1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/ExternalSemaSource.h"
17 #include "clang/Sema/Scope.h"
18 #include "clang/Sema/ScopeInfo.h"
19 #include "clang/AST/ASTConsumer.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/ASTMutationListener.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Sema/DeclSpec.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "llvm/ADT/DenseSet.h"
29
30 using namespace clang;
31
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 /// if non-null, check this as if making a call to it with the given
37 /// receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
42 QualType receiverTypeIfCall) {
43 if (method->isInvalidDecl()) return true;
44
45 // This castAs is safe: methods that don't return an object
46 // pointer won't be inferred as inits and will reject an explicit
47 // objc_method_family(init).
48
49 // We ignore protocols here. Should we? What about Class?
50
51 const ObjCObjectType *result = method->getResultType()
52 ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54 if (result->isObjCId()) {
55 return false;
56 } else if (result->isObjCClass()) {
57 // fall through: always an error
58 } else {
59 ObjCInterfaceDecl *resultClass = result->getInterface();
60 assert(resultClass && "unexpected object type!");
61
62 // It's okay for the result type to still be a forward declaration
63 // if we're checking an interface declaration.
64 if (!resultClass->hasDefinition()) {
65 if (receiverTypeIfCall.isNull() &&
66 !isa<ObjCImplementationDecl>(method->getDeclContext()))
67 return false;
68
69 // Otherwise, we try to compare class types.
70 } else {
71 // If this method was declared in a protocol, we can't check
72 // anything unless we have a receiver type that's an interface.
73 const ObjCInterfaceDecl *receiverClass = 0;
74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75 if (receiverTypeIfCall.isNull())
76 return false;
77
78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79 ->getInterfaceDecl();
80
81 // This can be null for calls to e.g. id<Foo>.
82 if (!receiverClass) return false;
83 } else {
84 receiverClass = method->getClassInterface();
85 assert(receiverClass && "method not associated with a class!");
86 }
87
88 // If either class is a subclass of the other, it's fine.
89 if (receiverClass->isSuperClassOf(resultClass) ||
90 resultClass->isSuperClassOf(receiverClass))
91 return false;
92 }
93 }
94
95 SourceLocation loc = method->getLocation();
96
97 // If we're in a system header, and this is not a call, just make
98 // the method unusable.
99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100 method->addAttr(new (Context) UnavailableAttr(loc, Context,
101 "init method returns a type unrelated to its receiver type"));
102 return true;
103 }
104
105 // Otherwise, it's an error.
106 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107 method->setInvalidDecl();
108 return true;
109 }
110
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden,bool IsImplementation)111 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112 const ObjCMethodDecl *Overridden,
113 bool IsImplementation) {
114 if (Overridden->hasRelatedResultType() &&
115 !NewMethod->hasRelatedResultType()) {
116 // This can only happen when the method follows a naming convention that
117 // implies a related result type, and the original (overridden) method has
118 // a suitable return type, but the new (overriding) method does not have
119 // a suitable return type.
120 QualType ResultType = NewMethod->getResultType();
121 SourceRange ResultTypeRange;
122 if (const TypeSourceInfo *ResultTypeInfo
123 = NewMethod->getResultTypeSourceInfo())
124 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
125
126 // Figure out which class this method is part of, if any.
127 ObjCInterfaceDecl *CurrentClass
128 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
129 if (!CurrentClass) {
130 DeclContext *DC = NewMethod->getDeclContext();
131 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
132 CurrentClass = Cat->getClassInterface();
133 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
134 CurrentClass = Impl->getClassInterface();
135 else if (ObjCCategoryImplDecl *CatImpl
136 = dyn_cast<ObjCCategoryImplDecl>(DC))
137 CurrentClass = CatImpl->getClassInterface();
138 }
139
140 if (CurrentClass) {
141 Diag(NewMethod->getLocation(),
142 diag::warn_related_result_type_compatibility_class)
143 << Context.getObjCInterfaceType(CurrentClass)
144 << ResultType
145 << ResultTypeRange;
146 } else {
147 Diag(NewMethod->getLocation(),
148 diag::warn_related_result_type_compatibility_protocol)
149 << ResultType
150 << ResultTypeRange;
151 }
152
153 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
154 Diag(Overridden->getLocation(),
155 diag::note_related_result_type_overridden_family)
156 << Family;
157 else
158 Diag(Overridden->getLocation(),
159 diag::note_related_result_type_overridden);
160 }
161 if (getLangOpts().ObjCAutoRefCount) {
162 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164 Diag(NewMethod->getLocation(),
165 diag::err_nsreturns_retained_attribute_mismatch) << 1;
166 Diag(Overridden->getLocation(), diag::note_previous_decl)
167 << "method";
168 }
169 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171 Diag(NewMethod->getLocation(),
172 diag::err_nsreturns_retained_attribute_mismatch) << 0;
173 Diag(Overridden->getLocation(), diag::note_previous_decl)
174 << "method";
175 }
176 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177 oe = Overridden->param_end();
178 for (ObjCMethodDecl::param_iterator
179 ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180 ni != ne && oi != oe; ++ni, ++oi) {
181 const ParmVarDecl *oldDecl = (*oi);
182 ParmVarDecl *newDecl = (*ni);
183 if (newDecl->hasAttr<NSConsumedAttr>() !=
184 oldDecl->hasAttr<NSConsumedAttr>()) {
185 Diag(newDecl->getLocation(),
186 diag::err_nsconsumed_attribute_mismatch);
187 Diag(oldDecl->getLocation(), diag::note_previous_decl)
188 << "parameter";
189 }
190 }
191 }
192 }
193
194 /// \brief Check a method declaration for compatibility with the Objective-C
195 /// ARC conventions.
CheckARCMethodDecl(Sema & S,ObjCMethodDecl * method)196 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
197 ObjCMethodFamily family = method->getMethodFamily();
198 switch (family) {
199 case OMF_None:
200 case OMF_finalize:
201 case OMF_retain:
202 case OMF_release:
203 case OMF_autorelease:
204 case OMF_retainCount:
205 case OMF_self:
206 case OMF_performSelector:
207 return false;
208
209 case OMF_dealloc:
210 if (!S.Context.hasSameType(method->getResultType(), S.Context.VoidTy)) {
211 SourceRange ResultTypeRange;
212 if (const TypeSourceInfo *ResultTypeInfo
213 = method->getResultTypeSourceInfo())
214 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215 if (ResultTypeRange.isInvalid())
216 S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217 << method->getResultType()
218 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219 else
220 S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221 << method->getResultType()
222 << FixItHint::CreateReplacement(ResultTypeRange, "void");
223 return true;
224 }
225 return false;
226
227 case OMF_init:
228 // If the method doesn't obey the init rules, don't bother annotating it.
229 if (S.checkInitMethod(method, QualType()))
230 return true;
231
232 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
233 S.Context));
234
235 // Don't add a second copy of this attribute, but otherwise don't
236 // let it be suppressed.
237 if (method->hasAttr<NSReturnsRetainedAttr>())
238 return false;
239 break;
240
241 case OMF_alloc:
242 case OMF_copy:
243 case OMF_mutableCopy:
244 case OMF_new:
245 if (method->hasAttr<NSReturnsRetainedAttr>() ||
246 method->hasAttr<NSReturnsNotRetainedAttr>() ||
247 method->hasAttr<NSReturnsAutoreleasedAttr>())
248 return false;
249 break;
250 }
251
252 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
253 S.Context));
254 return false;
255 }
256
DiagnoseObjCImplementedDeprecations(Sema & S,NamedDecl * ND,SourceLocation ImplLoc,int select)257 static void DiagnoseObjCImplementedDeprecations(Sema &S,
258 NamedDecl *ND,
259 SourceLocation ImplLoc,
260 int select) {
261 if (ND && ND->isDeprecated()) {
262 S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263 if (select == 0)
264 S.Diag(ND->getLocation(), diag::note_method_declared_at)
265 << ND->getDeclName();
266 else
267 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268 }
269 }
270
271 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272 /// pool.
AddAnyMethodToGlobalPool(Decl * D)273 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275
276 // If we don't have a valid method decl, simply return.
277 if (!MDecl)
278 return;
279 if (MDecl->isInstanceMethod())
280 AddInstanceMethodToGlobalPool(MDecl, true);
281 else
282 AddFactoryMethodToGlobalPool(MDecl, true);
283 }
284
285 /// StrongPointerToObjCPointer - returns true when pointer to ObjC pointer
286 /// is __strong, or when it is any other type. It returns false when
287 /// pointer to ObjC pointer is not __strong.
288 static bool
StrongPointerToObjCPointer(Sema & S,ParmVarDecl * Param)289 StrongPointerToObjCPointer(Sema &S, ParmVarDecl *Param) {
290 QualType T = Param->getType();
291 if (!T->isObjCIndirectLifetimeType())
292 return true;
293 if (!T->isPointerType() && !T->isReferenceType())
294 return true;
295 T = T->isPointerType()
296 ? T->getAs<PointerType>()->getPointeeType()
297 : T->getAs<ReferenceType>()->getPointeeType();
298 if (T->isObjCLifetimeType()) {
299 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
300 return lifetime == Qualifiers::OCL_Strong;
301 }
302 return true;
303 }
304
305 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
306 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)307 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
308 assert((getCurMethodDecl() == 0) && "Methodparsing confused");
309 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
310
311 // If we don't have a valid method decl, simply return.
312 if (!MDecl)
313 return;
314
315 // Allow all of Sema to see that we are entering a method definition.
316 PushDeclContext(FnBodyScope, MDecl);
317 PushFunctionScope();
318
319 // Create Decl objects for each parameter, entrring them in the scope for
320 // binding to their use.
321
322 // Insert the invisible arguments, self and _cmd!
323 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
324
325 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
326 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
327
328 // Introduce all of the other parameters into this scope.
329 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
330 E = MDecl->param_end(); PI != E; ++PI) {
331 ParmVarDecl *Param = (*PI);
332 if (!Param->isInvalidDecl() &&
333 RequireCompleteType(Param->getLocation(), Param->getType(),
334 diag::err_typecheck_decl_incomplete_type))
335 Param->setInvalidDecl();
336 if (!Param->isInvalidDecl() &&
337 getLangOpts().ObjCAutoRefCount &&
338 !StrongPointerToObjCPointer(*this, Param))
339 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
340 Param->getType();
341
342 if ((*PI)->getIdentifier())
343 PushOnScopeChains(*PI, FnBodyScope);
344 }
345
346 // In ARC, disallow definition of retain/release/autorelease/retainCount
347 if (getLangOpts().ObjCAutoRefCount) {
348 switch (MDecl->getMethodFamily()) {
349 case OMF_retain:
350 case OMF_retainCount:
351 case OMF_release:
352 case OMF_autorelease:
353 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
354 << MDecl->getSelector();
355 break;
356
357 case OMF_None:
358 case OMF_dealloc:
359 case OMF_finalize:
360 case OMF_alloc:
361 case OMF_init:
362 case OMF_mutableCopy:
363 case OMF_copy:
364 case OMF_new:
365 case OMF_self:
366 case OMF_performSelector:
367 break;
368 }
369 }
370
371 // Warn on deprecated methods under -Wdeprecated-implementations,
372 // and prepare for warning on missing super calls.
373 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
374 ObjCMethodDecl *IMD =
375 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
376
377 if (IMD)
378 DiagnoseObjCImplementedDeprecations(*this,
379 dyn_cast<NamedDecl>(IMD),
380 MDecl->getLocation(), 0);
381
382 // If this is "dealloc" or "finalize", set some bit here.
383 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
384 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
385 // Only do this if the current class actually has a superclass.
386 if (IC->getSuperClass()) {
387 getCurFunction()->ObjCShouldCallSuperDealloc =
388 !(Context.getLangOpts().ObjCAutoRefCount ||
389 Context.getLangOpts().getGC() == LangOptions::GCOnly) &&
390 MDecl->getMethodFamily() == OMF_dealloc;
391 if (!getCurFunction()->ObjCShouldCallSuperDealloc) {
392 IMD = IC->getSuperClass()->lookupMethod(MDecl->getSelector(),
393 MDecl->isInstanceMethod());
394 getCurFunction()->ObjCShouldCallSuperDealloc =
395 (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>());
396 }
397 getCurFunction()->ObjCShouldCallSuperFinalize =
398 Context.getLangOpts().getGC() != LangOptions::NonGC &&
399 MDecl->getMethodFamily() == OMF_finalize;
400 }
401 }
402 }
403
404 namespace {
405
406 // Callback to only accept typo corrections that are Objective-C classes.
407 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
408 // function will reject corrections to that class.
409 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
410 public:
ObjCInterfaceValidatorCCC()411 ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)412 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
413 : CurrentIDecl(IDecl) {}
414
ValidateCandidate(const TypoCorrection & candidate)415 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
416 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
417 return ID && !declaresSameEntity(ID, CurrentIDecl);
418 }
419
420 private:
421 ObjCInterfaceDecl *CurrentIDecl;
422 };
423
424 }
425
426 Decl *Sema::
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)427 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
428 IdentifierInfo *ClassName, SourceLocation ClassLoc,
429 IdentifierInfo *SuperName, SourceLocation SuperLoc,
430 Decl * const *ProtoRefs, unsigned NumProtoRefs,
431 const SourceLocation *ProtoLocs,
432 SourceLocation EndProtoLoc, AttributeList *AttrList) {
433 assert(ClassName && "Missing class identifier");
434
435 // Check for another declaration kind with the same name.
436 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
437 LookupOrdinaryName, ForRedeclaration);
438
439 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
440 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
441 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
442 }
443
444 // Create a declaration to describe this @interface.
445 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
446 ObjCInterfaceDecl *IDecl
447 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
448 PrevIDecl, ClassLoc);
449
450 if (PrevIDecl) {
451 // Class already seen. Was it a definition?
452 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
453 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
454 << PrevIDecl->getDeclName();
455 Diag(Def->getLocation(), diag::note_previous_definition);
456 IDecl->setInvalidDecl();
457 }
458 }
459
460 if (AttrList)
461 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
462 PushOnScopeChains(IDecl, TUScope);
463
464 // Start the definition of this class. If we're in a redefinition case, there
465 // may already be a definition, so we'll end up adding to it.
466 if (!IDecl->hasDefinition())
467 IDecl->startDefinition();
468
469 if (SuperName) {
470 // Check if a different kind of symbol declared in this scope.
471 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
472 LookupOrdinaryName);
473
474 if (!PrevDecl) {
475 // Try to correct for a typo in the superclass name without correcting
476 // to the class we're defining.
477 ObjCInterfaceValidatorCCC Validator(IDecl);
478 if (TypoCorrection Corrected = CorrectTypo(
479 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
480 NULL, Validator)) {
481 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
482 Diag(SuperLoc, diag::err_undef_superclass_suggest)
483 << SuperName << ClassName << PrevDecl->getDeclName();
484 Diag(PrevDecl->getLocation(), diag::note_previous_decl)
485 << PrevDecl->getDeclName();
486 }
487 }
488
489 if (declaresSameEntity(PrevDecl, IDecl)) {
490 Diag(SuperLoc, diag::err_recursive_superclass)
491 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
492 IDecl->setEndOfDefinitionLoc(ClassLoc);
493 } else {
494 ObjCInterfaceDecl *SuperClassDecl =
495 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
496
497 // Diagnose classes that inherit from deprecated classes.
498 if (SuperClassDecl)
499 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
500
501 if (PrevDecl && SuperClassDecl == 0) {
502 // The previous declaration was not a class decl. Check if we have a
503 // typedef. If we do, get the underlying class type.
504 if (const TypedefNameDecl *TDecl =
505 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
506 QualType T = TDecl->getUnderlyingType();
507 if (T->isObjCObjectType()) {
508 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
509 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
510 }
511 }
512
513 // This handles the following case:
514 //
515 // typedef int SuperClass;
516 // @interface MyClass : SuperClass {} @end
517 //
518 if (!SuperClassDecl) {
519 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
520 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
521 }
522 }
523
524 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
525 if (!SuperClassDecl)
526 Diag(SuperLoc, diag::err_undef_superclass)
527 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
528 else if (RequireCompleteType(SuperLoc,
529 Context.getObjCInterfaceType(SuperClassDecl),
530 diag::err_forward_superclass,
531 SuperClassDecl->getDeclName(),
532 ClassName,
533 SourceRange(AtInterfaceLoc, ClassLoc))) {
534 SuperClassDecl = 0;
535 }
536 }
537 IDecl->setSuperClass(SuperClassDecl);
538 IDecl->setSuperClassLoc(SuperLoc);
539 IDecl->setEndOfDefinitionLoc(SuperLoc);
540 }
541 } else { // we have a root class.
542 IDecl->setEndOfDefinitionLoc(ClassLoc);
543 }
544
545 // Check then save referenced protocols.
546 if (NumProtoRefs) {
547 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
548 ProtoLocs, Context);
549 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
550 }
551
552 CheckObjCDeclScope(IDecl);
553 return ActOnObjCContainerStartDefinition(IDecl);
554 }
555
556 /// ActOnCompatibilityAlias - this action is called after complete parsing of
557 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)558 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
559 IdentifierInfo *AliasName,
560 SourceLocation AliasLocation,
561 IdentifierInfo *ClassName,
562 SourceLocation ClassLocation) {
563 // Look for previous declaration of alias name
564 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
565 LookupOrdinaryName, ForRedeclaration);
566 if (ADecl) {
567 if (isa<ObjCCompatibleAliasDecl>(ADecl))
568 Diag(AliasLocation, diag::warn_previous_alias_decl);
569 else
570 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
571 Diag(ADecl->getLocation(), diag::note_previous_declaration);
572 return 0;
573 }
574 // Check for class declaration
575 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
576 LookupOrdinaryName, ForRedeclaration);
577 if (const TypedefNameDecl *TDecl =
578 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
579 QualType T = TDecl->getUnderlyingType();
580 if (T->isObjCObjectType()) {
581 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
582 ClassName = IDecl->getIdentifier();
583 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
584 LookupOrdinaryName, ForRedeclaration);
585 }
586 }
587 }
588 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
589 if (CDecl == 0) {
590 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
591 if (CDeclU)
592 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
593 return 0;
594 }
595
596 // Everything checked out, instantiate a new alias declaration AST.
597 ObjCCompatibleAliasDecl *AliasDecl =
598 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
599
600 if (!CheckObjCDeclScope(AliasDecl))
601 PushOnScopeChains(AliasDecl, TUScope);
602
603 return AliasDecl;
604 }
605
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)606 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
607 IdentifierInfo *PName,
608 SourceLocation &Ploc, SourceLocation PrevLoc,
609 const ObjCList<ObjCProtocolDecl> &PList) {
610
611 bool res = false;
612 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
613 E = PList.end(); I != E; ++I) {
614 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
615 Ploc)) {
616 if (PDecl->getIdentifier() == PName) {
617 Diag(Ploc, diag::err_protocol_has_circular_dependency);
618 Diag(PrevLoc, diag::note_previous_definition);
619 res = true;
620 }
621
622 if (!PDecl->hasDefinition())
623 continue;
624
625 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
626 PDecl->getLocation(), PDecl->getReferencedProtocols()))
627 res = true;
628 }
629 }
630 return res;
631 }
632
633 Decl *
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)634 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
635 IdentifierInfo *ProtocolName,
636 SourceLocation ProtocolLoc,
637 Decl * const *ProtoRefs,
638 unsigned NumProtoRefs,
639 const SourceLocation *ProtoLocs,
640 SourceLocation EndProtoLoc,
641 AttributeList *AttrList) {
642 bool err = false;
643 // FIXME: Deal with AttrList.
644 assert(ProtocolName && "Missing protocol identifier");
645 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
646 ForRedeclaration);
647 ObjCProtocolDecl *PDecl = 0;
648 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
649 // If we already have a definition, complain.
650 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
651 Diag(Def->getLocation(), diag::note_previous_definition);
652
653 // Create a new protocol that is completely distinct from previous
654 // declarations, and do not make this protocol available for name lookup.
655 // That way, we'll end up completely ignoring the duplicate.
656 // FIXME: Can we turn this into an error?
657 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
658 ProtocolLoc, AtProtoInterfaceLoc,
659 /*PrevDecl=*/0);
660 PDecl->startDefinition();
661 } else {
662 if (PrevDecl) {
663 // Check for circular dependencies among protocol declarations. This can
664 // only happen if this protocol was forward-declared.
665 ObjCList<ObjCProtocolDecl> PList;
666 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
667 err = CheckForwardProtocolDeclarationForCircularDependency(
668 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
669 }
670
671 // Create the new declaration.
672 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
673 ProtocolLoc, AtProtoInterfaceLoc,
674 /*PrevDecl=*/PrevDecl);
675
676 PushOnScopeChains(PDecl, TUScope);
677 PDecl->startDefinition();
678 }
679
680 if (AttrList)
681 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
682
683 // Merge attributes from previous declarations.
684 if (PrevDecl)
685 mergeDeclAttributes(PDecl, PrevDecl);
686
687 if (!err && NumProtoRefs ) {
688 /// Check then save referenced protocols.
689 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
690 ProtoLocs, Context);
691 }
692
693 CheckObjCDeclScope(PDecl);
694 return ActOnObjCContainerStartDefinition(PDecl);
695 }
696
697 /// FindProtocolDeclaration - This routine looks up protocols and
698 /// issues an error if they are not declared. It returns list of
699 /// protocol declarations in its 'Protocols' argument.
700 void
FindProtocolDeclaration(bool WarnOnDeclarations,const IdentifierLocPair * ProtocolId,unsigned NumProtocols,SmallVectorImpl<Decl * > & Protocols)701 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
702 const IdentifierLocPair *ProtocolId,
703 unsigned NumProtocols,
704 SmallVectorImpl<Decl *> &Protocols) {
705 for (unsigned i = 0; i != NumProtocols; ++i) {
706 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
707 ProtocolId[i].second);
708 if (!PDecl) {
709 DeclFilterCCC<ObjCProtocolDecl> Validator;
710 TypoCorrection Corrected = CorrectTypo(
711 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
712 LookupObjCProtocolName, TUScope, NULL, Validator);
713 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
714 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
715 << ProtocolId[i].first << Corrected.getCorrection();
716 Diag(PDecl->getLocation(), diag::note_previous_decl)
717 << PDecl->getDeclName();
718 }
719 }
720
721 if (!PDecl) {
722 Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
723 << ProtocolId[i].first;
724 continue;
725 }
726
727 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
728
729 // If this is a forward declaration and we are supposed to warn in this
730 // case, do it.
731 if (WarnOnDeclarations && !PDecl->hasDefinition())
732 Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
733 << ProtocolId[i].first;
734 Protocols.push_back(PDecl);
735 }
736 }
737
738 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
739 /// a class method in its extension.
740 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)741 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
742 ObjCInterfaceDecl *ID) {
743 if (!ID)
744 return; // Possibly due to previous error
745
746 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
747 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
748 e = ID->meth_end(); i != e; ++i) {
749 ObjCMethodDecl *MD = *i;
750 MethodMap[MD->getSelector()] = MD;
751 }
752
753 if (MethodMap.empty())
754 return;
755 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
756 e = CAT->meth_end(); i != e; ++i) {
757 ObjCMethodDecl *Method = *i;
758 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
759 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
760 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
761 << Method->getDeclName();
762 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
763 }
764 }
765 }
766
767 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
768 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,const IdentifierLocPair * IdentList,unsigned NumElts,AttributeList * attrList)769 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
770 const IdentifierLocPair *IdentList,
771 unsigned NumElts,
772 AttributeList *attrList) {
773 SmallVector<Decl *, 8> DeclsInGroup;
774 for (unsigned i = 0; i != NumElts; ++i) {
775 IdentifierInfo *Ident = IdentList[i].first;
776 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
777 ForRedeclaration);
778 ObjCProtocolDecl *PDecl
779 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
780 IdentList[i].second, AtProtocolLoc,
781 PrevDecl);
782
783 PushOnScopeChains(PDecl, TUScope);
784 CheckObjCDeclScope(PDecl);
785
786 if (attrList)
787 ProcessDeclAttributeList(TUScope, PDecl, attrList);
788
789 if (PrevDecl)
790 mergeDeclAttributes(PDecl, PrevDecl);
791
792 DeclsInGroup.push_back(PDecl);
793 }
794
795 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
796 }
797
798 Decl *Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc)799 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
800 IdentifierInfo *ClassName, SourceLocation ClassLoc,
801 IdentifierInfo *CategoryName,
802 SourceLocation CategoryLoc,
803 Decl * const *ProtoRefs,
804 unsigned NumProtoRefs,
805 const SourceLocation *ProtoLocs,
806 SourceLocation EndProtoLoc) {
807 ObjCCategoryDecl *CDecl;
808 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
809
810 /// Check that class of this category is already completely declared.
811
812 if (!IDecl
813 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
814 diag::err_category_forward_interface,
815 CategoryName == 0)) {
816 // Create an invalid ObjCCategoryDecl to serve as context for
817 // the enclosing method declarations. We mark the decl invalid
818 // to make it clear that this isn't a valid AST.
819 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
820 ClassLoc, CategoryLoc, CategoryName,IDecl);
821 CDecl->setInvalidDecl();
822 CurContext->addDecl(CDecl);
823
824 if (!IDecl)
825 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
826 return ActOnObjCContainerStartDefinition(CDecl);
827 }
828
829 if (!CategoryName && IDecl->getImplementation()) {
830 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
831 Diag(IDecl->getImplementation()->getLocation(),
832 diag::note_implementation_declared);
833 }
834
835 if (CategoryName) {
836 /// Check for duplicate interface declaration for this category
837 ObjCCategoryDecl *CDeclChain;
838 for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
839 CDeclChain = CDeclChain->getNextClassCategory()) {
840 if (CDeclChain->getIdentifier() == CategoryName) {
841 // Class extensions can be declared multiple times.
842 Diag(CategoryLoc, diag::warn_dup_category_def)
843 << ClassName << CategoryName;
844 Diag(CDeclChain->getLocation(), diag::note_previous_definition);
845 break;
846 }
847 }
848 }
849
850 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
851 ClassLoc, CategoryLoc, CategoryName, IDecl);
852 // FIXME: PushOnScopeChains?
853 CurContext->addDecl(CDecl);
854
855 if (NumProtoRefs) {
856 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
857 ProtoLocs, Context);
858 // Protocols in the class extension belong to the class.
859 if (CDecl->IsClassExtension())
860 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
861 NumProtoRefs, Context);
862 }
863
864 CheckObjCDeclScope(CDecl);
865 return ActOnObjCContainerStartDefinition(CDecl);
866 }
867
868 /// ActOnStartCategoryImplementation - Perform semantic checks on the
869 /// category implementation declaration and build an ObjCCategoryImplDecl
870 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc)871 Decl *Sema::ActOnStartCategoryImplementation(
872 SourceLocation AtCatImplLoc,
873 IdentifierInfo *ClassName, SourceLocation ClassLoc,
874 IdentifierInfo *CatName, SourceLocation CatLoc) {
875 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
876 ObjCCategoryDecl *CatIDecl = 0;
877 if (IDecl && IDecl->hasDefinition()) {
878 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
879 if (!CatIDecl) {
880 // Category @implementation with no corresponding @interface.
881 // Create and install one.
882 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
883 ClassLoc, CatLoc,
884 CatName, IDecl);
885 CatIDecl->setImplicit();
886 }
887 }
888
889 ObjCCategoryImplDecl *CDecl =
890 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
891 ClassLoc, AtCatImplLoc, CatLoc);
892 /// Check that class of this category is already completely declared.
893 if (!IDecl) {
894 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
895 CDecl->setInvalidDecl();
896 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
897 diag::err_undef_interface)) {
898 CDecl->setInvalidDecl();
899 }
900
901 // FIXME: PushOnScopeChains?
902 CurContext->addDecl(CDecl);
903
904 // If the interface is deprecated/unavailable, warn/error about it.
905 if (IDecl)
906 DiagnoseUseOfDecl(IDecl, ClassLoc);
907
908 /// Check that CatName, category name, is not used in another implementation.
909 if (CatIDecl) {
910 if (CatIDecl->getImplementation()) {
911 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
912 << CatName;
913 Diag(CatIDecl->getImplementation()->getLocation(),
914 diag::note_previous_definition);
915 } else {
916 CatIDecl->setImplementation(CDecl);
917 // Warn on implementating category of deprecated class under
918 // -Wdeprecated-implementations flag.
919 DiagnoseObjCImplementedDeprecations(*this,
920 dyn_cast<NamedDecl>(IDecl),
921 CDecl->getLocation(), 2);
922 }
923 }
924
925 CheckObjCDeclScope(CDecl);
926 return ActOnObjCContainerStartDefinition(CDecl);
927 }
928
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc)929 Decl *Sema::ActOnStartClassImplementation(
930 SourceLocation AtClassImplLoc,
931 IdentifierInfo *ClassName, SourceLocation ClassLoc,
932 IdentifierInfo *SuperClassname,
933 SourceLocation SuperClassLoc) {
934 ObjCInterfaceDecl* IDecl = 0;
935 // Check for another declaration kind with the same name.
936 NamedDecl *PrevDecl
937 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
938 ForRedeclaration);
939 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
940 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
941 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
942 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
943 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
944 diag::warn_undef_interface);
945 } else {
946 // We did not find anything with the name ClassName; try to correct for
947 // typos in the class name.
948 ObjCInterfaceValidatorCCC Validator;
949 if (TypoCorrection Corrected = CorrectTypo(
950 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
951 NULL, Validator)) {
952 // Suggest the (potentially) correct interface name. However, put the
953 // fix-it hint itself in a separate note, since changing the name in
954 // the warning would make the fix-it change semantics.However, don't
955 // provide a code-modification hint or use the typo name for recovery,
956 // because this is just a warning. The program may actually be correct.
957 IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
958 DeclarationName CorrectedName = Corrected.getCorrection();
959 Diag(ClassLoc, diag::warn_undef_interface_suggest)
960 << ClassName << CorrectedName;
961 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
962 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
963 IDecl = 0;
964 } else {
965 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
966 }
967 }
968
969 // Check that super class name is valid class name
970 ObjCInterfaceDecl* SDecl = 0;
971 if (SuperClassname) {
972 // Check if a different kind of symbol declared in this scope.
973 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
974 LookupOrdinaryName);
975 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
976 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
977 << SuperClassname;
978 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
979 } else {
980 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
981 if (SDecl && !SDecl->hasDefinition())
982 SDecl = 0;
983 if (!SDecl)
984 Diag(SuperClassLoc, diag::err_undef_superclass)
985 << SuperClassname << ClassName;
986 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
987 // This implementation and its interface do not have the same
988 // super class.
989 Diag(SuperClassLoc, diag::err_conflicting_super_class)
990 << SDecl->getDeclName();
991 Diag(SDecl->getLocation(), diag::note_previous_definition);
992 }
993 }
994 }
995
996 if (!IDecl) {
997 // Legacy case of @implementation with no corresponding @interface.
998 // Build, chain & install the interface decl into the identifier.
999
1000 // FIXME: Do we support attributes on the @implementation? If so we should
1001 // copy them over.
1002 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1003 ClassName, /*PrevDecl=*/0, ClassLoc,
1004 true);
1005 IDecl->startDefinition();
1006 if (SDecl) {
1007 IDecl->setSuperClass(SDecl);
1008 IDecl->setSuperClassLoc(SuperClassLoc);
1009 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1010 } else {
1011 IDecl->setEndOfDefinitionLoc(ClassLoc);
1012 }
1013
1014 PushOnScopeChains(IDecl, TUScope);
1015 } else {
1016 // Mark the interface as being completed, even if it was just as
1017 // @class ....;
1018 // declaration; the user cannot reopen it.
1019 if (!IDecl->hasDefinition())
1020 IDecl->startDefinition();
1021 }
1022
1023 ObjCImplementationDecl* IMPDecl =
1024 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1025 ClassLoc, AtClassImplLoc);
1026
1027 if (CheckObjCDeclScope(IMPDecl))
1028 return ActOnObjCContainerStartDefinition(IMPDecl);
1029
1030 // Check that there is no duplicate implementation of this class.
1031 if (IDecl->getImplementation()) {
1032 // FIXME: Don't leak everything!
1033 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1034 Diag(IDecl->getImplementation()->getLocation(),
1035 diag::note_previous_definition);
1036 } else { // add it to the list.
1037 IDecl->setImplementation(IMPDecl);
1038 PushOnScopeChains(IMPDecl, TUScope);
1039 // Warn on implementating deprecated class under
1040 // -Wdeprecated-implementations flag.
1041 DiagnoseObjCImplementedDeprecations(*this,
1042 dyn_cast<NamedDecl>(IDecl),
1043 IMPDecl->getLocation(), 1);
1044 }
1045 return ActOnObjCContainerStartDefinition(IMPDecl);
1046 }
1047
1048 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)1049 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1050 SmallVector<Decl *, 64> DeclsInGroup;
1051 DeclsInGroup.reserve(Decls.size() + 1);
1052
1053 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1054 Decl *Dcl = Decls[i];
1055 if (!Dcl)
1056 continue;
1057 if (Dcl->getDeclContext()->isFileContext())
1058 Dcl->setTopLevelDeclInObjCContainer();
1059 DeclsInGroup.push_back(Dcl);
1060 }
1061
1062 DeclsInGroup.push_back(ObjCImpDecl);
1063
1064 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1065 }
1066
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)1067 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1068 ObjCIvarDecl **ivars, unsigned numIvars,
1069 SourceLocation RBrace) {
1070 assert(ImpDecl && "missing implementation decl");
1071 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1072 if (!IDecl)
1073 return;
1074 /// Check case of non-existing \@interface decl.
1075 /// (legacy objective-c \@implementation decl without an \@interface decl).
1076 /// Add implementations's ivar to the synthesize class's ivar list.
1077 if (IDecl->isImplicitInterfaceDecl()) {
1078 IDecl->setEndOfDefinitionLoc(RBrace);
1079 // Add ivar's to class's DeclContext.
1080 for (unsigned i = 0, e = numIvars; i != e; ++i) {
1081 ivars[i]->setLexicalDeclContext(ImpDecl);
1082 IDecl->makeDeclVisibleInContext(ivars[i]);
1083 ImpDecl->addDecl(ivars[i]);
1084 }
1085
1086 return;
1087 }
1088 // If implementation has empty ivar list, just return.
1089 if (numIvars == 0)
1090 return;
1091
1092 assert(ivars && "missing @implementation ivars");
1093 if (LangOpts.ObjCRuntime.isNonFragile()) {
1094 if (ImpDecl->getSuperClass())
1095 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1096 for (unsigned i = 0; i < numIvars; i++) {
1097 ObjCIvarDecl* ImplIvar = ivars[i];
1098 if (const ObjCIvarDecl *ClsIvar =
1099 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1100 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1101 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1102 continue;
1103 }
1104 // Instance ivar to Implementation's DeclContext.
1105 ImplIvar->setLexicalDeclContext(ImpDecl);
1106 IDecl->makeDeclVisibleInContext(ImplIvar);
1107 ImpDecl->addDecl(ImplIvar);
1108 }
1109 return;
1110 }
1111 // Check interface's Ivar list against those in the implementation.
1112 // names and types must match.
1113 //
1114 unsigned j = 0;
1115 ObjCInterfaceDecl::ivar_iterator
1116 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1117 for (; numIvars > 0 && IVI != IVE; ++IVI) {
1118 ObjCIvarDecl* ImplIvar = ivars[j++];
1119 ObjCIvarDecl* ClsIvar = *IVI;
1120 assert (ImplIvar && "missing implementation ivar");
1121 assert (ClsIvar && "missing class ivar");
1122
1123 // First, make sure the types match.
1124 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1125 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1126 << ImplIvar->getIdentifier()
1127 << ImplIvar->getType() << ClsIvar->getType();
1128 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1129 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1130 ImplIvar->getBitWidthValue(Context) !=
1131 ClsIvar->getBitWidthValue(Context)) {
1132 Diag(ImplIvar->getBitWidth()->getLocStart(),
1133 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1134 Diag(ClsIvar->getBitWidth()->getLocStart(),
1135 diag::note_previous_definition);
1136 }
1137 // Make sure the names are identical.
1138 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1139 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1140 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1141 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1142 }
1143 --numIvars;
1144 }
1145
1146 if (numIvars > 0)
1147 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1148 else if (IVI != IVE)
1149 Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1150 }
1151
WarnUndefinedMethod(SourceLocation ImpLoc,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID)1152 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1153 bool &IncompleteImpl, unsigned DiagID) {
1154 // No point warning no definition of method which is 'unavailable'.
1155 if (method->hasAttr<UnavailableAttr>())
1156 return;
1157 if (!IncompleteImpl) {
1158 Diag(ImpLoc, diag::warn_incomplete_impl);
1159 IncompleteImpl = true;
1160 }
1161 if (DiagID == diag::warn_unimplemented_protocol_method)
1162 Diag(ImpLoc, DiagID) << method->getDeclName();
1163 else
1164 Diag(method->getLocation(), DiagID) << method->getDeclName();
1165 }
1166
1167 /// Determines if type B can be substituted for type A. Returns true if we can
1168 /// guarantee that anything that the user will do to an object of type A can
1169 /// also be done to an object of type B. This is trivially true if the two
1170 /// types are the same, or if B is a subclass of A. It becomes more complex
1171 /// in cases where protocols are involved.
1172 ///
1173 /// Object types in Objective-C describe the minimum requirements for an
1174 /// object, rather than providing a complete description of a type. For
1175 /// example, if A is a subclass of B, then B* may refer to an instance of A.
1176 /// The principle of substitutability means that we may use an instance of A
1177 /// anywhere that we may use an instance of B - it will implement all of the
1178 /// ivars of B and all of the methods of B.
1179 ///
1180 /// This substitutability is important when type checking methods, because
1181 /// the implementation may have stricter type definitions than the interface.
1182 /// The interface specifies minimum requirements, but the implementation may
1183 /// have more accurate ones. For example, a method may privately accept
1184 /// instances of B, but only publish that it accepts instances of A. Any
1185 /// object passed to it will be type checked against B, and so will implicitly
1186 /// by a valid A*. Similarly, a method may return a subclass of the class that
1187 /// it is declared as returning.
1188 ///
1189 /// This is most important when considering subclassing. A method in a
1190 /// subclass must accept any object as an argument that its superclass's
1191 /// implementation accepts. It may, however, accept a more general type
1192 /// without breaking substitutability (i.e. you can still use the subclass
1193 /// anywhere that you can use the superclass, but not vice versa). The
1194 /// converse requirement applies to return types: the return type for a
1195 /// subclass method must be a valid object of the kind that the superclass
1196 /// advertises, but it may be specified more accurately. This avoids the need
1197 /// for explicit down-casting by callers.
1198 ///
1199 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)1200 static bool isObjCTypeSubstitutable(ASTContext &Context,
1201 const ObjCObjectPointerType *A,
1202 const ObjCObjectPointerType *B,
1203 bool rejectId) {
1204 // Reject a protocol-unqualified id.
1205 if (rejectId && B->isObjCIdType()) return false;
1206
1207 // If B is a qualified id, then A must also be a qualified id and it must
1208 // implement all of the protocols in B. It may not be a qualified class.
1209 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1210 // stricter definition so it is not substitutable for id<A>.
1211 if (B->isObjCQualifiedIdType()) {
1212 return A->isObjCQualifiedIdType() &&
1213 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1214 QualType(B,0),
1215 false);
1216 }
1217
1218 /*
1219 // id is a special type that bypasses type checking completely. We want a
1220 // warning when it is used in one place but not another.
1221 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1222
1223
1224 // If B is a qualified id, then A must also be a qualified id (which it isn't
1225 // if we've got this far)
1226 if (B->isObjCQualifiedIdType()) return false;
1227 */
1228
1229 // Now we know that A and B are (potentially-qualified) class types. The
1230 // normal rules for assignment apply.
1231 return Context.canAssignObjCInterfaces(A, B);
1232 }
1233
getTypeRange(TypeSourceInfo * TSI)1234 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1235 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1236 }
1237
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)1238 static bool CheckMethodOverrideReturn(Sema &S,
1239 ObjCMethodDecl *MethodImpl,
1240 ObjCMethodDecl *MethodDecl,
1241 bool IsProtocolMethodDecl,
1242 bool IsOverridingMode,
1243 bool Warn) {
1244 if (IsProtocolMethodDecl &&
1245 (MethodDecl->getObjCDeclQualifier() !=
1246 MethodImpl->getObjCDeclQualifier())) {
1247 if (Warn) {
1248 S.Diag(MethodImpl->getLocation(),
1249 (IsOverridingMode ?
1250 diag::warn_conflicting_overriding_ret_type_modifiers
1251 : diag::warn_conflicting_ret_type_modifiers))
1252 << MethodImpl->getDeclName()
1253 << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1254 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1255 << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1256 }
1257 else
1258 return false;
1259 }
1260
1261 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1262 MethodDecl->getResultType()))
1263 return true;
1264 if (!Warn)
1265 return false;
1266
1267 unsigned DiagID =
1268 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1269 : diag::warn_conflicting_ret_types;
1270
1271 // Mismatches between ObjC pointers go into a different warning
1272 // category, and sometimes they're even completely whitelisted.
1273 if (const ObjCObjectPointerType *ImplPtrTy =
1274 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1275 if (const ObjCObjectPointerType *IfacePtrTy =
1276 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1277 // Allow non-matching return types as long as they don't violate
1278 // the principle of substitutability. Specifically, we permit
1279 // return types that are subclasses of the declared return type,
1280 // or that are more-qualified versions of the declared type.
1281 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1282 return false;
1283
1284 DiagID =
1285 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1286 : diag::warn_non_covariant_ret_types;
1287 }
1288 }
1289
1290 S.Diag(MethodImpl->getLocation(), DiagID)
1291 << MethodImpl->getDeclName()
1292 << MethodDecl->getResultType()
1293 << MethodImpl->getResultType()
1294 << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1295 S.Diag(MethodDecl->getLocation(),
1296 IsOverridingMode ? diag::note_previous_declaration
1297 : diag::note_previous_definition)
1298 << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1299 return false;
1300 }
1301
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)1302 static bool CheckMethodOverrideParam(Sema &S,
1303 ObjCMethodDecl *MethodImpl,
1304 ObjCMethodDecl *MethodDecl,
1305 ParmVarDecl *ImplVar,
1306 ParmVarDecl *IfaceVar,
1307 bool IsProtocolMethodDecl,
1308 bool IsOverridingMode,
1309 bool Warn) {
1310 if (IsProtocolMethodDecl &&
1311 (ImplVar->getObjCDeclQualifier() !=
1312 IfaceVar->getObjCDeclQualifier())) {
1313 if (Warn) {
1314 if (IsOverridingMode)
1315 S.Diag(ImplVar->getLocation(),
1316 diag::warn_conflicting_overriding_param_modifiers)
1317 << getTypeRange(ImplVar->getTypeSourceInfo())
1318 << MethodImpl->getDeclName();
1319 else S.Diag(ImplVar->getLocation(),
1320 diag::warn_conflicting_param_modifiers)
1321 << getTypeRange(ImplVar->getTypeSourceInfo())
1322 << MethodImpl->getDeclName();
1323 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1324 << getTypeRange(IfaceVar->getTypeSourceInfo());
1325 }
1326 else
1327 return false;
1328 }
1329
1330 QualType ImplTy = ImplVar->getType();
1331 QualType IfaceTy = IfaceVar->getType();
1332
1333 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1334 return true;
1335
1336 if (!Warn)
1337 return false;
1338 unsigned DiagID =
1339 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1340 : diag::warn_conflicting_param_types;
1341
1342 // Mismatches between ObjC pointers go into a different warning
1343 // category, and sometimes they're even completely whitelisted.
1344 if (const ObjCObjectPointerType *ImplPtrTy =
1345 ImplTy->getAs<ObjCObjectPointerType>()) {
1346 if (const ObjCObjectPointerType *IfacePtrTy =
1347 IfaceTy->getAs<ObjCObjectPointerType>()) {
1348 // Allow non-matching argument types as long as they don't
1349 // violate the principle of substitutability. Specifically, the
1350 // implementation must accept any objects that the superclass
1351 // accepts, however it may also accept others.
1352 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1353 return false;
1354
1355 DiagID =
1356 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1357 : diag::warn_non_contravariant_param_types;
1358 }
1359 }
1360
1361 S.Diag(ImplVar->getLocation(), DiagID)
1362 << getTypeRange(ImplVar->getTypeSourceInfo())
1363 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1364 S.Diag(IfaceVar->getLocation(),
1365 (IsOverridingMode ? diag::note_previous_declaration
1366 : diag::note_previous_definition))
1367 << getTypeRange(IfaceVar->getTypeSourceInfo());
1368 return false;
1369 }
1370
1371 /// In ARC, check whether the conventional meanings of the two methods
1372 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)1373 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1374 ObjCMethodDecl *decl) {
1375 ObjCMethodFamily implFamily = impl->getMethodFamily();
1376 ObjCMethodFamily declFamily = decl->getMethodFamily();
1377 if (implFamily == declFamily) return false;
1378
1379 // Since conventions are sorted by selector, the only possibility is
1380 // that the types differ enough to cause one selector or the other
1381 // to fall out of the family.
1382 assert(implFamily == OMF_None || declFamily == OMF_None);
1383
1384 // No further diagnostics required on invalid declarations.
1385 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1386
1387 const ObjCMethodDecl *unmatched = impl;
1388 ObjCMethodFamily family = declFamily;
1389 unsigned errorID = diag::err_arc_lost_method_convention;
1390 unsigned noteID = diag::note_arc_lost_method_convention;
1391 if (declFamily == OMF_None) {
1392 unmatched = decl;
1393 family = implFamily;
1394 errorID = diag::err_arc_gained_method_convention;
1395 noteID = diag::note_arc_gained_method_convention;
1396 }
1397
1398 // Indexes into a %select clause in the diagnostic.
1399 enum FamilySelector {
1400 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1401 };
1402 FamilySelector familySelector = FamilySelector();
1403
1404 switch (family) {
1405 case OMF_None: llvm_unreachable("logic error, no method convention");
1406 case OMF_retain:
1407 case OMF_release:
1408 case OMF_autorelease:
1409 case OMF_dealloc:
1410 case OMF_finalize:
1411 case OMF_retainCount:
1412 case OMF_self:
1413 case OMF_performSelector:
1414 // Mismatches for these methods don't change ownership
1415 // conventions, so we don't care.
1416 return false;
1417
1418 case OMF_init: familySelector = F_init; break;
1419 case OMF_alloc: familySelector = F_alloc; break;
1420 case OMF_copy: familySelector = F_copy; break;
1421 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1422 case OMF_new: familySelector = F_new; break;
1423 }
1424
1425 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1426 ReasonSelector reasonSelector;
1427
1428 // The only reason these methods don't fall within their families is
1429 // due to unusual result types.
1430 if (unmatched->getResultType()->isObjCObjectPointerType()) {
1431 reasonSelector = R_UnrelatedReturn;
1432 } else {
1433 reasonSelector = R_NonObjectReturn;
1434 }
1435
1436 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1437 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1438
1439 return true;
1440 }
1441
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1442 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1443 ObjCMethodDecl *MethodDecl,
1444 bool IsProtocolMethodDecl) {
1445 if (getLangOpts().ObjCAutoRefCount &&
1446 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1447 return;
1448
1449 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1450 IsProtocolMethodDecl, false,
1451 true);
1452
1453 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1454 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1455 EF = MethodDecl->param_end();
1456 IM != EM && IF != EF; ++IM, ++IF) {
1457 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1458 IsProtocolMethodDecl, false, true);
1459 }
1460
1461 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1462 Diag(ImpMethodDecl->getLocation(),
1463 diag::warn_conflicting_variadic);
1464 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1465 }
1466 }
1467
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)1468 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1469 ObjCMethodDecl *Overridden,
1470 bool IsProtocolMethodDecl) {
1471
1472 CheckMethodOverrideReturn(*this, Method, Overridden,
1473 IsProtocolMethodDecl, true,
1474 true);
1475
1476 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1477 IF = Overridden->param_begin(), EM = Method->param_end(),
1478 EF = Overridden->param_end();
1479 IM != EM && IF != EF; ++IM, ++IF) {
1480 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1481 IsProtocolMethodDecl, true, true);
1482 }
1483
1484 if (Method->isVariadic() != Overridden->isVariadic()) {
1485 Diag(Method->getLocation(),
1486 diag::warn_conflicting_overriding_variadic);
1487 Diag(Overridden->getLocation(), diag::note_previous_declaration);
1488 }
1489 }
1490
1491 /// WarnExactTypedMethods - This routine issues a warning if method
1492 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1493 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1494 ObjCMethodDecl *MethodDecl,
1495 bool IsProtocolMethodDecl) {
1496 // don't issue warning when protocol method is optional because primary
1497 // class is not required to implement it and it is safe for protocol
1498 // to implement it.
1499 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1500 return;
1501 // don't issue warning when primary class's method is
1502 // depecated/unavailable.
1503 if (MethodDecl->hasAttr<UnavailableAttr>() ||
1504 MethodDecl->hasAttr<DeprecatedAttr>())
1505 return;
1506
1507 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1508 IsProtocolMethodDecl, false, false);
1509 if (match)
1510 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1511 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1512 EF = MethodDecl->param_end();
1513 IM != EM && IF != EF; ++IM, ++IF) {
1514 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1515 *IM, *IF,
1516 IsProtocolMethodDecl, false, false);
1517 if (!match)
1518 break;
1519 }
1520 if (match)
1521 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1522 if (match)
1523 match = !(MethodDecl->isClassMethod() &&
1524 MethodDecl->getSelector() == GetNullarySelector("load", Context));
1525
1526 if (match) {
1527 Diag(ImpMethodDecl->getLocation(),
1528 diag::warn_category_method_impl_match);
1529 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1530 << MethodDecl->getDeclName();
1531 }
1532 }
1533
1534 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1535 /// improve the efficiency of selector lookups and type checking by associating
1536 /// with each protocol / interface / category the flattened instance tables. If
1537 /// we used an immutable set to keep the table then it wouldn't add significant
1538 /// memory cost and it would be handy for lookups.
1539
1540 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
1541 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(SourceLocation ImpLoc,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const SelectorSet & InsMap,const SelectorSet & ClsMap,ObjCContainerDecl * CDecl)1542 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1543 ObjCProtocolDecl *PDecl,
1544 bool& IncompleteImpl,
1545 const SelectorSet &InsMap,
1546 const SelectorSet &ClsMap,
1547 ObjCContainerDecl *CDecl) {
1548 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1549 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1550 : dyn_cast<ObjCInterfaceDecl>(CDecl);
1551 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1552
1553 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1554 ObjCInterfaceDecl *NSIDecl = 0;
1555 if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1556 // check to see if class implements forwardInvocation method and objects
1557 // of this class are derived from 'NSProxy' so that to forward requests
1558 // from one object to another.
1559 // Under such conditions, which means that every method possible is
1560 // implemented in the class, we should not issue "Method definition not
1561 // found" warnings.
1562 // FIXME: Use a general GetUnarySelector method for this.
1563 IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1564 Selector fISelector = Context.Selectors.getSelector(1, &II);
1565 if (InsMap.count(fISelector))
1566 // Is IDecl derived from 'NSProxy'? If so, no instance methods
1567 // need be implemented in the implementation.
1568 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1569 }
1570
1571 // If a method lookup fails locally we still need to look and see if
1572 // the method was implemented by a base class or an inherited
1573 // protocol. This lookup is slow, but occurs rarely in correct code
1574 // and otherwise would terminate in a warning.
1575
1576 // check unimplemented instance methods.
1577 if (!NSIDecl)
1578 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1579 E = PDecl->instmeth_end(); I != E; ++I) {
1580 ObjCMethodDecl *method = *I;
1581 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1582 !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1583 (!Super ||
1584 !Super->lookupInstanceMethod(method->getSelector()))) {
1585 // If a method is not implemented in the category implementation but
1586 // has been declared in its primary class, superclass,
1587 // or in one of their protocols, no need to issue the warning.
1588 // This is because method will be implemented in the primary class
1589 // or one of its super class implementation.
1590
1591 // Ugly, but necessary. Method declared in protcol might have
1592 // have been synthesized due to a property declared in the class which
1593 // uses the protocol.
1594 if (ObjCMethodDecl *MethodInClass =
1595 IDecl->lookupInstanceMethod(method->getSelector(),
1596 true /*shallowCategoryLookup*/))
1597 if (C || MethodInClass->isSynthesized())
1598 continue;
1599 unsigned DIAG = diag::warn_unimplemented_protocol_method;
1600 if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1601 != DiagnosticsEngine::Ignored) {
1602 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1603 Diag(method->getLocation(), diag::note_method_declared_at)
1604 << method->getDeclName();
1605 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1606 << PDecl->getDeclName();
1607 }
1608 }
1609 }
1610 // check unimplemented class methods
1611 for (ObjCProtocolDecl::classmeth_iterator
1612 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1613 I != E; ++I) {
1614 ObjCMethodDecl *method = *I;
1615 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1616 !ClsMap.count(method->getSelector()) &&
1617 (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1618 // See above comment for instance method lookups.
1619 if (C && IDecl->lookupClassMethod(method->getSelector(),
1620 true /*shallowCategoryLookup*/))
1621 continue;
1622 unsigned DIAG = diag::warn_unimplemented_protocol_method;
1623 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1624 DiagnosticsEngine::Ignored) {
1625 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1626 Diag(method->getLocation(), diag::note_method_declared_at)
1627 << method->getDeclName();
1628 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1629 PDecl->getDeclName();
1630 }
1631 }
1632 }
1633 // Check on this protocols's referenced protocols, recursively.
1634 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1635 E = PDecl->protocol_end(); PI != E; ++PI)
1636 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1637 }
1638
1639 /// MatchAllMethodDeclarations - Check methods declared in interface
1640 /// or protocol against those declared in their implementations.
1641 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)1642 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1643 const SelectorSet &ClsMap,
1644 SelectorSet &InsMapSeen,
1645 SelectorSet &ClsMapSeen,
1646 ObjCImplDecl* IMPDecl,
1647 ObjCContainerDecl* CDecl,
1648 bool &IncompleteImpl,
1649 bool ImmediateClass,
1650 bool WarnCategoryMethodImpl) {
1651 // Check and see if instance methods in class interface have been
1652 // implemented in the implementation class. If so, their types match.
1653 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1654 E = CDecl->instmeth_end(); I != E; ++I) {
1655 if (InsMapSeen.count((*I)->getSelector()))
1656 continue;
1657 InsMapSeen.insert((*I)->getSelector());
1658 if (!(*I)->isSynthesized() &&
1659 !InsMap.count((*I)->getSelector())) {
1660 if (ImmediateClass)
1661 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1662 diag::note_undef_method_impl);
1663 continue;
1664 } else {
1665 ObjCMethodDecl *ImpMethodDecl =
1666 IMPDecl->getInstanceMethod((*I)->getSelector());
1667 assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1668 "Expected to find the method through lookup as well");
1669 ObjCMethodDecl *MethodDecl = *I;
1670 // ImpMethodDecl may be null as in a @dynamic property.
1671 if (ImpMethodDecl) {
1672 if (!WarnCategoryMethodImpl)
1673 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1674 isa<ObjCProtocolDecl>(CDecl));
1675 else if (!MethodDecl->isSynthesized())
1676 WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1677 isa<ObjCProtocolDecl>(CDecl));
1678 }
1679 }
1680 }
1681
1682 // Check and see if class methods in class interface have been
1683 // implemented in the implementation class. If so, their types match.
1684 for (ObjCInterfaceDecl::classmeth_iterator
1685 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1686 if (ClsMapSeen.count((*I)->getSelector()))
1687 continue;
1688 ClsMapSeen.insert((*I)->getSelector());
1689 if (!ClsMap.count((*I)->getSelector())) {
1690 if (ImmediateClass)
1691 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1692 diag::note_undef_method_impl);
1693 } else {
1694 ObjCMethodDecl *ImpMethodDecl =
1695 IMPDecl->getClassMethod((*I)->getSelector());
1696 assert(CDecl->getClassMethod((*I)->getSelector()) &&
1697 "Expected to find the method through lookup as well");
1698 ObjCMethodDecl *MethodDecl = *I;
1699 if (!WarnCategoryMethodImpl)
1700 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1701 isa<ObjCProtocolDecl>(CDecl));
1702 else
1703 WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1704 isa<ObjCProtocolDecl>(CDecl));
1705 }
1706 }
1707
1708 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1709 // Also methods in class extensions need be looked at next.
1710 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1711 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1712 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1713 IMPDecl,
1714 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1715 IncompleteImpl, false,
1716 WarnCategoryMethodImpl);
1717
1718 // Check for any implementation of a methods declared in protocol.
1719 for (ObjCInterfaceDecl::all_protocol_iterator
1720 PI = I->all_referenced_protocol_begin(),
1721 E = I->all_referenced_protocol_end(); PI != E; ++PI)
1722 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1723 IMPDecl,
1724 (*PI), IncompleteImpl, false,
1725 WarnCategoryMethodImpl);
1726
1727 // FIXME. For now, we are not checking for extact match of methods
1728 // in category implementation and its primary class's super class.
1729 if (!WarnCategoryMethodImpl && I->getSuperClass())
1730 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1731 IMPDecl,
1732 I->getSuperClass(), IncompleteImpl, false);
1733 }
1734 }
1735
1736 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1737 /// category matches with those implemented in its primary class and
1738 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)1739 void Sema::CheckCategoryVsClassMethodMatches(
1740 ObjCCategoryImplDecl *CatIMPDecl) {
1741 SelectorSet InsMap, ClsMap;
1742
1743 for (ObjCImplementationDecl::instmeth_iterator
1744 I = CatIMPDecl->instmeth_begin(),
1745 E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1746 InsMap.insert((*I)->getSelector());
1747
1748 for (ObjCImplementationDecl::classmeth_iterator
1749 I = CatIMPDecl->classmeth_begin(),
1750 E = CatIMPDecl->classmeth_end(); I != E; ++I)
1751 ClsMap.insert((*I)->getSelector());
1752 if (InsMap.empty() && ClsMap.empty())
1753 return;
1754
1755 // Get category's primary class.
1756 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1757 if (!CatDecl)
1758 return;
1759 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1760 if (!IDecl)
1761 return;
1762 SelectorSet InsMapSeen, ClsMapSeen;
1763 bool IncompleteImpl = false;
1764 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1765 CatIMPDecl, IDecl,
1766 IncompleteImpl, false,
1767 true /*WarnCategoryMethodImpl*/);
1768 }
1769
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)1770 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1771 ObjCContainerDecl* CDecl,
1772 bool IncompleteImpl) {
1773 SelectorSet InsMap;
1774 // Check and see if instance methods in class interface have been
1775 // implemented in the implementation class.
1776 for (ObjCImplementationDecl::instmeth_iterator
1777 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1778 InsMap.insert((*I)->getSelector());
1779
1780 // Check and see if properties declared in the interface have either 1)
1781 // an implementation or 2) there is a @synthesize/@dynamic implementation
1782 // of the property in the @implementation.
1783 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1784 if (!(LangOpts.ObjCDefaultSynthProperties &&
1785 LangOpts.ObjCRuntime.isNonFragile()) ||
1786 IDecl->isObjCRequiresPropertyDefs())
1787 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1788
1789 SelectorSet ClsMap;
1790 for (ObjCImplementationDecl::classmeth_iterator
1791 I = IMPDecl->classmeth_begin(),
1792 E = IMPDecl->classmeth_end(); I != E; ++I)
1793 ClsMap.insert((*I)->getSelector());
1794
1795 // Check for type conflict of methods declared in a class/protocol and
1796 // its implementation; if any.
1797 SelectorSet InsMapSeen, ClsMapSeen;
1798 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1799 IMPDecl, CDecl,
1800 IncompleteImpl, true);
1801
1802 // check all methods implemented in category against those declared
1803 // in its primary class.
1804 if (ObjCCategoryImplDecl *CatDecl =
1805 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1806 CheckCategoryVsClassMethodMatches(CatDecl);
1807
1808 // Check the protocol list for unimplemented methods in the @implementation
1809 // class.
1810 // Check and see if class methods in class interface have been
1811 // implemented in the implementation class.
1812
1813 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1814 for (ObjCInterfaceDecl::all_protocol_iterator
1815 PI = I->all_referenced_protocol_begin(),
1816 E = I->all_referenced_protocol_end(); PI != E; ++PI)
1817 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1818 InsMap, ClsMap, I);
1819 // Check class extensions (unnamed categories)
1820 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1821 Categories; Categories = Categories->getNextClassExtension())
1822 ImplMethodsVsClassMethods(S, IMPDecl,
1823 const_cast<ObjCCategoryDecl*>(Categories),
1824 IncompleteImpl);
1825 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1826 // For extended class, unimplemented methods in its protocols will
1827 // be reported in the primary class.
1828 if (!C->IsClassExtension()) {
1829 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1830 E = C->protocol_end(); PI != E; ++PI)
1831 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1832 InsMap, ClsMap, CDecl);
1833 // Report unimplemented properties in the category as well.
1834 // When reporting on missing setter/getters, do not report when
1835 // setter/getter is implemented in category's primary class
1836 // implementation.
1837 if (ObjCInterfaceDecl *ID = C->getClassInterface())
1838 if (ObjCImplDecl *IMP = ID->getImplementation()) {
1839 for (ObjCImplementationDecl::instmeth_iterator
1840 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1841 InsMap.insert((*I)->getSelector());
1842 }
1843 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1844 }
1845 } else
1846 llvm_unreachable("invalid ObjCContainerDecl type.");
1847 }
1848
1849 /// ActOnForwardClassDeclaration -
1850 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,unsigned NumElts)1851 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1852 IdentifierInfo **IdentList,
1853 SourceLocation *IdentLocs,
1854 unsigned NumElts) {
1855 SmallVector<Decl *, 8> DeclsInGroup;
1856 for (unsigned i = 0; i != NumElts; ++i) {
1857 // Check for another declaration kind with the same name.
1858 NamedDecl *PrevDecl
1859 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1860 LookupOrdinaryName, ForRedeclaration);
1861 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1862 // Maybe we will complain about the shadowed template parameter.
1863 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1864 // Just pretend that we didn't see the previous declaration.
1865 PrevDecl = 0;
1866 }
1867
1868 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1869 // GCC apparently allows the following idiom:
1870 //
1871 // typedef NSObject < XCElementTogglerP > XCElementToggler;
1872 // @class XCElementToggler;
1873 //
1874 // Here we have chosen to ignore the forward class declaration
1875 // with a warning. Since this is the implied behavior.
1876 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1877 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1878 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1879 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1880 } else {
1881 // a forward class declaration matching a typedef name of a class refers
1882 // to the underlying class. Just ignore the forward class with a warning
1883 // as this will force the intended behavior which is to lookup the typedef
1884 // name.
1885 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1886 Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1887 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1888 continue;
1889 }
1890 }
1891 }
1892
1893 // Create a declaration to describe this forward declaration.
1894 ObjCInterfaceDecl *PrevIDecl
1895 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1896 ObjCInterfaceDecl *IDecl
1897 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1898 IdentList[i], PrevIDecl, IdentLocs[i]);
1899 IDecl->setAtEndRange(IdentLocs[i]);
1900
1901 PushOnScopeChains(IDecl, TUScope);
1902 CheckObjCDeclScope(IDecl);
1903 DeclsInGroup.push_back(IDecl);
1904 }
1905
1906 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1907 }
1908
1909 static bool tryMatchRecordTypes(ASTContext &Context,
1910 Sema::MethodMatchStrategy strategy,
1911 const Type *left, const Type *right);
1912
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)1913 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1914 QualType leftQT, QualType rightQT) {
1915 const Type *left =
1916 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1917 const Type *right =
1918 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1919
1920 if (left == right) return true;
1921
1922 // If we're doing a strict match, the types have to match exactly.
1923 if (strategy == Sema::MMS_strict) return false;
1924
1925 if (left->isIncompleteType() || right->isIncompleteType()) return false;
1926
1927 // Otherwise, use this absurdly complicated algorithm to try to
1928 // validate the basic, low-level compatibility of the two types.
1929
1930 // As a minimum, require the sizes and alignments to match.
1931 if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1932 return false;
1933
1934 // Consider all the kinds of non-dependent canonical types:
1935 // - functions and arrays aren't possible as return and parameter types
1936
1937 // - vector types of equal size can be arbitrarily mixed
1938 if (isa<VectorType>(left)) return isa<VectorType>(right);
1939 if (isa<VectorType>(right)) return false;
1940
1941 // - references should only match references of identical type
1942 // - structs, unions, and Objective-C objects must match more-or-less
1943 // exactly
1944 // - everything else should be a scalar
1945 if (!left->isScalarType() || !right->isScalarType())
1946 return tryMatchRecordTypes(Context, strategy, left, right);
1947
1948 // Make scalars agree in kind, except count bools as chars, and group
1949 // all non-member pointers together.
1950 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1951 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1952 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1953 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1954 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1955 leftSK = Type::STK_ObjCObjectPointer;
1956 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
1957 rightSK = Type::STK_ObjCObjectPointer;
1958
1959 // Note that data member pointers and function member pointers don't
1960 // intermix because of the size differences.
1961
1962 return (leftSK == rightSK);
1963 }
1964
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)1965 static bool tryMatchRecordTypes(ASTContext &Context,
1966 Sema::MethodMatchStrategy strategy,
1967 const Type *lt, const Type *rt) {
1968 assert(lt && rt && lt != rt);
1969
1970 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1971 RecordDecl *left = cast<RecordType>(lt)->getDecl();
1972 RecordDecl *right = cast<RecordType>(rt)->getDecl();
1973
1974 // Require union-hood to match.
1975 if (left->isUnion() != right->isUnion()) return false;
1976
1977 // Require an exact match if either is non-POD.
1978 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1979 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1980 return false;
1981
1982 // Require size and alignment to match.
1983 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1984
1985 // Require fields to match.
1986 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1987 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1988 for (; li != le && ri != re; ++li, ++ri) {
1989 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1990 return false;
1991 }
1992 return (li == le && ri == re);
1993 }
1994
1995 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1996 /// returns true, or false, accordingly.
1997 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)1998 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1999 const ObjCMethodDecl *right,
2000 MethodMatchStrategy strategy) {
2001 if (!matchTypes(Context, strategy,
2002 left->getResultType(), right->getResultType()))
2003 return false;
2004
2005 if (getLangOpts().ObjCAutoRefCount &&
2006 (left->hasAttr<NSReturnsRetainedAttr>()
2007 != right->hasAttr<NSReturnsRetainedAttr>() ||
2008 left->hasAttr<NSConsumesSelfAttr>()
2009 != right->hasAttr<NSConsumesSelfAttr>()))
2010 return false;
2011
2012 ObjCMethodDecl::param_const_iterator
2013 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2014 re = right->param_end();
2015
2016 for (; li != le && ri != re; ++li, ++ri) {
2017 assert(ri != right->param_end() && "Param mismatch");
2018 const ParmVarDecl *lparm = *li, *rparm = *ri;
2019
2020 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2021 return false;
2022
2023 if (getLangOpts().ObjCAutoRefCount &&
2024 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2025 return false;
2026 }
2027 return true;
2028 }
2029
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)2030 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2031 // If the list is empty, make it a singleton list.
2032 if (List->Method == 0) {
2033 List->Method = Method;
2034 List->Next = 0;
2035 return;
2036 }
2037
2038 // We've seen a method with this name, see if we have already seen this type
2039 // signature.
2040 ObjCMethodList *Previous = List;
2041 for (; List; Previous = List, List = List->Next) {
2042 if (!MatchTwoMethodDeclarations(Method, List->Method))
2043 continue;
2044
2045 ObjCMethodDecl *PrevObjCMethod = List->Method;
2046
2047 // Propagate the 'defined' bit.
2048 if (Method->isDefined())
2049 PrevObjCMethod->setDefined(true);
2050
2051 // If a method is deprecated, push it in the global pool.
2052 // This is used for better diagnostics.
2053 if (Method->isDeprecated()) {
2054 if (!PrevObjCMethod->isDeprecated())
2055 List->Method = Method;
2056 }
2057 // If new method is unavailable, push it into global pool
2058 // unless previous one is deprecated.
2059 if (Method->isUnavailable()) {
2060 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2061 List->Method = Method;
2062 }
2063
2064 return;
2065 }
2066
2067 // We have a new signature for an existing method - add it.
2068 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2069 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2070 Previous->Next = new (Mem) ObjCMethodList(Method, 0);
2071 }
2072
2073 /// \brief Read the contents of the method pool for a given selector from
2074 /// external storage.
ReadMethodPool(Selector Sel)2075 void Sema::ReadMethodPool(Selector Sel) {
2076 assert(ExternalSource && "We need an external AST source");
2077 ExternalSource->ReadMethodPool(Sel);
2078 }
2079
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)2080 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2081 bool instance) {
2082 // Ignore methods of invalid containers.
2083 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2084 return;
2085
2086 if (ExternalSource)
2087 ReadMethodPool(Method->getSelector());
2088
2089 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2090 if (Pos == MethodPool.end())
2091 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2092 GlobalMethods())).first;
2093
2094 Method->setDefined(impl);
2095
2096 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2097 addMethodToGlobalList(&Entry, Method);
2098 }
2099
2100 /// Determines if this is an "acceptable" loose mismatch in the global
2101 /// method pool. This exists mostly as a hack to get around certain
2102 /// global mismatches which we can't afford to make warnings / errors.
2103 /// Really, what we want is a way to take a method out of the global
2104 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)2105 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2106 ObjCMethodDecl *other) {
2107 if (!chosen->isInstanceMethod())
2108 return false;
2109
2110 Selector sel = chosen->getSelector();
2111 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2112 return false;
2113
2114 // Don't complain about mismatches for -length if the method we
2115 // chose has an integral result type.
2116 return (chosen->getResultType()->isIntegerType());
2117 }
2118
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool warn,bool instance)2119 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2120 bool receiverIdOrClass,
2121 bool warn, bool instance) {
2122 if (ExternalSource)
2123 ReadMethodPool(Sel);
2124
2125 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2126 if (Pos == MethodPool.end())
2127 return 0;
2128
2129 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2130
2131 if (warn && MethList.Method && MethList.Next) {
2132 bool issueDiagnostic = false, issueError = false;
2133
2134 // We support a warning which complains about *any* difference in
2135 // method signature.
2136 bool strictSelectorMatch =
2137 (receiverIdOrClass && warn &&
2138 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2139 R.getBegin()) !=
2140 DiagnosticsEngine::Ignored));
2141 if (strictSelectorMatch)
2142 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2143 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2144 MMS_strict)) {
2145 issueDiagnostic = true;
2146 break;
2147 }
2148 }
2149
2150 // If we didn't see any strict differences, we won't see any loose
2151 // differences. In ARC, however, we also need to check for loose
2152 // mismatches, because most of them are errors.
2153 if (!strictSelectorMatch ||
2154 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2155 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2156 // This checks if the methods differ in type mismatch.
2157 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2158 MMS_loose) &&
2159 !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
2160 issueDiagnostic = true;
2161 if (getLangOpts().ObjCAutoRefCount)
2162 issueError = true;
2163 break;
2164 }
2165 }
2166
2167 if (issueDiagnostic) {
2168 if (issueError)
2169 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2170 else if (strictSelectorMatch)
2171 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2172 else
2173 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2174
2175 Diag(MethList.Method->getLocStart(),
2176 issueError ? diag::note_possibility : diag::note_using)
2177 << MethList.Method->getSourceRange();
2178 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
2179 Diag(Next->Method->getLocStart(), diag::note_also_found)
2180 << Next->Method->getSourceRange();
2181 }
2182 }
2183 return MethList.Method;
2184 }
2185
LookupImplementedMethodInGlobalPool(Selector Sel)2186 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2187 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2188 if (Pos == MethodPool.end())
2189 return 0;
2190
2191 GlobalMethods &Methods = Pos->second;
2192
2193 if (Methods.first.Method && Methods.first.Method->isDefined())
2194 return Methods.first.Method;
2195 if (Methods.second.Method && Methods.second.Method->isDefined())
2196 return Methods.second.Method;
2197 return 0;
2198 }
2199
2200 /// DiagnoseDuplicateIvars -
2201 /// Check for duplicate ivars in the entire class at the start of
2202 /// \@implementation. This becomes necesssary because class extension can
2203 /// add ivars to a class in random order which will not be known until
2204 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)2205 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2206 ObjCInterfaceDecl *SID) {
2207 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2208 IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2209 ObjCIvarDecl* Ivar = *IVI;
2210 if (Ivar->isInvalidDecl())
2211 continue;
2212 if (IdentifierInfo *II = Ivar->getIdentifier()) {
2213 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2214 if (prevIvar) {
2215 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2216 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2217 Ivar->setInvalidDecl();
2218 }
2219 }
2220 }
2221 }
2222
getObjCContainerKind() const2223 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2224 switch (CurContext->getDeclKind()) {
2225 case Decl::ObjCInterface:
2226 return Sema::OCK_Interface;
2227 case Decl::ObjCProtocol:
2228 return Sema::OCK_Protocol;
2229 case Decl::ObjCCategory:
2230 if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2231 return Sema::OCK_ClassExtension;
2232 else
2233 return Sema::OCK_Category;
2234 case Decl::ObjCImplementation:
2235 return Sema::OCK_Implementation;
2236 case Decl::ObjCCategoryImpl:
2237 return Sema::OCK_CategoryImplementation;
2238
2239 default:
2240 return Sema::OCK_None;
2241 }
2242 }
2243
2244 // Note: For class/category implemenations, allMethods/allProperties is
2245 // always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,Decl ** allMethods,unsigned allNum,Decl ** allProperties,unsigned pNum,DeclGroupPtrTy * allTUVars,unsigned tuvNum)2246 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2247 Decl **allMethods, unsigned allNum,
2248 Decl **allProperties, unsigned pNum,
2249 DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2250
2251 if (getObjCContainerKind() == Sema::OCK_None)
2252 return 0;
2253
2254 assert(AtEnd.isValid() && "Invalid location for '@end'");
2255
2256 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2257 Decl *ClassDecl = cast<Decl>(OCD);
2258
2259 bool isInterfaceDeclKind =
2260 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2261 || isa<ObjCProtocolDecl>(ClassDecl);
2262 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2263
2264 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2265 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2266 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2267
2268 for (unsigned i = 0; i < allNum; i++ ) {
2269 ObjCMethodDecl *Method =
2270 cast_or_null<ObjCMethodDecl>(allMethods[i]);
2271
2272 if (!Method) continue; // Already issued a diagnostic.
2273 if (Method->isInstanceMethod()) {
2274 /// Check for instance method of the same name with incompatible types
2275 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2276 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2277 : false;
2278 if ((isInterfaceDeclKind && PrevMethod && !match)
2279 || (checkIdenticalMethods && match)) {
2280 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2281 << Method->getDeclName();
2282 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2283 Method->setInvalidDecl();
2284 } else {
2285 if (PrevMethod) {
2286 Method->setAsRedeclaration(PrevMethod);
2287 if (!Context.getSourceManager().isInSystemHeader(
2288 Method->getLocation()))
2289 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2290 << Method->getDeclName();
2291 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2292 }
2293 InsMap[Method->getSelector()] = Method;
2294 /// The following allows us to typecheck messages to "id".
2295 AddInstanceMethodToGlobalPool(Method);
2296 }
2297 } else {
2298 /// Check for class method of the same name with incompatible types
2299 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2300 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2301 : false;
2302 if ((isInterfaceDeclKind && PrevMethod && !match)
2303 || (checkIdenticalMethods && match)) {
2304 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2305 << Method->getDeclName();
2306 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2307 Method->setInvalidDecl();
2308 } else {
2309 if (PrevMethod) {
2310 Method->setAsRedeclaration(PrevMethod);
2311 if (!Context.getSourceManager().isInSystemHeader(
2312 Method->getLocation()))
2313 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2314 << Method->getDeclName();
2315 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2316 }
2317 ClsMap[Method->getSelector()] = Method;
2318 AddFactoryMethodToGlobalPool(Method);
2319 }
2320 }
2321 }
2322 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2323 // Compares properties declared in this class to those of its
2324 // super class.
2325 ComparePropertiesInBaseAndSuper(I);
2326 CompareProperties(I, I);
2327 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2328 // Categories are used to extend the class by declaring new methods.
2329 // By the same token, they are also used to add new properties. No
2330 // need to compare the added property to those in the class.
2331
2332 // Compare protocol properties with those in category
2333 CompareProperties(C, C);
2334 if (C->IsClassExtension()) {
2335 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2336 DiagnoseClassExtensionDupMethods(C, CCPrimary);
2337 }
2338 }
2339 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2340 if (CDecl->getIdentifier())
2341 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2342 // user-defined setter/getter. It also synthesizes setter/getter methods
2343 // and adds them to the DeclContext and global method pools.
2344 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2345 E = CDecl->prop_end();
2346 I != E; ++I)
2347 ProcessPropertyDecl(*I, CDecl);
2348 CDecl->setAtEndRange(AtEnd);
2349 }
2350 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2351 IC->setAtEndRange(AtEnd);
2352 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2353 // Any property declared in a class extension might have user
2354 // declared setter or getter in current class extension or one
2355 // of the other class extensions. Mark them as synthesized as
2356 // property will be synthesized when property with same name is
2357 // seen in the @implementation.
2358 for (const ObjCCategoryDecl *ClsExtDecl =
2359 IDecl->getFirstClassExtension();
2360 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2361 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2362 E = ClsExtDecl->prop_end(); I != E; ++I) {
2363 ObjCPropertyDecl *Property = *I;
2364 // Skip over properties declared @dynamic
2365 if (const ObjCPropertyImplDecl *PIDecl
2366 = IC->FindPropertyImplDecl(Property->getIdentifier()))
2367 if (PIDecl->getPropertyImplementation()
2368 == ObjCPropertyImplDecl::Dynamic)
2369 continue;
2370
2371 for (const ObjCCategoryDecl *CExtDecl =
2372 IDecl->getFirstClassExtension();
2373 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2374 if (ObjCMethodDecl *GetterMethod =
2375 CExtDecl->getInstanceMethod(Property->getGetterName()))
2376 GetterMethod->setSynthesized(true);
2377 if (!Property->isReadOnly())
2378 if (ObjCMethodDecl *SetterMethod =
2379 CExtDecl->getInstanceMethod(Property->getSetterName()))
2380 SetterMethod->setSynthesized(true);
2381 }
2382 }
2383 }
2384 ImplMethodsVsClassMethods(S, IC, IDecl);
2385 AtomicPropertySetterGetterRules(IC, IDecl);
2386 DiagnoseOwningPropertyGetterSynthesis(IC);
2387
2388 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2389 if (IDecl->getSuperClass() == NULL) {
2390 // This class has no superclass, so check that it has been marked with
2391 // __attribute((objc_root_class)).
2392 if (!HasRootClassAttr) {
2393 SourceLocation DeclLoc(IDecl->getLocation());
2394 SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2395 Diag(DeclLoc, diag::warn_objc_root_class_missing)
2396 << IDecl->getIdentifier();
2397 // See if NSObject is in the current scope, and if it is, suggest
2398 // adding " : NSObject " to the class declaration.
2399 NamedDecl *IF = LookupSingleName(TUScope,
2400 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2401 DeclLoc, LookupOrdinaryName);
2402 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2403 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2404 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2405 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2406 } else {
2407 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2408 }
2409 }
2410 } else if (HasRootClassAttr) {
2411 // Complain that only root classes may have this attribute.
2412 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2413 }
2414
2415 if (LangOpts.ObjCRuntime.isNonFragile()) {
2416 while (IDecl->getSuperClass()) {
2417 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2418 IDecl = IDecl->getSuperClass();
2419 }
2420 }
2421 }
2422 SetIvarInitializers(IC);
2423 } else if (ObjCCategoryImplDecl* CatImplClass =
2424 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2425 CatImplClass->setAtEndRange(AtEnd);
2426
2427 // Find category interface decl and then check that all methods declared
2428 // in this interface are implemented in the category @implementation.
2429 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2430 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2431 Categories; Categories = Categories->getNextClassCategory()) {
2432 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2433 ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2434 break;
2435 }
2436 }
2437 }
2438 }
2439 if (isInterfaceDeclKind) {
2440 // Reject invalid vardecls.
2441 for (unsigned i = 0; i != tuvNum; i++) {
2442 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2443 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2444 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2445 if (!VDecl->hasExternalStorage())
2446 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2447 }
2448 }
2449 }
2450 ActOnObjCContainerFinishDefinition();
2451
2452 for (unsigned i = 0; i != tuvNum; i++) {
2453 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2454 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2455 (*I)->setTopLevelDeclInObjCContainer();
2456 Consumer.HandleTopLevelDeclInObjCContainer(DG);
2457 }
2458
2459 ActOnDocumentableDecl(ClassDecl);
2460 return ClassDecl;
2461 }
2462
2463
2464 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2465 /// objective-c's type qualifier from the parser version of the same info.
2466 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)2467 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2468 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2469 }
2470
2471 static inline
countAlignAttr(const AttrVec & A)2472 unsigned countAlignAttr(const AttrVec &A) {
2473 unsigned count=0;
2474 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2475 if ((*i)->getKind() == attr::Aligned)
2476 ++count;
2477 return count;
2478 }
2479
2480 static inline
containsInvalidMethodImplAttribute(ObjCMethodDecl * IMD,const AttrVec & A)2481 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2482 const AttrVec &A) {
2483 // If method is only declared in implementation (private method),
2484 // No need to issue any diagnostics on method definition with attributes.
2485 if (!IMD)
2486 return false;
2487
2488 // method declared in interface has no attribute.
2489 // But implementation has attributes. This is invalid.
2490 // Except when implementation has 'Align' attribute which is
2491 // immaterial to method declared in interface.
2492 if (!IMD->hasAttrs())
2493 return (A.size() > countAlignAttr(A));
2494
2495 const AttrVec &D = IMD->getAttrs();
2496
2497 unsigned countAlignOnImpl = countAlignAttr(A);
2498 if (!countAlignOnImpl && (A.size() != D.size()))
2499 return true;
2500 else if (countAlignOnImpl) {
2501 unsigned countAlignOnDecl = countAlignAttr(D);
2502 if (countAlignOnDecl && (A.size() != D.size()))
2503 return true;
2504 else if (!countAlignOnDecl &&
2505 ((A.size()-countAlignOnImpl) != D.size()))
2506 return true;
2507 }
2508
2509 // attributes on method declaration and definition must match exactly.
2510 // Note that we have at most a couple of attributes on methods, so this
2511 // n*n search is good enough.
2512 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2513 if ((*i)->getKind() == attr::Aligned)
2514 continue;
2515 bool match = false;
2516 for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2517 if ((*i)->getKind() == (*i1)->getKind()) {
2518 match = true;
2519 break;
2520 }
2521 }
2522 if (!match)
2523 return true;
2524 }
2525
2526 return false;
2527 }
2528
2529 /// \brief Check whether the declared result type of the given Objective-C
2530 /// method declaration is compatible with the method's class.
2531 ///
2532 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)2533 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2534 ObjCInterfaceDecl *CurrentClass) {
2535 QualType ResultType = Method->getResultType();
2536
2537 // If an Objective-C method inherits its related result type, then its
2538 // declared result type must be compatible with its own class type. The
2539 // declared result type is compatible if:
2540 if (const ObjCObjectPointerType *ResultObjectType
2541 = ResultType->getAs<ObjCObjectPointerType>()) {
2542 // - it is id or qualified id, or
2543 if (ResultObjectType->isObjCIdType() ||
2544 ResultObjectType->isObjCQualifiedIdType())
2545 return Sema::RTC_Compatible;
2546
2547 if (CurrentClass) {
2548 if (ObjCInterfaceDecl *ResultClass
2549 = ResultObjectType->getInterfaceDecl()) {
2550 // - it is the same as the method's class type, or
2551 if (declaresSameEntity(CurrentClass, ResultClass))
2552 return Sema::RTC_Compatible;
2553
2554 // - it is a superclass of the method's class type
2555 if (ResultClass->isSuperClassOf(CurrentClass))
2556 return Sema::RTC_Compatible;
2557 }
2558 } else {
2559 // Any Objective-C pointer type might be acceptable for a protocol
2560 // method; we just don't know.
2561 return Sema::RTC_Unknown;
2562 }
2563 }
2564
2565 return Sema::RTC_Incompatible;
2566 }
2567
2568 namespace {
2569 /// A helper class for searching for methods which a particular method
2570 /// overrides.
2571 class OverrideSearch {
2572 public:
2573 Sema &S;
2574 ObjCMethodDecl *Method;
2575 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2576 bool Recursive;
2577
2578 public:
OverrideSearch(Sema & S,ObjCMethodDecl * method)2579 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2580 Selector selector = method->getSelector();
2581
2582 // Bypass this search if we've never seen an instance/class method
2583 // with this selector before.
2584 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2585 if (it == S.MethodPool.end()) {
2586 if (!S.ExternalSource) return;
2587 S.ReadMethodPool(selector);
2588
2589 it = S.MethodPool.find(selector);
2590 if (it == S.MethodPool.end())
2591 return;
2592 }
2593 ObjCMethodList &list =
2594 method->isInstanceMethod() ? it->second.first : it->second.second;
2595 if (!list.Method) return;
2596
2597 ObjCContainerDecl *container
2598 = cast<ObjCContainerDecl>(method->getDeclContext());
2599
2600 // Prevent the search from reaching this container again. This is
2601 // important with categories, which override methods from the
2602 // interface and each other.
2603 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2604 searchFromContainer(container);
2605 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2606 searchFromContainer(Interface);
2607 } else {
2608 searchFromContainer(container);
2609 }
2610 }
2611
2612 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
begin() const2613 iterator begin() const { return Overridden.begin(); }
end() const2614 iterator end() const { return Overridden.end(); }
2615
2616 private:
searchFromContainer(ObjCContainerDecl * container)2617 void searchFromContainer(ObjCContainerDecl *container) {
2618 if (container->isInvalidDecl()) return;
2619
2620 switch (container->getDeclKind()) {
2621 #define OBJCCONTAINER(type, base) \
2622 case Decl::type: \
2623 searchFrom(cast<type##Decl>(container)); \
2624 break;
2625 #define ABSTRACT_DECL(expansion)
2626 #define DECL(type, base) \
2627 case Decl::type:
2628 #include "clang/AST/DeclNodes.inc"
2629 llvm_unreachable("not an ObjC container!");
2630 }
2631 }
2632
searchFrom(ObjCProtocolDecl * protocol)2633 void searchFrom(ObjCProtocolDecl *protocol) {
2634 if (!protocol->hasDefinition())
2635 return;
2636
2637 // A method in a protocol declaration overrides declarations from
2638 // referenced ("parent") protocols.
2639 search(protocol->getReferencedProtocols());
2640 }
2641
searchFrom(ObjCCategoryDecl * category)2642 void searchFrom(ObjCCategoryDecl *category) {
2643 // A method in a category declaration overrides declarations from
2644 // the main class and from protocols the category references.
2645 // The main class is handled in the constructor.
2646 search(category->getReferencedProtocols());
2647 }
2648
searchFrom(ObjCCategoryImplDecl * impl)2649 void searchFrom(ObjCCategoryImplDecl *impl) {
2650 // A method in a category definition that has a category
2651 // declaration overrides declarations from the category
2652 // declaration.
2653 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2654 search(category);
2655 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2656 search(Interface);
2657
2658 // Otherwise it overrides declarations from the class.
2659 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2660 search(Interface);
2661 }
2662 }
2663
searchFrom(ObjCInterfaceDecl * iface)2664 void searchFrom(ObjCInterfaceDecl *iface) {
2665 // A method in a class declaration overrides declarations from
2666 if (!iface->hasDefinition())
2667 return;
2668
2669 // - categories,
2670 for (ObjCCategoryDecl *category = iface->getCategoryList();
2671 category; category = category->getNextClassCategory())
2672 search(category);
2673
2674 // - the super class, and
2675 if (ObjCInterfaceDecl *super = iface->getSuperClass())
2676 search(super);
2677
2678 // - any referenced protocols.
2679 search(iface->getReferencedProtocols());
2680 }
2681
searchFrom(ObjCImplementationDecl * impl)2682 void searchFrom(ObjCImplementationDecl *impl) {
2683 // A method in a class implementation overrides declarations from
2684 // the class interface.
2685 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2686 search(Interface);
2687 }
2688
2689
search(const ObjCProtocolList & protocols)2690 void search(const ObjCProtocolList &protocols) {
2691 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2692 i != e; ++i)
2693 search(*i);
2694 }
2695
search(ObjCContainerDecl * container)2696 void search(ObjCContainerDecl *container) {
2697 // Check for a method in this container which matches this selector.
2698 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2699 Method->isInstanceMethod());
2700
2701 // If we find one, record it and bail out.
2702 if (meth) {
2703 Overridden.insert(meth);
2704 return;
2705 }
2706
2707 // Otherwise, search for methods that a hypothetical method here
2708 // would have overridden.
2709
2710 // Note that we're now in a recursive case.
2711 Recursive = true;
2712
2713 searchFromContainer(container);
2714 }
2715 };
2716 }
2717
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)2718 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2719 ObjCInterfaceDecl *CurrentClass,
2720 ResultTypeCompatibilityKind RTC) {
2721 // Search for overridden methods and merge information down from them.
2722 OverrideSearch overrides(*this, ObjCMethod);
2723 // Keep track if the method overrides any method in the class's base classes,
2724 // its protocols, or its categories' protocols; we will keep that info
2725 // in the ObjCMethodDecl.
2726 // For this info, a method in an implementation is not considered as
2727 // overriding the same method in the interface or its categories.
2728 bool hasOverriddenMethodsInBaseOrProtocol = false;
2729 for (OverrideSearch::iterator
2730 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2731 ObjCMethodDecl *overridden = *i;
2732
2733 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2734 CurrentClass != overridden->getClassInterface() ||
2735 overridden->isOverriding())
2736 hasOverriddenMethodsInBaseOrProtocol = true;
2737
2738 // Propagate down the 'related result type' bit from overridden methods.
2739 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
2740 ObjCMethod->SetRelatedResultType();
2741
2742 // Then merge the declarations.
2743 mergeObjCMethodDecls(ObjCMethod, overridden);
2744
2745 if (ObjCMethod->isImplicit() && overridden->isImplicit())
2746 continue; // Conflicting properties are detected elsewhere.
2747
2748 // Check for overriding methods
2749 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2750 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2751 CheckConflictingOverridingMethod(ObjCMethod, overridden,
2752 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2753
2754 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
2755 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
2756 !overridden->isImplicit() /* not meant for properties */) {
2757 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
2758 E = ObjCMethod->param_end();
2759 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
2760 PrevE = overridden->param_end();
2761 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
2762 assert(PrevI != overridden->param_end() && "Param mismatch");
2763 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2764 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2765 // If type of argument of method in this class does not match its
2766 // respective argument type in the super class method, issue warning;
2767 if (!Context.typesAreCompatible(T1, T2)) {
2768 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2769 << T1 << T2;
2770 Diag(overridden->getLocation(), diag::note_previous_declaration);
2771 break;
2772 }
2773 }
2774 }
2775 }
2776
2777 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
2778 }
2779
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,AttributeList * AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)2780 Decl *Sema::ActOnMethodDeclaration(
2781 Scope *S,
2782 SourceLocation MethodLoc, SourceLocation EndLoc,
2783 tok::TokenKind MethodType,
2784 ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2785 ArrayRef<SourceLocation> SelectorLocs,
2786 Selector Sel,
2787 // optional arguments. The number of types/arguments is obtained
2788 // from the Sel.getNumArgs().
2789 ObjCArgInfo *ArgInfo,
2790 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2791 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2792 bool isVariadic, bool MethodDefinition) {
2793 // Make sure we can establish a context for the method.
2794 if (!CurContext->isObjCContainer()) {
2795 Diag(MethodLoc, diag::error_missing_method_context);
2796 return 0;
2797 }
2798 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2799 Decl *ClassDecl = cast<Decl>(OCD);
2800 QualType resultDeclType;
2801
2802 bool HasRelatedResultType = false;
2803 TypeSourceInfo *ResultTInfo = 0;
2804 if (ReturnType) {
2805 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2806
2807 // Methods cannot return interface types. All ObjC objects are
2808 // passed by reference.
2809 if (resultDeclType->isObjCObjectType()) {
2810 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2811 << 0 << resultDeclType;
2812 return 0;
2813 }
2814
2815 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2816 } else { // get the type for "id".
2817 resultDeclType = Context.getObjCIdType();
2818 Diag(MethodLoc, diag::warn_missing_method_return_type)
2819 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2820 }
2821
2822 ObjCMethodDecl* ObjCMethod =
2823 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2824 resultDeclType,
2825 ResultTInfo,
2826 CurContext,
2827 MethodType == tok::minus, isVariadic,
2828 /*isSynthesized=*/false,
2829 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2830 MethodDeclKind == tok::objc_optional
2831 ? ObjCMethodDecl::Optional
2832 : ObjCMethodDecl::Required,
2833 HasRelatedResultType);
2834
2835 SmallVector<ParmVarDecl*, 16> Params;
2836
2837 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2838 QualType ArgType;
2839 TypeSourceInfo *DI;
2840
2841 if (ArgInfo[i].Type == 0) {
2842 ArgType = Context.getObjCIdType();
2843 DI = 0;
2844 } else {
2845 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2846 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2847 ArgType = Context.getAdjustedParameterType(ArgType);
2848 }
2849
2850 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2851 LookupOrdinaryName, ForRedeclaration);
2852 LookupName(R, S);
2853 if (R.isSingleResult()) {
2854 NamedDecl *PrevDecl = R.getFoundDecl();
2855 if (S->isDeclScope(PrevDecl)) {
2856 Diag(ArgInfo[i].NameLoc,
2857 (MethodDefinition ? diag::warn_method_param_redefinition
2858 : diag::warn_method_param_declaration))
2859 << ArgInfo[i].Name;
2860 Diag(PrevDecl->getLocation(),
2861 diag::note_previous_declaration);
2862 }
2863 }
2864
2865 SourceLocation StartLoc = DI
2866 ? DI->getTypeLoc().getBeginLoc()
2867 : ArgInfo[i].NameLoc;
2868
2869 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2870 ArgInfo[i].NameLoc, ArgInfo[i].Name,
2871 ArgType, DI, SC_None, SC_None);
2872
2873 Param->setObjCMethodScopeInfo(i);
2874
2875 Param->setObjCDeclQualifier(
2876 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2877
2878 // Apply the attributes to the parameter.
2879 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2880
2881 if (Param->hasAttr<BlocksAttr>()) {
2882 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
2883 Param->setInvalidDecl();
2884 }
2885 S->AddDecl(Param);
2886 IdResolver.AddDecl(Param);
2887
2888 Params.push_back(Param);
2889 }
2890
2891 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2892 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2893 QualType ArgType = Param->getType();
2894 if (ArgType.isNull())
2895 ArgType = Context.getObjCIdType();
2896 else
2897 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2898 ArgType = Context.getAdjustedParameterType(ArgType);
2899 if (ArgType->isObjCObjectType()) {
2900 Diag(Param->getLocation(),
2901 diag::err_object_cannot_be_passed_returned_by_value)
2902 << 1 << ArgType;
2903 Param->setInvalidDecl();
2904 }
2905 Param->setDeclContext(ObjCMethod);
2906
2907 Params.push_back(Param);
2908 }
2909
2910 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2911 ObjCMethod->setObjCDeclQualifier(
2912 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2913
2914 if (AttrList)
2915 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2916
2917 // Add the method now.
2918 const ObjCMethodDecl *PrevMethod = 0;
2919 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2920 if (MethodType == tok::minus) {
2921 PrevMethod = ImpDecl->getInstanceMethod(Sel);
2922 ImpDecl->addInstanceMethod(ObjCMethod);
2923 } else {
2924 PrevMethod = ImpDecl->getClassMethod(Sel);
2925 ImpDecl->addClassMethod(ObjCMethod);
2926 }
2927
2928 ObjCMethodDecl *IMD = 0;
2929 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
2930 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
2931 ObjCMethod->isInstanceMethod());
2932 if (ObjCMethod->hasAttrs() &&
2933 containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
2934 SourceLocation MethodLoc = IMD->getLocation();
2935 if (!getSourceManager().isInSystemHeader(MethodLoc)) {
2936 Diag(EndLoc, diag::warn_attribute_method_def);
2937 Diag(MethodLoc, diag::note_method_declared_at)
2938 << ObjCMethod->getDeclName();
2939 }
2940 }
2941 } else {
2942 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2943 }
2944
2945 if (PrevMethod) {
2946 // You can never have two method definitions with the same name.
2947 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2948 << ObjCMethod->getDeclName();
2949 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2950 }
2951
2952 // If this Objective-C method does not have a related result type, but we
2953 // are allowed to infer related result types, try to do so based on the
2954 // method family.
2955 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2956 if (!CurrentClass) {
2957 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2958 CurrentClass = Cat->getClassInterface();
2959 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2960 CurrentClass = Impl->getClassInterface();
2961 else if (ObjCCategoryImplDecl *CatImpl
2962 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2963 CurrentClass = CatImpl->getClassInterface();
2964 }
2965
2966 ResultTypeCompatibilityKind RTC
2967 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
2968
2969 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
2970
2971 bool ARCError = false;
2972 if (getLangOpts().ObjCAutoRefCount)
2973 ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2974
2975 // Infer the related result type when possible.
2976 if (!ARCError && RTC == Sema::RTC_Compatible &&
2977 !ObjCMethod->hasRelatedResultType() &&
2978 LangOpts.ObjCInferRelatedResultType) {
2979 bool InferRelatedResultType = false;
2980 switch (ObjCMethod->getMethodFamily()) {
2981 case OMF_None:
2982 case OMF_copy:
2983 case OMF_dealloc:
2984 case OMF_finalize:
2985 case OMF_mutableCopy:
2986 case OMF_release:
2987 case OMF_retainCount:
2988 case OMF_performSelector:
2989 break;
2990
2991 case OMF_alloc:
2992 case OMF_new:
2993 InferRelatedResultType = ObjCMethod->isClassMethod();
2994 break;
2995
2996 case OMF_init:
2997 case OMF_autorelease:
2998 case OMF_retain:
2999 case OMF_self:
3000 InferRelatedResultType = ObjCMethod->isInstanceMethod();
3001 break;
3002 }
3003
3004 if (InferRelatedResultType)
3005 ObjCMethod->SetRelatedResultType();
3006 }
3007
3008 ActOnDocumentableDecl(ObjCMethod);
3009
3010 return ObjCMethod;
3011 }
3012
CheckObjCDeclScope(Decl * D)3013 bool Sema::CheckObjCDeclScope(Decl *D) {
3014 // Following is also an error. But it is caused by a missing @end
3015 // and diagnostic is issued elsewhere.
3016 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3017 return false;
3018
3019 // If we switched context to translation unit while we are still lexically in
3020 // an objc container, it means the parser missed emitting an error.
3021 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3022 return false;
3023
3024 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3025 D->setInvalidDecl();
3026
3027 return true;
3028 }
3029
3030 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
3031 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)3032 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3033 IdentifierInfo *ClassName,
3034 SmallVectorImpl<Decl*> &Decls) {
3035 // Check that ClassName is a valid class
3036 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3037 if (!Class) {
3038 Diag(DeclStart, diag::err_undef_interface) << ClassName;
3039 return;
3040 }
3041 if (LangOpts.ObjCRuntime.isNonFragile()) {
3042 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3043 return;
3044 }
3045
3046 // Collect the instance variables
3047 SmallVector<const ObjCIvarDecl*, 32> Ivars;
3048 Context.DeepCollectObjCIvars(Class, true, Ivars);
3049 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3050 for (unsigned i = 0; i < Ivars.size(); i++) {
3051 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3052 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3053 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3054 /*FIXME: StartL=*/ID->getLocation(),
3055 ID->getLocation(),
3056 ID->getIdentifier(), ID->getType(),
3057 ID->getBitWidth());
3058 Decls.push_back(FD);
3059 }
3060
3061 // Introduce all of these fields into the appropriate scope.
3062 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3063 D != Decls.end(); ++D) {
3064 FieldDecl *FD = cast<FieldDecl>(*D);
3065 if (getLangOpts().CPlusPlus)
3066 PushOnScopeChains(cast<FieldDecl>(FD), S);
3067 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3068 Record->addDecl(FD);
3069 }
3070 }
3071
3072 /// \brief Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)3073 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3074 SourceLocation StartLoc,
3075 SourceLocation IdLoc,
3076 IdentifierInfo *Id,
3077 bool Invalid) {
3078 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3079 // duration shall not be qualified by an address-space qualifier."
3080 // Since all parameters have automatic store duration, they can not have
3081 // an address space.
3082 if (T.getAddressSpace() != 0) {
3083 Diag(IdLoc, diag::err_arg_with_address_space);
3084 Invalid = true;
3085 }
3086
3087 // An @catch parameter must be an unqualified object pointer type;
3088 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3089 if (Invalid) {
3090 // Don't do any further checking.
3091 } else if (T->isDependentType()) {
3092 // Okay: we don't know what this type will instantiate to.
3093 } else if (!T->isObjCObjectPointerType()) {
3094 Invalid = true;
3095 Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3096 } else if (T->isObjCQualifiedIdType()) {
3097 Invalid = true;
3098 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3099 }
3100
3101 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3102 T, TInfo, SC_None, SC_None);
3103 New->setExceptionVariable(true);
3104
3105 // In ARC, infer 'retaining' for variables of retainable type.
3106 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3107 Invalid = true;
3108
3109 if (Invalid)
3110 New->setInvalidDecl();
3111 return New;
3112 }
3113
ActOnObjCExceptionDecl(Scope * S,Declarator & D)3114 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3115 const DeclSpec &DS = D.getDeclSpec();
3116
3117 // We allow the "register" storage class on exception variables because
3118 // GCC did, but we drop it completely. Any other storage class is an error.
3119 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3120 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3121 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3122 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3123 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3124 << DS.getStorageClassSpec();
3125 }
3126 if (D.getDeclSpec().isThreadSpecified())
3127 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3128 D.getMutableDeclSpec().ClearStorageClassSpecs();
3129
3130 DiagnoseFunctionSpecifiers(D);
3131
3132 // Check that there are no default arguments inside the type of this
3133 // exception object (C++ only).
3134 if (getLangOpts().CPlusPlus)
3135 CheckExtraCXXDefaultArguments(D);
3136
3137 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3138 QualType ExceptionType = TInfo->getType();
3139
3140 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3141 D.getSourceRange().getBegin(),
3142 D.getIdentifierLoc(),
3143 D.getIdentifier(),
3144 D.isInvalidType());
3145
3146 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3147 if (D.getCXXScopeSpec().isSet()) {
3148 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3149 << D.getCXXScopeSpec().getRange();
3150 New->setInvalidDecl();
3151 }
3152
3153 // Add the parameter declaration into this scope.
3154 S->AddDecl(New);
3155 if (D.getIdentifier())
3156 IdResolver.AddDecl(New);
3157
3158 ProcessDeclAttributes(S, New, D);
3159
3160 if (New->hasAttr<BlocksAttr>())
3161 Diag(New->getLocation(), diag::err_block_on_nonlocal);
3162 return New;
3163 }
3164
3165 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3166 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)3167 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3168 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3169 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3170 Iv= Iv->getNextIvar()) {
3171 QualType QT = Context.getBaseElementType(Iv->getType());
3172 if (QT->isRecordType())
3173 Ivars.push_back(Iv);
3174 }
3175 }
3176
DiagnoseUseOfUnimplementedSelectors()3177 void Sema::DiagnoseUseOfUnimplementedSelectors() {
3178 // Load referenced selectors from the external source.
3179 if (ExternalSource) {
3180 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3181 ExternalSource->ReadReferencedSelectors(Sels);
3182 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3183 ReferencedSelectors[Sels[I].first] = Sels[I].second;
3184 }
3185
3186 // Warning will be issued only when selector table is
3187 // generated (which means there is at lease one implementation
3188 // in the TU). This is to match gcc's behavior.
3189 if (ReferencedSelectors.empty() ||
3190 !Context.AnyObjCImplementation())
3191 return;
3192 for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3193 ReferencedSelectors.begin(),
3194 E = ReferencedSelectors.end(); S != E; ++S) {
3195 Selector Sel = (*S).first;
3196 if (!LookupImplementedMethodInGlobalPool(Sel))
3197 Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3198 }
3199 return;
3200 }
3201