->setUsed();
8874 // Create the AST node. The address of a label always has type 'void*'.
8875 return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8876 Context.getPointerType(Context.VoidTy)));
8877 }
8878
8879 /// Given the last statement in a statement-expression, check whether
8880 /// the result is a producing expression (like a call to an
8881 /// ns_returns_retained function) and, if so, rebuild it to hoist the
8882 /// release out of the full-expression. Otherwise, return null.
8883 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * Statement)8884 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8885 // Should always be wrapped with one of these.
8886 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8887 if (!cleanups) return 0;
8888
8889 ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8890 if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8891 return 0;
8892
8893 // Splice out the cast. This shouldn't modify any interesting
8894 // features of the statement.
8895 Expr *producer = cast->getSubExpr();
8896 assert(producer->getType() == cast->getType());
8897 assert(producer->getValueKind() == cast->getValueKind());
8898 cleanups->setSubExpr(producer);
8899 return cleanups;
8900 }
8901
ActOnStartStmtExpr()8902 void Sema::ActOnStartStmtExpr() {
8903 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8904 }
8905
ActOnStmtExprError()8906 void Sema::ActOnStmtExprError() {
8907 // Note that function is also called by TreeTransform when leaving a
8908 // StmtExpr scope without rebuilding anything.
8909
8910 DiscardCleanupsInEvaluationContext();
8911 PopExpressionEvaluationContext();
8912 }
8913
8914 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)8915 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8916 SourceLocation RPLoc) { // "({..})"
8917 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8918 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8919
8920 if (hasAnyUnrecoverableErrorsInThisFunction())
8921 DiscardCleanupsInEvaluationContext();
8922 assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8923 PopExpressionEvaluationContext();
8924
8925 bool isFileScope
8926 = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8927 if (isFileScope)
8928 return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8929
8930 // FIXME: there are a variety of strange constraints to enforce here, for
8931 // example, it is not possible to goto into a stmt expression apparently.
8932 // More semantic analysis is needed.
8933
8934 // If there are sub stmts in the compound stmt, take the type of the last one
8935 // as the type of the stmtexpr.
8936 QualType Ty = Context.VoidTy;
8937 bool StmtExprMayBindToTemp = false;
8938 if (!Compound->body_empty()) {
8939 Stmt *LastStmt = Compound->body_back();
8940 LabelStmt *LastLabelStmt = 0;
8941 // If LastStmt is a label, skip down through into the body.
8942 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8943 LastLabelStmt = Label;
8944 LastStmt = Label->getSubStmt();
8945 }
8946
8947 if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8948 // Do function/array conversion on the last expression, but not
8949 // lvalue-to-rvalue. However, initialize an unqualified type.
8950 ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8951 if (LastExpr.isInvalid())
8952 return ExprError();
8953 Ty = LastExpr.get()->getType().getUnqualifiedType();
8954
8955 if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8956 // In ARC, if the final expression ends in a consume, splice
8957 // the consume out and bind it later. In the alternate case
8958 // (when dealing with a retainable type), the result
8959 // initialization will create a produce. In both cases the
8960 // result will be +1, and we'll need to balance that out with
8961 // a bind.
8962 if (Expr *rebuiltLastStmt
8963 = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8964 LastExpr = rebuiltLastStmt;
8965 } else {
8966 LastExpr = PerformCopyInitialization(
8967 InitializedEntity::InitializeResult(LPLoc,
8968 Ty,
8969 false),
8970 SourceLocation(),
8971 LastExpr);
8972 }
8973
8974 if (LastExpr.isInvalid())
8975 return ExprError();
8976 if (LastExpr.get() != 0) {
8977 if (!LastLabelStmt)
8978 Compound->setLastStmt(LastExpr.take());
8979 else
8980 LastLabelStmt->setSubStmt(LastExpr.take());
8981 StmtExprMayBindToTemp = true;
8982 }
8983 }
8984 }
8985 }
8986
8987 // FIXME: Check that expression type is complete/non-abstract; statement
8988 // expressions are not lvalues.
8989 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8990 if (StmtExprMayBindToTemp)
8991 return MaybeBindToTemporary(ResStmtExpr);
8992 return Owned(ResStmtExpr);
8993 }
8994
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)8995 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8996 TypeSourceInfo *TInfo,
8997 OffsetOfComponent *CompPtr,
8998 unsigned NumComponents,
8999 SourceLocation RParenLoc) {
9000 QualType ArgTy = TInfo->getType();
9001 bool Dependent = ArgTy->isDependentType();
9002 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9003
9004 // We must have at least one component that refers to the type, and the first
9005 // one is known to be a field designator. Verify that the ArgTy represents
9006 // a struct/union/class.
9007 if (!Dependent && !ArgTy->isRecordType())
9008 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9009 << ArgTy << TypeRange);
9010
9011 // Type must be complete per C99 7.17p3 because a declaring a variable
9012 // with an incomplete type would be ill-formed.
9013 if (!Dependent
9014 && RequireCompleteType(BuiltinLoc, ArgTy,
9015 diag::err_offsetof_incomplete_type, TypeRange))
9016 return ExprError();
9017
9018 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9019 // GCC extension, diagnose them.
9020 // FIXME: This diagnostic isn't actually visible because the location is in
9021 // a system header!
9022 if (NumComponents != 1)
9023 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9024 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9025
9026 bool DidWarnAboutNonPOD = false;
9027 QualType CurrentType = ArgTy;
9028 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9029 SmallVector<OffsetOfNode, 4> Comps;
9030 SmallVector<Expr*, 4> Exprs;
9031 for (unsigned i = 0; i != NumComponents; ++i) {
9032 const OffsetOfComponent &OC = CompPtr[i];
9033 if (OC.isBrackets) {
9034 // Offset of an array sub-field. TODO: Should we allow vector elements?
9035 if (!CurrentType->isDependentType()) {
9036 const ArrayType *AT = Context.getAsArrayType(CurrentType);
9037 if(!AT)
9038 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9039 << CurrentType);
9040 CurrentType = AT->getElementType();
9041 } else
9042 CurrentType = Context.DependentTy;
9043
9044 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9045 if (IdxRval.isInvalid())
9046 return ExprError();
9047 Expr *Idx = IdxRval.take();
9048
9049 // The expression must be an integral expression.
9050 // FIXME: An integral constant expression?
9051 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9052 !Idx->getType()->isIntegerType())
9053 return ExprError(Diag(Idx->getLocStart(),
9054 diag::err_typecheck_subscript_not_integer)
9055 << Idx->getSourceRange());
9056
9057 // Record this array index.
9058 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9059 Exprs.push_back(Idx);
9060 continue;
9061 }
9062
9063 // Offset of a field.
9064 if (CurrentType->isDependentType()) {
9065 // We have the offset of a field, but we can't look into the dependent
9066 // type. Just record the identifier of the field.
9067 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9068 CurrentType = Context.DependentTy;
9069 continue;
9070 }
9071
9072 // We need to have a complete type to look into.
9073 if (RequireCompleteType(OC.LocStart, CurrentType,
9074 diag::err_offsetof_incomplete_type))
9075 return ExprError();
9076
9077 // Look for the designated field.
9078 const RecordType *RC = CurrentType->getAs<RecordType>();
9079 if (!RC)
9080 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9081 << CurrentType);
9082 RecordDecl *RD = RC->getDecl();
9083
9084 // C++ [lib.support.types]p5:
9085 // The macro offsetof accepts a restricted set of type arguments in this
9086 // International Standard. type shall be a POD structure or a POD union
9087 // (clause 9).
9088 // C++11 [support.types]p4:
9089 // If type is not a standard-layout class (Clause 9), the results are
9090 // undefined.
9091 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9092 bool IsSafe = LangOpts.CPlusPlus0x? CRD->isStandardLayout() : CRD->isPOD();
9093 unsigned DiagID =
9094 LangOpts.CPlusPlus0x? diag::warn_offsetof_non_standardlayout_type
9095 : diag::warn_offsetof_non_pod_type;
9096
9097 if (!IsSafe && !DidWarnAboutNonPOD &&
9098 DiagRuntimeBehavior(BuiltinLoc, 0,
9099 PDiag(DiagID)
9100 << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9101 << CurrentType))
9102 DidWarnAboutNonPOD = true;
9103 }
9104
9105 // Look for the field.
9106 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9107 LookupQualifiedName(R, RD);
9108 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9109 IndirectFieldDecl *IndirectMemberDecl = 0;
9110 if (!MemberDecl) {
9111 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9112 MemberDecl = IndirectMemberDecl->getAnonField();
9113 }
9114
9115 if (!MemberDecl)
9116 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9117 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9118 OC.LocEnd));
9119
9120 // C99 7.17p3:
9121 // (If the specified member is a bit-field, the behavior is undefined.)
9122 //
9123 // We diagnose this as an error.
9124 if (MemberDecl->isBitField()) {
9125 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9126 << MemberDecl->getDeclName()
9127 << SourceRange(BuiltinLoc, RParenLoc);
9128 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9129 return ExprError();
9130 }
9131
9132 RecordDecl *Parent = MemberDecl->getParent();
9133 if (IndirectMemberDecl)
9134 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9135
9136 // If the member was found in a base class, introduce OffsetOfNodes for
9137 // the base class indirections.
9138 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9139 /*DetectVirtual=*/false);
9140 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9141 CXXBasePath &Path = Paths.front();
9142 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9143 B != BEnd; ++B)
9144 Comps.push_back(OffsetOfNode(B->Base));
9145 }
9146
9147 if (IndirectMemberDecl) {
9148 for (IndirectFieldDecl::chain_iterator FI =
9149 IndirectMemberDecl->chain_begin(),
9150 FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9151 assert(isa<FieldDecl>(*FI));
9152 Comps.push_back(OffsetOfNode(OC.LocStart,
9153 cast<FieldDecl>(*FI), OC.LocEnd));
9154 }
9155 } else
9156 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9157
9158 CurrentType = MemberDecl->getType().getNonReferenceType();
9159 }
9160
9161 return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9162 TInfo, Comps, Exprs, RParenLoc));
9163 }
9164
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,OffsetOfComponent * CompPtr,unsigned NumComponents,SourceLocation RParenLoc)9165 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9166 SourceLocation BuiltinLoc,
9167 SourceLocation TypeLoc,
9168 ParsedType ParsedArgTy,
9169 OffsetOfComponent *CompPtr,
9170 unsigned NumComponents,
9171 SourceLocation RParenLoc) {
9172
9173 TypeSourceInfo *ArgTInfo;
9174 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9175 if (ArgTy.isNull())
9176 return ExprError();
9177
9178 if (!ArgTInfo)
9179 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9180
9181 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9182 RParenLoc);
9183 }
9184
9185
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)9186 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9187 Expr *CondExpr,
9188 Expr *LHSExpr, Expr *RHSExpr,
9189 SourceLocation RPLoc) {
9190 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9191
9192 ExprValueKind VK = VK_RValue;
9193 ExprObjectKind OK = OK_Ordinary;
9194 QualType resType;
9195 bool ValueDependent = false;
9196 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9197 resType = Context.DependentTy;
9198 ValueDependent = true;
9199 } else {
9200 // The conditional expression is required to be a constant expression.
9201 llvm::APSInt condEval(32);
9202 ExprResult CondICE
9203 = VerifyIntegerConstantExpression(CondExpr, &condEval,
9204 diag::err_typecheck_choose_expr_requires_constant, false);
9205 if (CondICE.isInvalid())
9206 return ExprError();
9207 CondExpr = CondICE.take();
9208
9209 // If the condition is > zero, then the AST type is the same as the LSHExpr.
9210 Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9211
9212 resType = ActiveExpr->getType();
9213 ValueDependent = ActiveExpr->isValueDependent();
9214 VK = ActiveExpr->getValueKind();
9215 OK = ActiveExpr->getObjectKind();
9216 }
9217
9218 return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9219 resType, VK, OK, RPLoc,
9220 resType->isDependentType(),
9221 ValueDependent));
9222 }
9223
9224 //===----------------------------------------------------------------------===//
9225 // Clang Extensions.
9226 //===----------------------------------------------------------------------===//
9227
9228 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)9229 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9230 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9231 PushBlockScope(CurScope, Block);
9232 CurContext->addDecl(Block);
9233 if (CurScope)
9234 PushDeclContext(CurScope, Block);
9235 else
9236 CurContext = Block;
9237
9238 getCurBlock()->HasImplicitReturnType = true;
9239
9240 // Enter a new evaluation context to insulate the block from any
9241 // cleanups from the enclosing full-expression.
9242 PushExpressionEvaluationContext(PotentiallyEvaluated);
9243 }
9244
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)9245 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9246 Scope *CurScope) {
9247 assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9248 assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9249 BlockScopeInfo *CurBlock = getCurBlock();
9250
9251 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9252 QualType T = Sig->getType();
9253
9254 // FIXME: We should allow unexpanded parameter packs here, but that would,
9255 // in turn, make the block expression contain unexpanded parameter packs.
9256 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9257 // Drop the parameters.
9258 FunctionProtoType::ExtProtoInfo EPI;
9259 EPI.HasTrailingReturn = false;
9260 EPI.TypeQuals |= DeclSpec::TQ_const;
9261 T = Context.getFunctionType(Context.DependentTy, /*Args=*/0, /*NumArgs=*/0,
9262 EPI);
9263 Sig = Context.getTrivialTypeSourceInfo(T);
9264 }
9265
9266 // GetTypeForDeclarator always produces a function type for a block
9267 // literal signature. Furthermore, it is always a FunctionProtoType
9268 // unless the function was written with a typedef.
9269 assert(T->isFunctionType() &&
9270 "GetTypeForDeclarator made a non-function block signature");
9271
9272 // Look for an explicit signature in that function type.
9273 FunctionProtoTypeLoc ExplicitSignature;
9274
9275 TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9276 if (isa<FunctionProtoTypeLoc>(tmp)) {
9277 ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
9278
9279 // Check whether that explicit signature was synthesized by
9280 // GetTypeForDeclarator. If so, don't save that as part of the
9281 // written signature.
9282 if (ExplicitSignature.getLocalRangeBegin() ==
9283 ExplicitSignature.getLocalRangeEnd()) {
9284 // This would be much cheaper if we stored TypeLocs instead of
9285 // TypeSourceInfos.
9286 TypeLoc Result = ExplicitSignature.getResultLoc();
9287 unsigned Size = Result.getFullDataSize();
9288 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9289 Sig->getTypeLoc().initializeFullCopy(Result, Size);
9290
9291 ExplicitSignature = FunctionProtoTypeLoc();
9292 }
9293 }
9294
9295 CurBlock->TheDecl->setSignatureAsWritten(Sig);
9296 CurBlock->FunctionType = T;
9297
9298 const FunctionType *Fn = T->getAs<FunctionType>();
9299 QualType RetTy = Fn->getResultType();
9300 bool isVariadic =
9301 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9302
9303 CurBlock->TheDecl->setIsVariadic(isVariadic);
9304
9305 // Don't allow returning a objc interface by value.
9306 if (RetTy->isObjCObjectType()) {
9307 Diag(ParamInfo.getLocStart(),
9308 diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9309 return;
9310 }
9311
9312 // Context.DependentTy is used as a placeholder for a missing block
9313 // return type. TODO: what should we do with declarators like:
9314 // ^ * { ... }
9315 // If the answer is "apply template argument deduction"....
9316 if (RetTy != Context.DependentTy) {
9317 CurBlock->ReturnType = RetTy;
9318 CurBlock->TheDecl->setBlockMissingReturnType(false);
9319 CurBlock->HasImplicitReturnType = false;
9320 }
9321
9322 // Push block parameters from the declarator if we had them.
9323 SmallVector<ParmVarDecl*, 8> Params;
9324 if (ExplicitSignature) {
9325 for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9326 ParmVarDecl *Param = ExplicitSignature.getArg(I);
9327 if (Param->getIdentifier() == 0 &&
9328 !Param->isImplicit() &&
9329 !Param->isInvalidDecl() &&
9330 !getLangOpts().CPlusPlus)
9331 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9332 Params.push_back(Param);
9333 }
9334
9335 // Fake up parameter variables if we have a typedef, like
9336 // ^ fntype { ... }
9337 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9338 for (FunctionProtoType::arg_type_iterator
9339 I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9340 ParmVarDecl *Param =
9341 BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9342 ParamInfo.getLocStart(),
9343 *I);
9344 Params.push_back(Param);
9345 }
9346 }
9347
9348 // Set the parameters on the block decl.
9349 if (!Params.empty()) {
9350 CurBlock->TheDecl->setParams(Params);
9351 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9352 CurBlock->TheDecl->param_end(),
9353 /*CheckParameterNames=*/false);
9354 }
9355
9356 // Finally we can process decl attributes.
9357 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9358
9359 // Put the parameter variables in scope. We can bail out immediately
9360 // if we don't have any.
9361 if (Params.empty())
9362 return;
9363
9364 for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9365 E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9366 (*AI)->setOwningFunction(CurBlock->TheDecl);
9367
9368 // If this has an identifier, add it to the scope stack.
9369 if ((*AI)->getIdentifier()) {
9370 CheckShadow(CurBlock->TheScope, *AI);
9371
9372 PushOnScopeChains(*AI, CurBlock->TheScope);
9373 }
9374 }
9375 }
9376
9377 /// ActOnBlockError - If there is an error parsing a block, this callback
9378 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)9379 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9380 // Leave the expression-evaluation context.
9381 DiscardCleanupsInEvaluationContext();
9382 PopExpressionEvaluationContext();
9383
9384 // Pop off CurBlock, handle nested blocks.
9385 PopDeclContext();
9386 PopFunctionScopeInfo();
9387 }
9388
9389 /// ActOnBlockStmtExpr - This is called when the body of a block statement
9390 /// literal was successfully completed. ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)9391 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9392 Stmt *Body, Scope *CurScope) {
9393 // If blocks are disabled, emit an error.
9394 if (!LangOpts.Blocks)
9395 Diag(CaretLoc, diag::err_blocks_disable);
9396
9397 // Leave the expression-evaluation context.
9398 if (hasAnyUnrecoverableErrorsInThisFunction())
9399 DiscardCleanupsInEvaluationContext();
9400 assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9401 PopExpressionEvaluationContext();
9402
9403 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9404
9405 if (BSI->HasImplicitReturnType)
9406 deduceClosureReturnType(*BSI);
9407
9408 PopDeclContext();
9409
9410 QualType RetTy = Context.VoidTy;
9411 if (!BSI->ReturnType.isNull())
9412 RetTy = BSI->ReturnType;
9413
9414 bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9415 QualType BlockTy;
9416
9417 // Set the captured variables on the block.
9418 // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9419 SmallVector<BlockDecl::Capture, 4> Captures;
9420 for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9421 CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9422 if (Cap.isThisCapture())
9423 continue;
9424 BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9425 Cap.isNested(), Cap.getCopyExpr());
9426 Captures.push_back(NewCap);
9427 }
9428 BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9429 BSI->CXXThisCaptureIndex != 0);
9430
9431 // If the user wrote a function type in some form, try to use that.
9432 if (!BSI->FunctionType.isNull()) {
9433 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9434
9435 FunctionType::ExtInfo Ext = FTy->getExtInfo();
9436 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9437
9438 // Turn protoless block types into nullary block types.
9439 if (isa<FunctionNoProtoType>(FTy)) {
9440 FunctionProtoType::ExtProtoInfo EPI;
9441 EPI.ExtInfo = Ext;
9442 BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9443
9444 // Otherwise, if we don't need to change anything about the function type,
9445 // preserve its sugar structure.
9446 } else if (FTy->getResultType() == RetTy &&
9447 (!NoReturn || FTy->getNoReturnAttr())) {
9448 BlockTy = BSI->FunctionType;
9449
9450 // Otherwise, make the minimal modifications to the function type.
9451 } else {
9452 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9453 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9454 EPI.TypeQuals = 0; // FIXME: silently?
9455 EPI.ExtInfo = Ext;
9456 BlockTy = Context.getFunctionType(RetTy,
9457 FPT->arg_type_begin(),
9458 FPT->getNumArgs(),
9459 EPI);
9460 }
9461
9462 // If we don't have a function type, just build one from nothing.
9463 } else {
9464 FunctionProtoType::ExtProtoInfo EPI;
9465 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9466 BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9467 }
9468
9469 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9470 BSI->TheDecl->param_end());
9471 BlockTy = Context.getBlockPointerType(BlockTy);
9472
9473 // If needed, diagnose invalid gotos and switches in the block.
9474 if (getCurFunction()->NeedsScopeChecking() &&
9475 !hasAnyUnrecoverableErrorsInThisFunction() &&
9476 !PP.isCodeCompletionEnabled())
9477 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9478
9479 BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9480
9481 // Try to apply the named return value optimization. We have to check again
9482 // if we can do this, though, because blocks keep return statements around
9483 // to deduce an implicit return type.
9484 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9485 !BSI->TheDecl->isDependentContext())
9486 computeNRVO(Body, getCurBlock());
9487
9488 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9489 const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9490 PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9491
9492 // If the block isn't obviously global, i.e. it captures anything at
9493 // all, then we need to do a few things in the surrounding context:
9494 if (Result->getBlockDecl()->hasCaptures()) {
9495 // First, this expression has a new cleanup object.
9496 ExprCleanupObjects.push_back(Result->getBlockDecl());
9497 ExprNeedsCleanups = true;
9498
9499 // It also gets a branch-protected scope if any of the captured
9500 // variables needs destruction.
9501 for (BlockDecl::capture_const_iterator
9502 ci = Result->getBlockDecl()->capture_begin(),
9503 ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9504 const VarDecl *var = ci->getVariable();
9505 if (var->getType().isDestructedType() != QualType::DK_none) {
9506 getCurFunction()->setHasBranchProtectedScope();
9507 break;
9508 }
9509 }
9510 }
9511
9512 return Owned(Result);
9513 }
9514
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)9515 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9516 Expr *E, ParsedType Ty,
9517 SourceLocation RPLoc) {
9518 TypeSourceInfo *TInfo;
9519 GetTypeFromParser(Ty, &TInfo);
9520 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9521 }
9522
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)9523 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9524 Expr *E, TypeSourceInfo *TInfo,
9525 SourceLocation RPLoc) {
9526 Expr *OrigExpr = E;
9527
9528 // Get the va_list type
9529 QualType VaListType = Context.getBuiltinVaListType();
9530 if (VaListType->isArrayType()) {
9531 // Deal with implicit array decay; for example, on x86-64,
9532 // va_list is an array, but it's supposed to decay to
9533 // a pointer for va_arg.
9534 VaListType = Context.getArrayDecayedType(VaListType);
9535 // Make sure the input expression also decays appropriately.
9536 ExprResult Result = UsualUnaryConversions(E);
9537 if (Result.isInvalid())
9538 return ExprError();
9539 E = Result.take();
9540 } else {
9541 // Otherwise, the va_list argument must be an l-value because
9542 // it is modified by va_arg.
9543 if (!E->isTypeDependent() &&
9544 CheckForModifiableLvalue(E, BuiltinLoc, *this))
9545 return ExprError();
9546 }
9547
9548 if (!E->isTypeDependent() &&
9549 !Context.hasSameType(VaListType, E->getType())) {
9550 return ExprError(Diag(E->getLocStart(),
9551 diag::err_first_argument_to_va_arg_not_of_type_va_list)
9552 << OrigExpr->getType() << E->getSourceRange());
9553 }
9554
9555 if (!TInfo->getType()->isDependentType()) {
9556 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9557 diag::err_second_parameter_to_va_arg_incomplete,
9558 TInfo->getTypeLoc()))
9559 return ExprError();
9560
9561 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9562 TInfo->getType(),
9563 diag::err_second_parameter_to_va_arg_abstract,
9564 TInfo->getTypeLoc()))
9565 return ExprError();
9566
9567 if (!TInfo->getType().isPODType(Context)) {
9568 Diag(TInfo->getTypeLoc().getBeginLoc(),
9569 TInfo->getType()->isObjCLifetimeType()
9570 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9571 : diag::warn_second_parameter_to_va_arg_not_pod)
9572 << TInfo->getType()
9573 << TInfo->getTypeLoc().getSourceRange();
9574 }
9575
9576 // Check for va_arg where arguments of the given type will be promoted
9577 // (i.e. this va_arg is guaranteed to have undefined behavior).
9578 QualType PromoteType;
9579 if (TInfo->getType()->isPromotableIntegerType()) {
9580 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9581 if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9582 PromoteType = QualType();
9583 }
9584 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9585 PromoteType = Context.DoubleTy;
9586 if (!PromoteType.isNull())
9587 Diag(TInfo->getTypeLoc().getBeginLoc(),
9588 diag::warn_second_parameter_to_va_arg_never_compatible)
9589 << TInfo->getType()
9590 << PromoteType
9591 << TInfo->getTypeLoc().getSourceRange();
9592 }
9593
9594 QualType T = TInfo->getType().getNonLValueExprType(Context);
9595 return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9596 }
9597
ActOnGNUNullExpr(SourceLocation TokenLoc)9598 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9599 // The type of __null will be int or long, depending on the size of
9600 // pointers on the target.
9601 QualType Ty;
9602 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9603 if (pw == Context.getTargetInfo().getIntWidth())
9604 Ty = Context.IntTy;
9605 else if (pw == Context.getTargetInfo().getLongWidth())
9606 Ty = Context.LongTy;
9607 else if (pw == Context.getTargetInfo().getLongLongWidth())
9608 Ty = Context.LongLongTy;
9609 else {
9610 llvm_unreachable("I don't know size of pointer!");
9611 }
9612
9613 return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9614 }
9615
MakeObjCStringLiteralFixItHint(Sema & SemaRef,QualType DstType,Expr * SrcExpr,FixItHint & Hint)9616 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9617 Expr *SrcExpr, FixItHint &Hint) {
9618 if (!SemaRef.getLangOpts().ObjC1)
9619 return;
9620
9621 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9622 if (!PT)
9623 return;
9624
9625 // Check if the destination is of type 'id'.
9626 if (!PT->isObjCIdType()) {
9627 // Check if the destination is the 'NSString' interface.
9628 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9629 if (!ID || !ID->getIdentifier()->isStr("NSString"))
9630 return;
9631 }
9632
9633 // Ignore any parens, implicit casts (should only be
9634 // array-to-pointer decays), and not-so-opaque values. The last is
9635 // important for making this trigger for property assignments.
9636 SrcExpr = SrcExpr->IgnoreParenImpCasts();
9637 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9638 if (OV->getSourceExpr())
9639 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9640
9641 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9642 if (!SL || !SL->isAscii())
9643 return;
9644
9645 Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9646 }
9647
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)9648 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9649 SourceLocation Loc,
9650 QualType DstType, QualType SrcType,
9651 Expr *SrcExpr, AssignmentAction Action,
9652 bool *Complained) {
9653 if (Complained)
9654 *Complained = false;
9655
9656 // Decode the result (notice that AST's are still created for extensions).
9657 bool CheckInferredResultType = false;
9658 bool isInvalid = false;
9659 unsigned DiagKind = 0;
9660 FixItHint Hint;
9661 ConversionFixItGenerator ConvHints;
9662 bool MayHaveConvFixit = false;
9663 bool MayHaveFunctionDiff = false;
9664
9665 switch (ConvTy) {
9666 case Compatible:
9667 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
9668 return false;
9669
9670 case PointerToInt:
9671 DiagKind = diag::ext_typecheck_convert_pointer_int;
9672 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9673 MayHaveConvFixit = true;
9674 break;
9675 case IntToPointer:
9676 DiagKind = diag::ext_typecheck_convert_int_pointer;
9677 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9678 MayHaveConvFixit = true;
9679 break;
9680 case IncompatiblePointer:
9681 MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9682 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9683 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9684 SrcType->isObjCObjectPointerType();
9685 if (Hint.isNull() && !CheckInferredResultType) {
9686 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9687 }
9688 MayHaveConvFixit = true;
9689 break;
9690 case IncompatiblePointerSign:
9691 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9692 break;
9693 case FunctionVoidPointer:
9694 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9695 break;
9696 case IncompatiblePointerDiscardsQualifiers: {
9697 // Perform array-to-pointer decay if necessary.
9698 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9699
9700 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9701 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9702 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9703 DiagKind = diag::err_typecheck_incompatible_address_space;
9704 break;
9705
9706
9707 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9708 DiagKind = diag::err_typecheck_incompatible_ownership;
9709 break;
9710 }
9711
9712 llvm_unreachable("unknown error case for discarding qualifiers!");
9713 // fallthrough
9714 }
9715 case CompatiblePointerDiscardsQualifiers:
9716 // If the qualifiers lost were because we were applying the
9717 // (deprecated) C++ conversion from a string literal to a char*
9718 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
9719 // Ideally, this check would be performed in
9720 // checkPointerTypesForAssignment. However, that would require a
9721 // bit of refactoring (so that the second argument is an
9722 // expression, rather than a type), which should be done as part
9723 // of a larger effort to fix checkPointerTypesForAssignment for
9724 // C++ semantics.
9725 if (getLangOpts().CPlusPlus &&
9726 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9727 return false;
9728 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9729 break;
9730 case IncompatibleNestedPointerQualifiers:
9731 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9732 break;
9733 case IntToBlockPointer:
9734 DiagKind = diag::err_int_to_block_pointer;
9735 break;
9736 case IncompatibleBlockPointer:
9737 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9738 break;
9739 case IncompatibleObjCQualifiedId:
9740 // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9741 // it can give a more specific diagnostic.
9742 DiagKind = diag::warn_incompatible_qualified_id;
9743 break;
9744 case IncompatibleVectors:
9745 DiagKind = diag::warn_incompatible_vectors;
9746 break;
9747 case IncompatibleObjCWeakRef:
9748 DiagKind = diag::err_arc_weak_unavailable_assign;
9749 break;
9750 case Incompatible:
9751 DiagKind = diag::err_typecheck_convert_incompatible;
9752 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9753 MayHaveConvFixit = true;
9754 isInvalid = true;
9755 MayHaveFunctionDiff = true;
9756 break;
9757 }
9758
9759 QualType FirstType, SecondType;
9760 switch (Action) {
9761 case AA_Assigning:
9762 case AA_Initializing:
9763 // The destination type comes first.
9764 FirstType = DstType;
9765 SecondType = SrcType;
9766 break;
9767
9768 case AA_Returning:
9769 case AA_Passing:
9770 case AA_Converting:
9771 case AA_Sending:
9772 case AA_Casting:
9773 // The source type comes first.
9774 FirstType = SrcType;
9775 SecondType = DstType;
9776 break;
9777 }
9778
9779 PartialDiagnostic FDiag = PDiag(DiagKind);
9780 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9781
9782 // If we can fix the conversion, suggest the FixIts.
9783 assert(ConvHints.isNull() || Hint.isNull());
9784 if (!ConvHints.isNull()) {
9785 for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9786 HE = ConvHints.Hints.end(); HI != HE; ++HI)
9787 FDiag << *HI;
9788 } else {
9789 FDiag << Hint;
9790 }
9791 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9792
9793 if (MayHaveFunctionDiff)
9794 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9795
9796 Diag(Loc, FDiag);
9797
9798 if (SecondType == Context.OverloadTy)
9799 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9800 FirstType);
9801
9802 if (CheckInferredResultType)
9803 EmitRelatedResultTypeNote(SrcExpr);
9804
9805 if (Complained)
9806 *Complained = true;
9807 return isInvalid;
9808 }
9809
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result)9810 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9811 llvm::APSInt *Result) {
9812 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
9813 public:
9814 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9815 S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
9816 }
9817 } Diagnoser;
9818
9819 return VerifyIntegerConstantExpression(E, Result, Diagnoser);
9820 }
9821
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,bool AllowFold)9822 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9823 llvm::APSInt *Result,
9824 unsigned DiagID,
9825 bool AllowFold) {
9826 class IDDiagnoser : public VerifyICEDiagnoser {
9827 unsigned DiagID;
9828
9829 public:
9830 IDDiagnoser(unsigned DiagID)
9831 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
9832
9833 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9834 S.Diag(Loc, DiagID) << SR;
9835 }
9836 } Diagnoser(DiagID);
9837
9838 return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
9839 }
9840
diagnoseFold(Sema & S,SourceLocation Loc,SourceRange SR)9841 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
9842 SourceRange SR) {
9843 S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
9844 }
9845
9846 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,bool AllowFold)9847 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9848 VerifyICEDiagnoser &Diagnoser,
9849 bool AllowFold) {
9850 SourceLocation DiagLoc = E->getLocStart();
9851
9852 if (getLangOpts().CPlusPlus0x) {
9853 // C++11 [expr.const]p5:
9854 // If an expression of literal class type is used in a context where an
9855 // integral constant expression is required, then that class type shall
9856 // have a single non-explicit conversion function to an integral or
9857 // unscoped enumeration type
9858 ExprResult Converted;
9859 if (!Diagnoser.Suppress) {
9860 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
9861 public:
9862 CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
9863
9864 virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9865 QualType T) {
9866 return S.Diag(Loc, diag::err_ice_not_integral) << T;
9867 }
9868
9869 virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9870 SourceLocation Loc,
9871 QualType T) {
9872 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
9873 }
9874
9875 virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9876 SourceLocation Loc,
9877 QualType T,
9878 QualType ConvTy) {
9879 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
9880 }
9881
9882 virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9883 CXXConversionDecl *Conv,
9884 QualType ConvTy) {
9885 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9886 << ConvTy->isEnumeralType() << ConvTy;
9887 }
9888
9889 virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9890 QualType T) {
9891 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
9892 }
9893
9894 virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9895 CXXConversionDecl *Conv,
9896 QualType ConvTy) {
9897 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9898 << ConvTy->isEnumeralType() << ConvTy;
9899 }
9900
9901 virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9902 SourceLocation Loc,
9903 QualType T,
9904 QualType ConvTy) {
9905 return DiagnosticBuilder::getEmpty();
9906 }
9907 } ConvertDiagnoser;
9908
9909 Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9910 ConvertDiagnoser,
9911 /*AllowScopedEnumerations*/ false);
9912 } else {
9913 // The caller wants to silently enquire whether this is an ICE. Don't
9914 // produce any diagnostics if it isn't.
9915 class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
9916 public:
9917 SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
9918
9919 virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9920 QualType T) {
9921 return DiagnosticBuilder::getEmpty();
9922 }
9923
9924 virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9925 SourceLocation Loc,
9926 QualType T) {
9927 return DiagnosticBuilder::getEmpty();
9928 }
9929
9930 virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9931 SourceLocation Loc,
9932 QualType T,
9933 QualType ConvTy) {
9934 return DiagnosticBuilder::getEmpty();
9935 }
9936
9937 virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9938 CXXConversionDecl *Conv,
9939 QualType ConvTy) {
9940 return DiagnosticBuilder::getEmpty();
9941 }
9942
9943 virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9944 QualType T) {
9945 return DiagnosticBuilder::getEmpty();
9946 }
9947
9948 virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9949 CXXConversionDecl *Conv,
9950 QualType ConvTy) {
9951 return DiagnosticBuilder::getEmpty();
9952 }
9953
9954 virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9955 SourceLocation Loc,
9956 QualType T,
9957 QualType ConvTy) {
9958 return DiagnosticBuilder::getEmpty();
9959 }
9960 } ConvertDiagnoser;
9961
9962 Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9963 ConvertDiagnoser, false);
9964 }
9965 if (Converted.isInvalid())
9966 return Converted;
9967 E = Converted.take();
9968 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9969 return ExprError();
9970 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9971 // An ICE must be of integral or unscoped enumeration type.
9972 if (!Diagnoser.Suppress)
9973 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
9974 return ExprError();
9975 }
9976
9977 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9978 // in the non-ICE case.
9979 if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9980 if (Result)
9981 *Result = E->EvaluateKnownConstInt(Context);
9982 return Owned(E);
9983 }
9984
9985 Expr::EvalResult EvalResult;
9986 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9987 EvalResult.Diag = &Notes;
9988
9989 // Try to evaluate the expression, and produce diagnostics explaining why it's
9990 // not a constant expression as a side-effect.
9991 bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9992 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9993
9994 // In C++11, we can rely on diagnostics being produced for any expression
9995 // which is not a constant expression. If no diagnostics were produced, then
9996 // this is a constant expression.
9997 if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9998 if (Result)
9999 *Result = EvalResult.Val.getInt();
10000 return Owned(E);
10001 }
10002
10003 // If our only note is the usual "invalid subexpression" note, just point
10004 // the caret at its location rather than producing an essentially
10005 // redundant note.
10006 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10007 diag::note_invalid_subexpr_in_const_expr) {
10008 DiagLoc = Notes[0].first;
10009 Notes.clear();
10010 }
10011
10012 if (!Folded || !AllowFold) {
10013 if (!Diagnoser.Suppress) {
10014 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10015 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10016 Diag(Notes[I].first, Notes[I].second);
10017 }
10018
10019 return ExprError();
10020 }
10021
10022 Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10023 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10024 Diag(Notes[I].first, Notes[I].second);
10025
10026 if (Result)
10027 *Result = EvalResult.Val.getInt();
10028 return Owned(E);
10029 }
10030
10031 namespace {
10032 // Handle the case where we conclude a expression which we speculatively
10033 // considered to be unevaluated is actually evaluated.
10034 class TransformToPE : public TreeTransform<TransformToPE> {
10035 typedef TreeTransform<TransformToPE> BaseTransform;
10036
10037 public:
TransformToPE(Sema & SemaRef)10038 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10039
10040 // Make sure we redo semantic analysis
AlwaysRebuild()10041 bool AlwaysRebuild() { return true; }
10042
10043 // Make sure we handle LabelStmts correctly.
10044 // FIXME: This does the right thing, but maybe we need a more general
10045 // fix to TreeTransform?
TransformLabelStmt(LabelStmt * S)10046 StmtResult TransformLabelStmt(LabelStmt *S) {
10047 S->getDecl()->setStmt(0);
10048 return BaseTransform::TransformLabelStmt(S);
10049 }
10050
10051 // We need to special-case DeclRefExprs referring to FieldDecls which
10052 // are not part of a member pointer formation; normal TreeTransforming
10053 // doesn't catch this case because of the way we represent them in the AST.
10054 // FIXME: This is a bit ugly; is it really the best way to handle this
10055 // case?
10056 //
10057 // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)10058 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10059 if (isa<FieldDecl>(E->getDecl()) &&
10060 !SemaRef.isUnevaluatedContext())
10061 return SemaRef.Diag(E->getLocation(),
10062 diag::err_invalid_non_static_member_use)
10063 << E->getDecl() << E->getSourceRange();
10064
10065 return BaseTransform::TransformDeclRefExpr(E);
10066 }
10067
10068 // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)10069 ExprResult TransformUnaryOperator(UnaryOperator *E) {
10070 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10071 return E;
10072
10073 return BaseTransform::TransformUnaryOperator(E);
10074 }
10075
TransformLambdaExpr(LambdaExpr * E)10076 ExprResult TransformLambdaExpr(LambdaExpr *E) {
10077 // Lambdas never need to be transformed.
10078 return E;
10079 }
10080 };
10081 }
10082
TranformToPotentiallyEvaluated(Expr * E)10083 ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
10084 assert(ExprEvalContexts.back().Context == Unevaluated &&
10085 "Should only transform unevaluated expressions");
10086 ExprEvalContexts.back().Context =
10087 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10088 if (ExprEvalContexts.back().Context == Unevaluated)
10089 return E;
10090 return TransformToPE(*this).TransformExpr(E);
10091 }
10092
10093 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,bool IsDecltype)10094 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10095 Decl *LambdaContextDecl,
10096 bool IsDecltype) {
10097 ExprEvalContexts.push_back(
10098 ExpressionEvaluationContextRecord(NewContext,
10099 ExprCleanupObjects.size(),
10100 ExprNeedsCleanups,
10101 LambdaContextDecl,
10102 IsDecltype));
10103 ExprNeedsCleanups = false;
10104 if (!MaybeODRUseExprs.empty())
10105 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10106 }
10107
PopExpressionEvaluationContext()10108 void Sema::PopExpressionEvaluationContext() {
10109 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10110
10111 if (!Rec.Lambdas.empty()) {
10112 if (Rec.Context == Unevaluated) {
10113 // C++11 [expr.prim.lambda]p2:
10114 // A lambda-expression shall not appear in an unevaluated operand
10115 // (Clause 5).
10116 for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10117 Diag(Rec.Lambdas[I]->getLocStart(),
10118 diag::err_lambda_unevaluated_operand);
10119 } else {
10120 // Mark the capture expressions odr-used. This was deferred
10121 // during lambda expression creation.
10122 for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10123 LambdaExpr *Lambda = Rec.Lambdas[I];
10124 for (LambdaExpr::capture_init_iterator
10125 C = Lambda->capture_init_begin(),
10126 CEnd = Lambda->capture_init_end();
10127 C != CEnd; ++C) {
10128 MarkDeclarationsReferencedInExpr(*C);
10129 }
10130 }
10131 }
10132 }
10133
10134 // When are coming out of an unevaluated context, clear out any
10135 // temporaries that we may have created as part of the evaluation of
10136 // the expression in that context: they aren't relevant because they
10137 // will never be constructed.
10138 if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10139 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10140 ExprCleanupObjects.end());
10141 ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10142 CleanupVarDeclMarking();
10143 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10144 // Otherwise, merge the contexts together.
10145 } else {
10146 ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10147 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10148 Rec.SavedMaybeODRUseExprs.end());
10149 }
10150
10151 // Pop the current expression evaluation context off the stack.
10152 ExprEvalContexts.pop_back();
10153 }
10154
DiscardCleanupsInEvaluationContext()10155 void Sema::DiscardCleanupsInEvaluationContext() {
10156 ExprCleanupObjects.erase(
10157 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10158 ExprCleanupObjects.end());
10159 ExprNeedsCleanups = false;
10160 MaybeODRUseExprs.clear();
10161 }
10162
HandleExprEvaluationContextForTypeof(Expr * E)10163 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10164 if (!E->getType()->isVariablyModifiedType())
10165 return E;
10166 return TranformToPotentiallyEvaluated(E);
10167 }
10168
IsPotentiallyEvaluatedContext(Sema & SemaRef)10169 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10170 // Do not mark anything as "used" within a dependent context; wait for
10171 // an instantiation.
10172 if (SemaRef.CurContext->isDependentContext())
10173 return false;
10174
10175 switch (SemaRef.ExprEvalContexts.back().Context) {
10176 case Sema::Unevaluated:
10177 // We are in an expression that is not potentially evaluated; do nothing.
10178 // (Depending on how you read the standard, we actually do need to do
10179 // something here for null pointer constants, but the standard's
10180 // definition of a null pointer constant is completely crazy.)
10181 return false;
10182
10183 case Sema::ConstantEvaluated:
10184 case Sema::PotentiallyEvaluated:
10185 // We are in a potentially evaluated expression (or a constant-expression
10186 // in C++03); we need to do implicit template instantiation, implicitly
10187 // define class members, and mark most declarations as used.
10188 return true;
10189
10190 case Sema::PotentiallyEvaluatedIfUsed:
10191 // Referenced declarations will only be used if the construct in the
10192 // containing expression is used.
10193 return false;
10194 }
10195 llvm_unreachable("Invalid context");
10196 }
10197
10198 /// \brief Mark a function referenced, and check whether it is odr-used
10199 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func)10200 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10201 assert(Func && "No function?");
10202
10203 Func->setReferenced();
10204
10205 // Don't mark this function as used multiple times, unless it's a constexpr
10206 // function which we need to instantiate.
10207 if (Func->isUsed(false) &&
10208 !(Func->isConstexpr() && !Func->getBody() &&
10209 Func->isImplicitlyInstantiable()))
10210 return;
10211
10212 if (!IsPotentiallyEvaluatedContext(*this))
10213 return;
10214
10215 // Note that this declaration has been used.
10216 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10217 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10218 if (Constructor->isDefaultConstructor()) {
10219 if (Constructor->isTrivial())
10220 return;
10221 if (!Constructor->isUsed(false))
10222 DefineImplicitDefaultConstructor(Loc, Constructor);
10223 } else if (Constructor->isCopyConstructor()) {
10224 if (!Constructor->isUsed(false))
10225 DefineImplicitCopyConstructor(Loc, Constructor);
10226 } else if (Constructor->isMoveConstructor()) {
10227 if (!Constructor->isUsed(false))
10228 DefineImplicitMoveConstructor(Loc, Constructor);
10229 }
10230 }
10231
10232 MarkVTableUsed(Loc, Constructor->getParent());
10233 } else if (CXXDestructorDecl *Destructor =
10234 dyn_cast<CXXDestructorDecl>(Func)) {
10235 if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10236 !Destructor->isUsed(false))
10237 DefineImplicitDestructor(Loc, Destructor);
10238 if (Destructor->isVirtual())
10239 MarkVTableUsed(Loc, Destructor->getParent());
10240 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10241 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10242 MethodDecl->isOverloadedOperator() &&
10243 MethodDecl->getOverloadedOperator() == OO_Equal) {
10244 if (!MethodDecl->isUsed(false)) {
10245 if (MethodDecl->isCopyAssignmentOperator())
10246 DefineImplicitCopyAssignment(Loc, MethodDecl);
10247 else
10248 DefineImplicitMoveAssignment(Loc, MethodDecl);
10249 }
10250 } else if (isa<CXXConversionDecl>(MethodDecl) &&
10251 MethodDecl->getParent()->isLambda()) {
10252 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10253 if (Conversion->isLambdaToBlockPointerConversion())
10254 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10255 else
10256 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10257 } else if (MethodDecl->isVirtual())
10258 MarkVTableUsed(Loc, MethodDecl->getParent());
10259 }
10260
10261 // Recursive functions should be marked when used from another function.
10262 // FIXME: Is this really right?
10263 if (CurContext == Func) return;
10264
10265 // Resolve the exception specification for any function which is
10266 // used: CodeGen will need it.
10267 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10268 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
10269 ResolveExceptionSpec(Loc, FPT);
10270
10271 // Implicit instantiation of function templates and member functions of
10272 // class templates.
10273 if (Func->isImplicitlyInstantiable()) {
10274 bool AlreadyInstantiated = false;
10275 SourceLocation PointOfInstantiation = Loc;
10276 if (FunctionTemplateSpecializationInfo *SpecInfo
10277 = Func->getTemplateSpecializationInfo()) {
10278 if (SpecInfo->getPointOfInstantiation().isInvalid())
10279 SpecInfo->setPointOfInstantiation(Loc);
10280 else if (SpecInfo->getTemplateSpecializationKind()
10281 == TSK_ImplicitInstantiation) {
10282 AlreadyInstantiated = true;
10283 PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10284 }
10285 } else if (MemberSpecializationInfo *MSInfo
10286 = Func->getMemberSpecializationInfo()) {
10287 if (MSInfo->getPointOfInstantiation().isInvalid())
10288 MSInfo->setPointOfInstantiation(Loc);
10289 else if (MSInfo->getTemplateSpecializationKind()
10290 == TSK_ImplicitInstantiation) {
10291 AlreadyInstantiated = true;
10292 PointOfInstantiation = MSInfo->getPointOfInstantiation();
10293 }
10294 }
10295
10296 if (!AlreadyInstantiated || Func->isConstexpr()) {
10297 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10298 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10299 PendingLocalImplicitInstantiations.push_back(
10300 std::make_pair(Func, PointOfInstantiation));
10301 else if (Func->isConstexpr())
10302 // Do not defer instantiations of constexpr functions, to avoid the
10303 // expression evaluator needing to call back into Sema if it sees a
10304 // call to such a function.
10305 InstantiateFunctionDefinition(PointOfInstantiation, Func);
10306 else {
10307 PendingInstantiations.push_back(std::make_pair(Func,
10308 PointOfInstantiation));
10309 // Notify the consumer that a function was implicitly instantiated.
10310 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10311 }
10312 }
10313 } else {
10314 // Walk redefinitions, as some of them may be instantiable.
10315 for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10316 e(Func->redecls_end()); i != e; ++i) {
10317 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10318 MarkFunctionReferenced(Loc, *i);
10319 }
10320 }
10321
10322 // Keep track of used but undefined functions.
10323 if (!Func->isPure() && !Func->hasBody() &&
10324 Func->getLinkage() != ExternalLinkage) {
10325 SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
10326 if (old.isInvalid()) old = Loc;
10327 }
10328
10329 Func->setUsed(true);
10330 }
10331
10332 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)10333 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10334 VarDecl *var, DeclContext *DC) {
10335 DeclContext *VarDC = var->getDeclContext();
10336
10337 // If the parameter still belongs to the translation unit, then
10338 // we're actually just using one parameter in the declaration of
10339 // the next.
10340 if (isa<ParmVarDecl>(var) &&
10341 isa<TranslationUnitDecl>(VarDC))
10342 return;
10343
10344 // For C code, don't diagnose about capture if we're not actually in code
10345 // right now; it's impossible to write a non-constant expression outside of
10346 // function context, so we'll get other (more useful) diagnostics later.
10347 //
10348 // For C++, things get a bit more nasty... it would be nice to suppress this
10349 // diagnostic for certain cases like using a local variable in an array bound
10350 // for a member of a local class, but the correct predicate is not obvious.
10351 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10352 return;
10353
10354 if (isa<CXXMethodDecl>(VarDC) &&
10355 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10356 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10357 << var->getIdentifier();
10358 } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10359 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10360 << var->getIdentifier() << fn->getDeclName();
10361 } else if (isa<BlockDecl>(VarDC)) {
10362 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10363 << var->getIdentifier();
10364 } else {
10365 // FIXME: Is there any other context where a local variable can be
10366 // declared?
10367 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10368 << var->getIdentifier();
10369 }
10370
10371 S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10372 << var->getIdentifier();
10373
10374 // FIXME: Add additional diagnostic info about class etc. which prevents
10375 // capture.
10376 }
10377
10378 /// \brief Capture the given variable in the given lambda expression.
captureInLambda(Sema & S,LambdaScopeInfo * LSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc,bool RefersToEnclosingLocal)10379 static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10380 VarDecl *Var, QualType FieldType,
10381 QualType DeclRefType,
10382 SourceLocation Loc,
10383 bool RefersToEnclosingLocal) {
10384 CXXRecordDecl *Lambda = LSI->Lambda;
10385
10386 // Build the non-static data member.
10387 FieldDecl *Field
10388 = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10389 S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10390 0, false, ICIS_NoInit);
10391 Field->setImplicit(true);
10392 Field->setAccess(AS_private);
10393 Lambda->addDecl(Field);
10394
10395 // C++11 [expr.prim.lambda]p21:
10396 // When the lambda-expression is evaluated, the entities that
10397 // are captured by copy are used to direct-initialize each
10398 // corresponding non-static data member of the resulting closure
10399 // object. (For array members, the array elements are
10400 // direct-initialized in increasing subscript order.) These
10401 // initializations are performed in the (unspecified) order in
10402 // which the non-static data members are declared.
10403
10404 // Introduce a new evaluation context for the initialization, so
10405 // that temporaries introduced as part of the capture are retained
10406 // to be re-"exported" from the lambda expression itself.
10407 S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10408
10409 // C++ [expr.prim.labda]p12:
10410 // An entity captured by a lambda-expression is odr-used (3.2) in
10411 // the scope containing the lambda-expression.
10412 Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10413 DeclRefType, VK_LValue, Loc);
10414 Var->setReferenced(true);
10415 Var->setUsed(true);
10416
10417 // When the field has array type, create index variables for each
10418 // dimension of the array. We use these index variables to subscript
10419 // the source array, and other clients (e.g., CodeGen) will perform
10420 // the necessary iteration with these index variables.
10421 SmallVector<VarDecl *, 4> IndexVariables;
10422 QualType BaseType = FieldType;
10423 QualType SizeType = S.Context.getSizeType();
10424 LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10425 while (const ConstantArrayType *Array
10426 = S.Context.getAsConstantArrayType(BaseType)) {
10427 // Create the iteration variable for this array index.
10428 IdentifierInfo *IterationVarName = 0;
10429 {
10430 SmallString<8> Str;
10431 llvm::raw_svector_ostream OS(Str);
10432 OS << "__i" << IndexVariables.size();
10433 IterationVarName = &S.Context.Idents.get(OS.str());
10434 }
10435 VarDecl *IterationVar
10436 = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10437 IterationVarName, SizeType,
10438 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10439 SC_None, SC_None);
10440 IndexVariables.push_back(IterationVar);
10441 LSI->ArrayIndexVars.push_back(IterationVar);
10442
10443 // Create a reference to the iteration variable.
10444 ExprResult IterationVarRef
10445 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10446 assert(!IterationVarRef.isInvalid() &&
10447 "Reference to invented variable cannot fail!");
10448 IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10449 assert(!IterationVarRef.isInvalid() &&
10450 "Conversion of invented variable cannot fail!");
10451
10452 // Subscript the array with this iteration variable.
10453 ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10454 Ref, Loc, IterationVarRef.take(), Loc);
10455 if (Subscript.isInvalid()) {
10456 S.CleanupVarDeclMarking();
10457 S.DiscardCleanupsInEvaluationContext();
10458 S.PopExpressionEvaluationContext();
10459 return ExprError();
10460 }
10461
10462 Ref = Subscript.take();
10463 BaseType = Array->getElementType();
10464 }
10465
10466 // Construct the entity that we will be initializing. For an array, this
10467 // will be first element in the array, which may require several levels
10468 // of array-subscript entities.
10469 SmallVector<InitializedEntity, 4> Entities;
10470 Entities.reserve(1 + IndexVariables.size());
10471 Entities.push_back(
10472 InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10473 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10474 Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10475 0,
10476 Entities.back()));
10477
10478 InitializationKind InitKind
10479 = InitializationKind::CreateDirect(Loc, Loc, Loc);
10480 InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10481 ExprResult Result(true);
10482 if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10483 Result = Init.Perform(S, Entities.back(), InitKind, Ref);
10484
10485 // If this initialization requires any cleanups (e.g., due to a
10486 // default argument to a copy constructor), note that for the
10487 // lambda.
10488 if (S.ExprNeedsCleanups)
10489 LSI->ExprNeedsCleanups = true;
10490
10491 // Exit the expression evaluation context used for the capture.
10492 S.CleanupVarDeclMarking();
10493 S.DiscardCleanupsInEvaluationContext();
10494 S.PopExpressionEvaluationContext();
10495 return Result;
10496 }
10497
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType)10498 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10499 TryCaptureKind Kind, SourceLocation EllipsisLoc,
10500 bool BuildAndDiagnose,
10501 QualType &CaptureType,
10502 QualType &DeclRefType) {
10503 bool Nested = false;
10504
10505 DeclContext *DC = CurContext;
10506 if (Var->getDeclContext() == DC) return true;
10507 if (!Var->hasLocalStorage()) return true;
10508
10509 bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10510
10511 // Walk up the stack to determine whether we can capture the variable,
10512 // performing the "simple" checks that don't depend on type. We stop when
10513 // we've either hit the declared scope of the variable or find an existing
10514 // capture of that variable.
10515 CaptureType = Var->getType();
10516 DeclRefType = CaptureType.getNonReferenceType();
10517 bool Explicit = (Kind != TryCapture_Implicit);
10518 unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10519 do {
10520 // Only block literals and lambda expressions can capture; other
10521 // scopes don't work.
10522 DeclContext *ParentDC;
10523 if (isa<BlockDecl>(DC))
10524 ParentDC = DC->getParent();
10525 else if (isa<CXXMethodDecl>(DC) &&
10526 cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10527 cast<CXXRecordDecl>(DC->getParent())->isLambda())
10528 ParentDC = DC->getParent()->getParent();
10529 else {
10530 if (BuildAndDiagnose)
10531 diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10532 return true;
10533 }
10534
10535 CapturingScopeInfo *CSI =
10536 cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10537
10538 // Check whether we've already captured it.
10539 if (CSI->CaptureMap.count(Var)) {
10540 // If we found a capture, any subcaptures are nested.
10541 Nested = true;
10542
10543 // Retrieve the capture type for this variable.
10544 CaptureType = CSI->getCapture(Var).getCaptureType();
10545
10546 // Compute the type of an expression that refers to this variable.
10547 DeclRefType = CaptureType.getNonReferenceType();
10548
10549 const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10550 if (Cap.isCopyCapture() &&
10551 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10552 DeclRefType.addConst();
10553 break;
10554 }
10555
10556 bool IsBlock = isa<BlockScopeInfo>(CSI);
10557 bool IsLambda = !IsBlock;
10558
10559 // Lambdas are not allowed to capture unnamed variables
10560 // (e.g. anonymous unions).
10561 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10562 // assuming that's the intent.
10563 if (IsLambda && !Var->getDeclName()) {
10564 if (BuildAndDiagnose) {
10565 Diag(Loc, diag::err_lambda_capture_anonymous_var);
10566 Diag(Var->getLocation(), diag::note_declared_at);
10567 }
10568 return true;
10569 }
10570
10571 // Prohibit variably-modified types; they're difficult to deal with.
10572 if (Var->getType()->isVariablyModifiedType()) {
10573 if (BuildAndDiagnose) {
10574 if (IsBlock)
10575 Diag(Loc, diag::err_ref_vm_type);
10576 else
10577 Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10578 Diag(Var->getLocation(), diag::note_previous_decl)
10579 << Var->getDeclName();
10580 }
10581 return true;
10582 }
10583
10584 // Lambdas are not allowed to capture __block variables; they don't
10585 // support the expected semantics.
10586 if (IsLambda && HasBlocksAttr) {
10587 if (BuildAndDiagnose) {
10588 Diag(Loc, diag::err_lambda_capture_block)
10589 << Var->getDeclName();
10590 Diag(Var->getLocation(), diag::note_previous_decl)
10591 << Var->getDeclName();
10592 }
10593 return true;
10594 }
10595
10596 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10597 // No capture-default
10598 if (BuildAndDiagnose) {
10599 Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10600 Diag(Var->getLocation(), diag::note_previous_decl)
10601 << Var->getDeclName();
10602 Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10603 diag::note_lambda_decl);
10604 }
10605 return true;
10606 }
10607
10608 FunctionScopesIndex--;
10609 DC = ParentDC;
10610 Explicit = false;
10611 } while (!Var->getDeclContext()->Equals(DC));
10612
10613 // Walk back down the scope stack, computing the type of the capture at
10614 // each step, checking type-specific requirements, and adding captures if
10615 // requested.
10616 for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10617 ++I) {
10618 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10619
10620 // Compute the type of the capture and of a reference to the capture within
10621 // this scope.
10622 if (isa<BlockScopeInfo>(CSI)) {
10623 Expr *CopyExpr = 0;
10624 bool ByRef = false;
10625
10626 // Blocks are not allowed to capture arrays.
10627 if (CaptureType->isArrayType()) {
10628 if (BuildAndDiagnose) {
10629 Diag(Loc, diag::err_ref_array_type);
10630 Diag(Var->getLocation(), diag::note_previous_decl)
10631 << Var->getDeclName();
10632 }
10633 return true;
10634 }
10635
10636 // Forbid the block-capture of autoreleasing variables.
10637 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10638 if (BuildAndDiagnose) {
10639 Diag(Loc, diag::err_arc_autoreleasing_capture)
10640 << /*block*/ 0;
10641 Diag(Var->getLocation(), diag::note_previous_decl)
10642 << Var->getDeclName();
10643 }
10644 return true;
10645 }
10646
10647 if (HasBlocksAttr || CaptureType->isReferenceType()) {
10648 // Block capture by reference does not change the capture or
10649 // declaration reference types.
10650 ByRef = true;
10651 } else {
10652 // Block capture by copy introduces 'const'.
10653 CaptureType = CaptureType.getNonReferenceType().withConst();
10654 DeclRefType = CaptureType;
10655
10656 if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10657 if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10658 // The capture logic needs the destructor, so make sure we mark it.
10659 // Usually this is unnecessary because most local variables have
10660 // their destructors marked at declaration time, but parameters are
10661 // an exception because it's technically only the call site that
10662 // actually requires the destructor.
10663 if (isa<ParmVarDecl>(Var))
10664 FinalizeVarWithDestructor(Var, Record);
10665
10666 // According to the blocks spec, the capture of a variable from
10667 // the stack requires a const copy constructor. This is not true
10668 // of the copy/move done to move a __block variable to the heap.
10669 Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10670 DeclRefType.withConst(),
10671 VK_LValue, Loc);
10672 ExprResult Result
10673 = PerformCopyInitialization(
10674 InitializedEntity::InitializeBlock(Var->getLocation(),
10675 CaptureType, false),
10676 Loc, Owned(DeclRef));
10677
10678 // Build a full-expression copy expression if initialization
10679 // succeeded and used a non-trivial constructor. Recover from
10680 // errors by pretending that the copy isn't necessary.
10681 if (!Result.isInvalid() &&
10682 !cast<CXXConstructExpr>(Result.get())->getConstructor()
10683 ->isTrivial()) {
10684 Result = MaybeCreateExprWithCleanups(Result);
10685 CopyExpr = Result.take();
10686 }
10687 }
10688 }
10689 }
10690
10691 // Actually capture the variable.
10692 if (BuildAndDiagnose)
10693 CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10694 SourceLocation(), CaptureType, CopyExpr);
10695 Nested = true;
10696 continue;
10697 }
10698
10699 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10700
10701 // Determine whether we are capturing by reference or by value.
10702 bool ByRef = false;
10703 if (I == N - 1 && Kind != TryCapture_Implicit) {
10704 ByRef = (Kind == TryCapture_ExplicitByRef);
10705 } else {
10706 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10707 }
10708
10709 // Compute the type of the field that will capture this variable.
10710 if (ByRef) {
10711 // C++11 [expr.prim.lambda]p15:
10712 // An entity is captured by reference if it is implicitly or
10713 // explicitly captured but not captured by copy. It is
10714 // unspecified whether additional unnamed non-static data
10715 // members are declared in the closure type for entities
10716 // captured by reference.
10717 //
10718 // FIXME: It is not clear whether we want to build an lvalue reference
10719 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10720 // to do the former, while EDG does the latter. Core issue 1249 will
10721 // clarify, but for now we follow GCC because it's a more permissive and
10722 // easily defensible position.
10723 CaptureType = Context.getLValueReferenceType(DeclRefType);
10724 } else {
10725 // C++11 [expr.prim.lambda]p14:
10726 // For each entity captured by copy, an unnamed non-static
10727 // data member is declared in the closure type. The
10728 // declaration order of these members is unspecified. The type
10729 // of such a data member is the type of the corresponding
10730 // captured entity if the entity is not a reference to an
10731 // object, or the referenced type otherwise. [Note: If the
10732 // captured entity is a reference to a function, the
10733 // corresponding data member is also a reference to a
10734 // function. - end note ]
10735 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10736 if (!RefType->getPointeeType()->isFunctionType())
10737 CaptureType = RefType->getPointeeType();
10738 }
10739
10740 // Forbid the lambda copy-capture of autoreleasing variables.
10741 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10742 if (BuildAndDiagnose) {
10743 Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10744 Diag(Var->getLocation(), diag::note_previous_decl)
10745 << Var->getDeclName();
10746 }
10747 return true;
10748 }
10749 }
10750
10751 // Capture this variable in the lambda.
10752 Expr *CopyExpr = 0;
10753 if (BuildAndDiagnose) {
10754 ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10755 DeclRefType, Loc,
10756 I == N-1);
10757 if (!Result.isInvalid())
10758 CopyExpr = Result.take();
10759 }
10760
10761 // Compute the type of a reference to this captured variable.
10762 if (ByRef)
10763 DeclRefType = CaptureType.getNonReferenceType();
10764 else {
10765 // C++ [expr.prim.lambda]p5:
10766 // The closure type for a lambda-expression has a public inline
10767 // function call operator [...]. This function call operator is
10768 // declared const (9.3.1) if and only if the lambda-expression’s
10769 // parameter-declaration-clause is not followed by mutable.
10770 DeclRefType = CaptureType.getNonReferenceType();
10771 if (!LSI->Mutable && !CaptureType->isReferenceType())
10772 DeclRefType.addConst();
10773 }
10774
10775 // Add the capture.
10776 if (BuildAndDiagnose)
10777 CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10778 EllipsisLoc, CaptureType, CopyExpr);
10779 Nested = true;
10780 }
10781
10782 return false;
10783 }
10784
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)10785 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10786 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10787 QualType CaptureType;
10788 QualType DeclRefType;
10789 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10790 /*BuildAndDiagnose=*/true, CaptureType,
10791 DeclRefType);
10792 }
10793
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)10794 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10795 QualType CaptureType;
10796 QualType DeclRefType;
10797
10798 // Determine whether we can capture this variable.
10799 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10800 /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10801 return QualType();
10802
10803 return DeclRefType;
10804 }
10805
MarkVarDeclODRUsed(Sema & SemaRef,VarDecl * Var,SourceLocation Loc)10806 static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10807 SourceLocation Loc) {
10808 // Keep track of used but undefined variables.
10809 // FIXME: We shouldn't suppress this warning for static data members.
10810 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10811 Var->getLinkage() != ExternalLinkage &&
10812 !(Var->isStaticDataMember() && Var->hasInit())) {
10813 SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10814 if (old.isInvalid()) old = Loc;
10815 }
10816
10817 SemaRef.tryCaptureVariable(Var, Loc);
10818
10819 Var->setUsed(true);
10820 }
10821
UpdateMarkingForLValueToRValue(Expr * E)10822 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10823 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10824 // an object that satisfies the requirements for appearing in a
10825 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10826 // is immediately applied." This function handles the lvalue-to-rvalue
10827 // conversion part.
10828 MaybeODRUseExprs.erase(E->IgnoreParens());
10829 }
10830
ActOnConstantExpression(ExprResult Res)10831 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10832 if (!Res.isUsable())
10833 return Res;
10834
10835 // If a constant-expression is a reference to a variable where we delay
10836 // deciding whether it is an odr-use, just assume we will apply the
10837 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
10838 // (a non-type template argument), we have special handling anyway.
10839 UpdateMarkingForLValueToRValue(Res.get());
10840 return Res;
10841 }
10842
CleanupVarDeclMarking()10843 void Sema::CleanupVarDeclMarking() {
10844 for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10845 e = MaybeODRUseExprs.end();
10846 i != e; ++i) {
10847 VarDecl *Var;
10848 SourceLocation Loc;
10849 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10850 Var = cast<VarDecl>(DRE->getDecl());
10851 Loc = DRE->getLocation();
10852 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10853 Var = cast<VarDecl>(ME->getMemberDecl());
10854 Loc = ME->getMemberLoc();
10855 } else {
10856 llvm_unreachable("Unexpcted expression");
10857 }
10858
10859 MarkVarDeclODRUsed(*this, Var, Loc);
10860 }
10861
10862 MaybeODRUseExprs.clear();
10863 }
10864
10865 // Mark a VarDecl referenced, and perform the necessary handling to compute
10866 // odr-uses.
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)10867 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10868 VarDecl *Var, Expr *E) {
10869 Var->setReferenced();
10870
10871 if (!IsPotentiallyEvaluatedContext(SemaRef))
10872 return;
10873
10874 // Implicit instantiation of static data members of class templates.
10875 if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10876 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10877 assert(MSInfo && "Missing member specialization information?");
10878 bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10879 if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10880 (!AlreadyInstantiated ||
10881 Var->isUsableInConstantExpressions(SemaRef.Context))) {
10882 if (!AlreadyInstantiated) {
10883 // This is a modification of an existing AST node. Notify listeners.
10884 if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10885 L->StaticDataMemberInstantiated(Var);
10886 MSInfo->setPointOfInstantiation(Loc);
10887 }
10888 SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10889 if (Var->isUsableInConstantExpressions(SemaRef.Context))
10890 // Do not defer instantiations of variables which could be used in a
10891 // constant expression.
10892 SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10893 else
10894 SemaRef.PendingInstantiations.push_back(
10895 std::make_pair(Var, PointOfInstantiation));
10896 }
10897 }
10898
10899 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10900 // an object that satisfies the requirements for appearing in a
10901 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10902 // is immediately applied." We check the first part here, and
10903 // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10904 // Note that we use the C++11 definition everywhere because nothing in
10905 // C++03 depends on whether we get the C++03 version correct. This does not
10906 // apply to references, since they are not objects.
10907 const VarDecl *DefVD;
10908 if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10909 Var->isUsableInConstantExpressions(SemaRef.Context) &&
10910 Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10911 SemaRef.MaybeODRUseExprs.insert(E);
10912 else
10913 MarkVarDeclODRUsed(SemaRef, Var, Loc);
10914 }
10915
10916 /// \brief Mark a variable referenced, and check whether it is odr-used
10917 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
10918 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)10919 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10920 DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10921 }
10922
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E)10923 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10924 Decl *D, Expr *E) {
10925 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10926 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10927 return;
10928 }
10929
10930 SemaRef.MarkAnyDeclReferenced(Loc, D);
10931
10932 // If this is a call to a method via a cast, also mark the method in the
10933 // derived class used in case codegen can devirtualize the call.
10934 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
10935 if (!ME)
10936 return;
10937 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
10938 if (!MD)
10939 return;
10940 const Expr *Base = ME->getBase();
10941 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
10942 if (!MostDerivedClassDecl)
10943 return;
10944 CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
10945 if (!DM)
10946 return;
10947 SemaRef.MarkAnyDeclReferenced(Loc, DM);
10948 }
10949
10950 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
MarkDeclRefReferenced(DeclRefExpr * E)10951 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10952 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10953 }
10954
10955 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)10956 void Sema::MarkMemberReferenced(MemberExpr *E) {
10957 MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10958 }
10959
10960 /// \brief Perform marking for a reference to an arbitrary declaration. It
10961 /// marks the declaration referenced, and performs odr-use checking for functions
10962 /// and variables. This method should not be used when building an normal
10963 /// expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D)10964 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10965 if (VarDecl *VD = dyn_cast<VarDecl>(D))
10966 MarkVariableReferenced(Loc, VD);
10967 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10968 MarkFunctionReferenced(Loc, FD);
10969 else
10970 D->setReferenced();
10971 }
10972
10973 namespace {
10974 // Mark all of the declarations referenced
10975 // FIXME: Not fully implemented yet! We need to have a better understanding
10976 // of when we're entering
10977 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10978 Sema &S;
10979 SourceLocation Loc;
10980
10981 public:
10982 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10983
MarkReferencedDecls(Sema & S,SourceLocation Loc)10984 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10985
10986 bool TraverseTemplateArgument(const TemplateArgument &Arg);
10987 bool TraverseRecordType(RecordType *T);
10988 };
10989 }
10990
TraverseTemplateArgument(const TemplateArgument & Arg)10991 bool MarkReferencedDecls::TraverseTemplateArgument(
10992 const TemplateArgument &Arg) {
10993 if (Arg.getKind() == TemplateArgument::Declaration) {
10994 if (Decl *D = Arg.getAsDecl())
10995 S.MarkAnyDeclReferenced(Loc, D);
10996 }
10997
10998 return Inherited::TraverseTemplateArgument(Arg);
10999 }
11000
TraverseRecordType(RecordType * T)11001 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
11002 if (ClassTemplateSpecializationDecl *Spec
11003 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
11004 const TemplateArgumentList &Args = Spec->getTemplateArgs();
11005 return TraverseTemplateArguments(Args.data(), Args.size());
11006 }
11007
11008 return true;
11009 }
11010
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)11011 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11012 MarkReferencedDecls Marker(*this, Loc);
11013 Marker.TraverseType(Context.getCanonicalType(T));
11014 }
11015
11016 namespace {
11017 /// \brief Helper class that marks all of the declarations referenced by
11018 /// potentially-evaluated subexpressions as "referenced".
11019 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11020 Sema &S;
11021 bool SkipLocalVariables;
11022
11023 public:
11024 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11025
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)11026 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11027 : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11028
VisitDeclRefExpr(DeclRefExpr * E)11029 void VisitDeclRefExpr(DeclRefExpr *E) {
11030 // If we were asked not to visit local variables, don't.
11031 if (SkipLocalVariables) {
11032 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11033 if (VD->hasLocalStorage())
11034 return;
11035 }
11036
11037 S.MarkDeclRefReferenced(E);
11038 }
11039
VisitMemberExpr(MemberExpr * E)11040 void VisitMemberExpr(MemberExpr *E) {
11041 S.MarkMemberReferenced(E);
11042 Inherited::VisitMemberExpr(E);
11043 }
11044
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)11045 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11046 S.MarkFunctionReferenced(E->getLocStart(),
11047 const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11048 Visit(E->getSubExpr());
11049 }
11050
VisitCXXNewExpr(CXXNewExpr * E)11051 void VisitCXXNewExpr(CXXNewExpr *E) {
11052 if (E->getOperatorNew())
11053 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11054 if (E->getOperatorDelete())
11055 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11056 Inherited::VisitCXXNewExpr(E);
11057 }
11058
VisitCXXDeleteExpr(CXXDeleteExpr * E)11059 void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11060 if (E->getOperatorDelete())
11061 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11062 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11063 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11064 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11065 S.MarkFunctionReferenced(E->getLocStart(),
11066 S.LookupDestructor(Record));
11067 }
11068
11069 Inherited::VisitCXXDeleteExpr(E);
11070 }
11071
VisitCXXConstructExpr(CXXConstructExpr * E)11072 void VisitCXXConstructExpr(CXXConstructExpr *E) {
11073 S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11074 Inherited::VisitCXXConstructExpr(E);
11075 }
11076
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)11077 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11078 Visit(E->getExpr());
11079 }
11080
VisitImplicitCastExpr(ImplicitCastExpr * E)11081 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11082 Inherited::VisitImplicitCastExpr(E);
11083
11084 if (E->getCastKind() == CK_LValueToRValue)
11085 S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11086 }
11087 };
11088 }
11089
11090 /// \brief Mark any declarations that appear within this expression or any
11091 /// potentially-evaluated subexpressions as "referenced".
11092 ///
11093 /// \param SkipLocalVariables If true, don't mark local variables as
11094 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)11095 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11096 bool SkipLocalVariables) {
11097 EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11098 }
11099
11100 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
11101 /// of the program being compiled.
11102 ///
11103 /// This routine emits the given diagnostic when the code currently being
11104 /// type-checked is "potentially evaluated", meaning that there is a
11105 /// possibility that the code will actually be executable. Code in sizeof()
11106 /// expressions, code used only during overload resolution, etc., are not
11107 /// potentially evaluated. This routine will suppress such diagnostics or,
11108 /// in the absolutely nutty case of potentially potentially evaluated
11109 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
11110 /// later.
11111 ///
11112 /// This routine should be used for all diagnostics that describe the run-time
11113 /// behavior of a program, such as passing a non-POD value through an ellipsis.
11114 /// Failure to do so will likely result in spurious diagnostics or failures
11115 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)11116 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11117 const PartialDiagnostic &PD) {
11118 switch (ExprEvalContexts.back().Context) {
11119 case Unevaluated:
11120 // The argument will never be evaluated, so don't complain.
11121 break;
11122
11123 case ConstantEvaluated:
11124 // Relevant diagnostics should be produced by constant evaluation.
11125 break;
11126
11127 case PotentiallyEvaluated:
11128 case PotentiallyEvaluatedIfUsed:
11129 if (Statement && getCurFunctionOrMethodDecl()) {
11130 FunctionScopes.back()->PossiblyUnreachableDiags.
11131 push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11132 }
11133 else
11134 Diag(Loc, PD);
11135
11136 return true;
11137 }
11138
11139 return false;
11140 }
11141
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)11142 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11143 CallExpr *CE, FunctionDecl *FD) {
11144 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11145 return false;
11146
11147 // If we're inside a decltype's expression, don't check for a valid return
11148 // type or construct temporaries until we know whether this is the last call.
11149 if (ExprEvalContexts.back().IsDecltype) {
11150 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11151 return false;
11152 }
11153
11154 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11155 FunctionDecl *FD;
11156 CallExpr *CE;
11157
11158 public:
11159 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11160 : FD(FD), CE(CE) { }
11161
11162 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11163 if (!FD) {
11164 S.Diag(Loc, diag::err_call_incomplete_return)
11165 << T << CE->getSourceRange();
11166 return;
11167 }
11168
11169 S.Diag(Loc, diag::err_call_function_incomplete_return)
11170 << CE->getSourceRange() << FD->getDeclName() << T;
11171 S.Diag(FD->getLocation(),
11172 diag::note_function_with_incomplete_return_type_declared_here)
11173 << FD->getDeclName();
11174 }
11175 } Diagnoser(FD, CE);
11176
11177 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11178 return true;
11179
11180 return false;
11181 }
11182
11183 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11184 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)11185 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11186 SourceLocation Loc;
11187
11188 unsigned diagnostic = diag::warn_condition_is_assignment;
11189 bool IsOrAssign = false;
11190
11191 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11192 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11193 return;
11194
11195 IsOrAssign = Op->getOpcode() == BO_OrAssign;
11196
11197 // Greylist some idioms by putting them into a warning subcategory.
11198 if (ObjCMessageExpr *ME
11199 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11200 Selector Sel = ME->getSelector();
11201
11202 // self = [<foo> init...]
11203 if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11204 diagnostic = diag::warn_condition_is_idiomatic_assignment;
11205
11206 // <foo> = [<bar> nextObject]
11207 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11208 diagnostic = diag::warn_condition_is_idiomatic_assignment;
11209 }
11210
11211 Loc = Op->getOperatorLoc();
11212 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11213 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11214 return;
11215
11216 IsOrAssign = Op->getOperator() == OO_PipeEqual;
11217 Loc = Op->getOperatorLoc();
11218 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
11219 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
11220 else {
11221 // Not an assignment.
11222 return;
11223 }
11224
11225 Diag(Loc, diagnostic) << E->getSourceRange();
11226
11227 SourceLocation Open = E->getLocStart();
11228 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11229 Diag(Loc, diag::note_condition_assign_silence)
11230 << FixItHint::CreateInsertion(Open, "(")
11231 << FixItHint::CreateInsertion(Close, ")");
11232
11233 if (IsOrAssign)
11234 Diag(Loc, diag::note_condition_or_assign_to_comparison)
11235 << FixItHint::CreateReplacement(Loc, "!=");
11236 else
11237 Diag(Loc, diag::note_condition_assign_to_comparison)
11238 << FixItHint::CreateReplacement(Loc, "==");
11239 }
11240
11241 /// \brief Redundant parentheses over an equality comparison can indicate
11242 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)11243 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11244 // Don't warn if the parens came from a macro.
11245 SourceLocation parenLoc = ParenE->getLocStart();
11246 if (parenLoc.isInvalid() || parenLoc.isMacroID())
11247 return;
11248 // Don't warn for dependent expressions.
11249 if (ParenE->isTypeDependent())
11250 return;
11251
11252 Expr *E = ParenE->IgnoreParens();
11253
11254 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11255 if (opE->getOpcode() == BO_EQ &&
11256 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11257 == Expr::MLV_Valid) {
11258 SourceLocation Loc = opE->getOperatorLoc();
11259
11260 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11261 SourceRange ParenERange = ParenE->getSourceRange();
11262 Diag(Loc, diag::note_equality_comparison_silence)
11263 << FixItHint::CreateRemoval(ParenERange.getBegin())
11264 << FixItHint::CreateRemoval(ParenERange.getEnd());
11265 Diag(Loc, diag::note_equality_comparison_to_assign)
11266 << FixItHint::CreateReplacement(Loc, "=");
11267 }
11268 }
11269
CheckBooleanCondition(Expr * E,SourceLocation Loc)11270 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11271 DiagnoseAssignmentAsCondition(E);
11272 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11273 DiagnoseEqualityWithExtraParens(parenE);
11274
11275 ExprResult result = CheckPlaceholderExpr(E);
11276 if (result.isInvalid()) return ExprError();
11277 E = result.take();
11278
11279 if (!E->isTypeDependent()) {
11280 if (getLangOpts().CPlusPlus)
11281 return CheckCXXBooleanCondition(E); // C++ 6.4p4
11282
11283 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11284 if (ERes.isInvalid())
11285 return ExprError();
11286 E = ERes.take();
11287
11288 QualType T = E->getType();
11289 if (!T->isScalarType()) { // C99 6.8.4.1p1
11290 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11291 << T << E->getSourceRange();
11292 return ExprError();
11293 }
11294 }
11295
11296 return Owned(E);
11297 }
11298
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * SubExpr)11299 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11300 Expr *SubExpr) {
11301 if (!SubExpr)
11302 return ExprError();
11303
11304 return CheckBooleanCondition(SubExpr, Loc);
11305 }
11306
11307 namespace {
11308 /// A visitor for rebuilding a call to an __unknown_any expression
11309 /// to have an appropriate type.
11310 struct RebuildUnknownAnyFunction
11311 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11312
11313 Sema &S;
11314
RebuildUnknownAnyFunction__anon51d3525c0711::RebuildUnknownAnyFunction11315 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11316
VisitStmt__anon51d3525c0711::RebuildUnknownAnyFunction11317 ExprResult VisitStmt(Stmt *S) {
11318 llvm_unreachable("unexpected statement!");
11319 }
11320
VisitExpr__anon51d3525c0711::RebuildUnknownAnyFunction11321 ExprResult VisitExpr(Expr *E) {
11322 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11323 << E->getSourceRange();
11324 return ExprError();
11325 }
11326
11327 /// Rebuild an expression which simply semantically wraps another
11328 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon51d3525c0711::RebuildUnknownAnyFunction11329 template <class T> ExprResult rebuildSugarExpr(T *E) {
11330 ExprResult SubResult = Visit(E->getSubExpr());
11331 if (SubResult.isInvalid()) return ExprError();
11332
11333 Expr *SubExpr = SubResult.take();
11334 E->setSubExpr(SubExpr);
11335 E->setType(SubExpr->getType());
11336 E->setValueKind(SubExpr->getValueKind());
11337 assert(E->getObjectKind() == OK_Ordinary);
11338 return E;
11339 }
11340
VisitParenExpr__anon51d3525c0711::RebuildUnknownAnyFunction11341 ExprResult VisitParenExpr(ParenExpr *E) {
11342 return rebuildSugarExpr(E);
11343 }
11344
VisitUnaryExtension__anon51d3525c0711::RebuildUnknownAnyFunction11345 ExprResult VisitUnaryExtension(UnaryOperator *E) {
11346 return rebuildSugarExpr(E);
11347 }
11348
VisitUnaryAddrOf__anon51d3525c0711::RebuildUnknownAnyFunction11349 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11350 ExprResult SubResult = Visit(E->getSubExpr());
11351 if (SubResult.isInvalid()) return ExprError();
11352
11353 Expr *SubExpr = SubResult.take();
11354 E->setSubExpr(SubExpr);
11355 E->setType(S.Context.getPointerType(SubExpr->getType()));
11356 assert(E->getValueKind() == VK_RValue);
11357 assert(E->getObjectKind() == OK_Ordinary);
11358 return E;
11359 }
11360
resolveDecl__anon51d3525c0711::RebuildUnknownAnyFunction11361 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11362 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11363
11364 E->setType(VD->getType());
11365
11366 assert(E->getValueKind() == VK_RValue);
11367 if (S.getLangOpts().CPlusPlus &&
11368 !(isa<CXXMethodDecl>(VD) &&
11369 cast<CXXMethodDecl>(VD)->isInstance()))
11370 E->setValueKind(VK_LValue);
11371
11372 return E;
11373 }
11374
VisitMemberExpr__anon51d3525c0711::RebuildUnknownAnyFunction11375 ExprResult VisitMemberExpr(MemberExpr *E) {
11376 return resolveDecl(E, E->getMemberDecl());
11377 }
11378
VisitDeclRefExpr__anon51d3525c0711::RebuildUnknownAnyFunction11379 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11380 return resolveDecl(E, E->getDecl());
11381 }
11382 };
11383 }
11384
11385 /// Given a function expression of unknown-any type, try to rebuild it
11386 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)11387 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11388 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11389 if (Result.isInvalid()) return ExprError();
11390 return S.DefaultFunctionArrayConversion(Result.take());
11391 }
11392
11393 namespace {
11394 /// A visitor for rebuilding an expression of type __unknown_anytype
11395 /// into one which resolves the type directly on the referring
11396 /// expression. Strict preservation of the original source
11397 /// structure is not a goal.
11398 struct RebuildUnknownAnyExpr
11399 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11400
11401 Sema &S;
11402
11403 /// The current destination type.
11404 QualType DestType;
11405
RebuildUnknownAnyExpr__anon51d3525c0811::RebuildUnknownAnyExpr11406 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11407 : S(S), DestType(CastType) {}
11408
VisitStmt__anon51d3525c0811::RebuildUnknownAnyExpr11409 ExprResult VisitStmt(Stmt *S) {
11410 llvm_unreachable("unexpected statement!");
11411 }
11412
VisitExpr__anon51d3525c0811::RebuildUnknownAnyExpr11413 ExprResult VisitExpr(Expr *E) {
11414 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11415 << E->getSourceRange();
11416 return ExprError();
11417 }
11418
11419 ExprResult VisitCallExpr(CallExpr *E);
11420 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11421
11422 /// Rebuild an expression which simply semantically wraps another
11423 /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon51d3525c0811::RebuildUnknownAnyExpr11424 template <class T> ExprResult rebuildSugarExpr(T *E) {
11425 ExprResult SubResult = Visit(E->getSubExpr());
11426 if (SubResult.isInvalid()) return ExprError();
11427 Expr *SubExpr = SubResult.take();
11428 E->setSubExpr(SubExpr);
11429 E->setType(SubExpr->getType());
11430 E->setValueKind(SubExpr->getValueKind());
11431 assert(E->getObjectKind() == OK_Ordinary);
11432 return E;
11433 }
11434
VisitParenExpr__anon51d3525c0811::RebuildUnknownAnyExpr11435 ExprResult VisitParenExpr(ParenExpr *E) {
11436 return rebuildSugarExpr(E);
11437 }
11438
VisitUnaryExtension__anon51d3525c0811::RebuildUnknownAnyExpr11439 ExprResult VisitUnaryExtension(UnaryOperator *E) {
11440 return rebuildSugarExpr(E);
11441 }
11442
VisitUnaryAddrOf__anon51d3525c0811::RebuildUnknownAnyExpr11443 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11444 const PointerType *Ptr = DestType->getAs<PointerType>();
11445 if (!Ptr) {
11446 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11447 << E->getSourceRange();
11448 return ExprError();
11449 }
11450 assert(E->getValueKind() == VK_RValue);
11451 assert(E->getObjectKind() == OK_Ordinary);
11452 E->setType(DestType);
11453
11454 // Build the sub-expression as if it were an object of the pointee type.
11455 DestType = Ptr->getPointeeType();
11456 ExprResult SubResult = Visit(E->getSubExpr());
11457 if (SubResult.isInvalid()) return ExprError();
11458 E->setSubExpr(SubResult.take());
11459 return E;
11460 }
11461
11462 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11463
11464 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11465
VisitMemberExpr__anon51d3525c0811::RebuildUnknownAnyExpr11466 ExprResult VisitMemberExpr(MemberExpr *E) {
11467 return resolveDecl(E, E->getMemberDecl());
11468 }
11469
VisitDeclRefExpr__anon51d3525c0811::RebuildUnknownAnyExpr11470 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11471 return resolveDecl(E, E->getDecl());
11472 }
11473 };
11474 }
11475
11476 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)11477 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11478 Expr *CalleeExpr = E->getCallee();
11479
11480 enum FnKind {
11481 FK_MemberFunction,
11482 FK_FunctionPointer,
11483 FK_BlockPointer
11484 };
11485
11486 FnKind Kind;
11487 QualType CalleeType = CalleeExpr->getType();
11488 if (CalleeType == S.Context.BoundMemberTy) {
11489 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11490 Kind = FK_MemberFunction;
11491 CalleeType = Expr::findBoundMemberType(CalleeExpr);
11492 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11493 CalleeType = Ptr->getPointeeType();
11494 Kind = FK_FunctionPointer;
11495 } else {
11496 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11497 Kind = FK_BlockPointer;
11498 }
11499 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11500
11501 // Verify that this is a legal result type of a function.
11502 if (DestType->isArrayType() || DestType->isFunctionType()) {
11503 unsigned diagID = diag::err_func_returning_array_function;
11504 if (Kind == FK_BlockPointer)
11505 diagID = diag::err_block_returning_array_function;
11506
11507 S.Diag(E->getExprLoc(), diagID)
11508 << DestType->isFunctionType() << DestType;
11509 return ExprError();
11510 }
11511
11512 // Otherwise, go ahead and set DestType as the call's result.
11513 E->setType(DestType.getNonLValueExprType(S.Context));
11514 E->setValueKind(Expr::getValueKindForType(DestType));
11515 assert(E->getObjectKind() == OK_Ordinary);
11516
11517 // Rebuild the function type, replacing the result type with DestType.
11518 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11519 DestType = S.Context.getFunctionType(DestType,
11520 Proto->arg_type_begin(),
11521 Proto->getNumArgs(),
11522 Proto->getExtProtoInfo());
11523 else
11524 DestType = S.Context.getFunctionNoProtoType(DestType,
11525 FnType->getExtInfo());
11526
11527 // Rebuild the appropriate pointer-to-function type.
11528 switch (Kind) {
11529 case FK_MemberFunction:
11530 // Nothing to do.
11531 break;
11532
11533 case FK_FunctionPointer:
11534 DestType = S.Context.getPointerType(DestType);
11535 break;
11536
11537 case FK_BlockPointer:
11538 DestType = S.Context.getBlockPointerType(DestType);
11539 break;
11540 }
11541
11542 // Finally, we can recurse.
11543 ExprResult CalleeResult = Visit(CalleeExpr);
11544 if (!CalleeResult.isUsable()) return ExprError();
11545 E->setCallee(CalleeResult.take());
11546
11547 // Bind a temporary if necessary.
11548 return S.MaybeBindToTemporary(E);
11549 }
11550
VisitObjCMessageExpr(ObjCMessageExpr * E)11551 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11552 // Verify that this is a legal result type of a call.
11553 if (DestType->isArrayType() || DestType->isFunctionType()) {
11554 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11555 << DestType->isFunctionType() << DestType;
11556 return ExprError();
11557 }
11558
11559 // Rewrite the method result type if available.
11560 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11561 assert(Method->getResultType() == S.Context.UnknownAnyTy);
11562 Method->setResultType(DestType);
11563 }
11564
11565 // Change the type of the message.
11566 E->setType(DestType.getNonReferenceType());
11567 E->setValueKind(Expr::getValueKindForType(DestType));
11568
11569 return S.MaybeBindToTemporary(E);
11570 }
11571
VisitImplicitCastExpr(ImplicitCastExpr * E)11572 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11573 // The only case we should ever see here is a function-to-pointer decay.
11574 if (E->getCastKind() == CK_FunctionToPointerDecay) {
11575 assert(E->getValueKind() == VK_RValue);
11576 assert(E->getObjectKind() == OK_Ordinary);
11577
11578 E->setType(DestType);
11579
11580 // Rebuild the sub-expression as the pointee (function) type.
11581 DestType = DestType->castAs<PointerType>()->getPointeeType();
11582
11583 ExprResult Result = Visit(E->getSubExpr());
11584 if (!Result.isUsable()) return ExprError();
11585
11586 E->setSubExpr(Result.take());
11587 return S.Owned(E);
11588 } else if (E->getCastKind() == CK_LValueToRValue) {
11589 assert(E->getValueKind() == VK_RValue);
11590 assert(E->getObjectKind() == OK_Ordinary);
11591
11592 assert(isa<BlockPointerType>(E->getType()));
11593
11594 E->setType(DestType);
11595
11596 // The sub-expression has to be a lvalue reference, so rebuild it as such.
11597 DestType = S.Context.getLValueReferenceType(DestType);
11598
11599 ExprResult Result = Visit(E->getSubExpr());
11600 if (!Result.isUsable()) return ExprError();
11601
11602 E->setSubExpr(Result.take());
11603 return S.Owned(E);
11604 } else {
11605 llvm_unreachable("Unhandled cast type!");
11606 }
11607 }
11608
resolveDecl(Expr * E,ValueDecl * VD)11609 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11610 ExprValueKind ValueKind = VK_LValue;
11611 QualType Type = DestType;
11612
11613 // We know how to make this work for certain kinds of decls:
11614
11615 // - functions
11616 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11617 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11618 DestType = Ptr->getPointeeType();
11619 ExprResult Result = resolveDecl(E, VD);
11620 if (Result.isInvalid()) return ExprError();
11621 return S.ImpCastExprToType(Result.take(), Type,
11622 CK_FunctionToPointerDecay, VK_RValue);
11623 }
11624
11625 if (!Type->isFunctionType()) {
11626 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11627 << VD << E->getSourceRange();
11628 return ExprError();
11629 }
11630
11631 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11632 if (MD->isInstance()) {
11633 ValueKind = VK_RValue;
11634 Type = S.Context.BoundMemberTy;
11635 }
11636
11637 // Function references aren't l-values in C.
11638 if (!S.getLangOpts().CPlusPlus)
11639 ValueKind = VK_RValue;
11640
11641 // - variables
11642 } else if (isa<VarDecl>(VD)) {
11643 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11644 Type = RefTy->getPointeeType();
11645 } else if (Type->isFunctionType()) {
11646 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11647 << VD << E->getSourceRange();
11648 return ExprError();
11649 }
11650
11651 // - nothing else
11652 } else {
11653 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11654 << VD << E->getSourceRange();
11655 return ExprError();
11656 }
11657
11658 VD->setType(DestType);
11659 E->setType(Type);
11660 E->setValueKind(ValueKind);
11661 return S.Owned(E);
11662 }
11663
11664 /// Check a cast of an unknown-any type. We intentionally only
11665 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)11666 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11667 Expr *CastExpr, CastKind &CastKind,
11668 ExprValueKind &VK, CXXCastPath &Path) {
11669 // Rewrite the casted expression from scratch.
11670 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11671 if (!result.isUsable()) return ExprError();
11672
11673 CastExpr = result.take();
11674 VK = CastExpr->getValueKind();
11675 CastKind = CK_NoOp;
11676
11677 return CastExpr;
11678 }
11679
forceUnknownAnyToType(Expr * E,QualType ToType)11680 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11681 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11682 }
11683
diagnoseUnknownAnyExpr(Sema & S,Expr * E)11684 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11685 Expr *orig = E;
11686 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11687 while (true) {
11688 E = E->IgnoreParenImpCasts();
11689 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11690 E = call->getCallee();
11691 diagID = diag::err_uncasted_call_of_unknown_any;
11692 } else {
11693 break;
11694 }
11695 }
11696
11697 SourceLocation loc;
11698 NamedDecl *d;
11699 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11700 loc = ref->getLocation();
11701 d = ref->getDecl();
11702 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11703 loc = mem->getMemberLoc();
11704 d = mem->getMemberDecl();
11705 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11706 diagID = diag::err_uncasted_call_of_unknown_any;
11707 loc = msg->getSelectorStartLoc();
11708 d = msg->getMethodDecl();
11709 if (!d) {
11710 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11711 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11712 << orig->getSourceRange();
11713 return ExprError();
11714 }
11715 } else {
11716 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11717 << E->getSourceRange();
11718 return ExprError();
11719 }
11720
11721 S.Diag(loc, diagID) << d << orig->getSourceRange();
11722
11723 // Never recoverable.
11724 return ExprError();
11725 }
11726
11727 /// Check for operands with placeholder types and complain if found.
11728 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)11729 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11730 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11731 if (!placeholderType) return Owned(E);
11732
11733 switch (placeholderType->getKind()) {
11734
11735 // Overloaded expressions.
11736 case BuiltinType::Overload: {
11737 // Try to resolve a single function template specialization.
11738 // This is obligatory.
11739 ExprResult result = Owned(E);
11740 if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11741 return result;
11742
11743 // If that failed, try to recover with a call.
11744 } else {
11745 tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11746 /*complain*/ true);
11747 return result;
11748 }
11749 }
11750
11751 // Bound member functions.
11752 case BuiltinType::BoundMember: {
11753 ExprResult result = Owned(E);
11754 tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11755 /*complain*/ true);
11756 return result;
11757 }
11758
11759 // ARC unbridged casts.
11760 case BuiltinType::ARCUnbridgedCast: {
11761 Expr *realCast = stripARCUnbridgedCast(E);
11762 diagnoseARCUnbridgedCast(realCast);
11763 return Owned(realCast);
11764 }
11765
11766 // Expressions of unknown type.
11767 case BuiltinType::UnknownAny:
11768 return diagnoseUnknownAnyExpr(*this, E);
11769
11770 // Pseudo-objects.
11771 case BuiltinType::PseudoObject:
11772 return checkPseudoObjectRValue(E);
11773
11774 case BuiltinType::BuiltinFn:
11775 Diag(E->getLocStart(), diag::err_builtin_fn_use);
11776 return ExprError();
11777
11778 // Everything else should be impossible.
11779 #define BUILTIN_TYPE(Id, SingletonId) \
11780 case BuiltinType::Id:
11781 #define PLACEHOLDER_TYPE(Id, SingletonId)
11782 #include "clang/AST/BuiltinTypes.def"
11783 break;
11784 }
11785
11786 llvm_unreachable("invalid placeholder type!");
11787 }
11788
CheckCaseExpression(Expr * E)11789 bool Sema::CheckCaseExpression(Expr *E) {
11790 if (E->isTypeDependent())
11791 return true;
11792 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11793 return E->getType()->isIntegralOrEnumerationType();
11794 return false;
11795 }
11796
11797 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11798 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)11799 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11800 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11801 "Unknown Objective-C Boolean value!");
11802 QualType BoolT = Context.ObjCBuiltinBoolTy;
11803 if (!Context.getBOOLDecl()) {
11804 LookupResult Result(*this, &Context.Idents.get("BOOL"), SourceLocation(),
11805 Sema::LookupOrdinaryName);
11806 if (LookupName(Result, getCurScope())) {
11807 NamedDecl *ND = Result.getFoundDecl();
11808 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
11809 Context.setBOOLDecl(TD);
11810 }
11811 }
11812 if (Context.getBOOLDecl())
11813 BoolT = Context.getBOOLType();
11814 return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11815 BoolT, OpLoc));
11816 }
11817