1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/CXXFieldCollector.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "TypeLocBuilder.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/CommentDiagnostic.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/EvaluatedExprVisitor.h"
29 #include "clang/AST/ExprCXX.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Parse/ParseDiagnostic.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Lex/HeaderSearch.h"
42 #include "clang/Lex/ModuleLoader.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/Triple.h"
45 #include <algorithm>
46 #include <cstring>
47 #include <functional>
48 using namespace clang;
49 using namespace sema;
50
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)51 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52 if (OwnedType) {
53 Decl *Group[2] = { OwnedType, Ptr };
54 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55 }
56
57 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58 }
59
60 namespace {
61
62 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false)64 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66 WantExpressionKeywords = false;
67 WantCXXNamedCasts = false;
68 WantRemainingKeywords = false;
69 }
70
ValidateCandidate(const TypoCorrection & candidate)71 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72 if (NamedDecl *ND = candidate.getCorrectionDecl())
73 return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74 (AllowInvalidDecl || !ND->isInvalidDecl());
75 else
76 return !WantClassName && candidate.isKeyword();
77 }
78
79 private:
80 bool AllowInvalidDecl;
81 bool WantClassName;
82 };
83
84 }
85
86 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const87 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88 switch (Kind) {
89 // FIXME: Take into account the current language when deciding whether a
90 // token kind is a valid type specifier
91 case tok::kw_short:
92 case tok::kw_long:
93 case tok::kw___int64:
94 case tok::kw___int128:
95 case tok::kw_signed:
96 case tok::kw_unsigned:
97 case tok::kw_void:
98 case tok::kw_char:
99 case tok::kw_int:
100 case tok::kw_half:
101 case tok::kw_float:
102 case tok::kw_double:
103 case tok::kw_wchar_t:
104 case tok::kw_bool:
105 case tok::kw___underlying_type:
106 return true;
107
108 case tok::annot_typename:
109 case tok::kw_char16_t:
110 case tok::kw_char32_t:
111 case tok::kw_typeof:
112 case tok::kw_decltype:
113 return getLangOpts().CPlusPlus;
114
115 default:
116 break;
117 }
118
119 return false;
120 }
121
122 /// \brief If the identifier refers to a type name within this scope,
123 /// return the declaration of that type.
124 ///
125 /// This routine performs ordinary name lookup of the identifier II
126 /// within the given scope, with optional C++ scope specifier SS, to
127 /// determine whether the name refers to a type. If so, returns an
128 /// opaque pointer (actually a QualType) corresponding to that
129 /// type. Otherwise, returns NULL.
130 ///
131 /// If name lookup results in an ambiguity, this routine will complain
132 /// and then return NULL.
getTypeName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)133 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134 Scope *S, CXXScopeSpec *SS,
135 bool isClassName, bool HasTrailingDot,
136 ParsedType ObjectTypePtr,
137 bool IsCtorOrDtorName,
138 bool WantNontrivialTypeSourceInfo,
139 IdentifierInfo **CorrectedII) {
140 // Determine where we will perform name lookup.
141 DeclContext *LookupCtx = 0;
142 if (ObjectTypePtr) {
143 QualType ObjectType = ObjectTypePtr.get();
144 if (ObjectType->isRecordType())
145 LookupCtx = computeDeclContext(ObjectType);
146 } else if (SS && SS->isNotEmpty()) {
147 LookupCtx = computeDeclContext(*SS, false);
148
149 if (!LookupCtx) {
150 if (isDependentScopeSpecifier(*SS)) {
151 // C++ [temp.res]p3:
152 // A qualified-id that refers to a type and in which the
153 // nested-name-specifier depends on a template-parameter (14.6.2)
154 // shall be prefixed by the keyword typename to indicate that the
155 // qualified-id denotes a type, forming an
156 // elaborated-type-specifier (7.1.5.3).
157 //
158 // We therefore do not perform any name lookup if the result would
159 // refer to a member of an unknown specialization.
160 if (!isClassName && !IsCtorOrDtorName)
161 return ParsedType();
162
163 // We know from the grammar that this name refers to a type,
164 // so build a dependent node to describe the type.
165 if (WantNontrivialTypeSourceInfo)
166 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169 QualType T =
170 CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171 II, NameLoc);
172
173 return ParsedType::make(T);
174 }
175
176 return ParsedType();
177 }
178
179 if (!LookupCtx->isDependentContext() &&
180 RequireCompleteDeclContext(*SS, LookupCtx))
181 return ParsedType();
182 }
183
184 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185 // lookup for class-names.
186 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187 LookupOrdinaryName;
188 LookupResult Result(*this, &II, NameLoc, Kind);
189 if (LookupCtx) {
190 // Perform "qualified" name lookup into the declaration context we
191 // computed, which is either the type of the base of a member access
192 // expression or the declaration context associated with a prior
193 // nested-name-specifier.
194 LookupQualifiedName(Result, LookupCtx);
195
196 if (ObjectTypePtr && Result.empty()) {
197 // C++ [basic.lookup.classref]p3:
198 // If the unqualified-id is ~type-name, the type-name is looked up
199 // in the context of the entire postfix-expression. If the type T of
200 // the object expression is of a class type C, the type-name is also
201 // looked up in the scope of class C. At least one of the lookups shall
202 // find a name that refers to (possibly cv-qualified) T.
203 LookupName(Result, S);
204 }
205 } else {
206 // Perform unqualified name lookup.
207 LookupName(Result, S);
208 }
209
210 NamedDecl *IIDecl = 0;
211 switch (Result.getResultKind()) {
212 case LookupResult::NotFound:
213 case LookupResult::NotFoundInCurrentInstantiation:
214 if (CorrectedII) {
215 TypeNameValidatorCCC Validator(true, isClassName);
216 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217 Kind, S, SS, Validator);
218 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219 TemplateTy Template;
220 bool MemberOfUnknownSpecialization;
221 UnqualifiedId TemplateName;
222 TemplateName.setIdentifier(NewII, NameLoc);
223 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224 CXXScopeSpec NewSS, *NewSSPtr = SS;
225 if (SS && NNS) {
226 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227 NewSSPtr = &NewSS;
228 }
229 if (Correction && (NNS || NewII != &II) &&
230 // Ignore a correction to a template type as the to-be-corrected
231 // identifier is not a template (typo correction for template names
232 // is handled elsewhere).
233 !(getLangOpts().CPlusPlus && NewSSPtr &&
234 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235 false, Template, MemberOfUnknownSpecialization))) {
236 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237 isClassName, HasTrailingDot, ObjectTypePtr,
238 IsCtorOrDtorName,
239 WantNontrivialTypeSourceInfo);
240 if (Ty) {
241 std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242 std::string CorrectedQuotedStr(
243 Correction.getQuoted(getLangOpts()));
244 Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245 << Result.getLookupName() << CorrectedQuotedStr << isClassName
246 << FixItHint::CreateReplacement(SourceRange(NameLoc),
247 CorrectedStr);
248 if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249 Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250 << CorrectedQuotedStr;
251
252 if (SS && NNS)
253 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254 *CorrectedII = NewII;
255 return Ty;
256 }
257 }
258 }
259 // If typo correction failed or was not performed, fall through
260 case LookupResult::FoundOverloaded:
261 case LookupResult::FoundUnresolvedValue:
262 Result.suppressDiagnostics();
263 return ParsedType();
264
265 case LookupResult::Ambiguous:
266 // Recover from type-hiding ambiguities by hiding the type. We'll
267 // do the lookup again when looking for an object, and we can
268 // diagnose the error then. If we don't do this, then the error
269 // about hiding the type will be immediately followed by an error
270 // that only makes sense if the identifier was treated like a type.
271 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272 Result.suppressDiagnostics();
273 return ParsedType();
274 }
275
276 // Look to see if we have a type anywhere in the list of results.
277 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278 Res != ResEnd; ++Res) {
279 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280 if (!IIDecl ||
281 (*Res)->getLocation().getRawEncoding() <
282 IIDecl->getLocation().getRawEncoding())
283 IIDecl = *Res;
284 }
285 }
286
287 if (!IIDecl) {
288 // None of the entities we found is a type, so there is no way
289 // to even assume that the result is a type. In this case, don't
290 // complain about the ambiguity. The parser will either try to
291 // perform this lookup again (e.g., as an object name), which
292 // will produce the ambiguity, or will complain that it expected
293 // a type name.
294 Result.suppressDiagnostics();
295 return ParsedType();
296 }
297
298 // We found a type within the ambiguous lookup; diagnose the
299 // ambiguity and then return that type. This might be the right
300 // answer, or it might not be, but it suppresses any attempt to
301 // perform the name lookup again.
302 break;
303
304 case LookupResult::Found:
305 IIDecl = Result.getFoundDecl();
306 break;
307 }
308
309 assert(IIDecl && "Didn't find decl");
310
311 QualType T;
312 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313 DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315 if (T.isNull())
316 T = Context.getTypeDeclType(TD);
317
318 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319 // constructor or destructor name (in such a case, the scope specifier
320 // will be attached to the enclosing Expr or Decl node).
321 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322 if (WantNontrivialTypeSourceInfo) {
323 // Construct a type with type-source information.
324 TypeLocBuilder Builder;
325 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327 T = getElaboratedType(ETK_None, *SS, T);
328 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329 ElabTL.setElaboratedKeywordLoc(SourceLocation());
330 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332 } else {
333 T = getElaboratedType(ETK_None, *SS, T);
334 }
335 }
336 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338 if (!HasTrailingDot)
339 T = Context.getObjCInterfaceType(IDecl);
340 }
341
342 if (T.isNull()) {
343 // If it's not plausibly a type, suppress diagnostics.
344 Result.suppressDiagnostics();
345 return ParsedType();
346 }
347 return ParsedType::make(T);
348 }
349
350 /// isTagName() - This method is called *for error recovery purposes only*
351 /// to determine if the specified name is a valid tag name ("struct foo"). If
352 /// so, this returns the TST for the tag corresponding to it (TST_enum,
353 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
354 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)355 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356 // Do a tag name lookup in this scope.
357 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358 LookupName(R, S, false);
359 R.suppressDiagnostics();
360 if (R.getResultKind() == LookupResult::Found)
361 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362 switch (TD->getTagKind()) {
363 case TTK_Struct: return DeclSpec::TST_struct;
364 case TTK_Interface: return DeclSpec::TST_interface;
365 case TTK_Union: return DeclSpec::TST_union;
366 case TTK_Class: return DeclSpec::TST_class;
367 case TTK_Enum: return DeclSpec::TST_enum;
368 }
369 }
370
371 return DeclSpec::TST_unspecified;
372 }
373
374 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
375 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
376 /// then downgrade the missing typename error to a warning.
377 /// This is needed for MSVC compatibility; Example:
378 /// @code
379 /// template<class T> class A {
380 /// public:
381 /// typedef int TYPE;
382 /// };
383 /// template<class T> class B : public A<T> {
384 /// public:
385 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
386 /// };
387 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)388 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
389 if (CurContext->isRecord()) {
390 const Type *Ty = SS->getScopeRep()->getAsType();
391
392 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
393 for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
394 BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
395 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
396 return true;
397 return S->isFunctionPrototypeScope();
398 }
399 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
400 }
401
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType)402 bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
403 SourceLocation IILoc,
404 Scope *S,
405 CXXScopeSpec *SS,
406 ParsedType &SuggestedType) {
407 // We don't have anything to suggest (yet).
408 SuggestedType = ParsedType();
409
410 // There may have been a typo in the name of the type. Look up typo
411 // results, in case we have something that we can suggest.
412 TypeNameValidatorCCC Validator(false);
413 if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
414 LookupOrdinaryName, S, SS,
415 Validator)) {
416 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
417 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
418
419 if (Corrected.isKeyword()) {
420 // We corrected to a keyword.
421 IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
422 if (!isSimpleTypeSpecifier(NewII->getTokenID()))
423 CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
424 Diag(IILoc, diag::err_unknown_typename_suggest)
425 << II << CorrectedQuotedStr
426 << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
427 II = NewII;
428 } else {
429 NamedDecl *Result = Corrected.getCorrectionDecl();
430 // We found a similarly-named type or interface; suggest that.
431 if (!SS || !SS->isSet())
432 Diag(IILoc, diag::err_unknown_typename_suggest)
433 << II << CorrectedQuotedStr
434 << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
435 else if (DeclContext *DC = computeDeclContext(*SS, false))
436 Diag(IILoc, diag::err_unknown_nested_typename_suggest)
437 << II << DC << CorrectedQuotedStr << SS->getRange()
438 << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
439 else
440 llvm_unreachable("could not have corrected a typo here");
441
442 Diag(Result->getLocation(), diag::note_previous_decl)
443 << CorrectedQuotedStr;
444
445 SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446 false, false, ParsedType(),
447 /*IsCtorOrDtorName=*/false,
448 /*NonTrivialTypeSourceInfo=*/true);
449 }
450 return true;
451 }
452
453 if (getLangOpts().CPlusPlus) {
454 // See if II is a class template that the user forgot to pass arguments to.
455 UnqualifiedId Name;
456 Name.setIdentifier(II, IILoc);
457 CXXScopeSpec EmptySS;
458 TemplateTy TemplateResult;
459 bool MemberOfUnknownSpecialization;
460 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461 Name, ParsedType(), true, TemplateResult,
462 MemberOfUnknownSpecialization) == TNK_Type_template) {
463 TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464 Diag(IILoc, diag::err_template_missing_args) << TplName;
465 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467 << TplDecl->getTemplateParameters()->getSourceRange();
468 }
469 return true;
470 }
471 }
472
473 // FIXME: Should we move the logic that tries to recover from a missing tag
474 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476 if (!SS || (!SS->isSet() && !SS->isInvalid()))
477 Diag(IILoc, diag::err_unknown_typename) << II;
478 else if (DeclContext *DC = computeDeclContext(*SS, false))
479 Diag(IILoc, diag::err_typename_nested_not_found)
480 << II << DC << SS->getRange();
481 else if (isDependentScopeSpecifier(*SS)) {
482 unsigned DiagID = diag::err_typename_missing;
483 if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484 DiagID = diag::warn_typename_missing;
485
486 Diag(SS->getRange().getBegin(), DiagID)
487 << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488 << SourceRange(SS->getRange().getBegin(), IILoc)
489 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490 SuggestedType = ActOnTypenameType(S, SourceLocation(),
491 *SS, *II, IILoc).get();
492 } else {
493 assert(SS && SS->isInvalid() &&
494 "Invalid scope specifier has already been diagnosed");
495 }
496
497 return true;
498 }
499
500 /// \brief Determine whether the given result set contains either a type name
501 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)502 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504 NextToken.is(tok::less);
505
506 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508 return true;
509
510 if (CheckTemplate && isa<TemplateDecl>(*I))
511 return true;
512 }
513
514 return false;
515 }
516
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)517 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518 Scope *S, CXXScopeSpec &SS,
519 IdentifierInfo *&Name,
520 SourceLocation NameLoc) {
521 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522 SemaRef.LookupParsedName(R, S, &SS);
523 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524 const char *TagName = 0;
525 const char *FixItTagName = 0;
526 switch (Tag->getTagKind()) {
527 case TTK_Class:
528 TagName = "class";
529 FixItTagName = "class ";
530 break;
531
532 case TTK_Enum:
533 TagName = "enum";
534 FixItTagName = "enum ";
535 break;
536
537 case TTK_Struct:
538 TagName = "struct";
539 FixItTagName = "struct ";
540 break;
541
542 case TTK_Interface:
543 TagName = "__interface";
544 FixItTagName = "__interface ";
545 break;
546
547 case TTK_Union:
548 TagName = "union";
549 FixItTagName = "union ";
550 break;
551 }
552
553 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558 I != IEnd; ++I)
559 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560 << Name << TagName;
561
562 // Replace lookup results with just the tag decl.
563 Result.clear(Sema::LookupTagName);
564 SemaRef.LookupParsedName(Result, S, &SS);
565 return true;
566 }
567
568 return false;
569 }
570
571 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)572 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573 QualType T, SourceLocation NameLoc) {
574 ASTContext &Context = S.Context;
575
576 TypeLocBuilder Builder;
577 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579 T = S.getElaboratedType(ETK_None, SS, T);
580 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581 ElabTL.setElaboratedKeywordLoc(SourceLocation());
582 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584 }
585
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)586 Sema::NameClassification Sema::ClassifyName(Scope *S,
587 CXXScopeSpec &SS,
588 IdentifierInfo *&Name,
589 SourceLocation NameLoc,
590 const Token &NextToken,
591 bool IsAddressOfOperand,
592 CorrectionCandidateCallback *CCC) {
593 DeclarationNameInfo NameInfo(Name, NameLoc);
594 ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596 if (NextToken.is(tok::coloncolon)) {
597 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598 QualType(), false, SS, 0, false);
599
600 }
601
602 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603 LookupParsedName(Result, S, &SS, !CurMethod);
604
605 // Perform lookup for Objective-C instance variables (including automatically
606 // synthesized instance variables), if we're in an Objective-C method.
607 // FIXME: This lookup really, really needs to be folded in to the normal
608 // unqualified lookup mechanism.
609 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611 if (E.get() || E.isInvalid())
612 return E;
613 }
614
615 bool SecondTry = false;
616 bool IsFilteredTemplateName = false;
617
618 Corrected:
619 switch (Result.getResultKind()) {
620 case LookupResult::NotFound:
621 // If an unqualified-id is followed by a '(', then we have a function
622 // call.
623 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624 // In C++, this is an ADL-only call.
625 // FIXME: Reference?
626 if (getLangOpts().CPlusPlus)
627 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629 // C90 6.3.2.2:
630 // If the expression that precedes the parenthesized argument list in a
631 // function call consists solely of an identifier, and if no
632 // declaration is visible for this identifier, the identifier is
633 // implicitly declared exactly as if, in the innermost block containing
634 // the function call, the declaration
635 //
636 // extern int identifier ();
637 //
638 // appeared.
639 //
640 // We also allow this in C99 as an extension.
641 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642 Result.addDecl(D);
643 Result.resolveKind();
644 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645 }
646 }
647
648 // In C, we first see whether there is a tag type by the same name, in
649 // which case it's likely that the user just forget to write "enum",
650 // "struct", or "union".
651 if (!getLangOpts().CPlusPlus && !SecondTry &&
652 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653 break;
654 }
655
656 // Perform typo correction to determine if there is another name that is
657 // close to this name.
658 if (!SecondTry && CCC) {
659 SecondTry = true;
660 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661 Result.getLookupKind(), S,
662 &SS, *CCC)) {
663 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664 unsigned QualifiedDiag = diag::err_no_member_suggest;
665 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668 NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669 NamedDecl *UnderlyingFirstDecl
670 = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673 UnqualifiedDiag = diag::err_no_template_suggest;
674 QualifiedDiag = diag::err_no_member_template_suggest;
675 } else if (UnderlyingFirstDecl &&
676 (isa<TypeDecl>(UnderlyingFirstDecl) ||
677 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679 UnqualifiedDiag = diag::err_unknown_typename_suggest;
680 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681 }
682
683 if (SS.isEmpty())
684 Diag(NameLoc, UnqualifiedDiag)
685 << Name << CorrectedQuotedStr
686 << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687 else
688 Diag(NameLoc, QualifiedDiag)
689 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690 << SS.getRange()
691 << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
692
693 // Update the name, so that the caller has the new name.
694 Name = Corrected.getCorrectionAsIdentifierInfo();
695
696 // Typo correction corrected to a keyword.
697 if (Corrected.isKeyword())
698 return Corrected.getCorrectionAsIdentifierInfo();
699
700 // Also update the LookupResult...
701 // FIXME: This should probably go away at some point
702 Result.clear();
703 Result.setLookupName(Corrected.getCorrection());
704 if (FirstDecl) {
705 Result.addDecl(FirstDecl);
706 Diag(FirstDecl->getLocation(), diag::note_previous_decl)
707 << CorrectedQuotedStr;
708 }
709
710 // If we found an Objective-C instance variable, let
711 // LookupInObjCMethod build the appropriate expression to
712 // reference the ivar.
713 // FIXME: This is a gross hack.
714 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
715 Result.clear();
716 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
717 return E;
718 }
719
720 goto Corrected;
721 }
722 }
723
724 // We failed to correct; just fall through and let the parser deal with it.
725 Result.suppressDiagnostics();
726 return NameClassification::Unknown();
727
728 case LookupResult::NotFoundInCurrentInstantiation: {
729 // We performed name lookup into the current instantiation, and there were
730 // dependent bases, so we treat this result the same way as any other
731 // dependent nested-name-specifier.
732
733 // C++ [temp.res]p2:
734 // A name used in a template declaration or definition and that is
735 // dependent on a template-parameter is assumed not to name a type
736 // unless the applicable name lookup finds a type name or the name is
737 // qualified by the keyword typename.
738 //
739 // FIXME: If the next token is '<', we might want to ask the parser to
740 // perform some heroics to see if we actually have a
741 // template-argument-list, which would indicate a missing 'template'
742 // keyword here.
743 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
744 NameInfo, IsAddressOfOperand,
745 /*TemplateArgs=*/0);
746 }
747
748 case LookupResult::Found:
749 case LookupResult::FoundOverloaded:
750 case LookupResult::FoundUnresolvedValue:
751 break;
752
753 case LookupResult::Ambiguous:
754 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
755 hasAnyAcceptableTemplateNames(Result)) {
756 // C++ [temp.local]p3:
757 // A lookup that finds an injected-class-name (10.2) can result in an
758 // ambiguity in certain cases (for example, if it is found in more than
759 // one base class). If all of the injected-class-names that are found
760 // refer to specializations of the same class template, and if the name
761 // is followed by a template-argument-list, the reference refers to the
762 // class template itself and not a specialization thereof, and is not
763 // ambiguous.
764 //
765 // This filtering can make an ambiguous result into an unambiguous one,
766 // so try again after filtering out template names.
767 FilterAcceptableTemplateNames(Result);
768 if (!Result.isAmbiguous()) {
769 IsFilteredTemplateName = true;
770 break;
771 }
772 }
773
774 // Diagnose the ambiguity and return an error.
775 return NameClassification::Error();
776 }
777
778 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
779 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
780 // C++ [temp.names]p3:
781 // After name lookup (3.4) finds that a name is a template-name or that
782 // an operator-function-id or a literal- operator-id refers to a set of
783 // overloaded functions any member of which is a function template if
784 // this is followed by a <, the < is always taken as the delimiter of a
785 // template-argument-list and never as the less-than operator.
786 if (!IsFilteredTemplateName)
787 FilterAcceptableTemplateNames(Result);
788
789 if (!Result.empty()) {
790 bool IsFunctionTemplate;
791 TemplateName Template;
792 if (Result.end() - Result.begin() > 1) {
793 IsFunctionTemplate = true;
794 Template = Context.getOverloadedTemplateName(Result.begin(),
795 Result.end());
796 } else {
797 TemplateDecl *TD
798 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
799 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
800
801 if (SS.isSet() && !SS.isInvalid())
802 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
803 /*TemplateKeyword=*/false,
804 TD);
805 else
806 Template = TemplateName(TD);
807 }
808
809 if (IsFunctionTemplate) {
810 // Function templates always go through overload resolution, at which
811 // point we'll perform the various checks (e.g., accessibility) we need
812 // to based on which function we selected.
813 Result.suppressDiagnostics();
814
815 return NameClassification::FunctionTemplate(Template);
816 }
817
818 return NameClassification::TypeTemplate(Template);
819 }
820 }
821
822 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
823 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
824 DiagnoseUseOfDecl(Type, NameLoc);
825 QualType T = Context.getTypeDeclType(Type);
826 if (SS.isNotEmpty())
827 return buildNestedType(*this, SS, T, NameLoc);
828 return ParsedType::make(T);
829 }
830
831 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
832 if (!Class) {
833 // FIXME: It's unfortunate that we don't have a Type node for handling this.
834 if (ObjCCompatibleAliasDecl *Alias
835 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
836 Class = Alias->getClassInterface();
837 }
838
839 if (Class) {
840 DiagnoseUseOfDecl(Class, NameLoc);
841
842 if (NextToken.is(tok::period)) {
843 // Interface. <something> is parsed as a property reference expression.
844 // Just return "unknown" as a fall-through for now.
845 Result.suppressDiagnostics();
846 return NameClassification::Unknown();
847 }
848
849 QualType T = Context.getObjCInterfaceType(Class);
850 return ParsedType::make(T);
851 }
852
853 // We can have a type template here if we're classifying a template argument.
854 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
855 return NameClassification::TypeTemplate(
856 TemplateName(cast<TemplateDecl>(FirstDecl)));
857
858 // Check for a tag type hidden by a non-type decl in a few cases where it
859 // seems likely a type is wanted instead of the non-type that was found.
860 if (!getLangOpts().ObjC1) {
861 bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862 if ((NextToken.is(tok::identifier) ||
863 (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
866 DiagnoseUseOfDecl(Type, NameLoc);
867 QualType T = Context.getTypeDeclType(Type);
868 if (SS.isNotEmpty())
869 return buildNestedType(*this, SS, T, NameLoc);
870 return ParsedType::make(T);
871 }
872 }
873
874 if (FirstDecl->isCXXClassMember())
875 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
876
877 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
878 return BuildDeclarationNameExpr(SS, Result, ADL);
879 }
880
881 // Determines the context to return to after temporarily entering a
882 // context. This depends in an unnecessarily complicated way on the
883 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)884 DeclContext *Sema::getContainingDC(DeclContext *DC) {
885
886 // Functions defined inline within classes aren't parsed until we've
887 // finished parsing the top-level class, so the top-level class is
888 // the context we'll need to return to.
889 if (isa<FunctionDecl>(DC)) {
890 DC = DC->getLexicalParent();
891
892 // A function not defined within a class will always return to its
893 // lexical context.
894 if (!isa<CXXRecordDecl>(DC))
895 return DC;
896
897 // A C++ inline method/friend is parsed *after* the topmost class
898 // it was declared in is fully parsed ("complete"); the topmost
899 // class is the context we need to return to.
900 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
901 DC = RD;
902
903 // Return the declaration context of the topmost class the inline method is
904 // declared in.
905 return DC;
906 }
907
908 return DC->getLexicalParent();
909 }
910
PushDeclContext(Scope * S,DeclContext * DC)911 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
912 assert(getContainingDC(DC) == CurContext &&
913 "The next DeclContext should be lexically contained in the current one.");
914 CurContext = DC;
915 S->setEntity(DC);
916 }
917
PopDeclContext()918 void Sema::PopDeclContext() {
919 assert(CurContext && "DeclContext imbalance!");
920
921 CurContext = getContainingDC(CurContext);
922 assert(CurContext && "Popped translation unit!");
923 }
924
925 /// EnterDeclaratorContext - Used when we must lookup names in the context
926 /// of a declarator's nested name specifier.
927 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)928 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
929 // C++0x [basic.lookup.unqual]p13:
930 // A name used in the definition of a static data member of class
931 // X (after the qualified-id of the static member) is looked up as
932 // if the name was used in a member function of X.
933 // C++0x [basic.lookup.unqual]p14:
934 // If a variable member of a namespace is defined outside of the
935 // scope of its namespace then any name used in the definition of
936 // the variable member (after the declarator-id) is looked up as
937 // if the definition of the variable member occurred in its
938 // namespace.
939 // Both of these imply that we should push a scope whose context
940 // is the semantic context of the declaration. We can't use
941 // PushDeclContext here because that context is not necessarily
942 // lexically contained in the current context. Fortunately,
943 // the containing scope should have the appropriate information.
944
945 assert(!S->getEntity() && "scope already has entity");
946
947 #ifndef NDEBUG
948 Scope *Ancestor = S->getParent();
949 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
950 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
951 #endif
952
953 CurContext = DC;
954 S->setEntity(DC);
955 }
956
ExitDeclaratorContext(Scope * S)957 void Sema::ExitDeclaratorContext(Scope *S) {
958 assert(S->getEntity() == CurContext && "Context imbalance!");
959
960 // Switch back to the lexical context. The safety of this is
961 // enforced by an assert in EnterDeclaratorContext.
962 Scope *Ancestor = S->getParent();
963 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
964 CurContext = (DeclContext*) Ancestor->getEntity();
965
966 // We don't need to do anything with the scope, which is going to
967 // disappear.
968 }
969
970
ActOnReenterFunctionContext(Scope * S,Decl * D)971 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
972 FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
973 if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
974 // We assume that the caller has already called
975 // ActOnReenterTemplateScope
976 FD = TFD->getTemplatedDecl();
977 }
978 if (!FD)
979 return;
980
981 // Same implementation as PushDeclContext, but enters the context
982 // from the lexical parent, rather than the top-level class.
983 assert(CurContext == FD->getLexicalParent() &&
984 "The next DeclContext should be lexically contained in the current one.");
985 CurContext = FD;
986 S->setEntity(CurContext);
987
988 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
989 ParmVarDecl *Param = FD->getParamDecl(P);
990 // If the parameter has an identifier, then add it to the scope
991 if (Param->getIdentifier()) {
992 S->AddDecl(Param);
993 IdResolver.AddDecl(Param);
994 }
995 }
996 }
997
998
ActOnExitFunctionContext()999 void Sema::ActOnExitFunctionContext() {
1000 // Same implementation as PopDeclContext, but returns to the lexical parent,
1001 // rather than the top-level class.
1002 assert(CurContext && "DeclContext imbalance!");
1003 CurContext = CurContext->getLexicalParent();
1004 assert(CurContext && "Popped translation unit!");
1005 }
1006
1007
1008 /// \brief Determine whether we allow overloading of the function
1009 /// PrevDecl with another declaration.
1010 ///
1011 /// This routine determines whether overloading is possible, not
1012 /// whether some new function is actually an overload. It will return
1013 /// true in C++ (where we can always provide overloads) or, as an
1014 /// extension, in C when the previous function is already an
1015 /// overloaded function declaration or has the "overloadable"
1016 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1017 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1018 ASTContext &Context) {
1019 if (Context.getLangOpts().CPlusPlus)
1020 return true;
1021
1022 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1023 return true;
1024
1025 return (Previous.getResultKind() == LookupResult::Found
1026 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1027 }
1028
1029 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1030 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1031 // Move up the scope chain until we find the nearest enclosing
1032 // non-transparent context. The declaration will be introduced into this
1033 // scope.
1034 while (S->getEntity() &&
1035 ((DeclContext *)S->getEntity())->isTransparentContext())
1036 S = S->getParent();
1037
1038 // Add scoped declarations into their context, so that they can be
1039 // found later. Declarations without a context won't be inserted
1040 // into any context.
1041 if (AddToContext)
1042 CurContext->addDecl(D);
1043
1044 // Out-of-line definitions shouldn't be pushed into scope in C++.
1045 // Out-of-line variable and function definitions shouldn't even in C.
1046 if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1047 D->isOutOfLine() &&
1048 !D->getDeclContext()->getRedeclContext()->Equals(
1049 D->getLexicalDeclContext()->getRedeclContext()))
1050 return;
1051
1052 // Template instantiations should also not be pushed into scope.
1053 if (isa<FunctionDecl>(D) &&
1054 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1055 return;
1056
1057 // If this replaces anything in the current scope,
1058 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1059 IEnd = IdResolver.end();
1060 for (; I != IEnd; ++I) {
1061 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1062 S->RemoveDecl(*I);
1063 IdResolver.RemoveDecl(*I);
1064
1065 // Should only need to replace one decl.
1066 break;
1067 }
1068 }
1069
1070 S->AddDecl(D);
1071
1072 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1073 // Implicitly-generated labels may end up getting generated in an order that
1074 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1075 // the label at the appropriate place in the identifier chain.
1076 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1077 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1078 if (IDC == CurContext) {
1079 if (!S->isDeclScope(*I))
1080 continue;
1081 } else if (IDC->Encloses(CurContext))
1082 break;
1083 }
1084
1085 IdResolver.InsertDeclAfter(I, D);
1086 } else {
1087 IdResolver.AddDecl(D);
1088 }
1089 }
1090
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1091 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1092 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1093 TUScope->AddDecl(D);
1094 }
1095
isDeclInScope(NamedDecl * & D,DeclContext * Ctx,Scope * S,bool ExplicitInstantiationOrSpecialization)1096 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1097 bool ExplicitInstantiationOrSpecialization) {
1098 return IdResolver.isDeclInScope(D, Ctx, Context, S,
1099 ExplicitInstantiationOrSpecialization);
1100 }
1101
getScopeForDeclContext(Scope * S,DeclContext * DC)1102 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1103 DeclContext *TargetDC = DC->getPrimaryContext();
1104 do {
1105 if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1106 if (ScopeDC->getPrimaryContext() == TargetDC)
1107 return S;
1108 } while ((S = S->getParent()));
1109
1110 return 0;
1111 }
1112
1113 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1114 DeclContext*,
1115 ASTContext&);
1116
1117 /// Filters out lookup results that don't fall within the given scope
1118 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool ExplicitInstantiationOrSpecialization)1119 void Sema::FilterLookupForScope(LookupResult &R,
1120 DeclContext *Ctx, Scope *S,
1121 bool ConsiderLinkage,
1122 bool ExplicitInstantiationOrSpecialization) {
1123 LookupResult::Filter F = R.makeFilter();
1124 while (F.hasNext()) {
1125 NamedDecl *D = F.next();
1126
1127 if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1128 continue;
1129
1130 if (ConsiderLinkage &&
1131 isOutOfScopePreviousDeclaration(D, Ctx, Context))
1132 continue;
1133
1134 F.erase();
1135 }
1136
1137 F.done();
1138 }
1139
isUsingDecl(NamedDecl * D)1140 static bool isUsingDecl(NamedDecl *D) {
1141 return isa<UsingShadowDecl>(D) ||
1142 isa<UnresolvedUsingTypenameDecl>(D) ||
1143 isa<UnresolvedUsingValueDecl>(D);
1144 }
1145
1146 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1147 static void RemoveUsingDecls(LookupResult &R) {
1148 LookupResult::Filter F = R.makeFilter();
1149 while (F.hasNext())
1150 if (isUsingDecl(F.next()))
1151 F.erase();
1152
1153 F.done();
1154 }
1155
1156 /// \brief Check for this common pattern:
1157 /// @code
1158 /// class S {
1159 /// S(const S&); // DO NOT IMPLEMENT
1160 /// void operator=(const S&); // DO NOT IMPLEMENT
1161 /// };
1162 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1163 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1164 // FIXME: Should check for private access too but access is set after we get
1165 // the decl here.
1166 if (D->doesThisDeclarationHaveABody())
1167 return false;
1168
1169 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1170 return CD->isCopyConstructor();
1171 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1172 return Method->isCopyAssignmentOperator();
1173 return false;
1174 }
1175
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1176 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1177 assert(D);
1178
1179 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1180 return false;
1181
1182 // Ignore class templates.
1183 if (D->getDeclContext()->isDependentContext() ||
1184 D->getLexicalDeclContext()->isDependentContext())
1185 return false;
1186
1187 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1188 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1189 return false;
1190
1191 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1192 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1193 return false;
1194 } else {
1195 // 'static inline' functions are used in headers; don't warn.
1196 if (FD->getStorageClass() == SC_Static &&
1197 FD->isInlineSpecified())
1198 return false;
1199 }
1200
1201 if (FD->doesThisDeclarationHaveABody() &&
1202 Context.DeclMustBeEmitted(FD))
1203 return false;
1204 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1205 if (!VD->isFileVarDecl() ||
1206 VD->getType().isConstant(Context) ||
1207 Context.DeclMustBeEmitted(VD))
1208 return false;
1209
1210 if (VD->isStaticDataMember() &&
1211 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1212 return false;
1213
1214 } else {
1215 return false;
1216 }
1217
1218 // Only warn for unused decls internal to the translation unit.
1219 if (D->getLinkage() == ExternalLinkage)
1220 return false;
1221
1222 return true;
1223 }
1224
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1225 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1226 if (!D)
1227 return;
1228
1229 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1230 const FunctionDecl *First = FD->getFirstDeclaration();
1231 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1232 return; // First should already be in the vector.
1233 }
1234
1235 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1236 const VarDecl *First = VD->getFirstDeclaration();
1237 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1238 return; // First should already be in the vector.
1239 }
1240
1241 if (ShouldWarnIfUnusedFileScopedDecl(D))
1242 UnusedFileScopedDecls.push_back(D);
1243 }
1244
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1245 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1246 if (D->isInvalidDecl())
1247 return false;
1248
1249 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1250 return false;
1251
1252 if (isa<LabelDecl>(D))
1253 return true;
1254
1255 // White-list anything that isn't a local variable.
1256 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1257 !D->getDeclContext()->isFunctionOrMethod())
1258 return false;
1259
1260 // Types of valid local variables should be complete, so this should succeed.
1261 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1262
1263 // White-list anything with an __attribute__((unused)) type.
1264 QualType Ty = VD->getType();
1265
1266 // Only look at the outermost level of typedef.
1267 if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1268 if (TT->getDecl()->hasAttr<UnusedAttr>())
1269 return false;
1270 }
1271
1272 // If we failed to complete the type for some reason, or if the type is
1273 // dependent, don't diagnose the variable.
1274 if (Ty->isIncompleteType() || Ty->isDependentType())
1275 return false;
1276
1277 if (const TagType *TT = Ty->getAs<TagType>()) {
1278 const TagDecl *Tag = TT->getDecl();
1279 if (Tag->hasAttr<UnusedAttr>())
1280 return false;
1281
1282 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1283 if (!RD->hasTrivialDestructor())
1284 return false;
1285
1286 if (const Expr *Init = VD->getInit()) {
1287 const CXXConstructExpr *Construct =
1288 dyn_cast<CXXConstructExpr>(Init);
1289 if (Construct && !Construct->isElidable()) {
1290 CXXConstructorDecl *CD = Construct->getConstructor();
1291 if (!CD->isTrivial())
1292 return false;
1293 }
1294 }
1295 }
1296 }
1297
1298 // TODO: __attribute__((unused)) templates?
1299 }
1300
1301 return true;
1302 }
1303
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1304 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1305 FixItHint &Hint) {
1306 if (isa<LabelDecl>(D)) {
1307 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1308 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1309 if (AfterColon.isInvalid())
1310 return;
1311 Hint = FixItHint::CreateRemoval(CharSourceRange::
1312 getCharRange(D->getLocStart(), AfterColon));
1313 }
1314 return;
1315 }
1316
1317 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1318 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1319 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1320 FixItHint Hint;
1321 if (!ShouldDiagnoseUnusedDecl(D))
1322 return;
1323
1324 GenerateFixForUnusedDecl(D, Context, Hint);
1325
1326 unsigned DiagID;
1327 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1328 DiagID = diag::warn_unused_exception_param;
1329 else if (isa<LabelDecl>(D))
1330 DiagID = diag::warn_unused_label;
1331 else
1332 DiagID = diag::warn_unused_variable;
1333
1334 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1335 }
1336
CheckPoppedLabel(LabelDecl * L,Sema & S)1337 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1338 // Verify that we have no forward references left. If so, there was a goto
1339 // or address of a label taken, but no definition of it. Label fwd
1340 // definitions are indicated with a null substmt.
1341 if (L->getStmt() == 0)
1342 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1343 }
1344
ActOnPopScope(SourceLocation Loc,Scope * S)1345 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1346 if (S->decl_empty()) return;
1347 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1348 "Scope shouldn't contain decls!");
1349
1350 for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1351 I != E; ++I) {
1352 Decl *TmpD = (*I);
1353 assert(TmpD && "This decl didn't get pushed??");
1354
1355 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1356 NamedDecl *D = cast<NamedDecl>(TmpD);
1357
1358 if (!D->getDeclName()) continue;
1359
1360 // Diagnose unused variables in this scope.
1361 if (!S->hasErrorOccurred())
1362 DiagnoseUnusedDecl(D);
1363
1364 // If this was a forward reference to a label, verify it was defined.
1365 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1366 CheckPoppedLabel(LD, *this);
1367
1368 // Remove this name from our lexical scope.
1369 IdResolver.RemoveDecl(D);
1370 }
1371 }
1372
ActOnStartFunctionDeclarator()1373 void Sema::ActOnStartFunctionDeclarator() {
1374 ++InFunctionDeclarator;
1375 }
1376
ActOnEndFunctionDeclarator()1377 void Sema::ActOnEndFunctionDeclarator() {
1378 assert(InFunctionDeclarator);
1379 --InFunctionDeclarator;
1380 }
1381
1382 /// \brief Look for an Objective-C class in the translation unit.
1383 ///
1384 /// \param Id The name of the Objective-C class we're looking for. If
1385 /// typo-correction fixes this name, the Id will be updated
1386 /// to the fixed name.
1387 ///
1388 /// \param IdLoc The location of the name in the translation unit.
1389 ///
1390 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1391 /// if there is no class with the given name.
1392 ///
1393 /// \returns The declaration of the named Objective-C class, or NULL if the
1394 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1395 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1396 SourceLocation IdLoc,
1397 bool DoTypoCorrection) {
1398 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1399 // creation from this context.
1400 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1401
1402 if (!IDecl && DoTypoCorrection) {
1403 // Perform typo correction at the given location, but only if we
1404 // find an Objective-C class name.
1405 DeclFilterCCC<ObjCInterfaceDecl> Validator;
1406 if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1407 LookupOrdinaryName, TUScope, NULL,
1408 Validator)) {
1409 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1410 Diag(IdLoc, diag::err_undef_interface_suggest)
1411 << Id << IDecl->getDeclName()
1412 << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1413 Diag(IDecl->getLocation(), diag::note_previous_decl)
1414 << IDecl->getDeclName();
1415
1416 Id = IDecl->getIdentifier();
1417 }
1418 }
1419 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1420 // This routine must always return a class definition, if any.
1421 if (Def && Def->getDefinition())
1422 Def = Def->getDefinition();
1423 return Def;
1424 }
1425
1426 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1427 /// from S, where a non-field would be declared. This routine copes
1428 /// with the difference between C and C++ scoping rules in structs and
1429 /// unions. For example, the following code is well-formed in C but
1430 /// ill-formed in C++:
1431 /// @code
1432 /// struct S6 {
1433 /// enum { BAR } e;
1434 /// };
1435 ///
1436 /// void test_S6() {
1437 /// struct S6 a;
1438 /// a.e = BAR;
1439 /// }
1440 /// @endcode
1441 /// For the declaration of BAR, this routine will return a different
1442 /// scope. The scope S will be the scope of the unnamed enumeration
1443 /// within S6. In C++, this routine will return the scope associated
1444 /// with S6, because the enumeration's scope is a transparent
1445 /// context but structures can contain non-field names. In C, this
1446 /// routine will return the translation unit scope, since the
1447 /// enumeration's scope is a transparent context and structures cannot
1448 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1449 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1450 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1451 (S->getEntity() &&
1452 ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1453 (S->isClassScope() && !getLangOpts().CPlusPlus))
1454 S = S->getParent();
1455 return S;
1456 }
1457
1458 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1459 /// file scope. lazily create a decl for it. ForRedeclaration is true
1460 /// if we're creating this built-in in anticipation of redeclaring the
1461 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1462 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1463 Scope *S, bool ForRedeclaration,
1464 SourceLocation Loc) {
1465 Builtin::ID BID = (Builtin::ID)bid;
1466
1467 ASTContext::GetBuiltinTypeError Error;
1468 QualType R = Context.GetBuiltinType(BID, Error);
1469 switch (Error) {
1470 case ASTContext::GE_None:
1471 // Okay
1472 break;
1473
1474 case ASTContext::GE_Missing_stdio:
1475 if (ForRedeclaration)
1476 Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1477 << Context.BuiltinInfo.GetName(BID);
1478 return 0;
1479
1480 case ASTContext::GE_Missing_setjmp:
1481 if (ForRedeclaration)
1482 Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1483 << Context.BuiltinInfo.GetName(BID);
1484 return 0;
1485
1486 case ASTContext::GE_Missing_ucontext:
1487 if (ForRedeclaration)
1488 Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1489 << Context.BuiltinInfo.GetName(BID);
1490 return 0;
1491 }
1492
1493 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1494 Diag(Loc, diag::ext_implicit_lib_function_decl)
1495 << Context.BuiltinInfo.GetName(BID)
1496 << R;
1497 if (Context.BuiltinInfo.getHeaderName(BID) &&
1498 Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1499 != DiagnosticsEngine::Ignored)
1500 Diag(Loc, diag::note_please_include_header)
1501 << Context.BuiltinInfo.getHeaderName(BID)
1502 << Context.BuiltinInfo.GetName(BID);
1503 }
1504
1505 FunctionDecl *New = FunctionDecl::Create(Context,
1506 Context.getTranslationUnitDecl(),
1507 Loc, Loc, II, R, /*TInfo=*/0,
1508 SC_Extern,
1509 SC_None, false,
1510 /*hasPrototype=*/true);
1511 New->setImplicit();
1512
1513 // Create Decl objects for each parameter, adding them to the
1514 // FunctionDecl.
1515 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1516 SmallVector<ParmVarDecl*, 16> Params;
1517 for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1518 ParmVarDecl *parm =
1519 ParmVarDecl::Create(Context, New, SourceLocation(),
1520 SourceLocation(), 0,
1521 FT->getArgType(i), /*TInfo=*/0,
1522 SC_None, SC_None, 0);
1523 parm->setScopeInfo(0, i);
1524 Params.push_back(parm);
1525 }
1526 New->setParams(Params);
1527 }
1528
1529 AddKnownFunctionAttributes(New);
1530
1531 // TUScope is the translation-unit scope to insert this function into.
1532 // FIXME: This is hideous. We need to teach PushOnScopeChains to
1533 // relate Scopes to DeclContexts, and probably eliminate CurContext
1534 // entirely, but we're not there yet.
1535 DeclContext *SavedContext = CurContext;
1536 CurContext = Context.getTranslationUnitDecl();
1537 PushOnScopeChains(New, TUScope);
1538 CurContext = SavedContext;
1539 return New;
1540 }
1541
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1542 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1543 QualType OldType;
1544 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1545 OldType = OldTypedef->getUnderlyingType();
1546 else
1547 OldType = Context.getTypeDeclType(Old);
1548 QualType NewType = New->getUnderlyingType();
1549
1550 if (NewType->isVariablyModifiedType()) {
1551 // Must not redefine a typedef with a variably-modified type.
1552 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1553 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1554 << Kind << NewType;
1555 if (Old->getLocation().isValid())
1556 Diag(Old->getLocation(), diag::note_previous_definition);
1557 New->setInvalidDecl();
1558 return true;
1559 }
1560
1561 if (OldType != NewType &&
1562 !OldType->isDependentType() &&
1563 !NewType->isDependentType() &&
1564 !Context.hasSameType(OldType, NewType)) {
1565 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1566 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1567 << Kind << NewType << OldType;
1568 if (Old->getLocation().isValid())
1569 Diag(Old->getLocation(), diag::note_previous_definition);
1570 New->setInvalidDecl();
1571 return true;
1572 }
1573 return false;
1574 }
1575
1576 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1577 /// same name and scope as a previous declaration 'Old'. Figure out
1578 /// how to resolve this situation, merging decls or emitting
1579 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1580 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1581 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1582 // If the new decl is known invalid already, don't bother doing any
1583 // merging checks.
1584 if (New->isInvalidDecl()) return;
1585
1586 // Allow multiple definitions for ObjC built-in typedefs.
1587 // FIXME: Verify the underlying types are equivalent!
1588 if (getLangOpts().ObjC1) {
1589 const IdentifierInfo *TypeID = New->getIdentifier();
1590 switch (TypeID->getLength()) {
1591 default: break;
1592 case 2:
1593 {
1594 if (!TypeID->isStr("id"))
1595 break;
1596 QualType T = New->getUnderlyingType();
1597 if (!T->isPointerType())
1598 break;
1599 if (!T->isVoidPointerType()) {
1600 QualType PT = T->getAs<PointerType>()->getPointeeType();
1601 if (!PT->isStructureType())
1602 break;
1603 }
1604 Context.setObjCIdRedefinitionType(T);
1605 // Install the built-in type for 'id', ignoring the current definition.
1606 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1607 return;
1608 }
1609 case 5:
1610 if (!TypeID->isStr("Class"))
1611 break;
1612 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1613 // Install the built-in type for 'Class', ignoring the current definition.
1614 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1615 return;
1616 case 3:
1617 if (!TypeID->isStr("SEL"))
1618 break;
1619 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1620 // Install the built-in type for 'SEL', ignoring the current definition.
1621 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1622 return;
1623 }
1624 // Fall through - the typedef name was not a builtin type.
1625 }
1626
1627 // Verify the old decl was also a type.
1628 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1629 if (!Old) {
1630 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1631 << New->getDeclName();
1632
1633 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1634 if (OldD->getLocation().isValid())
1635 Diag(OldD->getLocation(), diag::note_previous_definition);
1636
1637 return New->setInvalidDecl();
1638 }
1639
1640 // If the old declaration is invalid, just give up here.
1641 if (Old->isInvalidDecl())
1642 return New->setInvalidDecl();
1643
1644 // If the typedef types are not identical, reject them in all languages and
1645 // with any extensions enabled.
1646 if (isIncompatibleTypedef(Old, New))
1647 return;
1648
1649 // The types match. Link up the redeclaration chain if the old
1650 // declaration was a typedef.
1651 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1652 New->setPreviousDeclaration(Typedef);
1653
1654 if (getLangOpts().MicrosoftExt)
1655 return;
1656
1657 if (getLangOpts().CPlusPlus) {
1658 // C++ [dcl.typedef]p2:
1659 // In a given non-class scope, a typedef specifier can be used to
1660 // redefine the name of any type declared in that scope to refer
1661 // to the type to which it already refers.
1662 if (!isa<CXXRecordDecl>(CurContext))
1663 return;
1664
1665 // C++0x [dcl.typedef]p4:
1666 // In a given class scope, a typedef specifier can be used to redefine
1667 // any class-name declared in that scope that is not also a typedef-name
1668 // to refer to the type to which it already refers.
1669 //
1670 // This wording came in via DR424, which was a correction to the
1671 // wording in DR56, which accidentally banned code like:
1672 //
1673 // struct S {
1674 // typedef struct A { } A;
1675 // };
1676 //
1677 // in the C++03 standard. We implement the C++0x semantics, which
1678 // allow the above but disallow
1679 //
1680 // struct S {
1681 // typedef int I;
1682 // typedef int I;
1683 // };
1684 //
1685 // since that was the intent of DR56.
1686 if (!isa<TypedefNameDecl>(Old))
1687 return;
1688
1689 Diag(New->getLocation(), diag::err_redefinition)
1690 << New->getDeclName();
1691 Diag(Old->getLocation(), diag::note_previous_definition);
1692 return New->setInvalidDecl();
1693 }
1694
1695 // Modules always permit redefinition of typedefs, as does C11.
1696 if (getLangOpts().Modules || getLangOpts().C11)
1697 return;
1698
1699 // If we have a redefinition of a typedef in C, emit a warning. This warning
1700 // is normally mapped to an error, but can be controlled with
1701 // -Wtypedef-redefinition. If either the original or the redefinition is
1702 // in a system header, don't emit this for compatibility with GCC.
1703 if (getDiagnostics().getSuppressSystemWarnings() &&
1704 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1705 Context.getSourceManager().isInSystemHeader(New->getLocation())))
1706 return;
1707
1708 Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1709 << New->getDeclName();
1710 Diag(Old->getLocation(), diag::note_previous_definition);
1711 return;
1712 }
1713
1714 /// DeclhasAttr - returns true if decl Declaration already has the target
1715 /// attribute.
1716 static bool
DeclHasAttr(const Decl * D,const Attr * A)1717 DeclHasAttr(const Decl *D, const Attr *A) {
1718 // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1719 // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1720 // responsible for making sure they are consistent.
1721 const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1722 if (AA)
1723 return false;
1724
1725 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1726 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1727 for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1728 if ((*i)->getKind() == A->getKind()) {
1729 if (Ann) {
1730 if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1731 return true;
1732 continue;
1733 }
1734 // FIXME: Don't hardcode this check
1735 if (OA && isa<OwnershipAttr>(*i))
1736 return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1737 return true;
1738 }
1739
1740 return false;
1741 }
1742
mergeDeclAttribute(Decl * D,InheritableAttr * Attr)1743 bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1744 InheritableAttr *NewAttr = NULL;
1745 if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1746 NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1747 AA->getIntroduced(), AA->getDeprecated(),
1748 AA->getObsoleted(), AA->getUnavailable(),
1749 AA->getMessage());
1750 else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1751 NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1752 else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1753 NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1754 else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1755 NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1756 else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1757 NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1758 FA->getFormatIdx(), FA->getFirstArg());
1759 else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1760 NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1761 else if (!DeclHasAttr(D, Attr))
1762 NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1763
1764 if (NewAttr) {
1765 NewAttr->setInherited(true);
1766 D->addAttr(NewAttr);
1767 return true;
1768 }
1769
1770 return false;
1771 }
1772
getDefinition(const Decl * D)1773 static const Decl *getDefinition(const Decl *D) {
1774 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1775 return TD->getDefinition();
1776 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1777 return VD->getDefinition();
1778 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1779 const FunctionDecl* Def;
1780 if (FD->hasBody(Def))
1781 return Def;
1782 }
1783 return NULL;
1784 }
1785
hasAttribute(const Decl * D,attr::Kind Kind)1786 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1787 for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1788 I != E; ++I) {
1789 Attr *Attribute = *I;
1790 if (Attribute->getKind() == Kind)
1791 return true;
1792 }
1793 return false;
1794 }
1795
1796 /// checkNewAttributesAfterDef - If we already have a definition, check that
1797 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)1798 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1799 if (!New->hasAttrs())
1800 return;
1801
1802 const Decl *Def = getDefinition(Old);
1803 if (!Def || Def == New)
1804 return;
1805
1806 AttrVec &NewAttributes = New->getAttrs();
1807 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1808 const Attr *NewAttribute = NewAttributes[I];
1809 if (hasAttribute(Def, NewAttribute->getKind())) {
1810 ++I;
1811 continue; // regular attr merging will take care of validating this.
1812 }
1813 S.Diag(NewAttribute->getLocation(),
1814 diag::warn_attribute_precede_definition);
1815 S.Diag(Def->getLocation(), diag::note_previous_definition);
1816 NewAttributes.erase(NewAttributes.begin() + I);
1817 --E;
1818 }
1819 }
1820
1821 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(Decl * New,Decl * Old,bool MergeDeprecation)1822 void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1823 bool MergeDeprecation) {
1824 // attributes declared post-definition are currently ignored
1825 checkNewAttributesAfterDef(*this, New, Old);
1826
1827 if (!Old->hasAttrs())
1828 return;
1829
1830 bool foundAny = New->hasAttrs();
1831
1832 // Ensure that any moving of objects within the allocated map is done before
1833 // we process them.
1834 if (!foundAny) New->setAttrs(AttrVec());
1835
1836 for (specific_attr_iterator<InheritableAttr>
1837 i = Old->specific_attr_begin<InheritableAttr>(),
1838 e = Old->specific_attr_end<InheritableAttr>();
1839 i != e; ++i) {
1840 // Ignore deprecated/unavailable/availability attributes if requested.
1841 if (!MergeDeprecation &&
1842 (isa<DeprecatedAttr>(*i) ||
1843 isa<UnavailableAttr>(*i) ||
1844 isa<AvailabilityAttr>(*i)))
1845 continue;
1846
1847 if (mergeDeclAttribute(New, *i))
1848 foundAny = true;
1849 }
1850
1851 if (!foundAny) New->dropAttrs();
1852 }
1853
1854 /// mergeParamDeclAttributes - Copy attributes from the old parameter
1855 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,ASTContext & C)1856 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1857 const ParmVarDecl *oldDecl,
1858 ASTContext &C) {
1859 if (!oldDecl->hasAttrs())
1860 return;
1861
1862 bool foundAny = newDecl->hasAttrs();
1863
1864 // Ensure that any moving of objects within the allocated map is
1865 // done before we process them.
1866 if (!foundAny) newDecl->setAttrs(AttrVec());
1867
1868 for (specific_attr_iterator<InheritableParamAttr>
1869 i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1870 e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1871 if (!DeclHasAttr(newDecl, *i)) {
1872 InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1873 newAttr->setInherited(true);
1874 newDecl->addAttr(newAttr);
1875 foundAny = true;
1876 }
1877 }
1878
1879 if (!foundAny) newDecl->dropAttrs();
1880 }
1881
1882 namespace {
1883
1884 /// Used in MergeFunctionDecl to keep track of function parameters in
1885 /// C.
1886 struct GNUCompatibleParamWarning {
1887 ParmVarDecl *OldParm;
1888 ParmVarDecl *NewParm;
1889 QualType PromotedType;
1890 };
1891
1892 }
1893
1894 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)1895 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1896 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1897 if (Ctor->isDefaultConstructor())
1898 return Sema::CXXDefaultConstructor;
1899
1900 if (Ctor->isCopyConstructor())
1901 return Sema::CXXCopyConstructor;
1902
1903 if (Ctor->isMoveConstructor())
1904 return Sema::CXXMoveConstructor;
1905 } else if (isa<CXXDestructorDecl>(MD)) {
1906 return Sema::CXXDestructor;
1907 } else if (MD->isCopyAssignmentOperator()) {
1908 return Sema::CXXCopyAssignment;
1909 } else if (MD->isMoveAssignmentOperator()) {
1910 return Sema::CXXMoveAssignment;
1911 }
1912
1913 return Sema::CXXInvalid;
1914 }
1915
1916 /// canRedefineFunction - checks if a function can be redefined. Currently,
1917 /// only extern inline functions can be redefined, and even then only in
1918 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)1919 static bool canRedefineFunction(const FunctionDecl *FD,
1920 const LangOptions& LangOpts) {
1921 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1922 !LangOpts.CPlusPlus &&
1923 FD->isInlineSpecified() &&
1924 FD->getStorageClass() == SC_Extern);
1925 }
1926
1927 /// Is the given calling convention the ABI default for the given
1928 /// declaration?
isABIDefaultCC(Sema & S,CallingConv CC,FunctionDecl * D)1929 static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1930 CallingConv ABIDefaultCC;
1931 if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1932 ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1933 } else {
1934 // Free C function or a static method.
1935 ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1936 }
1937 return ABIDefaultCC == CC;
1938 }
1939
1940 /// MergeFunctionDecl - We just parsed a function 'New' from
1941 /// declarator D which has the same name and scope as a previous
1942 /// declaration 'Old'. Figure out how to resolve this situation,
1943 /// merging decls or emitting diagnostics as appropriate.
1944 ///
1945 /// In C++, New and Old must be declarations that are not
1946 /// overloaded. Use IsOverload to determine whether New and Old are
1947 /// overloaded, and to select the Old declaration that New should be
1948 /// merged with.
1949 ///
1950 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,Decl * OldD,Scope * S)1951 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1952 // Verify the old decl was also a function.
1953 FunctionDecl *Old = 0;
1954 if (FunctionTemplateDecl *OldFunctionTemplate
1955 = dyn_cast<FunctionTemplateDecl>(OldD))
1956 Old = OldFunctionTemplate->getTemplatedDecl();
1957 else
1958 Old = dyn_cast<FunctionDecl>(OldD);
1959 if (!Old) {
1960 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1961 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1962 Diag(Shadow->getTargetDecl()->getLocation(),
1963 diag::note_using_decl_target);
1964 Diag(Shadow->getUsingDecl()->getLocation(),
1965 diag::note_using_decl) << 0;
1966 return true;
1967 }
1968
1969 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1970 << New->getDeclName();
1971 Diag(OldD->getLocation(), diag::note_previous_definition);
1972 return true;
1973 }
1974
1975 // Determine whether the previous declaration was a definition,
1976 // implicit declaration, or a declaration.
1977 diag::kind PrevDiag;
1978 if (Old->isThisDeclarationADefinition())
1979 PrevDiag = diag::note_previous_definition;
1980 else if (Old->isImplicit())
1981 PrevDiag = diag::note_previous_implicit_declaration;
1982 else
1983 PrevDiag = diag::note_previous_declaration;
1984
1985 QualType OldQType = Context.getCanonicalType(Old->getType());
1986 QualType NewQType = Context.getCanonicalType(New->getType());
1987
1988 // Don't complain about this if we're in GNU89 mode and the old function
1989 // is an extern inline function.
1990 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1991 New->getStorageClass() == SC_Static &&
1992 Old->getStorageClass() != SC_Static &&
1993 !canRedefineFunction(Old, getLangOpts())) {
1994 if (getLangOpts().MicrosoftExt) {
1995 Diag(New->getLocation(), diag::warn_static_non_static) << New;
1996 Diag(Old->getLocation(), PrevDiag);
1997 } else {
1998 Diag(New->getLocation(), diag::err_static_non_static) << New;
1999 Diag(Old->getLocation(), PrevDiag);
2000 return true;
2001 }
2002 }
2003
2004 // If a function is first declared with a calling convention, but is
2005 // later declared or defined without one, the second decl assumes the
2006 // calling convention of the first.
2007 //
2008 // It's OK if a function is first declared without a calling convention,
2009 // but is later declared or defined with the default calling convention.
2010 //
2011 // For the new decl, we have to look at the NON-canonical type to tell the
2012 // difference between a function that really doesn't have a calling
2013 // convention and one that is declared cdecl. That's because in
2014 // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2015 // because it is the default calling convention.
2016 //
2017 // Note also that we DO NOT return at this point, because we still have
2018 // other tests to run.
2019 const FunctionType *OldType = cast<FunctionType>(OldQType);
2020 const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2021 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2022 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2023 bool RequiresAdjustment = false;
2024 if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2025 // Fast path: nothing to do.
2026
2027 // Inherit the CC from the previous declaration if it was specified
2028 // there but not here.
2029 } else if (NewTypeInfo.getCC() == CC_Default) {
2030 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2031 RequiresAdjustment = true;
2032
2033 // Don't complain about mismatches when the default CC is
2034 // effectively the same as the explict one.
2035 } else if (OldTypeInfo.getCC() == CC_Default &&
2036 isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2037 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2038 RequiresAdjustment = true;
2039
2040 } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2041 NewTypeInfo.getCC())) {
2042 // Calling conventions really aren't compatible, so complain.
2043 Diag(New->getLocation(), diag::err_cconv_change)
2044 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2045 << (OldTypeInfo.getCC() == CC_Default)
2046 << (OldTypeInfo.getCC() == CC_Default ? "" :
2047 FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2048 Diag(Old->getLocation(), diag::note_previous_declaration);
2049 return true;
2050 }
2051
2052 // FIXME: diagnose the other way around?
2053 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2054 NewTypeInfo = NewTypeInfo.withNoReturn(true);
2055 RequiresAdjustment = true;
2056 }
2057
2058 // Merge regparm attribute.
2059 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2060 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2061 if (NewTypeInfo.getHasRegParm()) {
2062 Diag(New->getLocation(), diag::err_regparm_mismatch)
2063 << NewType->getRegParmType()
2064 << OldType->getRegParmType();
2065 Diag(Old->getLocation(), diag::note_previous_declaration);
2066 return true;
2067 }
2068
2069 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2070 RequiresAdjustment = true;
2071 }
2072
2073 // Merge ns_returns_retained attribute.
2074 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2075 if (NewTypeInfo.getProducesResult()) {
2076 Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2077 Diag(Old->getLocation(), diag::note_previous_declaration);
2078 return true;
2079 }
2080
2081 NewTypeInfo = NewTypeInfo.withProducesResult(true);
2082 RequiresAdjustment = true;
2083 }
2084
2085 if (RequiresAdjustment) {
2086 NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2087 New->setType(QualType(NewType, 0));
2088 NewQType = Context.getCanonicalType(New->getType());
2089 }
2090
2091 if (getLangOpts().CPlusPlus) {
2092 // (C++98 13.1p2):
2093 // Certain function declarations cannot be overloaded:
2094 // -- Function declarations that differ only in the return type
2095 // cannot be overloaded.
2096 QualType OldReturnType = OldType->getResultType();
2097 QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2098 QualType ResQT;
2099 if (OldReturnType != NewReturnType) {
2100 if (NewReturnType->isObjCObjectPointerType()
2101 && OldReturnType->isObjCObjectPointerType())
2102 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2103 if (ResQT.isNull()) {
2104 if (New->isCXXClassMember() && New->isOutOfLine())
2105 Diag(New->getLocation(),
2106 diag::err_member_def_does_not_match_ret_type) << New;
2107 else
2108 Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2109 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2110 return true;
2111 }
2112 else
2113 NewQType = ResQT;
2114 }
2115
2116 const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2117 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2118 if (OldMethod && NewMethod) {
2119 // Preserve triviality.
2120 NewMethod->setTrivial(OldMethod->isTrivial());
2121
2122 // MSVC allows explicit template specialization at class scope:
2123 // 2 CXMethodDecls referring to the same function will be injected.
2124 // We don't want a redeclartion error.
2125 bool IsClassScopeExplicitSpecialization =
2126 OldMethod->isFunctionTemplateSpecialization() &&
2127 NewMethod->isFunctionTemplateSpecialization();
2128 bool isFriend = NewMethod->getFriendObjectKind();
2129
2130 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2131 !IsClassScopeExplicitSpecialization) {
2132 // -- Member function declarations with the same name and the
2133 // same parameter types cannot be overloaded if any of them
2134 // is a static member function declaration.
2135 if (OldMethod->isStatic() || NewMethod->isStatic()) {
2136 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2137 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2138 return true;
2139 }
2140
2141 // C++ [class.mem]p1:
2142 // [...] A member shall not be declared twice in the
2143 // member-specification, except that a nested class or member
2144 // class template can be declared and then later defined.
2145 if (ActiveTemplateInstantiations.empty()) {
2146 unsigned NewDiag;
2147 if (isa<CXXConstructorDecl>(OldMethod))
2148 NewDiag = diag::err_constructor_redeclared;
2149 else if (isa<CXXDestructorDecl>(NewMethod))
2150 NewDiag = diag::err_destructor_redeclared;
2151 else if (isa<CXXConversionDecl>(NewMethod))
2152 NewDiag = diag::err_conv_function_redeclared;
2153 else
2154 NewDiag = diag::err_member_redeclared;
2155
2156 Diag(New->getLocation(), NewDiag);
2157 } else {
2158 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2159 << New << New->getType();
2160 }
2161 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2162
2163 // Complain if this is an explicit declaration of a special
2164 // member that was initially declared implicitly.
2165 //
2166 // As an exception, it's okay to befriend such methods in order
2167 // to permit the implicit constructor/destructor/operator calls.
2168 } else if (OldMethod->isImplicit()) {
2169 if (isFriend) {
2170 NewMethod->setImplicit();
2171 } else {
2172 Diag(NewMethod->getLocation(),
2173 diag::err_definition_of_implicitly_declared_member)
2174 << New << getSpecialMember(OldMethod);
2175 return true;
2176 }
2177 } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2178 Diag(NewMethod->getLocation(),
2179 diag::err_definition_of_explicitly_defaulted_member)
2180 << getSpecialMember(OldMethod);
2181 return true;
2182 }
2183 }
2184
2185 // (C++98 8.3.5p3):
2186 // All declarations for a function shall agree exactly in both the
2187 // return type and the parameter-type-list.
2188 // We also want to respect all the extended bits except noreturn.
2189
2190 // noreturn should now match unless the old type info didn't have it.
2191 QualType OldQTypeForComparison = OldQType;
2192 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2193 assert(OldQType == QualType(OldType, 0));
2194 const FunctionType *OldTypeForComparison
2195 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2196 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2197 assert(OldQTypeForComparison.isCanonical());
2198 }
2199
2200 if (OldQTypeForComparison == NewQType)
2201 return MergeCompatibleFunctionDecls(New, Old, S);
2202
2203 // Fall through for conflicting redeclarations and redefinitions.
2204 }
2205
2206 // C: Function types need to be compatible, not identical. This handles
2207 // duplicate function decls like "void f(int); void f(enum X);" properly.
2208 if (!getLangOpts().CPlusPlus &&
2209 Context.typesAreCompatible(OldQType, NewQType)) {
2210 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2211 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2212 const FunctionProtoType *OldProto = 0;
2213 if (isa<FunctionNoProtoType>(NewFuncType) &&
2214 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2215 // The old declaration provided a function prototype, but the
2216 // new declaration does not. Merge in the prototype.
2217 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2218 SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2219 OldProto->arg_type_end());
2220 NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2221 ParamTypes.data(), ParamTypes.size(),
2222 OldProto->getExtProtoInfo());
2223 New->setType(NewQType);
2224 New->setHasInheritedPrototype();
2225
2226 // Synthesize a parameter for each argument type.
2227 SmallVector<ParmVarDecl*, 16> Params;
2228 for (FunctionProtoType::arg_type_iterator
2229 ParamType = OldProto->arg_type_begin(),
2230 ParamEnd = OldProto->arg_type_end();
2231 ParamType != ParamEnd; ++ParamType) {
2232 ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2233 SourceLocation(),
2234 SourceLocation(), 0,
2235 *ParamType, /*TInfo=*/0,
2236 SC_None, SC_None,
2237 0);
2238 Param->setScopeInfo(0, Params.size());
2239 Param->setImplicit();
2240 Params.push_back(Param);
2241 }
2242
2243 New->setParams(Params);
2244 }
2245
2246 return MergeCompatibleFunctionDecls(New, Old, S);
2247 }
2248
2249 // GNU C permits a K&R definition to follow a prototype declaration
2250 // if the declared types of the parameters in the K&R definition
2251 // match the types in the prototype declaration, even when the
2252 // promoted types of the parameters from the K&R definition differ
2253 // from the types in the prototype. GCC then keeps the types from
2254 // the prototype.
2255 //
2256 // If a variadic prototype is followed by a non-variadic K&R definition,
2257 // the K&R definition becomes variadic. This is sort of an edge case, but
2258 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2259 // C99 6.9.1p8.
2260 if (!getLangOpts().CPlusPlus &&
2261 Old->hasPrototype() && !New->hasPrototype() &&
2262 New->getType()->getAs<FunctionProtoType>() &&
2263 Old->getNumParams() == New->getNumParams()) {
2264 SmallVector<QualType, 16> ArgTypes;
2265 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2266 const FunctionProtoType *OldProto
2267 = Old->getType()->getAs<FunctionProtoType>();
2268 const FunctionProtoType *NewProto
2269 = New->getType()->getAs<FunctionProtoType>();
2270
2271 // Determine whether this is the GNU C extension.
2272 QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2273 NewProto->getResultType());
2274 bool LooseCompatible = !MergedReturn.isNull();
2275 for (unsigned Idx = 0, End = Old->getNumParams();
2276 LooseCompatible && Idx != End; ++Idx) {
2277 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2278 ParmVarDecl *NewParm = New->getParamDecl(Idx);
2279 if (Context.typesAreCompatible(OldParm->getType(),
2280 NewProto->getArgType(Idx))) {
2281 ArgTypes.push_back(NewParm->getType());
2282 } else if (Context.typesAreCompatible(OldParm->getType(),
2283 NewParm->getType(),
2284 /*CompareUnqualified=*/true)) {
2285 GNUCompatibleParamWarning Warn
2286 = { OldParm, NewParm, NewProto->getArgType(Idx) };
2287 Warnings.push_back(Warn);
2288 ArgTypes.push_back(NewParm->getType());
2289 } else
2290 LooseCompatible = false;
2291 }
2292
2293 if (LooseCompatible) {
2294 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2295 Diag(Warnings[Warn].NewParm->getLocation(),
2296 diag::ext_param_promoted_not_compatible_with_prototype)
2297 << Warnings[Warn].PromotedType
2298 << Warnings[Warn].OldParm->getType();
2299 if (Warnings[Warn].OldParm->getLocation().isValid())
2300 Diag(Warnings[Warn].OldParm->getLocation(),
2301 diag::note_previous_declaration);
2302 }
2303
2304 New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2305 ArgTypes.size(),
2306 OldProto->getExtProtoInfo()));
2307 return MergeCompatibleFunctionDecls(New, Old, S);
2308 }
2309
2310 // Fall through to diagnose conflicting types.
2311 }
2312
2313 // A function that has already been declared has been redeclared or defined
2314 // with a different type- show appropriate diagnostic
2315 if (unsigned BuiltinID = Old->getBuiltinID()) {
2316 // The user has declared a builtin function with an incompatible
2317 // signature.
2318 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2319 // The function the user is redeclaring is a library-defined
2320 // function like 'malloc' or 'printf'. Warn about the
2321 // redeclaration, then pretend that we don't know about this
2322 // library built-in.
2323 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2324 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2325 << Old << Old->getType();
2326 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2327 Old->setInvalidDecl();
2328 return false;
2329 }
2330
2331 PrevDiag = diag::note_previous_builtin_declaration;
2332 }
2333
2334 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2335 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2336 return true;
2337 }
2338
2339 /// \brief Completes the merge of two function declarations that are
2340 /// known to be compatible.
2341 ///
2342 /// This routine handles the merging of attributes and other
2343 /// properties of function declarations form the old declaration to
2344 /// the new declaration, once we know that New is in fact a
2345 /// redeclaration of Old.
2346 ///
2347 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S)2348 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2349 Scope *S) {
2350 // Merge the attributes
2351 mergeDeclAttributes(New, Old);
2352
2353 // Merge the storage class.
2354 if (Old->getStorageClass() != SC_Extern &&
2355 Old->getStorageClass() != SC_None)
2356 New->setStorageClass(Old->getStorageClass());
2357
2358 // Merge "pure" flag.
2359 if (Old->isPure())
2360 New->setPure();
2361
2362 // Merge attributes from the parameters. These can mismatch with K&R
2363 // declarations.
2364 if (New->getNumParams() == Old->getNumParams())
2365 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2366 mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2367 Context);
2368
2369 if (getLangOpts().CPlusPlus)
2370 return MergeCXXFunctionDecl(New, Old, S);
2371
2372 return false;
2373 }
2374
2375
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)2376 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2377 ObjCMethodDecl *oldMethod) {
2378
2379 // Merge the attributes, including deprecated/unavailable
2380 mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2381
2382 // Merge attributes from the parameters.
2383 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2384 oe = oldMethod->param_end();
2385 for (ObjCMethodDecl::param_iterator
2386 ni = newMethod->param_begin(), ne = newMethod->param_end();
2387 ni != ne && oi != oe; ++ni, ++oi)
2388 mergeParamDeclAttributes(*ni, *oi, Context);
2389
2390 CheckObjCMethodOverride(newMethod, oldMethod, true);
2391 }
2392
2393 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2394 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
2395 /// emitting diagnostics as appropriate.
2396 ///
2397 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2398 /// to here in AddInitializerToDecl. We can't check them before the initializer
2399 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old)2400 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2401 if (New->isInvalidDecl() || Old->isInvalidDecl())
2402 return;
2403
2404 QualType MergedT;
2405 if (getLangOpts().CPlusPlus) {
2406 AutoType *AT = New->getType()->getContainedAutoType();
2407 if (AT && !AT->isDeduced()) {
2408 // We don't know what the new type is until the initializer is attached.
2409 return;
2410 } else if (Context.hasSameType(New->getType(), Old->getType())) {
2411 // These could still be something that needs exception specs checked.
2412 return MergeVarDeclExceptionSpecs(New, Old);
2413 }
2414 // C++ [basic.link]p10:
2415 // [...] the types specified by all declarations referring to a given
2416 // object or function shall be identical, except that declarations for an
2417 // array object can specify array types that differ by the presence or
2418 // absence of a major array bound (8.3.4).
2419 else if (Old->getType()->isIncompleteArrayType() &&
2420 New->getType()->isArrayType()) {
2421 CanQual<ArrayType> OldArray
2422 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2423 CanQual<ArrayType> NewArray
2424 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2425 if (OldArray->getElementType() == NewArray->getElementType())
2426 MergedT = New->getType();
2427 } else if (Old->getType()->isArrayType() &&
2428 New->getType()->isIncompleteArrayType()) {
2429 CanQual<ArrayType> OldArray
2430 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2431 CanQual<ArrayType> NewArray
2432 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2433 if (OldArray->getElementType() == NewArray->getElementType())
2434 MergedT = Old->getType();
2435 } else if (New->getType()->isObjCObjectPointerType()
2436 && Old->getType()->isObjCObjectPointerType()) {
2437 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2438 Old->getType());
2439 }
2440 } else {
2441 MergedT = Context.mergeTypes(New->getType(), Old->getType());
2442 }
2443 if (MergedT.isNull()) {
2444 Diag(New->getLocation(), diag::err_redefinition_different_type)
2445 << New->getDeclName();
2446 Diag(Old->getLocation(), diag::note_previous_definition);
2447 return New->setInvalidDecl();
2448 }
2449 New->setType(MergedT);
2450 }
2451
2452 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2453 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
2454 /// situation, merging decls or emitting diagnostics as appropriate.
2455 ///
2456 /// Tentative definition rules (C99 6.9.2p2) are checked by
2457 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2458 /// definitions here, since the initializer hasn't been attached.
2459 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)2460 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2461 // If the new decl is already invalid, don't do any other checking.
2462 if (New->isInvalidDecl())
2463 return;
2464
2465 // Verify the old decl was also a variable.
2466 VarDecl *Old = 0;
2467 if (!Previous.isSingleResult() ||
2468 !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2469 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2470 << New->getDeclName();
2471 Diag(Previous.getRepresentativeDecl()->getLocation(),
2472 diag::note_previous_definition);
2473 return New->setInvalidDecl();
2474 }
2475
2476 // C++ [class.mem]p1:
2477 // A member shall not be declared twice in the member-specification [...]
2478 //
2479 // Here, we need only consider static data members.
2480 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2481 Diag(New->getLocation(), diag::err_duplicate_member)
2482 << New->getIdentifier();
2483 Diag(Old->getLocation(), diag::note_previous_declaration);
2484 New->setInvalidDecl();
2485 }
2486
2487 mergeDeclAttributes(New, Old);
2488 // Warn if an already-declared variable is made a weak_import in a subsequent
2489 // declaration
2490 if (New->getAttr<WeakImportAttr>() &&
2491 Old->getStorageClass() == SC_None &&
2492 !Old->getAttr<WeakImportAttr>()) {
2493 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2494 Diag(Old->getLocation(), diag::note_previous_definition);
2495 // Remove weak_import attribute on new declaration.
2496 New->dropAttr<WeakImportAttr>();
2497 }
2498
2499 // Merge the types.
2500 MergeVarDeclTypes(New, Old);
2501 if (New->isInvalidDecl())
2502 return;
2503
2504 // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2505 if (New->getStorageClass() == SC_Static &&
2506 (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2507 Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2508 Diag(Old->getLocation(), diag::note_previous_definition);
2509 return New->setInvalidDecl();
2510 }
2511 // C99 6.2.2p4:
2512 // For an identifier declared with the storage-class specifier
2513 // extern in a scope in which a prior declaration of that
2514 // identifier is visible,23) if the prior declaration specifies
2515 // internal or external linkage, the linkage of the identifier at
2516 // the later declaration is the same as the linkage specified at
2517 // the prior declaration. If no prior declaration is visible, or
2518 // if the prior declaration specifies no linkage, then the
2519 // identifier has external linkage.
2520 if (New->hasExternalStorage() && Old->hasLinkage())
2521 /* Okay */;
2522 else if (New->getStorageClass() != SC_Static &&
2523 Old->getStorageClass() == SC_Static) {
2524 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2525 Diag(Old->getLocation(), diag::note_previous_definition);
2526 return New->setInvalidDecl();
2527 }
2528
2529 // Check if extern is followed by non-extern and vice-versa.
2530 if (New->hasExternalStorage() &&
2531 !Old->hasLinkage() && Old->isLocalVarDecl()) {
2532 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2533 Diag(Old->getLocation(), diag::note_previous_definition);
2534 return New->setInvalidDecl();
2535 }
2536 if (Old->hasExternalStorage() &&
2537 !New->hasLinkage() && New->isLocalVarDecl()) {
2538 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2539 Diag(Old->getLocation(), diag::note_previous_definition);
2540 return New->setInvalidDecl();
2541 }
2542
2543 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2544
2545 // FIXME: The test for external storage here seems wrong? We still
2546 // need to check for mismatches.
2547 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2548 // Don't complain about out-of-line definitions of static members.
2549 !(Old->getLexicalDeclContext()->isRecord() &&
2550 !New->getLexicalDeclContext()->isRecord())) {
2551 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2552 Diag(Old->getLocation(), diag::note_previous_definition);
2553 return New->setInvalidDecl();
2554 }
2555
2556 if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2557 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2558 Diag(Old->getLocation(), diag::note_previous_definition);
2559 } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2560 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2561 Diag(Old->getLocation(), diag::note_previous_definition);
2562 }
2563
2564 // C++ doesn't have tentative definitions, so go right ahead and check here.
2565 const VarDecl *Def;
2566 if (getLangOpts().CPlusPlus &&
2567 New->isThisDeclarationADefinition() == VarDecl::Definition &&
2568 (Def = Old->getDefinition())) {
2569 Diag(New->getLocation(), diag::err_redefinition)
2570 << New->getDeclName();
2571 Diag(Def->getLocation(), diag::note_previous_definition);
2572 New->setInvalidDecl();
2573 return;
2574 }
2575 // c99 6.2.2 P4.
2576 // For an identifier declared with the storage-class specifier extern in a
2577 // scope in which a prior declaration of that identifier is visible, if
2578 // the prior declaration specifies internal or external linkage, the linkage
2579 // of the identifier at the later declaration is the same as the linkage
2580 // specified at the prior declaration.
2581 // FIXME. revisit this code.
2582 if (New->hasExternalStorage() &&
2583 Old->getLinkage() == InternalLinkage &&
2584 New->getDeclContext() == Old->getDeclContext())
2585 New->setStorageClass(Old->getStorageClass());
2586
2587 // Keep a chain of previous declarations.
2588 New->setPreviousDeclaration(Old);
2589
2590 // Inherit access appropriately.
2591 New->setAccess(Old->getAccess());
2592 }
2593
2594 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2595 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)2596 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2597 DeclSpec &DS) {
2598 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2599 }
2600
2601 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2602 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2603 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams)2604 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2605 DeclSpec &DS,
2606 MultiTemplateParamsArg TemplateParams) {
2607 Decl *TagD = 0;
2608 TagDecl *Tag = 0;
2609 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2610 DS.getTypeSpecType() == DeclSpec::TST_struct ||
2611 DS.getTypeSpecType() == DeclSpec::TST_interface ||
2612 DS.getTypeSpecType() == DeclSpec::TST_union ||
2613 DS.getTypeSpecType() == DeclSpec::TST_enum) {
2614 TagD = DS.getRepAsDecl();
2615
2616 if (!TagD) // We probably had an error
2617 return 0;
2618
2619 // Note that the above type specs guarantee that the
2620 // type rep is a Decl, whereas in many of the others
2621 // it's a Type.
2622 if (isa<TagDecl>(TagD))
2623 Tag = cast<TagDecl>(TagD);
2624 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2625 Tag = CTD->getTemplatedDecl();
2626 }
2627
2628 if (Tag) {
2629 Tag->setFreeStanding();
2630 if (Tag->isInvalidDecl())
2631 return Tag;
2632 }
2633
2634 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2635 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2636 // or incomplete types shall not be restrict-qualified."
2637 if (TypeQuals & DeclSpec::TQ_restrict)
2638 Diag(DS.getRestrictSpecLoc(),
2639 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2640 << DS.getSourceRange();
2641 }
2642
2643 if (DS.isConstexprSpecified()) {
2644 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2645 // and definitions of functions and variables.
2646 if (Tag)
2647 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2648 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2649 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2650 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2651 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2652 else
2653 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2654 // Don't emit warnings after this error.
2655 return TagD;
2656 }
2657
2658 if (DS.isFriendSpecified()) {
2659 // If we're dealing with a decl but not a TagDecl, assume that
2660 // whatever routines created it handled the friendship aspect.
2661 if (TagD && !Tag)
2662 return 0;
2663 return ActOnFriendTypeDecl(S, DS, TemplateParams);
2664 }
2665
2666 // Track whether we warned about the fact that there aren't any
2667 // declarators.
2668 bool emittedWarning = false;
2669
2670 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2671 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2672 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2673 if (getLangOpts().CPlusPlus ||
2674 Record->getDeclContext()->isRecord())
2675 return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2676
2677 Diag(DS.getLocStart(), diag::ext_no_declarators)
2678 << DS.getSourceRange();
2679 emittedWarning = true;
2680 }
2681 }
2682
2683 // Check for Microsoft C extension: anonymous struct.
2684 if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2685 CurContext->isRecord() &&
2686 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2687 // Handle 2 kinds of anonymous struct:
2688 // struct STRUCT;
2689 // and
2690 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
2691 RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2692 if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2693 (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2694 DS.getRepAsType().get()->isStructureType())) {
2695 Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2696 << DS.getSourceRange();
2697 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2698 }
2699 }
2700
2701 if (getLangOpts().CPlusPlus &&
2702 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2703 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2704 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2705 !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2706 Diag(Enum->getLocation(), diag::ext_no_declarators)
2707 << DS.getSourceRange();
2708 emittedWarning = true;
2709 }
2710
2711 // Skip all the checks below if we have a type error.
2712 if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2713
2714 if (!DS.isMissingDeclaratorOk()) {
2715 // Warn about typedefs of enums without names, since this is an
2716 // extension in both Microsoft and GNU.
2717 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2718 Tag && isa<EnumDecl>(Tag)) {
2719 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2720 << DS.getSourceRange();
2721 return Tag;
2722 }
2723
2724 Diag(DS.getLocStart(), diag::ext_no_declarators)
2725 << DS.getSourceRange();
2726 emittedWarning = true;
2727 }
2728
2729 // We're going to complain about a bunch of spurious specifiers;
2730 // only do this if we're declaring a tag, because otherwise we
2731 // should be getting diag::ext_no_declarators.
2732 if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2733 return TagD;
2734
2735 // Note that a linkage-specification sets a storage class, but
2736 // 'extern "C" struct foo;' is actually valid and not theoretically
2737 // useless.
2738 if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2739 if (!DS.isExternInLinkageSpec())
2740 Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2741 << DeclSpec::getSpecifierName(scs);
2742
2743 if (DS.isThreadSpecified())
2744 Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2745 if (DS.getTypeQualifiers()) {
2746 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2747 Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2748 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2749 Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2750 // Restrict is covered above.
2751 }
2752 if (DS.isInlineSpecified())
2753 Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2754 if (DS.isVirtualSpecified())
2755 Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2756 if (DS.isExplicitSpecified())
2757 Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2758
2759 if (DS.isModulePrivateSpecified() &&
2760 Tag && Tag->getDeclContext()->isFunctionOrMethod())
2761 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2762 << Tag->getTagKind()
2763 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2764
2765 // Warn about ignored type attributes, for example:
2766 // __attribute__((aligned)) struct A;
2767 // Attributes should be placed after tag to apply to type declaration.
2768 if (!DS.getAttributes().empty()) {
2769 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2770 if (TypeSpecType == DeclSpec::TST_class ||
2771 TypeSpecType == DeclSpec::TST_struct ||
2772 TypeSpecType == DeclSpec::TST_interface ||
2773 TypeSpecType == DeclSpec::TST_union ||
2774 TypeSpecType == DeclSpec::TST_enum) {
2775 AttributeList* attrs = DS.getAttributes().getList();
2776 while (attrs) {
2777 Diag(attrs->getScopeLoc(),
2778 diag::warn_declspec_attribute_ignored)
2779 << attrs->getName()
2780 << (TypeSpecType == DeclSpec::TST_class ? 0 :
2781 TypeSpecType == DeclSpec::TST_struct ? 1 :
2782 TypeSpecType == DeclSpec::TST_union ? 2 :
2783 TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2784 attrs = attrs->getNext();
2785 }
2786 }
2787 }
2788
2789 ActOnDocumentableDecl(TagD);
2790
2791 return TagD;
2792 }
2793
2794 /// We are trying to inject an anonymous member into the given scope;
2795 /// check if there's an existing declaration that can't be overloaded.
2796 ///
2797 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)2798 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2799 Scope *S,
2800 DeclContext *Owner,
2801 DeclarationName Name,
2802 SourceLocation NameLoc,
2803 unsigned diagnostic) {
2804 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2805 Sema::ForRedeclaration);
2806 if (!SemaRef.LookupName(R, S)) return false;
2807
2808 if (R.getAsSingle<TagDecl>())
2809 return false;
2810
2811 // Pick a representative declaration.
2812 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2813 assert(PrevDecl && "Expected a non-null Decl");
2814
2815 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2816 return false;
2817
2818 SemaRef.Diag(NameLoc, diagnostic) << Name;
2819 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2820
2821 return true;
2822 }
2823
2824 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
2825 /// anonymous struct or union AnonRecord into the owning context Owner
2826 /// and scope S. This routine will be invoked just after we realize
2827 /// that an unnamed union or struct is actually an anonymous union or
2828 /// struct, e.g.,
2829 ///
2830 /// @code
2831 /// union {
2832 /// int i;
2833 /// float f;
2834 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2835 /// // f into the surrounding scope.x
2836 /// @endcode
2837 ///
2838 /// This routine is recursive, injecting the names of nested anonymous
2839 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVector<NamedDecl *,2> & Chaining,bool MSAnonStruct)2840 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2841 DeclContext *Owner,
2842 RecordDecl *AnonRecord,
2843 AccessSpecifier AS,
2844 SmallVector<NamedDecl*, 2> &Chaining,
2845 bool MSAnonStruct) {
2846 unsigned diagKind
2847 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2848 : diag::err_anonymous_struct_member_redecl;
2849
2850 bool Invalid = false;
2851
2852 // Look every FieldDecl and IndirectFieldDecl with a name.
2853 for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2854 DEnd = AnonRecord->decls_end();
2855 D != DEnd; ++D) {
2856 if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2857 cast<NamedDecl>(*D)->getDeclName()) {
2858 ValueDecl *VD = cast<ValueDecl>(*D);
2859 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2860 VD->getLocation(), diagKind)) {
2861 // C++ [class.union]p2:
2862 // The names of the members of an anonymous union shall be
2863 // distinct from the names of any other entity in the
2864 // scope in which the anonymous union is declared.
2865 Invalid = true;
2866 } else {
2867 // C++ [class.union]p2:
2868 // For the purpose of name lookup, after the anonymous union
2869 // definition, the members of the anonymous union are
2870 // considered to have been defined in the scope in which the
2871 // anonymous union is declared.
2872 unsigned OldChainingSize = Chaining.size();
2873 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2874 for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2875 PE = IF->chain_end(); PI != PE; ++PI)
2876 Chaining.push_back(*PI);
2877 else
2878 Chaining.push_back(VD);
2879
2880 assert(Chaining.size() >= 2);
2881 NamedDecl **NamedChain =
2882 new (SemaRef.Context)NamedDecl*[Chaining.size()];
2883 for (unsigned i = 0; i < Chaining.size(); i++)
2884 NamedChain[i] = Chaining[i];
2885
2886 IndirectFieldDecl* IndirectField =
2887 IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2888 VD->getIdentifier(), VD->getType(),
2889 NamedChain, Chaining.size());
2890
2891 IndirectField->setAccess(AS);
2892 IndirectField->setImplicit();
2893 SemaRef.PushOnScopeChains(IndirectField, S);
2894
2895 // That includes picking up the appropriate access specifier.
2896 if (AS != AS_none) IndirectField->setAccess(AS);
2897
2898 Chaining.resize(OldChainingSize);
2899 }
2900 }
2901 }
2902
2903 return Invalid;
2904 }
2905
2906 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2907 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
2908 /// illegal input values are mapped to SC_None.
2909 static StorageClass
StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec)2910 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2911 switch (StorageClassSpec) {
2912 case DeclSpec::SCS_unspecified: return SC_None;
2913 case DeclSpec::SCS_extern: return SC_Extern;
2914 case DeclSpec::SCS_static: return SC_Static;
2915 case DeclSpec::SCS_auto: return SC_Auto;
2916 case DeclSpec::SCS_register: return SC_Register;
2917 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2918 // Illegal SCSs map to None: error reporting is up to the caller.
2919 case DeclSpec::SCS_mutable: // Fall through.
2920 case DeclSpec::SCS_typedef: return SC_None;
2921 }
2922 llvm_unreachable("unknown storage class specifier");
2923 }
2924
2925 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2926 /// a StorageClass. Any error reporting is up to the caller:
2927 /// illegal input values are mapped to SC_None.
2928 static StorageClass
StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec)2929 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2930 switch (StorageClassSpec) {
2931 case DeclSpec::SCS_unspecified: return SC_None;
2932 case DeclSpec::SCS_extern: return SC_Extern;
2933 case DeclSpec::SCS_static: return SC_Static;
2934 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2935 // Illegal SCSs map to None: error reporting is up to the caller.
2936 case DeclSpec::SCS_auto: // Fall through.
2937 case DeclSpec::SCS_mutable: // Fall through.
2938 case DeclSpec::SCS_register: // Fall through.
2939 case DeclSpec::SCS_typedef: return SC_None;
2940 }
2941 llvm_unreachable("unknown storage class specifier");
2942 }
2943
2944 /// BuildAnonymousStructOrUnion - Handle the declaration of an
2945 /// anonymous structure or union. Anonymous unions are a C++ feature
2946 /// (C++ [class.union]) and a C11 feature; anonymous structures
2947 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record)2948 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2949 AccessSpecifier AS,
2950 RecordDecl *Record) {
2951 DeclContext *Owner = Record->getDeclContext();
2952
2953 // Diagnose whether this anonymous struct/union is an extension.
2954 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2955 Diag(Record->getLocation(), diag::ext_anonymous_union);
2956 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2957 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2958 else if (!Record->isUnion() && !getLangOpts().C11)
2959 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2960
2961 // C and C++ require different kinds of checks for anonymous
2962 // structs/unions.
2963 bool Invalid = false;
2964 if (getLangOpts().CPlusPlus) {
2965 const char* PrevSpec = 0;
2966 unsigned DiagID;
2967 if (Record->isUnion()) {
2968 // C++ [class.union]p6:
2969 // Anonymous unions declared in a named namespace or in the
2970 // global namespace shall be declared static.
2971 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2972 (isa<TranslationUnitDecl>(Owner) ||
2973 (isa<NamespaceDecl>(Owner) &&
2974 cast<NamespaceDecl>(Owner)->getDeclName()))) {
2975 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2976 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2977
2978 // Recover by adding 'static'.
2979 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2980 PrevSpec, DiagID);
2981 }
2982 // C++ [class.union]p6:
2983 // A storage class is not allowed in a declaration of an
2984 // anonymous union in a class scope.
2985 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2986 isa<RecordDecl>(Owner)) {
2987 Diag(DS.getStorageClassSpecLoc(),
2988 diag::err_anonymous_union_with_storage_spec)
2989 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2990
2991 // Recover by removing the storage specifier.
2992 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2993 SourceLocation(),
2994 PrevSpec, DiagID);
2995 }
2996 }
2997
2998 // Ignore const/volatile/restrict qualifiers.
2999 if (DS.getTypeQualifiers()) {
3000 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3001 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3002 << Record->isUnion() << 0
3003 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3004 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3005 Diag(DS.getVolatileSpecLoc(),
3006 diag::ext_anonymous_struct_union_qualified)
3007 << Record->isUnion() << 1
3008 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3009 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3010 Diag(DS.getRestrictSpecLoc(),
3011 diag::ext_anonymous_struct_union_qualified)
3012 << Record->isUnion() << 2
3013 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3014
3015 DS.ClearTypeQualifiers();
3016 }
3017
3018 // C++ [class.union]p2:
3019 // The member-specification of an anonymous union shall only
3020 // define non-static data members. [Note: nested types and
3021 // functions cannot be declared within an anonymous union. ]
3022 for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3023 MemEnd = Record->decls_end();
3024 Mem != MemEnd; ++Mem) {
3025 if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3026 // C++ [class.union]p3:
3027 // An anonymous union shall not have private or protected
3028 // members (clause 11).
3029 assert(FD->getAccess() != AS_none);
3030 if (FD->getAccess() != AS_public) {
3031 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3032 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3033 Invalid = true;
3034 }
3035
3036 // C++ [class.union]p1
3037 // An object of a class with a non-trivial constructor, a non-trivial
3038 // copy constructor, a non-trivial destructor, or a non-trivial copy
3039 // assignment operator cannot be a member of a union, nor can an
3040 // array of such objects.
3041 if (CheckNontrivialField(FD))
3042 Invalid = true;
3043 } else if ((*Mem)->isImplicit()) {
3044 // Any implicit members are fine.
3045 } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3046 // This is a type that showed up in an
3047 // elaborated-type-specifier inside the anonymous struct or
3048 // union, but which actually declares a type outside of the
3049 // anonymous struct or union. It's okay.
3050 } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3051 if (!MemRecord->isAnonymousStructOrUnion() &&
3052 MemRecord->getDeclName()) {
3053 // Visual C++ allows type definition in anonymous struct or union.
3054 if (getLangOpts().MicrosoftExt)
3055 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3056 << (int)Record->isUnion();
3057 else {
3058 // This is a nested type declaration.
3059 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3060 << (int)Record->isUnion();
3061 Invalid = true;
3062 }
3063 }
3064 } else if (isa<AccessSpecDecl>(*Mem)) {
3065 // Any access specifier is fine.
3066 } else {
3067 // We have something that isn't a non-static data
3068 // member. Complain about it.
3069 unsigned DK = diag::err_anonymous_record_bad_member;
3070 if (isa<TypeDecl>(*Mem))
3071 DK = diag::err_anonymous_record_with_type;
3072 else if (isa<FunctionDecl>(*Mem))
3073 DK = diag::err_anonymous_record_with_function;
3074 else if (isa<VarDecl>(*Mem))
3075 DK = diag::err_anonymous_record_with_static;
3076
3077 // Visual C++ allows type definition in anonymous struct or union.
3078 if (getLangOpts().MicrosoftExt &&
3079 DK == diag::err_anonymous_record_with_type)
3080 Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3081 << (int)Record->isUnion();
3082 else {
3083 Diag((*Mem)->getLocation(), DK)
3084 << (int)Record->isUnion();
3085 Invalid = true;
3086 }
3087 }
3088 }
3089 }
3090
3091 if (!Record->isUnion() && !Owner->isRecord()) {
3092 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3093 << (int)getLangOpts().CPlusPlus;
3094 Invalid = true;
3095 }
3096
3097 // Mock up a declarator.
3098 Declarator Dc(DS, Declarator::MemberContext);
3099 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3100 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3101
3102 // Create a declaration for this anonymous struct/union.
3103 NamedDecl *Anon = 0;
3104 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3105 Anon = FieldDecl::Create(Context, OwningClass,
3106 DS.getLocStart(),
3107 Record->getLocation(),
3108 /*IdentifierInfo=*/0,
3109 Context.getTypeDeclType(Record),
3110 TInfo,
3111 /*BitWidth=*/0, /*Mutable=*/false,
3112 /*InitStyle=*/ICIS_NoInit);
3113 Anon->setAccess(AS);
3114 if (getLangOpts().CPlusPlus)
3115 FieldCollector->Add(cast<FieldDecl>(Anon));
3116 } else {
3117 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3118 assert(SCSpec != DeclSpec::SCS_typedef &&
3119 "Parser allowed 'typedef' as storage class VarDecl.");
3120 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3121 if (SCSpec == DeclSpec::SCS_mutable) {
3122 // mutable can only appear on non-static class members, so it's always
3123 // an error here
3124 Diag(Record->getLocation(), diag::err_mutable_nonmember);
3125 Invalid = true;
3126 SC = SC_None;
3127 }
3128 SCSpec = DS.getStorageClassSpecAsWritten();
3129 VarDecl::StorageClass SCAsWritten
3130 = StorageClassSpecToVarDeclStorageClass(SCSpec);
3131
3132 Anon = VarDecl::Create(Context, Owner,
3133 DS.getLocStart(),
3134 Record->getLocation(), /*IdentifierInfo=*/0,
3135 Context.getTypeDeclType(Record),
3136 TInfo, SC, SCAsWritten);
3137
3138 // Default-initialize the implicit variable. This initialization will be
3139 // trivial in almost all cases, except if a union member has an in-class
3140 // initializer:
3141 // union { int n = 0; };
3142 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3143 }
3144 Anon->setImplicit();
3145
3146 // Add the anonymous struct/union object to the current
3147 // context. We'll be referencing this object when we refer to one of
3148 // its members.
3149 Owner->addDecl(Anon);
3150
3151 // Inject the members of the anonymous struct/union into the owning
3152 // context and into the identifier resolver chain for name lookup
3153 // purposes.
3154 SmallVector<NamedDecl*, 2> Chain;
3155 Chain.push_back(Anon);
3156
3157 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3158 Chain, false))
3159 Invalid = true;
3160
3161 // Mark this as an anonymous struct/union type. Note that we do not
3162 // do this until after we have already checked and injected the
3163 // members of this anonymous struct/union type, because otherwise
3164 // the members could be injected twice: once by DeclContext when it
3165 // builds its lookup table, and once by
3166 // InjectAnonymousStructOrUnionMembers.
3167 Record->setAnonymousStructOrUnion(true);
3168
3169 if (Invalid)
3170 Anon->setInvalidDecl();
3171
3172 return Anon;
3173 }
3174
3175 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3176 /// Microsoft C anonymous structure.
3177 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3178 /// Example:
3179 ///
3180 /// struct A { int a; };
3181 /// struct B { struct A; int b; };
3182 ///
3183 /// void foo() {
3184 /// B var;
3185 /// var.a = 3;
3186 /// }
3187 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)3188 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3189 RecordDecl *Record) {
3190
3191 // If there is no Record, get the record via the typedef.
3192 if (!Record)
3193 Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3194
3195 // Mock up a declarator.
3196 Declarator Dc(DS, Declarator::TypeNameContext);
3197 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3198 assert(TInfo && "couldn't build declarator info for anonymous struct");
3199
3200 // Create a declaration for this anonymous struct.
3201 NamedDecl* Anon = FieldDecl::Create(Context,
3202 cast<RecordDecl>(CurContext),
3203 DS.getLocStart(),
3204 DS.getLocStart(),
3205 /*IdentifierInfo=*/0,
3206 Context.getTypeDeclType(Record),
3207 TInfo,
3208 /*BitWidth=*/0, /*Mutable=*/false,
3209 /*InitStyle=*/ICIS_NoInit);
3210 Anon->setImplicit();
3211
3212 // Add the anonymous struct object to the current context.
3213 CurContext->addDecl(Anon);
3214
3215 // Inject the members of the anonymous struct into the current
3216 // context and into the identifier resolver chain for name lookup
3217 // purposes.
3218 SmallVector<NamedDecl*, 2> Chain;
3219 Chain.push_back(Anon);
3220
3221 RecordDecl *RecordDef = Record->getDefinition();
3222 if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3223 RecordDef, AS_none,
3224 Chain, true))
3225 Anon->setInvalidDecl();
3226
3227 return Anon;
3228 }
3229
3230 /// GetNameForDeclarator - Determine the full declaration name for the
3231 /// given Declarator.
GetNameForDeclarator(Declarator & D)3232 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3233 return GetNameFromUnqualifiedId(D.getName());
3234 }
3235
3236 /// \brief Retrieves the declaration name from a parsed unqualified-id.
3237 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)3238 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3239 DeclarationNameInfo NameInfo;
3240 NameInfo.setLoc(Name.StartLocation);
3241
3242 switch (Name.getKind()) {
3243
3244 case UnqualifiedId::IK_ImplicitSelfParam:
3245 case UnqualifiedId::IK_Identifier:
3246 NameInfo.setName(Name.Identifier);
3247 NameInfo.setLoc(Name.StartLocation);
3248 return NameInfo;
3249
3250 case UnqualifiedId::IK_OperatorFunctionId:
3251 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3252 Name.OperatorFunctionId.Operator));
3253 NameInfo.setLoc(Name.StartLocation);
3254 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3255 = Name.OperatorFunctionId.SymbolLocations[0];
3256 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3257 = Name.EndLocation.getRawEncoding();
3258 return NameInfo;
3259
3260 case UnqualifiedId::IK_LiteralOperatorId:
3261 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3262 Name.Identifier));
3263 NameInfo.setLoc(Name.StartLocation);
3264 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3265 return NameInfo;
3266
3267 case UnqualifiedId::IK_ConversionFunctionId: {
3268 TypeSourceInfo *TInfo;
3269 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3270 if (Ty.isNull())
3271 return DeclarationNameInfo();
3272 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3273 Context.getCanonicalType(Ty)));
3274 NameInfo.setLoc(Name.StartLocation);
3275 NameInfo.setNamedTypeInfo(TInfo);
3276 return NameInfo;
3277 }
3278
3279 case UnqualifiedId::IK_ConstructorName: {
3280 TypeSourceInfo *TInfo;
3281 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3282 if (Ty.isNull())
3283 return DeclarationNameInfo();
3284 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3285 Context.getCanonicalType(Ty)));
3286 NameInfo.setLoc(Name.StartLocation);
3287 NameInfo.setNamedTypeInfo(TInfo);
3288 return NameInfo;
3289 }
3290
3291 case UnqualifiedId::IK_ConstructorTemplateId: {
3292 // In well-formed code, we can only have a constructor
3293 // template-id that refers to the current context, so go there
3294 // to find the actual type being constructed.
3295 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3296 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3297 return DeclarationNameInfo();
3298
3299 // Determine the type of the class being constructed.
3300 QualType CurClassType = Context.getTypeDeclType(CurClass);
3301
3302 // FIXME: Check two things: that the template-id names the same type as
3303 // CurClassType, and that the template-id does not occur when the name
3304 // was qualified.
3305
3306 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3307 Context.getCanonicalType(CurClassType)));
3308 NameInfo.setLoc(Name.StartLocation);
3309 // FIXME: should we retrieve TypeSourceInfo?
3310 NameInfo.setNamedTypeInfo(0);
3311 return NameInfo;
3312 }
3313
3314 case UnqualifiedId::IK_DestructorName: {
3315 TypeSourceInfo *TInfo;
3316 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3317 if (Ty.isNull())
3318 return DeclarationNameInfo();
3319 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3320 Context.getCanonicalType(Ty)));
3321 NameInfo.setLoc(Name.StartLocation);
3322 NameInfo.setNamedTypeInfo(TInfo);
3323 return NameInfo;
3324 }
3325
3326 case UnqualifiedId::IK_TemplateId: {
3327 TemplateName TName = Name.TemplateId->Template.get();
3328 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3329 return Context.getNameForTemplate(TName, TNameLoc);
3330 }
3331
3332 } // switch (Name.getKind())
3333
3334 llvm_unreachable("Unknown name kind");
3335 }
3336
getCoreType(QualType Ty)3337 static QualType getCoreType(QualType Ty) {
3338 do {
3339 if (Ty->isPointerType() || Ty->isReferenceType())
3340 Ty = Ty->getPointeeType();
3341 else if (Ty->isArrayType())
3342 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3343 else
3344 return Ty.withoutLocalFastQualifiers();
3345 } while (true);
3346 }
3347
3348 /// hasSimilarParameters - Determine whether the C++ functions Declaration
3349 /// and Definition have "nearly" matching parameters. This heuristic is
3350 /// used to improve diagnostics in the case where an out-of-line function
3351 /// definition doesn't match any declaration within the class or namespace.
3352 /// Also sets Params to the list of indices to the parameters that differ
3353 /// between the declaration and the definition. If hasSimilarParameters
3354 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,llvm::SmallVectorImpl<unsigned> & Params)3355 static bool hasSimilarParameters(ASTContext &Context,
3356 FunctionDecl *Declaration,
3357 FunctionDecl *Definition,
3358 llvm::SmallVectorImpl<unsigned> &Params) {
3359 Params.clear();
3360 if (Declaration->param_size() != Definition->param_size())
3361 return false;
3362 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3363 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3364 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3365
3366 // The parameter types are identical
3367 if (Context.hasSameType(DefParamTy, DeclParamTy))
3368 continue;
3369
3370 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3371 QualType DefParamBaseTy = getCoreType(DefParamTy);
3372 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3373 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3374
3375 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3376 (DeclTyName && DeclTyName == DefTyName))
3377 Params.push_back(Idx);
3378 else // The two parameters aren't even close
3379 return false;
3380 }
3381
3382 return true;
3383 }
3384
3385 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3386 /// declarator needs to be rebuilt in the current instantiation.
3387 /// Any bits of declarator which appear before the name are valid for
3388 /// consideration here. That's specifically the type in the decl spec
3389 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)3390 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3391 DeclarationName Name) {
3392 // The types we specifically need to rebuild are:
3393 // - typenames, typeofs, and decltypes
3394 // - types which will become injected class names
3395 // Of course, we also need to rebuild any type referencing such a
3396 // type. It's safest to just say "dependent", but we call out a
3397 // few cases here.
3398
3399 DeclSpec &DS = D.getMutableDeclSpec();
3400 switch (DS.getTypeSpecType()) {
3401 case DeclSpec::TST_typename:
3402 case DeclSpec::TST_typeofType:
3403 case DeclSpec::TST_decltype:
3404 case DeclSpec::TST_underlyingType:
3405 case DeclSpec::TST_atomic: {
3406 // Grab the type from the parser.
3407 TypeSourceInfo *TSI = 0;
3408 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3409 if (T.isNull() || !T->isDependentType()) break;
3410
3411 // Make sure there's a type source info. This isn't really much
3412 // of a waste; most dependent types should have type source info
3413 // attached already.
3414 if (!TSI)
3415 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3416
3417 // Rebuild the type in the current instantiation.
3418 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3419 if (!TSI) return true;
3420
3421 // Store the new type back in the decl spec.
3422 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3423 DS.UpdateTypeRep(LocType);
3424 break;
3425 }
3426
3427 case DeclSpec::TST_typeofExpr: {
3428 Expr *E = DS.getRepAsExpr();
3429 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3430 if (Result.isInvalid()) return true;
3431 DS.UpdateExprRep(Result.get());
3432 break;
3433 }
3434
3435 default:
3436 // Nothing to do for these decl specs.
3437 break;
3438 }
3439
3440 // It doesn't matter what order we do this in.
3441 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3442 DeclaratorChunk &Chunk = D.getTypeObject(I);
3443
3444 // The only type information in the declarator which can come
3445 // before the declaration name is the base type of a member
3446 // pointer.
3447 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3448 continue;
3449
3450 // Rebuild the scope specifier in-place.
3451 CXXScopeSpec &SS = Chunk.Mem.Scope();
3452 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3453 return true;
3454 }
3455
3456 return false;
3457 }
3458
ActOnDeclarator(Scope * S,Declarator & D)3459 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3460 D.setFunctionDefinitionKind(FDK_Declaration);
3461 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3462
3463 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3464 Dcl && Dcl->getDeclContext()->isFileContext())
3465 Dcl->setTopLevelDeclInObjCContainer();
3466
3467 return Dcl;
3468 }
3469
3470 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3471 /// If T is the name of a class, then each of the following shall have a
3472 /// name different from T:
3473 /// - every static data member of class T;
3474 /// - every member function of class T
3475 /// - every member of class T that is itself a type;
3476 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)3477 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3478 DeclarationNameInfo NameInfo) {
3479 DeclarationName Name = NameInfo.getName();
3480
3481 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3482 if (Record->getIdentifier() && Record->getDeclName() == Name) {
3483 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3484 return true;
3485 }
3486
3487 return false;
3488 }
3489
3490 /// \brief Diagnose a declaration whose declarator-id has the given
3491 /// nested-name-specifier.
3492 ///
3493 /// \param SS The nested-name-specifier of the declarator-id.
3494 ///
3495 /// \param DC The declaration context to which the nested-name-specifier
3496 /// resolves.
3497 ///
3498 /// \param Name The name of the entity being declared.
3499 ///
3500 /// \param Loc The location of the name of the entity being declared.
3501 ///
3502 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)3503 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3504 DeclarationName Name,
3505 SourceLocation Loc) {
3506 DeclContext *Cur = CurContext;
3507 while (isa<LinkageSpecDecl>(Cur))
3508 Cur = Cur->getParent();
3509
3510 // C++ [dcl.meaning]p1:
3511 // A declarator-id shall not be qualified except for the definition
3512 // of a member function (9.3) or static data member (9.4) outside of
3513 // its class, the definition or explicit instantiation of a function
3514 // or variable member of a namespace outside of its namespace, or the
3515 // definition of an explicit specialization outside of its namespace,
3516 // or the declaration of a friend function that is a member of
3517 // another class or namespace (11.3). [...]
3518
3519 // The user provided a superfluous scope specifier that refers back to the
3520 // class or namespaces in which the entity is already declared.
3521 //
3522 // class X {
3523 // void X::f();
3524 // };
3525 if (Cur->Equals(DC)) {
3526 Diag(Loc, diag::warn_member_extra_qualification)
3527 << Name << FixItHint::CreateRemoval(SS.getRange());
3528 SS.clear();
3529 return false;
3530 }
3531
3532 // Check whether the qualifying scope encloses the scope of the original
3533 // declaration.
3534 if (!Cur->Encloses(DC)) {
3535 if (Cur->isRecord())
3536 Diag(Loc, diag::err_member_qualification)
3537 << Name << SS.getRange();
3538 else if (isa<TranslationUnitDecl>(DC))
3539 Diag(Loc, diag::err_invalid_declarator_global_scope)
3540 << Name << SS.getRange();
3541 else if (isa<FunctionDecl>(Cur))
3542 Diag(Loc, diag::err_invalid_declarator_in_function)
3543 << Name << SS.getRange();
3544 else
3545 Diag(Loc, diag::err_invalid_declarator_scope)
3546 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3547
3548 return true;
3549 }
3550
3551 if (Cur->isRecord()) {
3552 // Cannot qualify members within a class.
3553 Diag(Loc, diag::err_member_qualification)
3554 << Name << SS.getRange();
3555 SS.clear();
3556
3557 // C++ constructors and destructors with incorrect scopes can break
3558 // our AST invariants by having the wrong underlying types. If
3559 // that's the case, then drop this declaration entirely.
3560 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3561 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3562 !Context.hasSameType(Name.getCXXNameType(),
3563 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3564 return true;
3565
3566 return false;
3567 }
3568
3569 // C++11 [dcl.meaning]p1:
3570 // [...] "The nested-name-specifier of the qualified declarator-id shall
3571 // not begin with a decltype-specifer"
3572 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3573 while (SpecLoc.getPrefix())
3574 SpecLoc = SpecLoc.getPrefix();
3575 if (dyn_cast_or_null<DecltypeType>(
3576 SpecLoc.getNestedNameSpecifier()->getAsType()))
3577 Diag(Loc, diag::err_decltype_in_declarator)
3578 << SpecLoc.getTypeLoc().getSourceRange();
3579
3580 return false;
3581 }
3582
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)3583 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3584 MultiTemplateParamsArg TemplateParamLists) {
3585 // TODO: consider using NameInfo for diagnostic.
3586 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3587 DeclarationName Name = NameInfo.getName();
3588
3589 // All of these full declarators require an identifier. If it doesn't have
3590 // one, the ParsedFreeStandingDeclSpec action should be used.
3591 if (!Name) {
3592 if (!D.isInvalidType()) // Reject this if we think it is valid.
3593 Diag(D.getDeclSpec().getLocStart(),
3594 diag::err_declarator_need_ident)
3595 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3596 return 0;
3597 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3598 return 0;
3599
3600 // The scope passed in may not be a decl scope. Zip up the scope tree until
3601 // we find one that is.
3602 while ((S->getFlags() & Scope::DeclScope) == 0 ||
3603 (S->getFlags() & Scope::TemplateParamScope) != 0)
3604 S = S->getParent();
3605
3606 DeclContext *DC = CurContext;
3607 if (D.getCXXScopeSpec().isInvalid())
3608 D.setInvalidType();
3609 else if (D.getCXXScopeSpec().isSet()) {
3610 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3611 UPPC_DeclarationQualifier))
3612 return 0;
3613
3614 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3615 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3616 if (!DC) {
3617 // If we could not compute the declaration context, it's because the
3618 // declaration context is dependent but does not refer to a class,
3619 // class template, or class template partial specialization. Complain
3620 // and return early, to avoid the coming semantic disaster.
3621 Diag(D.getIdentifierLoc(),
3622 diag::err_template_qualified_declarator_no_match)
3623 << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3624 << D.getCXXScopeSpec().getRange();
3625 return 0;
3626 }
3627 bool IsDependentContext = DC->isDependentContext();
3628
3629 if (!IsDependentContext &&
3630 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3631 return 0;
3632
3633 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3634 Diag(D.getIdentifierLoc(),
3635 diag::err_member_def_undefined_record)
3636 << Name << DC << D.getCXXScopeSpec().getRange();
3637 D.setInvalidType();
3638 } else if (!D.getDeclSpec().isFriendSpecified()) {
3639 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3640 Name, D.getIdentifierLoc())) {
3641 if (DC->isRecord())
3642 return 0;
3643
3644 D.setInvalidType();
3645 }
3646 }
3647
3648 // Check whether we need to rebuild the type of the given
3649 // declaration in the current instantiation.
3650 if (EnteringContext && IsDependentContext &&
3651 TemplateParamLists.size() != 0) {
3652 ContextRAII SavedContext(*this, DC);
3653 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3654 D.setInvalidType();
3655 }
3656 }
3657
3658 if (DiagnoseClassNameShadow(DC, NameInfo))
3659 // If this is a typedef, we'll end up spewing multiple diagnostics.
3660 // Just return early; it's safer.
3661 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3662 return 0;
3663
3664 NamedDecl *New;
3665
3666 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3667 QualType R = TInfo->getType();
3668
3669 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3670 UPPC_DeclarationType))
3671 D.setInvalidType();
3672
3673 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3674 ForRedeclaration);
3675
3676 // See if this is a redefinition of a variable in the same scope.
3677 if (!D.getCXXScopeSpec().isSet()) {
3678 bool IsLinkageLookup = false;
3679
3680 // If the declaration we're planning to build will be a function
3681 // or object with linkage, then look for another declaration with
3682 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3683 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3684 /* Do nothing*/;
3685 else if (R->isFunctionType()) {
3686 if (CurContext->isFunctionOrMethod() ||
3687 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3688 IsLinkageLookup = true;
3689 } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3690 IsLinkageLookup = true;
3691 else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3692 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3693 IsLinkageLookup = true;
3694
3695 if (IsLinkageLookup)
3696 Previous.clear(LookupRedeclarationWithLinkage);
3697
3698 LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3699 } else { // Something like "int foo::x;"
3700 LookupQualifiedName(Previous, DC);
3701
3702 // C++ [dcl.meaning]p1:
3703 // When the declarator-id is qualified, the declaration shall refer to a
3704 // previously declared member of the class or namespace to which the
3705 // qualifier refers (or, in the case of a namespace, of an element of the
3706 // inline namespace set of that namespace (7.3.1)) or to a specialization
3707 // thereof; [...]
3708 //
3709 // Note that we already checked the context above, and that we do not have
3710 // enough information to make sure that Previous contains the declaration
3711 // we want to match. For example, given:
3712 //
3713 // class X {
3714 // void f();
3715 // void f(float);
3716 // };
3717 //
3718 // void X::f(int) { } // ill-formed
3719 //
3720 // In this case, Previous will point to the overload set
3721 // containing the two f's declared in X, but neither of them
3722 // matches.
3723
3724 // C++ [dcl.meaning]p1:
3725 // [...] the member shall not merely have been introduced by a
3726 // using-declaration in the scope of the class or namespace nominated by
3727 // the nested-name-specifier of the declarator-id.
3728 RemoveUsingDecls(Previous);
3729 }
3730
3731 if (Previous.isSingleResult() &&
3732 Previous.getFoundDecl()->isTemplateParameter()) {
3733 // Maybe we will complain about the shadowed template parameter.
3734 if (!D.isInvalidType())
3735 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3736 Previous.getFoundDecl());
3737
3738 // Just pretend that we didn't see the previous declaration.
3739 Previous.clear();
3740 }
3741
3742 // In C++, the previous declaration we find might be a tag type
3743 // (class or enum). In this case, the new declaration will hide the
3744 // tag type. Note that this does does not apply if we're declaring a
3745 // typedef (C++ [dcl.typedef]p4).
3746 if (Previous.isSingleTagDecl() &&
3747 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3748 Previous.clear();
3749
3750 bool AddToScope = true;
3751 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3752 if (TemplateParamLists.size()) {
3753 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3754 return 0;
3755 }
3756
3757 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3758 } else if (R->isFunctionType()) {
3759 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3760 TemplateParamLists,
3761 AddToScope);
3762 } else {
3763 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3764 TemplateParamLists);
3765 }
3766
3767 if (New == 0)
3768 return 0;
3769
3770 // If this has an identifier and is not an invalid redeclaration or
3771 // function template specialization, add it to the scope stack.
3772 if (New->getDeclName() && AddToScope &&
3773 !(D.isRedeclaration() && New->isInvalidDecl()))
3774 PushOnScopeChains(New, S);
3775
3776 return New;
3777 }
3778
3779 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3780 /// types into constant array types in certain situations which would otherwise
3781 /// be errors (for GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)3782 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3783 ASTContext &Context,
3784 bool &SizeIsNegative,
3785 llvm::APSInt &Oversized) {
3786 // This method tries to turn a variable array into a constant
3787 // array even when the size isn't an ICE. This is necessary
3788 // for compatibility with code that depends on gcc's buggy
3789 // constant expression folding, like struct {char x[(int)(char*)2];}
3790 SizeIsNegative = false;
3791 Oversized = 0;
3792
3793 if (T->isDependentType())
3794 return QualType();
3795
3796 QualifierCollector Qs;
3797 const Type *Ty = Qs.strip(T);
3798
3799 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3800 QualType Pointee = PTy->getPointeeType();
3801 QualType FixedType =
3802 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3803 Oversized);
3804 if (FixedType.isNull()) return FixedType;
3805 FixedType = Context.getPointerType(FixedType);
3806 return Qs.apply(Context, FixedType);
3807 }
3808 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3809 QualType Inner = PTy->getInnerType();
3810 QualType FixedType =
3811 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3812 Oversized);
3813 if (FixedType.isNull()) return FixedType;
3814 FixedType = Context.getParenType(FixedType);
3815 return Qs.apply(Context, FixedType);
3816 }
3817
3818 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3819 if (!VLATy)
3820 return QualType();
3821 // FIXME: We should probably handle this case
3822 if (VLATy->getElementType()->isVariablyModifiedType())
3823 return QualType();
3824
3825 llvm::APSInt Res;
3826 if (!VLATy->getSizeExpr() ||
3827 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3828 return QualType();
3829
3830 // Check whether the array size is negative.
3831 if (Res.isSigned() && Res.isNegative()) {
3832 SizeIsNegative = true;
3833 return QualType();
3834 }
3835
3836 // Check whether the array is too large to be addressed.
3837 unsigned ActiveSizeBits
3838 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3839 Res);
3840 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3841 Oversized = Res;
3842 return QualType();
3843 }
3844
3845 return Context.getConstantArrayType(VLATy->getElementType(),
3846 Res, ArrayType::Normal, 0);
3847 }
3848
3849 /// \brief Register the given locally-scoped external C declaration so
3850 /// that it can be found later for redeclarations
3851 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,const LookupResult & Previous,Scope * S)3852 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3853 const LookupResult &Previous,
3854 Scope *S) {
3855 assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3856 "Decl is not a locally-scoped decl!");
3857 // Note that we have a locally-scoped external with this name.
3858 LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3859
3860 if (!Previous.isSingleResult())
3861 return;
3862
3863 NamedDecl *PrevDecl = Previous.getFoundDecl();
3864
3865 // If there was a previous declaration of this variable, it may be
3866 // in our identifier chain. Update the identifier chain with the new
3867 // declaration.
3868 if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3869 // The previous declaration was found on the identifer resolver
3870 // chain, so remove it from its scope.
3871
3872 if (S->isDeclScope(PrevDecl)) {
3873 // Special case for redeclarations in the SAME scope.
3874 // Because this declaration is going to be added to the identifier chain
3875 // later, we should temporarily take it OFF the chain.
3876 IdResolver.RemoveDecl(ND);
3877
3878 } else {
3879 // Find the scope for the original declaration.
3880 while (S && !S->isDeclScope(PrevDecl))
3881 S = S->getParent();
3882 }
3883
3884 if (S)
3885 S->RemoveDecl(PrevDecl);
3886 }
3887 }
3888
3889 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
findLocallyScopedExternalDecl(DeclarationName Name)3890 Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3891 if (ExternalSource) {
3892 // Load locally-scoped external decls from the external source.
3893 SmallVector<NamedDecl *, 4> Decls;
3894 ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3895 for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3896 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3897 = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3898 if (Pos == LocallyScopedExternalDecls.end())
3899 LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3900 }
3901 }
3902
3903 return LocallyScopedExternalDecls.find(Name);
3904 }
3905
3906 /// \brief Diagnose function specifiers on a declaration of an identifier that
3907 /// does not identify a function.
DiagnoseFunctionSpecifiers(Declarator & D)3908 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3909 // FIXME: We should probably indicate the identifier in question to avoid
3910 // confusion for constructs like "inline int a(), b;"
3911 if (D.getDeclSpec().isInlineSpecified())
3912 Diag(D.getDeclSpec().getInlineSpecLoc(),
3913 diag::err_inline_non_function);
3914
3915 if (D.getDeclSpec().isVirtualSpecified())
3916 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3917 diag::err_virtual_non_function);
3918
3919 if (D.getDeclSpec().isExplicitSpecified())
3920 Diag(D.getDeclSpec().getExplicitSpecLoc(),
3921 diag::err_explicit_non_function);
3922 }
3923
3924 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)3925 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3926 TypeSourceInfo *TInfo, LookupResult &Previous) {
3927 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3928 if (D.getCXXScopeSpec().isSet()) {
3929 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3930 << D.getCXXScopeSpec().getRange();
3931 D.setInvalidType();
3932 // Pretend we didn't see the scope specifier.
3933 DC = CurContext;
3934 Previous.clear();
3935 }
3936
3937 if (getLangOpts().CPlusPlus) {
3938 // Check that there are no default arguments (C++ only).
3939 CheckExtraCXXDefaultArguments(D);
3940 }
3941
3942 DiagnoseFunctionSpecifiers(D);
3943
3944 if (D.getDeclSpec().isThreadSpecified())
3945 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3946 if (D.getDeclSpec().isConstexprSpecified())
3947 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3948 << 1;
3949
3950 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3951 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3952 << D.getName().getSourceRange();
3953 return 0;
3954 }
3955
3956 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3957 if (!NewTD) return 0;
3958
3959 // Handle attributes prior to checking for duplicates in MergeVarDecl
3960 ProcessDeclAttributes(S, NewTD, D);
3961
3962 CheckTypedefForVariablyModifiedType(S, NewTD);
3963
3964 bool Redeclaration = D.isRedeclaration();
3965 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3966 D.setRedeclaration(Redeclaration);
3967 return ND;
3968 }
3969
3970 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)3971 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3972 // C99 6.7.7p2: If a typedef name specifies a variably modified type
3973 // then it shall have block scope.
3974 // Note that variably modified types must be fixed before merging the decl so
3975 // that redeclarations will match.
3976 QualType T = NewTD->getUnderlyingType();
3977 if (T->isVariablyModifiedType()) {
3978 getCurFunction()->setHasBranchProtectedScope();
3979
3980 if (S->getFnParent() == 0) {
3981 bool SizeIsNegative;
3982 llvm::APSInt Oversized;
3983 QualType FixedTy =
3984 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3985 Oversized);
3986 if (!FixedTy.isNull()) {
3987 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3988 NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3989 } else {
3990 if (SizeIsNegative)
3991 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3992 else if (T->isVariableArrayType())
3993 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3994 else if (Oversized.getBoolValue())
3995 Diag(NewTD->getLocation(), diag::err_array_too_large)
3996 << Oversized.toString(10);
3997 else
3998 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3999 NewTD->setInvalidDecl();
4000 }
4001 }
4002 }
4003 }
4004
4005
4006 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4007 /// declares a typedef-name, either using the 'typedef' type specifier or via
4008 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4009 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)4010 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4011 LookupResult &Previous, bool &Redeclaration) {
4012 // Merge the decl with the existing one if appropriate. If the decl is
4013 // in an outer scope, it isn't the same thing.
4014 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4015 /*ExplicitInstantiationOrSpecialization=*/false);
4016 if (!Previous.empty()) {
4017 Redeclaration = true;
4018 MergeTypedefNameDecl(NewTD, Previous);
4019 }
4020
4021 // If this is the C FILE type, notify the AST context.
4022 if (IdentifierInfo *II = NewTD->getIdentifier())
4023 if (!NewTD->isInvalidDecl() &&
4024 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4025 if (II->isStr("FILE"))
4026 Context.setFILEDecl(NewTD);
4027 else if (II->isStr("jmp_buf"))
4028 Context.setjmp_bufDecl(NewTD);
4029 else if (II->isStr("sigjmp_buf"))
4030 Context.setsigjmp_bufDecl(NewTD);
4031 else if (II->isStr("ucontext_t"))
4032 Context.setucontext_tDecl(NewTD);
4033 }
4034
4035 return NewTD;
4036 }
4037
4038 /// \brief Determines whether the given declaration is an out-of-scope
4039 /// previous declaration.
4040 ///
4041 /// This routine should be invoked when name lookup has found a
4042 /// previous declaration (PrevDecl) that is not in the scope where a
4043 /// new declaration by the same name is being introduced. If the new
4044 /// declaration occurs in a local scope, previous declarations with
4045 /// linkage may still be considered previous declarations (C99
4046 /// 6.2.2p4-5, C++ [basic.link]p6).
4047 ///
4048 /// \param PrevDecl the previous declaration found by name
4049 /// lookup
4050 ///
4051 /// \param DC the context in which the new declaration is being
4052 /// declared.
4053 ///
4054 /// \returns true if PrevDecl is an out-of-scope previous declaration
4055 /// for a new delcaration with the same name.
4056 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)4057 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4058 ASTContext &Context) {
4059 if (!PrevDecl)
4060 return false;
4061
4062 if (!PrevDecl->hasLinkage())
4063 return false;
4064
4065 if (Context.getLangOpts().CPlusPlus) {
4066 // C++ [basic.link]p6:
4067 // If there is a visible declaration of an entity with linkage
4068 // having the same name and type, ignoring entities declared
4069 // outside the innermost enclosing namespace scope, the block
4070 // scope declaration declares that same entity and receives the
4071 // linkage of the previous declaration.
4072 DeclContext *OuterContext = DC->getRedeclContext();
4073 if (!OuterContext->isFunctionOrMethod())
4074 // This rule only applies to block-scope declarations.
4075 return false;
4076
4077 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4078 if (PrevOuterContext->isRecord())
4079 // We found a member function: ignore it.
4080 return false;
4081
4082 // Find the innermost enclosing namespace for the new and
4083 // previous declarations.
4084 OuterContext = OuterContext->getEnclosingNamespaceContext();
4085 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4086
4087 // The previous declaration is in a different namespace, so it
4088 // isn't the same function.
4089 if (!OuterContext->Equals(PrevOuterContext))
4090 return false;
4091 }
4092
4093 return true;
4094 }
4095
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)4096 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4097 CXXScopeSpec &SS = D.getCXXScopeSpec();
4098 if (!SS.isSet()) return;
4099 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4100 }
4101
inferObjCARCLifetime(ValueDecl * decl)4102 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4103 QualType type = decl->getType();
4104 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4105 if (lifetime == Qualifiers::OCL_Autoreleasing) {
4106 // Various kinds of declaration aren't allowed to be __autoreleasing.
4107 unsigned kind = -1U;
4108 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4109 if (var->hasAttr<BlocksAttr>())
4110 kind = 0; // __block
4111 else if (!var->hasLocalStorage())
4112 kind = 1; // global
4113 } else if (isa<ObjCIvarDecl>(decl)) {
4114 kind = 3; // ivar
4115 } else if (isa<FieldDecl>(decl)) {
4116 kind = 2; // field
4117 }
4118
4119 if (kind != -1U) {
4120 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4121 << kind;
4122 }
4123 } else if (lifetime == Qualifiers::OCL_None) {
4124 // Try to infer lifetime.
4125 if (!type->isObjCLifetimeType())
4126 return false;
4127
4128 lifetime = type->getObjCARCImplicitLifetime();
4129 type = Context.getLifetimeQualifiedType(type, lifetime);
4130 decl->setType(type);
4131 }
4132
4133 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4134 // Thread-local variables cannot have lifetime.
4135 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4136 var->isThreadSpecified()) {
4137 Diag(var->getLocation(), diag::err_arc_thread_ownership)
4138 << var->getType();
4139 return true;
4140 }
4141 }
4142
4143 return false;
4144 }
4145
4146 NamedDecl*
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists)4147 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4148 TypeSourceInfo *TInfo, LookupResult &Previous,
4149 MultiTemplateParamsArg TemplateParamLists) {
4150 QualType R = TInfo->getType();
4151 DeclarationName Name = GetNameForDeclarator(D).getName();
4152
4153 // Check that there are no default arguments (C++ only).
4154 if (getLangOpts().CPlusPlus)
4155 CheckExtraCXXDefaultArguments(D);
4156
4157 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4158 assert(SCSpec != DeclSpec::SCS_typedef &&
4159 "Parser allowed 'typedef' as storage class VarDecl.");
4160 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4161 if (SCSpec == DeclSpec::SCS_mutable) {
4162 // mutable can only appear on non-static class members, so it's always
4163 // an error here
4164 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4165 D.setInvalidType();
4166 SC = SC_None;
4167 }
4168 SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4169 VarDecl::StorageClass SCAsWritten
4170 = StorageClassSpecToVarDeclStorageClass(SCSpec);
4171
4172 IdentifierInfo *II = Name.getAsIdentifierInfo();
4173 if (!II) {
4174 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4175 << Name;
4176 return 0;
4177 }
4178
4179 DiagnoseFunctionSpecifiers(D);
4180
4181 if (!DC->isRecord() && S->getFnParent() == 0) {
4182 // C99 6.9p2: The storage-class specifiers auto and register shall not
4183 // appear in the declaration specifiers in an external declaration.
4184 if (SC == SC_Auto || SC == SC_Register) {
4185
4186 // If this is a register variable with an asm label specified, then this
4187 // is a GNU extension.
4188 if (SC == SC_Register && D.getAsmLabel())
4189 Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4190 else
4191 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4192 D.setInvalidType();
4193 }
4194 }
4195
4196 if (getLangOpts().OpenCL) {
4197 // Set up the special work-group-local storage class for variables in the
4198 // OpenCL __local address space.
4199 if (R.getAddressSpace() == LangAS::opencl_local)
4200 SC = SC_OpenCLWorkGroupLocal;
4201 }
4202
4203 bool isExplicitSpecialization = false;
4204 VarDecl *NewVD;
4205 if (!getLangOpts().CPlusPlus) {
4206 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4207 D.getIdentifierLoc(), II,
4208 R, TInfo, SC, SCAsWritten);
4209
4210 if (D.isInvalidType())
4211 NewVD->setInvalidDecl();
4212 } else {
4213 if (DC->isRecord() && !CurContext->isRecord()) {
4214 // This is an out-of-line definition of a static data member.
4215 if (SC == SC_Static) {
4216 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4217 diag::err_static_out_of_line)
4218 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4219 } else if (SC == SC_None)
4220 SC = SC_Static;
4221 }
4222 if (SC == SC_Static && CurContext->isRecord()) {
4223 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4224 if (RD->isLocalClass())
4225 Diag(D.getIdentifierLoc(),
4226 diag::err_static_data_member_not_allowed_in_local_class)
4227 << Name << RD->getDeclName();
4228
4229 // C++98 [class.union]p1: If a union contains a static data member,
4230 // the program is ill-formed. C++11 drops this restriction.
4231 if (RD->isUnion())
4232 Diag(D.getIdentifierLoc(),
4233 getLangOpts().CPlusPlus0x
4234 ? diag::warn_cxx98_compat_static_data_member_in_union
4235 : diag::ext_static_data_member_in_union) << Name;
4236 // We conservatively disallow static data members in anonymous structs.
4237 else if (!RD->getDeclName())
4238 Diag(D.getIdentifierLoc(),
4239 diag::err_static_data_member_not_allowed_in_anon_struct)
4240 << Name << RD->isUnion();
4241 }
4242 }
4243
4244 // Match up the template parameter lists with the scope specifier, then
4245 // determine whether we have a template or a template specialization.
4246 isExplicitSpecialization = false;
4247 bool Invalid = false;
4248 if (TemplateParameterList *TemplateParams
4249 = MatchTemplateParametersToScopeSpecifier(
4250 D.getDeclSpec().getLocStart(),
4251 D.getIdentifierLoc(),
4252 D.getCXXScopeSpec(),
4253 TemplateParamLists.data(),
4254 TemplateParamLists.size(),
4255 /*never a friend*/ false,
4256 isExplicitSpecialization,
4257 Invalid)) {
4258 if (TemplateParams->size() > 0) {
4259 // There is no such thing as a variable template.
4260 Diag(D.getIdentifierLoc(), diag::err_template_variable)
4261 << II
4262 << SourceRange(TemplateParams->getTemplateLoc(),
4263 TemplateParams->getRAngleLoc());
4264 return 0;
4265 } else {
4266 // There is an extraneous 'template<>' for this variable. Complain
4267 // about it, but allow the declaration of the variable.
4268 Diag(TemplateParams->getTemplateLoc(),
4269 diag::err_template_variable_noparams)
4270 << II
4271 << SourceRange(TemplateParams->getTemplateLoc(),
4272 TemplateParams->getRAngleLoc());
4273 }
4274 }
4275
4276 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4277 D.getIdentifierLoc(), II,
4278 R, TInfo, SC, SCAsWritten);
4279
4280 // If this decl has an auto type in need of deduction, make a note of the
4281 // Decl so we can diagnose uses of it in its own initializer.
4282 if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4283 R->getContainedAutoType())
4284 ParsingInitForAutoVars.insert(NewVD);
4285
4286 if (D.isInvalidType() || Invalid)
4287 NewVD->setInvalidDecl();
4288
4289 SetNestedNameSpecifier(NewVD, D);
4290
4291 if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4292 NewVD->setTemplateParameterListsInfo(Context,
4293 TemplateParamLists.size(),
4294 TemplateParamLists.data());
4295 }
4296
4297 if (D.getDeclSpec().isConstexprSpecified())
4298 NewVD->setConstexpr(true);
4299 }
4300
4301 // Set the lexical context. If the declarator has a C++ scope specifier, the
4302 // lexical context will be different from the semantic context.
4303 NewVD->setLexicalDeclContext(CurContext);
4304
4305 if (D.getDeclSpec().isThreadSpecified()) {
4306 if (NewVD->hasLocalStorage())
4307 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4308 else if (!Context.getTargetInfo().isTLSSupported())
4309 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4310 else
4311 NewVD->setThreadSpecified(true);
4312 }
4313
4314 if (D.getDeclSpec().isModulePrivateSpecified()) {
4315 if (isExplicitSpecialization)
4316 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4317 << 2
4318 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4319 else if (NewVD->hasLocalStorage())
4320 Diag(NewVD->getLocation(), diag::err_module_private_local)
4321 << 0 << NewVD->getDeclName()
4322 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4323 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4324 else
4325 NewVD->setModulePrivate();
4326 }
4327
4328 // Handle attributes prior to checking for duplicates in MergeVarDecl
4329 ProcessDeclAttributes(S, NewVD, D);
4330
4331 if (getLangOpts().CUDA) {
4332 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4333 // storage [duration]."
4334 if (SC == SC_None && S->getFnParent() != 0 &&
4335 (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4336 NewVD->setStorageClass(SC_Static);
4337 }
4338
4339 // In auto-retain/release, infer strong retension for variables of
4340 // retainable type.
4341 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4342 NewVD->setInvalidDecl();
4343
4344 // Handle GNU asm-label extension (encoded as an attribute).
4345 if (Expr *E = (Expr*)D.getAsmLabel()) {
4346 // The parser guarantees this is a string.
4347 StringLiteral *SE = cast<StringLiteral>(E);
4348 StringRef Label = SE->getString();
4349 if (S->getFnParent() != 0) {
4350 switch (SC) {
4351 case SC_None:
4352 case SC_Auto:
4353 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4354 break;
4355 case SC_Register:
4356 if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4357 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4358 break;
4359 case SC_Static:
4360 case SC_Extern:
4361 case SC_PrivateExtern:
4362 case SC_OpenCLWorkGroupLocal:
4363 break;
4364 }
4365 }
4366
4367 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4368 Context, Label));
4369 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4370 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4371 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4372 if (I != ExtnameUndeclaredIdentifiers.end()) {
4373 NewVD->addAttr(I->second);
4374 ExtnameUndeclaredIdentifiers.erase(I);
4375 }
4376 }
4377
4378 // Diagnose shadowed variables before filtering for scope.
4379 if (!D.getCXXScopeSpec().isSet())
4380 CheckShadow(S, NewVD, Previous);
4381
4382 // Don't consider existing declarations that are in a different
4383 // scope and are out-of-semantic-context declarations (if the new
4384 // declaration has linkage).
4385 FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4386 isExplicitSpecialization);
4387
4388 if (!getLangOpts().CPlusPlus) {
4389 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4390 } else {
4391 // Merge the decl with the existing one if appropriate.
4392 if (!Previous.empty()) {
4393 if (Previous.isSingleResult() &&
4394 isa<FieldDecl>(Previous.getFoundDecl()) &&
4395 D.getCXXScopeSpec().isSet()) {
4396 // The user tried to define a non-static data member
4397 // out-of-line (C++ [dcl.meaning]p1).
4398 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4399 << D.getCXXScopeSpec().getRange();
4400 Previous.clear();
4401 NewVD->setInvalidDecl();
4402 }
4403 } else if (D.getCXXScopeSpec().isSet()) {
4404 // No previous declaration in the qualifying scope.
4405 Diag(D.getIdentifierLoc(), diag::err_no_member)
4406 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4407 << D.getCXXScopeSpec().getRange();
4408 NewVD->setInvalidDecl();
4409 }
4410
4411 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4412
4413 // This is an explicit specialization of a static data member. Check it.
4414 if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4415 CheckMemberSpecialization(NewVD, Previous))
4416 NewVD->setInvalidDecl();
4417 }
4418
4419 // If this is a locally-scoped extern C variable, update the map of
4420 // such variables.
4421 if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4422 !NewVD->isInvalidDecl())
4423 RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4424
4425 // If there's a #pragma GCC visibility in scope, and this isn't a class
4426 // member, set the visibility of this variable.
4427 if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4428 AddPushedVisibilityAttribute(NewVD);
4429
4430 MarkUnusedFileScopedDecl(NewVD);
4431
4432 return NewVD;
4433 }
4434
4435 /// \brief Diagnose variable or built-in function shadowing. Implements
4436 /// -Wshadow.
4437 ///
4438 /// This method is called whenever a VarDecl is added to a "useful"
4439 /// scope.
4440 ///
4441 /// \param S the scope in which the shadowing name is being declared
4442 /// \param R the lookup of the name
4443 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)4444 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4445 // Return if warning is ignored.
4446 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4447 DiagnosticsEngine::Ignored)
4448 return;
4449
4450 // Don't diagnose declarations at file scope.
4451 if (D->hasGlobalStorage())
4452 return;
4453
4454 DeclContext *NewDC = D->getDeclContext();
4455
4456 // Only diagnose if we're shadowing an unambiguous field or variable.
4457 if (R.getResultKind() != LookupResult::Found)
4458 return;
4459
4460 NamedDecl* ShadowedDecl = R.getFoundDecl();
4461 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4462 return;
4463
4464 // Fields are not shadowed by variables in C++ static methods.
4465 if (isa<FieldDecl>(ShadowedDecl))
4466 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4467 if (MD->isStatic())
4468 return;
4469
4470 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4471 if (shadowedVar->isExternC()) {
4472 // For shadowing external vars, make sure that we point to the global
4473 // declaration, not a locally scoped extern declaration.
4474 for (VarDecl::redecl_iterator
4475 I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4476 I != E; ++I)
4477 if (I->isFileVarDecl()) {
4478 ShadowedDecl = *I;
4479 break;
4480 }
4481 }
4482
4483 DeclContext *OldDC = ShadowedDecl->getDeclContext();
4484
4485 // Only warn about certain kinds of shadowing for class members.
4486 if (NewDC && NewDC->isRecord()) {
4487 // In particular, don't warn about shadowing non-class members.
4488 if (!OldDC->isRecord())
4489 return;
4490
4491 // TODO: should we warn about static data members shadowing
4492 // static data members from base classes?
4493
4494 // TODO: don't diagnose for inaccessible shadowed members.
4495 // This is hard to do perfectly because we might friend the
4496 // shadowing context, but that's just a false negative.
4497 }
4498
4499 // Determine what kind of declaration we're shadowing.
4500 unsigned Kind;
4501 if (isa<RecordDecl>(OldDC)) {
4502 if (isa<FieldDecl>(ShadowedDecl))
4503 Kind = 3; // field
4504 else
4505 Kind = 2; // static data member
4506 } else if (OldDC->isFileContext())
4507 Kind = 1; // global
4508 else
4509 Kind = 0; // local
4510
4511 DeclarationName Name = R.getLookupName();
4512
4513 // Emit warning and note.
4514 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4515 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4516 }
4517
4518 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)4519 void Sema::CheckShadow(Scope *S, VarDecl *D) {
4520 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4521 DiagnosticsEngine::Ignored)
4522 return;
4523
4524 LookupResult R(*this, D->getDeclName(), D->getLocation(),
4525 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4526 LookupName(R, S);
4527 CheckShadow(S, D, R);
4528 }
4529
4530 /// \brief Perform semantic checking on a newly-created variable
4531 /// declaration.
4532 ///
4533 /// This routine performs all of the type-checking required for a
4534 /// variable declaration once it has been built. It is used both to
4535 /// check variables after they have been parsed and their declarators
4536 /// have been translated into a declaration, and to check variables
4537 /// that have been instantiated from a template.
4538 ///
4539 /// Sets NewVD->isInvalidDecl() if an error was encountered.
4540 ///
4541 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)4542 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4543 LookupResult &Previous) {
4544 // If the decl is already known invalid, don't check it.
4545 if (NewVD->isInvalidDecl())
4546 return false;
4547
4548 QualType T = NewVD->getType();
4549
4550 if (T->isObjCObjectType()) {
4551 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4552 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4553 T = Context.getObjCObjectPointerType(T);
4554 NewVD->setType(T);
4555 }
4556
4557 // Emit an error if an address space was applied to decl with local storage.
4558 // This includes arrays of objects with address space qualifiers, but not
4559 // automatic variables that point to other address spaces.
4560 // ISO/IEC TR 18037 S5.1.2
4561 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4562 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4563 NewVD->setInvalidDecl();
4564 return false;
4565 }
4566
4567 // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4568 // scope.
4569 if ((getLangOpts().OpenCLVersion >= 120)
4570 && NewVD->isStaticLocal()) {
4571 Diag(NewVD->getLocation(), diag::err_static_function_scope);
4572 NewVD->setInvalidDecl();
4573 return false;
4574 }
4575
4576 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4577 && !NewVD->hasAttr<BlocksAttr>()) {
4578 if (getLangOpts().getGC() != LangOptions::NonGC)
4579 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4580 else
4581 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4582 }
4583
4584 bool isVM = T->isVariablyModifiedType();
4585 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4586 NewVD->hasAttr<BlocksAttr>())
4587 getCurFunction()->setHasBranchProtectedScope();
4588
4589 if ((isVM && NewVD->hasLinkage()) ||
4590 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4591 bool SizeIsNegative;
4592 llvm::APSInt Oversized;
4593 QualType FixedTy =
4594 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4595 Oversized);
4596
4597 if (FixedTy.isNull() && T->isVariableArrayType()) {
4598 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4599 // FIXME: This won't give the correct result for
4600 // int a[10][n];
4601 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4602
4603 if (NewVD->isFileVarDecl())
4604 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4605 << SizeRange;
4606 else if (NewVD->getStorageClass() == SC_Static)
4607 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4608 << SizeRange;
4609 else
4610 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4611 << SizeRange;
4612 NewVD->setInvalidDecl();
4613 return false;
4614 }
4615
4616 if (FixedTy.isNull()) {
4617 if (NewVD->isFileVarDecl())
4618 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4619 else
4620 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4621 NewVD->setInvalidDecl();
4622 return false;
4623 }
4624
4625 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4626 NewVD->setType(FixedTy);
4627 }
4628
4629 if (Previous.empty() && NewVD->isExternC()) {
4630 // Since we did not find anything by this name and we're declaring
4631 // an extern "C" variable, look for a non-visible extern "C"
4632 // declaration with the same name.
4633 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4634 = findLocallyScopedExternalDecl(NewVD->getDeclName());
4635 if (Pos != LocallyScopedExternalDecls.end())
4636 Previous.addDecl(Pos->second);
4637 }
4638
4639 if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4640 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4641 << T;
4642 NewVD->setInvalidDecl();
4643 return false;
4644 }
4645
4646 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4647 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4648 NewVD->setInvalidDecl();
4649 return false;
4650 }
4651
4652 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4653 Diag(NewVD->getLocation(), diag::err_block_on_vm);
4654 NewVD->setInvalidDecl();
4655 return false;
4656 }
4657
4658 if (NewVD->isConstexpr() && !T->isDependentType() &&
4659 RequireLiteralType(NewVD->getLocation(), T,
4660 diag::err_constexpr_var_non_literal)) {
4661 NewVD->setInvalidDecl();
4662 return false;
4663 }
4664
4665 if (!Previous.empty()) {
4666 MergeVarDecl(NewVD, Previous);
4667 return true;
4668 }
4669 return false;
4670 }
4671
4672 /// \brief Data used with FindOverriddenMethod
4673 struct FindOverriddenMethodData {
4674 Sema *S;
4675 CXXMethodDecl *Method;
4676 };
4677
4678 /// \brief Member lookup function that determines whether a given C++
4679 /// method overrides a method in a base class, to be used with
4680 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)4681 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4682 CXXBasePath &Path,
4683 void *UserData) {
4684 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4685
4686 FindOverriddenMethodData *Data
4687 = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4688
4689 DeclarationName Name = Data->Method->getDeclName();
4690
4691 // FIXME: Do we care about other names here too?
4692 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4693 // We really want to find the base class destructor here.
4694 QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4695 CanQualType CT = Data->S->Context.getCanonicalType(T);
4696
4697 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4698 }
4699
4700 for (Path.Decls = BaseRecord->lookup(Name);
4701 Path.Decls.first != Path.Decls.second;
4702 ++Path.Decls.first) {
4703 NamedDecl *D = *Path.Decls.first;
4704 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4705 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4706 return true;
4707 }
4708 }
4709
4710 return false;
4711 }
4712
4713 /// AddOverriddenMethods - See if a method overrides any in the base classes,
4714 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)4715 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4716 // Look for virtual methods in base classes that this method might override.
4717 CXXBasePaths Paths;
4718 FindOverriddenMethodData Data;
4719 Data.Method = MD;
4720 Data.S = this;
4721 bool AddedAny = false;
4722 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4723 for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4724 E = Paths.found_decls_end(); I != E; ++I) {
4725 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4726 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4727 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4728 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4729 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4730 AddedAny = true;
4731 }
4732 }
4733 }
4734 }
4735
4736 return AddedAny;
4737 }
4738
4739 namespace {
4740 // Struct for holding all of the extra arguments needed by
4741 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4742 struct ActOnFDArgs {
4743 Scope *S;
4744 Declarator &D;
4745 MultiTemplateParamsArg TemplateParamLists;
4746 bool AddToScope;
4747 };
4748 }
4749
4750 namespace {
4751
4752 // Callback to only accept typo corrections that have a non-zero edit distance.
4753 // Also only accept corrections that have the same parent decl.
4754 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4755 public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)4756 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4757 CXXRecordDecl *Parent)
4758 : Context(Context), OriginalFD(TypoFD),
4759 ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4760
ValidateCandidate(const TypoCorrection & candidate)4761 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4762 if (candidate.getEditDistance() == 0)
4763 return false;
4764
4765 llvm::SmallVector<unsigned, 1> MismatchedParams;
4766 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4767 CDeclEnd = candidate.end();
4768 CDecl != CDeclEnd; ++CDecl) {
4769 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4770
4771 if (FD && !FD->hasBody() &&
4772 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4773 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4774 CXXRecordDecl *Parent = MD->getParent();
4775 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4776 return true;
4777 } else if (!ExpectedParent) {
4778 return true;
4779 }
4780 }
4781 }
4782
4783 return false;
4784 }
4785
4786 private:
4787 ASTContext &Context;
4788 FunctionDecl *OriginalFD;
4789 CXXRecordDecl *ExpectedParent;
4790 };
4791
4792 }
4793
4794 /// \brief Generate diagnostics for an invalid function redeclaration.
4795 ///
4796 /// This routine handles generating the diagnostic messages for an invalid
4797 /// function redeclaration, including finding possible similar declarations
4798 /// or performing typo correction if there are no previous declarations with
4799 /// the same name.
4800 ///
4801 /// Returns a NamedDecl iff typo correction was performed and substituting in
4802 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs)4803 static NamedDecl* DiagnoseInvalidRedeclaration(
4804 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4805 ActOnFDArgs &ExtraArgs) {
4806 NamedDecl *Result = NULL;
4807 DeclarationName Name = NewFD->getDeclName();
4808 DeclContext *NewDC = NewFD->getDeclContext();
4809 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4810 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4811 llvm::SmallVector<unsigned, 1> MismatchedParams;
4812 llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4813 TypoCorrection Correction;
4814 bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4815 ExtraArgs.D.getDeclSpec().isFriendSpecified());
4816 unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4817 : diag::err_member_def_does_not_match;
4818
4819 NewFD->setInvalidDecl();
4820 SemaRef.LookupQualifiedName(Prev, NewDC);
4821 assert(!Prev.isAmbiguous() &&
4822 "Cannot have an ambiguity in previous-declaration lookup");
4823 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4824 DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4825 MD ? MD->getParent() : 0);
4826 if (!Prev.empty()) {
4827 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4828 Func != FuncEnd; ++Func) {
4829 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4830 if (FD &&
4831 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4832 // Add 1 to the index so that 0 can mean the mismatch didn't
4833 // involve a parameter
4834 unsigned ParamNum =
4835 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4836 NearMatches.push_back(std::make_pair(FD, ParamNum));
4837 }
4838 }
4839 // If the qualified name lookup yielded nothing, try typo correction
4840 } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4841 Prev.getLookupKind(), 0, 0,
4842 Validator, NewDC))) {
4843 // Trap errors.
4844 Sema::SFINAETrap Trap(SemaRef);
4845
4846 // Set up everything for the call to ActOnFunctionDeclarator
4847 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4848 ExtraArgs.D.getIdentifierLoc());
4849 Previous.clear();
4850 Previous.setLookupName(Correction.getCorrection());
4851 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4852 CDeclEnd = Correction.end();
4853 CDecl != CDeclEnd; ++CDecl) {
4854 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4855 if (FD && !FD->hasBody() &&
4856 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4857 Previous.addDecl(FD);
4858 }
4859 }
4860 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4861 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4862 // pieces need to verify the typo-corrected C++ declaraction and hopefully
4863 // eliminate the need for the parameter pack ExtraArgs.
4864 Result = SemaRef.ActOnFunctionDeclarator(
4865 ExtraArgs.S, ExtraArgs.D,
4866 Correction.getCorrectionDecl()->getDeclContext(),
4867 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4868 ExtraArgs.AddToScope);
4869 if (Trap.hasErrorOccurred()) {
4870 // Pretend the typo correction never occurred
4871 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4872 ExtraArgs.D.getIdentifierLoc());
4873 ExtraArgs.D.setRedeclaration(wasRedeclaration);
4874 Previous.clear();
4875 Previous.setLookupName(Name);
4876 Result = NULL;
4877 } else {
4878 for (LookupResult::iterator Func = Previous.begin(),
4879 FuncEnd = Previous.end();
4880 Func != FuncEnd; ++Func) {
4881 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4882 NearMatches.push_back(std::make_pair(FD, 0));
4883 }
4884 }
4885 if (NearMatches.empty()) {
4886 // Ignore the correction if it didn't yield any close FunctionDecl matches
4887 Correction = TypoCorrection();
4888 } else {
4889 DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4890 : diag::err_member_def_does_not_match_suggest;
4891 }
4892 }
4893
4894 if (Correction) {
4895 SourceRange FixItLoc(NewFD->getLocation());
4896 CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4897 if (Correction.getCorrectionSpecifier() && SS.isValid())
4898 FixItLoc.setBegin(SS.getBeginLoc());
4899 SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4900 << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4901 << FixItHint::CreateReplacement(
4902 FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4903 } else {
4904 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4905 << Name << NewDC << NewFD->getLocation();
4906 }
4907
4908 bool NewFDisConst = false;
4909 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4910 NewFDisConst = NewMD->isConst();
4911
4912 for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4913 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4914 NearMatch != NearMatchEnd; ++NearMatch) {
4915 FunctionDecl *FD = NearMatch->first;
4916 bool FDisConst = false;
4917 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4918 FDisConst = MD->isConst();
4919
4920 if (unsigned Idx = NearMatch->second) {
4921 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4922 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4923 if (Loc.isInvalid()) Loc = FD->getLocation();
4924 SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4925 << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4926 } else if (Correction) {
4927 SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4928 << Correction.getQuoted(SemaRef.getLangOpts());
4929 } else if (FDisConst != NewFDisConst) {
4930 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4931 << NewFDisConst << FD->getSourceRange().getEnd();
4932 } else
4933 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4934 }
4935 return Result;
4936 }
4937
getFunctionStorageClass(Sema & SemaRef,Declarator & D)4938 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4939 Declarator &D) {
4940 switch (D.getDeclSpec().getStorageClassSpec()) {
4941 default: llvm_unreachable("Unknown storage class!");
4942 case DeclSpec::SCS_auto:
4943 case DeclSpec::SCS_register:
4944 case DeclSpec::SCS_mutable:
4945 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4946 diag::err_typecheck_sclass_func);
4947 D.setInvalidType();
4948 break;
4949 case DeclSpec::SCS_unspecified: break;
4950 case DeclSpec::SCS_extern: return SC_Extern;
4951 case DeclSpec::SCS_static: {
4952 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4953 // C99 6.7.1p5:
4954 // The declaration of an identifier for a function that has
4955 // block scope shall have no explicit storage-class specifier
4956 // other than extern
4957 // See also (C++ [dcl.stc]p4).
4958 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4959 diag::err_static_block_func);
4960 break;
4961 } else
4962 return SC_Static;
4963 }
4964 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4965 }
4966
4967 // No explicit storage class has already been returned
4968 return SC_None;
4969 }
4970
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,FunctionDecl::StorageClass SC,bool & IsVirtualOkay)4971 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4972 DeclContext *DC, QualType &R,
4973 TypeSourceInfo *TInfo,
4974 FunctionDecl::StorageClass SC,
4975 bool &IsVirtualOkay) {
4976 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4977 DeclarationName Name = NameInfo.getName();
4978
4979 FunctionDecl *NewFD = 0;
4980 bool isInline = D.getDeclSpec().isInlineSpecified();
4981 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4982 FunctionDecl::StorageClass SCAsWritten
4983 = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4984
4985 if (!SemaRef.getLangOpts().CPlusPlus) {
4986 // Determine whether the function was written with a
4987 // prototype. This true when:
4988 // - there is a prototype in the declarator, or
4989 // - the type R of the function is some kind of typedef or other reference
4990 // to a type name (which eventually refers to a function type).
4991 bool HasPrototype =
4992 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4993 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4994
4995 NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4996 D.getLocStart(), NameInfo, R,
4997 TInfo, SC, SCAsWritten, isInline,
4998 HasPrototype);
4999 if (D.isInvalidType())
5000 NewFD->setInvalidDecl();
5001
5002 // Set the lexical context.
5003 NewFD->setLexicalDeclContext(SemaRef.CurContext);
5004
5005 return NewFD;
5006 }
5007
5008 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5009 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5010
5011 // Check that the return type is not an abstract class type.
5012 // For record types, this is done by the AbstractClassUsageDiagnoser once
5013 // the class has been completely parsed.
5014 if (!DC->isRecord() &&
5015 SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5016 R->getAs<FunctionType>()->getResultType(),
5017 diag::err_abstract_type_in_decl,
5018 SemaRef.AbstractReturnType))
5019 D.setInvalidType();
5020
5021 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5022 // This is a C++ constructor declaration.
5023 assert(DC->isRecord() &&
5024 "Constructors can only be declared in a member context");
5025
5026 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5027 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5028 D.getLocStart(), NameInfo,
5029 R, TInfo, isExplicit, isInline,
5030 /*isImplicitlyDeclared=*/false,
5031 isConstexpr);
5032
5033 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5034 // This is a C++ destructor declaration.
5035 if (DC->isRecord()) {
5036 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5037 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5038 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5039 SemaRef.Context, Record,
5040 D.getLocStart(),
5041 NameInfo, R, TInfo, isInline,
5042 /*isImplicitlyDeclared=*/false);
5043
5044 // If the class is complete, then we now create the implicit exception
5045 // specification. If the class is incomplete or dependent, we can't do
5046 // it yet.
5047 if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5048 Record->getDefinition() && !Record->isBeingDefined() &&
5049 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5050 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5051 }
5052
5053 IsVirtualOkay = true;
5054 return NewDD;
5055
5056 } else {
5057 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5058 D.setInvalidType();
5059
5060 // Create a FunctionDecl to satisfy the function definition parsing
5061 // code path.
5062 return FunctionDecl::Create(SemaRef.Context, DC,
5063 D.getLocStart(),
5064 D.getIdentifierLoc(), Name, R, TInfo,
5065 SC, SCAsWritten, isInline,
5066 /*hasPrototype=*/true, isConstexpr);
5067 }
5068
5069 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5070 if (!DC->isRecord()) {
5071 SemaRef.Diag(D.getIdentifierLoc(),
5072 diag::err_conv_function_not_member);
5073 return 0;
5074 }
5075
5076 SemaRef.CheckConversionDeclarator(D, R, SC);
5077 IsVirtualOkay = true;
5078 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5079 D.getLocStart(), NameInfo,
5080 R, TInfo, isInline, isExplicit,
5081 isConstexpr, SourceLocation());
5082
5083 } else if (DC->isRecord()) {
5084 // If the name of the function is the same as the name of the record,
5085 // then this must be an invalid constructor that has a return type.
5086 // (The parser checks for a return type and makes the declarator a
5087 // constructor if it has no return type).
5088 if (Name.getAsIdentifierInfo() &&
5089 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5090 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5091 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5092 << SourceRange(D.getIdentifierLoc());
5093 return 0;
5094 }
5095
5096 bool isStatic = SC == SC_Static;
5097
5098 // [class.free]p1:
5099 // Any allocation function for a class T is a static member
5100 // (even if not explicitly declared static).
5101 if (Name.getCXXOverloadedOperator() == OO_New ||
5102 Name.getCXXOverloadedOperator() == OO_Array_New)
5103 isStatic = true;
5104
5105 // [class.free]p6 Any deallocation function for a class X is a static member
5106 // (even if not explicitly declared static).
5107 if (Name.getCXXOverloadedOperator() == OO_Delete ||
5108 Name.getCXXOverloadedOperator() == OO_Array_Delete)
5109 isStatic = true;
5110
5111 IsVirtualOkay = !isStatic;
5112
5113 // This is a C++ method declaration.
5114 return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5115 D.getLocStart(), NameInfo, R,
5116 TInfo, isStatic, SCAsWritten, isInline,
5117 isConstexpr, SourceLocation());
5118
5119 } else {
5120 // Determine whether the function was written with a
5121 // prototype. This true when:
5122 // - we're in C++ (where every function has a prototype),
5123 return FunctionDecl::Create(SemaRef.Context, DC,
5124 D.getLocStart(),
5125 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5126 true/*HasPrototype*/, isConstexpr);
5127 }
5128 }
5129
5130 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5131 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5132 TypeSourceInfo *TInfo, LookupResult &Previous,
5133 MultiTemplateParamsArg TemplateParamLists,
5134 bool &AddToScope) {
5135 QualType R = TInfo->getType();
5136
5137 assert(R.getTypePtr()->isFunctionType());
5138
5139 // TODO: consider using NameInfo for diagnostic.
5140 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5141 DeclarationName Name = NameInfo.getName();
5142 FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5143
5144 if (D.getDeclSpec().isThreadSpecified())
5145 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5146
5147 // Do not allow returning a objc interface by-value.
5148 if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5149 Diag(D.getIdentifierLoc(),
5150 diag::err_object_cannot_be_passed_returned_by_value) << 0
5151 << R->getAs<FunctionType>()->getResultType()
5152 << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5153
5154 QualType T = R->getAs<FunctionType>()->getResultType();
5155 T = Context.getObjCObjectPointerType(T);
5156 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5157 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5158 R = Context.getFunctionType(T, FPT->arg_type_begin(),
5159 FPT->getNumArgs(), EPI);
5160 }
5161 else if (isa<FunctionNoProtoType>(R))
5162 R = Context.getFunctionNoProtoType(T);
5163 }
5164
5165 bool isFriend = false;
5166 FunctionTemplateDecl *FunctionTemplate = 0;
5167 bool isExplicitSpecialization = false;
5168 bool isFunctionTemplateSpecialization = false;
5169
5170 bool isDependentClassScopeExplicitSpecialization = false;
5171 bool HasExplicitTemplateArgs = false;
5172 TemplateArgumentListInfo TemplateArgs;
5173
5174 bool isVirtualOkay = false;
5175
5176 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5177 isVirtualOkay);
5178 if (!NewFD) return 0;
5179
5180 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5181 NewFD->setTopLevelDeclInObjCContainer();
5182
5183 if (getLangOpts().CPlusPlus) {
5184 bool isInline = D.getDeclSpec().isInlineSpecified();
5185 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5186 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5187 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5188 isFriend = D.getDeclSpec().isFriendSpecified();
5189 if (isFriend && !isInline && D.isFunctionDefinition()) {
5190 // C++ [class.friend]p5
5191 // A function can be defined in a friend declaration of a
5192 // class . . . . Such a function is implicitly inline.
5193 NewFD->setImplicitlyInline();
5194 }
5195
5196 // if this is a method defined in an __interface, set pure
5197 // (isVirtual will already return true)
5198 if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(
5199 NewFD->getDeclContext())) {
5200 if (Parent->getTagKind() == TTK_Interface)
5201 NewFD->setPure(true);
5202 }
5203
5204 SetNestedNameSpecifier(NewFD, D);
5205 isExplicitSpecialization = false;
5206 isFunctionTemplateSpecialization = false;
5207 if (D.isInvalidType())
5208 NewFD->setInvalidDecl();
5209
5210 // Set the lexical context. If the declarator has a C++
5211 // scope specifier, or is the object of a friend declaration, the
5212 // lexical context will be different from the semantic context.
5213 NewFD->setLexicalDeclContext(CurContext);
5214
5215 // Match up the template parameter lists with the scope specifier, then
5216 // determine whether we have a template or a template specialization.
5217 bool Invalid = false;
5218 if (TemplateParameterList *TemplateParams
5219 = MatchTemplateParametersToScopeSpecifier(
5220 D.getDeclSpec().getLocStart(),
5221 D.getIdentifierLoc(),
5222 D.getCXXScopeSpec(),
5223 TemplateParamLists.data(),
5224 TemplateParamLists.size(),
5225 isFriend,
5226 isExplicitSpecialization,
5227 Invalid)) {
5228 if (TemplateParams->size() > 0) {
5229 // This is a function template
5230
5231 // Check that we can declare a template here.
5232 if (CheckTemplateDeclScope(S, TemplateParams))
5233 return 0;
5234
5235 // A destructor cannot be a template.
5236 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5237 Diag(NewFD->getLocation(), diag::err_destructor_template);
5238 return 0;
5239 }
5240
5241 // If we're adding a template to a dependent context, we may need to
5242 // rebuilding some of the types used within the template parameter list,
5243 // now that we know what the current instantiation is.
5244 if (DC->isDependentContext()) {
5245 ContextRAII SavedContext(*this, DC);
5246 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5247 Invalid = true;
5248 }
5249
5250
5251 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5252 NewFD->getLocation(),
5253 Name, TemplateParams,
5254 NewFD);
5255 FunctionTemplate->setLexicalDeclContext(CurContext);
5256 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5257
5258 // For source fidelity, store the other template param lists.
5259 if (TemplateParamLists.size() > 1) {
5260 NewFD->setTemplateParameterListsInfo(Context,
5261 TemplateParamLists.size() - 1,
5262 TemplateParamLists.data());
5263 }
5264 } else {
5265 // This is a function template specialization.
5266 isFunctionTemplateSpecialization = true;
5267 // For source fidelity, store all the template param lists.
5268 NewFD->setTemplateParameterListsInfo(Context,
5269 TemplateParamLists.size(),
5270 TemplateParamLists.data());
5271
5272 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5273 if (isFriend) {
5274 // We want to remove the "template<>", found here.
5275 SourceRange RemoveRange = TemplateParams->getSourceRange();
5276
5277 // If we remove the template<> and the name is not a
5278 // template-id, we're actually silently creating a problem:
5279 // the friend declaration will refer to an untemplated decl,
5280 // and clearly the user wants a template specialization. So
5281 // we need to insert '<>' after the name.
5282 SourceLocation InsertLoc;
5283 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5284 InsertLoc = D.getName().getSourceRange().getEnd();
5285 InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5286 }
5287
5288 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5289 << Name << RemoveRange
5290 << FixItHint::CreateRemoval(RemoveRange)
5291 << FixItHint::CreateInsertion(InsertLoc, "<>");
5292 }
5293 }
5294 }
5295 else {
5296 // All template param lists were matched against the scope specifier:
5297 // this is NOT (an explicit specialization of) a template.
5298 if (TemplateParamLists.size() > 0)
5299 // For source fidelity, store all the template param lists.
5300 NewFD->setTemplateParameterListsInfo(Context,
5301 TemplateParamLists.size(),
5302 TemplateParamLists.data());
5303 }
5304
5305 if (Invalid) {
5306 NewFD->setInvalidDecl();
5307 if (FunctionTemplate)
5308 FunctionTemplate->setInvalidDecl();
5309 }
5310
5311 // C++ [dcl.fct.spec]p5:
5312 // The virtual specifier shall only be used in declarations of
5313 // nonstatic class member functions that appear within a
5314 // member-specification of a class declaration; see 10.3.
5315 //
5316 if (isVirtual && !NewFD->isInvalidDecl()) {
5317 if (!isVirtualOkay) {
5318 Diag(D.getDeclSpec().getVirtualSpecLoc(),
5319 diag::err_virtual_non_function);
5320 } else if (!CurContext->isRecord()) {
5321 // 'virtual' was specified outside of the class.
5322 Diag(D.getDeclSpec().getVirtualSpecLoc(),
5323 diag::err_virtual_out_of_class)
5324 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5325 } else if (NewFD->getDescribedFunctionTemplate()) {
5326 // C++ [temp.mem]p3:
5327 // A member function template shall not be virtual.
5328 Diag(D.getDeclSpec().getVirtualSpecLoc(),
5329 diag::err_virtual_member_function_template)
5330 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5331 } else {
5332 // Okay: Add virtual to the method.
5333 NewFD->setVirtualAsWritten(true);
5334 }
5335 }
5336
5337 // C++ [dcl.fct.spec]p3:
5338 // The inline specifier shall not appear on a block scope function
5339 // declaration.
5340 if (isInline && !NewFD->isInvalidDecl()) {
5341 if (CurContext->isFunctionOrMethod()) {
5342 // 'inline' is not allowed on block scope function declaration.
5343 Diag(D.getDeclSpec().getInlineSpecLoc(),
5344 diag::err_inline_declaration_block_scope) << Name
5345 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5346 }
5347 }
5348
5349 // C++ [dcl.fct.spec]p6:
5350 // The explicit specifier shall be used only in the declaration of a
5351 // constructor or conversion function within its class definition;
5352 // see 12.3.1 and 12.3.2.
5353 if (isExplicit && !NewFD->isInvalidDecl()) {
5354 if (!CurContext->isRecord()) {
5355 // 'explicit' was specified outside of the class.
5356 Diag(D.getDeclSpec().getExplicitSpecLoc(),
5357 diag::err_explicit_out_of_class)
5358 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5359 } else if (!isa<CXXConstructorDecl>(NewFD) &&
5360 !isa<CXXConversionDecl>(NewFD)) {
5361 // 'explicit' was specified on a function that wasn't a constructor
5362 // or conversion function.
5363 Diag(D.getDeclSpec().getExplicitSpecLoc(),
5364 diag::err_explicit_non_ctor_or_conv_function)
5365 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5366 }
5367 }
5368
5369 if (isConstexpr) {
5370 // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5371 // are implicitly inline.
5372 NewFD->setImplicitlyInline();
5373
5374 // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5375 // be either constructors or to return a literal type. Therefore,
5376 // destructors cannot be declared constexpr.
5377 if (isa<CXXDestructorDecl>(NewFD))
5378 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5379 }
5380
5381 // If __module_private__ was specified, mark the function accordingly.
5382 if (D.getDeclSpec().isModulePrivateSpecified()) {
5383 if (isFunctionTemplateSpecialization) {
5384 SourceLocation ModulePrivateLoc
5385 = D.getDeclSpec().getModulePrivateSpecLoc();
5386 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5387 << 0
5388 << FixItHint::CreateRemoval(ModulePrivateLoc);
5389 } else {
5390 NewFD->setModulePrivate();
5391 if (FunctionTemplate)
5392 FunctionTemplate->setModulePrivate();
5393 }
5394 }
5395
5396 if (isFriend) {
5397 // For now, claim that the objects have no previous declaration.
5398 if (FunctionTemplate) {
5399 FunctionTemplate->setObjectOfFriendDecl(false);
5400 FunctionTemplate->setAccess(AS_public);
5401 }
5402 NewFD->setObjectOfFriendDecl(false);
5403 NewFD->setAccess(AS_public);
5404 }
5405
5406 // If a function is defined as defaulted or deleted, mark it as such now.
5407 switch (D.getFunctionDefinitionKind()) {
5408 case FDK_Declaration:
5409 case FDK_Definition:
5410 break;
5411
5412 case FDK_Defaulted:
5413 NewFD->setDefaulted();
5414 break;
5415
5416 case FDK_Deleted:
5417 NewFD->setDeletedAsWritten();
5418 break;
5419 }
5420
5421 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5422 D.isFunctionDefinition()) {
5423 // C++ [class.mfct]p2:
5424 // A member function may be defined (8.4) in its class definition, in
5425 // which case it is an inline member function (7.1.2)
5426 NewFD->setImplicitlyInline();
5427 }
5428
5429 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5430 !CurContext->isRecord()) {
5431 // C++ [class.static]p1:
5432 // A data or function member of a class may be declared static
5433 // in a class definition, in which case it is a static member of
5434 // the class.
5435
5436 // Complain about the 'static' specifier if it's on an out-of-line
5437 // member function definition.
5438 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5439 diag::err_static_out_of_line)
5440 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5441 }
5442 }
5443
5444 // Filter out previous declarations that don't match the scope.
5445 FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5446 isExplicitSpecialization ||
5447 isFunctionTemplateSpecialization);
5448
5449 // Handle GNU asm-label extension (encoded as an attribute).
5450 if (Expr *E = (Expr*) D.getAsmLabel()) {
5451 // The parser guarantees this is a string.
5452 StringLiteral *SE = cast<StringLiteral>(E);
5453 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5454 SE->getString()));
5455 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5456 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5457 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5458 if (I != ExtnameUndeclaredIdentifiers.end()) {
5459 NewFD->addAttr(I->second);
5460 ExtnameUndeclaredIdentifiers.erase(I);
5461 }
5462 }
5463
5464 // Copy the parameter declarations from the declarator D to the function
5465 // declaration NewFD, if they are available. First scavenge them into Params.
5466 SmallVector<ParmVarDecl*, 16> Params;
5467 if (D.isFunctionDeclarator()) {
5468 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5469
5470 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5471 // function that takes no arguments, not a function that takes a
5472 // single void argument.
5473 // We let through "const void" here because Sema::GetTypeForDeclarator
5474 // already checks for that case.
5475 if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5476 FTI.ArgInfo[0].Param &&
5477 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5478 // Empty arg list, don't push any params.
5479 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5480
5481 // In C++, the empty parameter-type-list must be spelled "void"; a
5482 // typedef of void is not permitted.
5483 if (getLangOpts().CPlusPlus &&
5484 Param->getType().getUnqualifiedType() != Context.VoidTy) {
5485 bool IsTypeAlias = false;
5486 if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5487 IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5488 else if (const TemplateSpecializationType *TST =
5489 Param->getType()->getAs<TemplateSpecializationType>())
5490 IsTypeAlias = TST->isTypeAlias();
5491 Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5492 << IsTypeAlias;
5493 }
5494 } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5495 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5496 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5497 assert(Param->getDeclContext() != NewFD && "Was set before ?");
5498 Param->setDeclContext(NewFD);
5499 Params.push_back(Param);
5500
5501 if (Param->isInvalidDecl())
5502 NewFD->setInvalidDecl();
5503 }
5504 }
5505
5506 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5507 // When we're declaring a function with a typedef, typeof, etc as in the
5508 // following example, we'll need to synthesize (unnamed)
5509 // parameters for use in the declaration.
5510 //
5511 // @code
5512 // typedef void fn(int);
5513 // fn f;
5514 // @endcode
5515
5516 // Synthesize a parameter for each argument type.
5517 for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5518 AE = FT->arg_type_end(); AI != AE; ++AI) {
5519 ParmVarDecl *Param =
5520 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5521 Param->setScopeInfo(0, Params.size());
5522 Params.push_back(Param);
5523 }
5524 } else {
5525 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5526 "Should not need args for typedef of non-prototype fn");
5527 }
5528
5529 // Finally, we know we have the right number of parameters, install them.
5530 NewFD->setParams(Params);
5531
5532 // Find all anonymous symbols defined during the declaration of this function
5533 // and add to NewFD. This lets us track decls such 'enum Y' in:
5534 //
5535 // void f(enum Y {AA} x) {}
5536 //
5537 // which would otherwise incorrectly end up in the translation unit scope.
5538 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5539 DeclsInPrototypeScope.clear();
5540
5541 // Process the non-inheritable attributes on this declaration.
5542 ProcessDeclAttributes(S, NewFD, D,
5543 /*NonInheritable=*/true, /*Inheritable=*/false);
5544
5545 // Functions returning a variably modified type violate C99 6.7.5.2p2
5546 // because all functions have linkage.
5547 if (!NewFD->isInvalidDecl() &&
5548 NewFD->getResultType()->isVariablyModifiedType()) {
5549 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5550 NewFD->setInvalidDecl();
5551 }
5552
5553 // Handle attributes.
5554 ProcessDeclAttributes(S, NewFD, D,
5555 /*NonInheritable=*/false, /*Inheritable=*/true);
5556
5557 if (!getLangOpts().CPlusPlus) {
5558 // Perform semantic checking on the function declaration.
5559 bool isExplicitSpecialization=false;
5560 if (!NewFD->isInvalidDecl()) {
5561 if (NewFD->isMain())
5562 CheckMain(NewFD, D.getDeclSpec());
5563 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5564 isExplicitSpecialization));
5565 }
5566 // Make graceful recovery from an invalid redeclaration.
5567 else if (!Previous.empty())
5568 D.setRedeclaration(true);
5569 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5570 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5571 "previous declaration set still overloaded");
5572 } else {
5573 // If the declarator is a template-id, translate the parser's template
5574 // argument list into our AST format.
5575 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5576 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5577 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5578 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5579 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5580 TemplateId->NumArgs);
5581 translateTemplateArguments(TemplateArgsPtr,
5582 TemplateArgs);
5583
5584 HasExplicitTemplateArgs = true;
5585
5586 if (NewFD->isInvalidDecl()) {
5587 HasExplicitTemplateArgs = false;
5588 } else if (FunctionTemplate) {
5589 // Function template with explicit template arguments.
5590 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5591 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5592
5593 HasExplicitTemplateArgs = false;
5594 } else if (!isFunctionTemplateSpecialization &&
5595 !D.getDeclSpec().isFriendSpecified()) {
5596 // We have encountered something that the user meant to be a
5597 // specialization (because it has explicitly-specified template
5598 // arguments) but that was not introduced with a "template<>" (or had
5599 // too few of them).
5600 Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5601 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5602 << FixItHint::CreateInsertion(
5603 D.getDeclSpec().getLocStart(),
5604 "template<> ");
5605 isFunctionTemplateSpecialization = true;
5606 } else {
5607 // "friend void foo<>(int);" is an implicit specialization decl.
5608 isFunctionTemplateSpecialization = true;
5609 }
5610 } else if (isFriend && isFunctionTemplateSpecialization) {
5611 // This combination is only possible in a recovery case; the user
5612 // wrote something like:
5613 // template <> friend void foo(int);
5614 // which we're recovering from as if the user had written:
5615 // friend void foo<>(int);
5616 // Go ahead and fake up a template id.
5617 HasExplicitTemplateArgs = true;
5618 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5619 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5620 }
5621
5622 // If it's a friend (and only if it's a friend), it's possible
5623 // that either the specialized function type or the specialized
5624 // template is dependent, and therefore matching will fail. In
5625 // this case, don't check the specialization yet.
5626 bool InstantiationDependent = false;
5627 if (isFunctionTemplateSpecialization && isFriend &&
5628 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5629 TemplateSpecializationType::anyDependentTemplateArguments(
5630 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5631 InstantiationDependent))) {
5632 assert(HasExplicitTemplateArgs &&
5633 "friend function specialization without template args");
5634 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5635 Previous))
5636 NewFD->setInvalidDecl();
5637 } else if (isFunctionTemplateSpecialization) {
5638 if (CurContext->isDependentContext() && CurContext->isRecord()
5639 && !isFriend) {
5640 isDependentClassScopeExplicitSpecialization = true;
5641 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5642 diag::ext_function_specialization_in_class :
5643 diag::err_function_specialization_in_class)
5644 << NewFD->getDeclName();
5645 } else if (CheckFunctionTemplateSpecialization(NewFD,
5646 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5647 Previous))
5648 NewFD->setInvalidDecl();
5649
5650 // C++ [dcl.stc]p1:
5651 // A storage-class-specifier shall not be specified in an explicit
5652 // specialization (14.7.3)
5653 if (SC != SC_None) {
5654 if (SC != NewFD->getStorageClass())
5655 Diag(NewFD->getLocation(),
5656 diag::err_explicit_specialization_inconsistent_storage_class)
5657 << SC
5658 << FixItHint::CreateRemoval(
5659 D.getDeclSpec().getStorageClassSpecLoc());
5660
5661 else
5662 Diag(NewFD->getLocation(),
5663 diag::ext_explicit_specialization_storage_class)
5664 << FixItHint::CreateRemoval(
5665 D.getDeclSpec().getStorageClassSpecLoc());
5666 }
5667
5668 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5669 if (CheckMemberSpecialization(NewFD, Previous))
5670 NewFD->setInvalidDecl();
5671 }
5672
5673 // Perform semantic checking on the function declaration.
5674 if (!isDependentClassScopeExplicitSpecialization) {
5675 if (NewFD->isInvalidDecl()) {
5676 // If this is a class member, mark the class invalid immediately.
5677 // This avoids some consistency errors later.
5678 if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5679 methodDecl->getParent()->setInvalidDecl();
5680 } else {
5681 if (NewFD->isMain())
5682 CheckMain(NewFD, D.getDeclSpec());
5683 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5684 isExplicitSpecialization));
5685 }
5686 }
5687
5688 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5689 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5690 "previous declaration set still overloaded");
5691
5692 NamedDecl *PrincipalDecl = (FunctionTemplate
5693 ? cast<NamedDecl>(FunctionTemplate)
5694 : NewFD);
5695
5696 if (isFriend && D.isRedeclaration()) {
5697 AccessSpecifier Access = AS_public;
5698 if (!NewFD->isInvalidDecl())
5699 Access = NewFD->getPreviousDecl()->getAccess();
5700
5701 NewFD->setAccess(Access);
5702 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5703
5704 PrincipalDecl->setObjectOfFriendDecl(true);
5705 }
5706
5707 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5708 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5709 PrincipalDecl->setNonMemberOperator();
5710
5711 // If we have a function template, check the template parameter
5712 // list. This will check and merge default template arguments.
5713 if (FunctionTemplate) {
5714 FunctionTemplateDecl *PrevTemplate =
5715 FunctionTemplate->getPreviousDecl();
5716 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5717 PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5718 D.getDeclSpec().isFriendSpecified()
5719 ? (D.isFunctionDefinition()
5720 ? TPC_FriendFunctionTemplateDefinition
5721 : TPC_FriendFunctionTemplate)
5722 : (D.getCXXScopeSpec().isSet() &&
5723 DC && DC->isRecord() &&
5724 DC->isDependentContext())
5725 ? TPC_ClassTemplateMember
5726 : TPC_FunctionTemplate);
5727 }
5728
5729 if (NewFD->isInvalidDecl()) {
5730 // Ignore all the rest of this.
5731 } else if (!D.isRedeclaration()) {
5732 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5733 AddToScope };
5734 // Fake up an access specifier if it's supposed to be a class member.
5735 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5736 NewFD->setAccess(AS_public);
5737
5738 // Qualified decls generally require a previous declaration.
5739 if (D.getCXXScopeSpec().isSet()) {
5740 // ...with the major exception of templated-scope or
5741 // dependent-scope friend declarations.
5742
5743 // TODO: we currently also suppress this check in dependent
5744 // contexts because (1) the parameter depth will be off when
5745 // matching friend templates and (2) we might actually be
5746 // selecting a friend based on a dependent factor. But there
5747 // are situations where these conditions don't apply and we
5748 // can actually do this check immediately.
5749 if (isFriend &&
5750 (TemplateParamLists.size() ||
5751 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5752 CurContext->isDependentContext())) {
5753 // ignore these
5754 } else {
5755 // The user tried to provide an out-of-line definition for a
5756 // function that is a member of a class or namespace, but there
5757 // was no such member function declared (C++ [class.mfct]p2,
5758 // C++ [namespace.memdef]p2). For example:
5759 //
5760 // class X {
5761 // void f() const;
5762 // };
5763 //
5764 // void X::f() { } // ill-formed
5765 //
5766 // Complain about this problem, and attempt to suggest close
5767 // matches (e.g., those that differ only in cv-qualifiers and
5768 // whether the parameter types are references).
5769
5770 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5771 NewFD,
5772 ExtraArgs)) {
5773 AddToScope = ExtraArgs.AddToScope;
5774 return Result;
5775 }
5776 }
5777
5778 // Unqualified local friend declarations are required to resolve
5779 // to something.
5780 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5781 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5782 NewFD,
5783 ExtraArgs)) {
5784 AddToScope = ExtraArgs.AddToScope;
5785 return Result;
5786 }
5787 }
5788
5789 } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5790 !isFriend && !isFunctionTemplateSpecialization &&
5791 !isExplicitSpecialization) {
5792 // An out-of-line member function declaration must also be a
5793 // definition (C++ [dcl.meaning]p1).
5794 // Note that this is not the case for explicit specializations of
5795 // function templates or member functions of class templates, per
5796 // C++ [temp.expl.spec]p2. We also allow these declarations as an
5797 // extension for compatibility with old SWIG code which likes to
5798 // generate them.
5799 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5800 << D.getCXXScopeSpec().getRange();
5801 }
5802 }
5803
5804 AddKnownFunctionAttributes(NewFD);
5805
5806 if (NewFD->hasAttr<OverloadableAttr>() &&
5807 !NewFD->getType()->getAs<FunctionProtoType>()) {
5808 Diag(NewFD->getLocation(),
5809 diag::err_attribute_overloadable_no_prototype)
5810 << NewFD;
5811
5812 // Turn this into a variadic function with no parameters.
5813 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5814 FunctionProtoType::ExtProtoInfo EPI;
5815 EPI.Variadic = true;
5816 EPI.ExtInfo = FT->getExtInfo();
5817
5818 QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5819 NewFD->setType(R);
5820 }
5821
5822 // If there's a #pragma GCC visibility in scope, and this isn't a class
5823 // member, set the visibility of this function.
5824 if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5825 AddPushedVisibilityAttribute(NewFD);
5826
5827 // If there's a #pragma clang arc_cf_code_audited in scope, consider
5828 // marking the function.
5829 AddCFAuditedAttribute(NewFD);
5830
5831 // If this is a locally-scoped extern C function, update the
5832 // map of such names.
5833 if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5834 && !NewFD->isInvalidDecl())
5835 RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5836
5837 // Set this FunctionDecl's range up to the right paren.
5838 NewFD->setRangeEnd(D.getSourceRange().getEnd());
5839
5840 if (getLangOpts().CPlusPlus) {
5841 if (FunctionTemplate) {
5842 if (NewFD->isInvalidDecl())
5843 FunctionTemplate->setInvalidDecl();
5844 return FunctionTemplate;
5845 }
5846 }
5847
5848 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5849 if ((getLangOpts().OpenCLVersion >= 120)
5850 && NewFD->hasAttr<OpenCLKernelAttr>()
5851 && (SC == SC_Static)) {
5852 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5853 D.setInvalidType();
5854 }
5855
5856 MarkUnusedFileScopedDecl(NewFD);
5857
5858 if (getLangOpts().CUDA)
5859 if (IdentifierInfo *II = NewFD->getIdentifier())
5860 if (!NewFD->isInvalidDecl() &&
5861 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5862 if (II->isStr("cudaConfigureCall")) {
5863 if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5864 Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5865
5866 Context.setcudaConfigureCallDecl(NewFD);
5867 }
5868 }
5869
5870 // Here we have an function template explicit specialization at class scope.
5871 // The actually specialization will be postponed to template instatiation
5872 // time via the ClassScopeFunctionSpecializationDecl node.
5873 if (isDependentClassScopeExplicitSpecialization) {
5874 ClassScopeFunctionSpecializationDecl *NewSpec =
5875 ClassScopeFunctionSpecializationDecl::Create(
5876 Context, CurContext, SourceLocation(),
5877 cast<CXXMethodDecl>(NewFD),
5878 HasExplicitTemplateArgs, TemplateArgs);
5879 CurContext->addDecl(NewSpec);
5880 AddToScope = false;
5881 }
5882
5883 return NewFD;
5884 }
5885
5886 /// \brief Perform semantic checking of a new function declaration.
5887 ///
5888 /// Performs semantic analysis of the new function declaration
5889 /// NewFD. This routine performs all semantic checking that does not
5890 /// require the actual declarator involved in the declaration, and is
5891 /// used both for the declaration of functions as they are parsed
5892 /// (called via ActOnDeclarator) and for the declaration of functions
5893 /// that have been instantiated via C++ template instantiation (called
5894 /// via InstantiateDecl).
5895 ///
5896 /// \param IsExplicitSpecialization whether this new function declaration is
5897 /// an explicit specialization of the previous declaration.
5898 ///
5899 /// This sets NewFD->isInvalidDecl() to true if there was an error.
5900 ///
5901 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)5902 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5903 LookupResult &Previous,
5904 bool IsExplicitSpecialization) {
5905 assert(!NewFD->getResultType()->isVariablyModifiedType()
5906 && "Variably modified return types are not handled here");
5907
5908 // Check for a previous declaration of this name.
5909 if (Previous.empty() && NewFD->isExternC()) {
5910 // Since we did not find anything by this name and we're declaring
5911 // an extern "C" function, look for a non-visible extern "C"
5912 // declaration with the same name.
5913 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5914 = findLocallyScopedExternalDecl(NewFD->getDeclName());
5915 if (Pos != LocallyScopedExternalDecls.end())
5916 Previous.addDecl(Pos->second);
5917 }
5918
5919 bool Redeclaration = false;
5920
5921 // Merge or overload the declaration with an existing declaration of
5922 // the same name, if appropriate.
5923 if (!Previous.empty()) {
5924 // Determine whether NewFD is an overload of PrevDecl or
5925 // a declaration that requires merging. If it's an overload,
5926 // there's no more work to do here; we'll just add the new
5927 // function to the scope.
5928
5929 NamedDecl *OldDecl = 0;
5930 if (!AllowOverloadingOfFunction(Previous, Context)) {
5931 Redeclaration = true;
5932 OldDecl = Previous.getFoundDecl();
5933 } else {
5934 switch (CheckOverload(S, NewFD, Previous, OldDecl,
5935 /*NewIsUsingDecl*/ false)) {
5936 case Ovl_Match:
5937 Redeclaration = true;
5938 break;
5939
5940 case Ovl_NonFunction:
5941 Redeclaration = true;
5942 break;
5943
5944 case Ovl_Overload:
5945 Redeclaration = false;
5946 break;
5947 }
5948
5949 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5950 // If a function name is overloadable in C, then every function
5951 // with that name must be marked "overloadable".
5952 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5953 << Redeclaration << NewFD;
5954 NamedDecl *OverloadedDecl = 0;
5955 if (Redeclaration)
5956 OverloadedDecl = OldDecl;
5957 else if (!Previous.empty())
5958 OverloadedDecl = Previous.getRepresentativeDecl();
5959 if (OverloadedDecl)
5960 Diag(OverloadedDecl->getLocation(),
5961 diag::note_attribute_overloadable_prev_overload);
5962 NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5963 Context));
5964 }
5965 }
5966
5967 if (Redeclaration) {
5968 // NewFD and OldDecl represent declarations that need to be
5969 // merged.
5970 if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5971 NewFD->setInvalidDecl();
5972 return Redeclaration;
5973 }
5974
5975 Previous.clear();
5976 Previous.addDecl(OldDecl);
5977
5978 if (FunctionTemplateDecl *OldTemplateDecl
5979 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5980 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5981 FunctionTemplateDecl *NewTemplateDecl
5982 = NewFD->getDescribedFunctionTemplate();
5983 assert(NewTemplateDecl && "Template/non-template mismatch");
5984 if (CXXMethodDecl *Method
5985 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5986 Method->setAccess(OldTemplateDecl->getAccess());
5987 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5988 }
5989
5990 // If this is an explicit specialization of a member that is a function
5991 // template, mark it as a member specialization.
5992 if (IsExplicitSpecialization &&
5993 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5994 NewTemplateDecl->setMemberSpecialization();
5995 assert(OldTemplateDecl->isMemberSpecialization());
5996 }
5997
5998 } else {
5999 if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6000 NewFD->setAccess(OldDecl->getAccess());
6001 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6002 }
6003 }
6004 }
6005
6006 // Semantic checking for this function declaration (in isolation).
6007 if (getLangOpts().CPlusPlus) {
6008 // C++-specific checks.
6009 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6010 CheckConstructor(Constructor);
6011 } else if (CXXDestructorDecl *Destructor =
6012 dyn_cast<CXXDestructorDecl>(NewFD)) {
6013 CXXRecordDecl *Record = Destructor->getParent();
6014 QualType ClassType = Context.getTypeDeclType(Record);
6015
6016 // FIXME: Shouldn't we be able to perform this check even when the class
6017 // type is dependent? Both gcc and edg can handle that.
6018 if (!ClassType->isDependentType()) {
6019 DeclarationName Name
6020 = Context.DeclarationNames.getCXXDestructorName(
6021 Context.getCanonicalType(ClassType));
6022 if (NewFD->getDeclName() != Name) {
6023 Diag(NewFD->getLocation(), diag::err_destructor_name);
6024 NewFD->setInvalidDecl();
6025 return Redeclaration;
6026 }
6027 }
6028 } else if (CXXConversionDecl *Conversion
6029 = dyn_cast<CXXConversionDecl>(NewFD)) {
6030 ActOnConversionDeclarator(Conversion);
6031 }
6032
6033 // Find any virtual functions that this function overrides.
6034 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6035 if (!Method->isFunctionTemplateSpecialization() &&
6036 !Method->getDescribedFunctionTemplate()) {
6037 if (AddOverriddenMethods(Method->getParent(), Method)) {
6038 // If the function was marked as "static", we have a problem.
6039 if (NewFD->getStorageClass() == SC_Static) {
6040 Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
6041 << NewFD->getDeclName();
6042 for (CXXMethodDecl::method_iterator
6043 Overridden = Method->begin_overridden_methods(),
6044 OverriddenEnd = Method->end_overridden_methods();
6045 Overridden != OverriddenEnd;
6046 ++Overridden) {
6047 Diag((*Overridden)->getLocation(),
6048 diag::note_overridden_virtual_function);
6049 }
6050 }
6051 }
6052 }
6053
6054 if (Method->isStatic())
6055 checkThisInStaticMemberFunctionType(Method);
6056 }
6057
6058 // Extra checking for C++ overloaded operators (C++ [over.oper]).
6059 if (NewFD->isOverloadedOperator() &&
6060 CheckOverloadedOperatorDeclaration(NewFD)) {
6061 NewFD->setInvalidDecl();
6062 return Redeclaration;
6063 }
6064
6065 // Extra checking for C++0x literal operators (C++0x [over.literal]).
6066 if (NewFD->getLiteralIdentifier() &&
6067 CheckLiteralOperatorDeclaration(NewFD)) {
6068 NewFD->setInvalidDecl();
6069 return Redeclaration;
6070 }
6071
6072 // In C++, check default arguments now that we have merged decls. Unless
6073 // the lexical context is the class, because in this case this is done
6074 // during delayed parsing anyway.
6075 if (!CurContext->isRecord())
6076 CheckCXXDefaultArguments(NewFD);
6077
6078 // If this function declares a builtin function, check the type of this
6079 // declaration against the expected type for the builtin.
6080 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6081 ASTContext::GetBuiltinTypeError Error;
6082 QualType T = Context.GetBuiltinType(BuiltinID, Error);
6083 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6084 // The type of this function differs from the type of the builtin,
6085 // so forget about the builtin entirely.
6086 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6087 }
6088 }
6089
6090 // If this function is declared as being extern "C", then check to see if
6091 // the function returns a UDT (class, struct, or union type) that is not C
6092 // compatible, and if it does, warn the user.
6093 if (NewFD->isExternC()) {
6094 QualType R = NewFD->getResultType();
6095 if (R->isIncompleteType() && !R->isVoidType())
6096 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6097 << NewFD << R;
6098 else if (!R.isPODType(Context) && !R->isVoidType() &&
6099 !R->isObjCObjectPointerType())
6100 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6101 }
6102 }
6103 return Redeclaration;
6104 }
6105
CheckMain(FunctionDecl * FD,const DeclSpec & DS)6106 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6107 // C++11 [basic.start.main]p3: A program that declares main to be inline,
6108 // static or constexpr is ill-formed.
6109 // C99 6.7.4p4: In a hosted environment, the inline function specifier
6110 // shall not appear in a declaration of main.
6111 // static main is not an error under C99, but we should warn about it.
6112 if (FD->getStorageClass() == SC_Static)
6113 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6114 ? diag::err_static_main : diag::warn_static_main)
6115 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6116 if (FD->isInlineSpecified())
6117 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6118 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6119 if (FD->isConstexpr()) {
6120 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6121 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6122 FD->setConstexpr(false);
6123 }
6124
6125 QualType T = FD->getType();
6126 assert(T->isFunctionType() && "function decl is not of function type");
6127 const FunctionType* FT = T->castAs<FunctionType>();
6128
6129 // All the standards say that main() should should return 'int'.
6130 if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6131 // In C and C++, main magically returns 0 if you fall off the end;
6132 // set the flag which tells us that.
6133 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6134 FD->setHasImplicitReturnZero(true);
6135
6136 // In C with GNU extensions we allow main() to have non-integer return
6137 // type, but we should warn about the extension, and we disable the
6138 // implicit-return-zero rule.
6139 } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6140 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6141
6142 // Otherwise, this is just a flat-out error.
6143 } else {
6144 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6145 FD->setInvalidDecl(true);
6146 }
6147
6148 // Treat protoless main() as nullary.
6149 if (isa<FunctionNoProtoType>(FT)) return;
6150
6151 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6152 unsigned nparams = FTP->getNumArgs();
6153 assert(FD->getNumParams() == nparams);
6154
6155 bool HasExtraParameters = (nparams > 3);
6156
6157 // Darwin passes an undocumented fourth argument of type char**. If
6158 // other platforms start sprouting these, the logic below will start
6159 // getting shifty.
6160 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6161 HasExtraParameters = false;
6162
6163 if (HasExtraParameters) {
6164 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6165 FD->setInvalidDecl(true);
6166 nparams = 3;
6167 }
6168
6169 // FIXME: a lot of the following diagnostics would be improved
6170 // if we had some location information about types.
6171
6172 QualType CharPP =
6173 Context.getPointerType(Context.getPointerType(Context.CharTy));
6174 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6175
6176 for (unsigned i = 0; i < nparams; ++i) {
6177 QualType AT = FTP->getArgType(i);
6178
6179 bool mismatch = true;
6180
6181 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6182 mismatch = false;
6183 else if (Expected[i] == CharPP) {
6184 // As an extension, the following forms are okay:
6185 // char const **
6186 // char const * const *
6187 // char * const *
6188
6189 QualifierCollector qs;
6190 const PointerType* PT;
6191 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6192 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6193 (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6194 qs.removeConst();
6195 mismatch = !qs.empty();
6196 }
6197 }
6198
6199 if (mismatch) {
6200 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6201 // TODO: suggest replacing given type with expected type
6202 FD->setInvalidDecl(true);
6203 }
6204 }
6205
6206 if (nparams == 1 && !FD->isInvalidDecl()) {
6207 Diag(FD->getLocation(), diag::warn_main_one_arg);
6208 }
6209
6210 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6211 Diag(FD->getLocation(), diag::err_main_template_decl);
6212 FD->setInvalidDecl();
6213 }
6214 }
6215
CheckForConstantInitializer(Expr * Init,QualType DclT)6216 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6217 // FIXME: Need strict checking. In C89, we need to check for
6218 // any assignment, increment, decrement, function-calls, or
6219 // commas outside of a sizeof. In C99, it's the same list,
6220 // except that the aforementioned are allowed in unevaluated
6221 // expressions. Everything else falls under the
6222 // "may accept other forms of constant expressions" exception.
6223 // (We never end up here for C++, so the constant expression
6224 // rules there don't matter.)
6225 if (Init->isConstantInitializer(Context, false))
6226 return false;
6227 Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6228 << Init->getSourceRange();
6229 return true;
6230 }
6231
6232 namespace {
6233 // Visits an initialization expression to see if OrigDecl is evaluated in
6234 // its own initialization and throws a warning if it does.
6235 class SelfReferenceChecker
6236 : public EvaluatedExprVisitor<SelfReferenceChecker> {
6237 Sema &S;
6238 Decl *OrigDecl;
6239 bool isRecordType;
6240 bool isPODType;
6241 bool isReferenceType;
6242
6243 public:
6244 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6245
SelfReferenceChecker(Sema & S,Decl * OrigDecl)6246 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6247 S(S), OrigDecl(OrigDecl) {
6248 isPODType = false;
6249 isRecordType = false;
6250 isReferenceType = false;
6251 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6252 isPODType = VD->getType().isPODType(S.Context);
6253 isRecordType = VD->getType()->isRecordType();
6254 isReferenceType = VD->getType()->isReferenceType();
6255 }
6256 }
6257
6258 // Sometimes, the expression passed in lacks the casts that are used
6259 // to determine which DeclRefExpr's to check. Assume that the casts
6260 // are present and continue visiting the expression.
HandleExpr(Expr * E)6261 void HandleExpr(Expr *E) {
6262 // Skip checking T a = a where T is not a record or reference type.
6263 // Doing so is a way to silence uninitialized warnings.
6264 if (isRecordType || isReferenceType)
6265 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6266 HandleDeclRefExpr(DRE);
6267
6268 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6269 HandleValue(CO->getTrueExpr());
6270 HandleValue(CO->getFalseExpr());
6271 }
6272
6273 Visit(E);
6274 }
6275
6276 // For most expressions, the cast is directly above the DeclRefExpr.
6277 // For conditional operators, the cast can be outside the conditional
6278 // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)6279 void HandleValue(Expr *E) {
6280 E = E->IgnoreParenImpCasts();
6281 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6282 HandleDeclRefExpr(DRE);
6283 return;
6284 }
6285
6286 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6287 HandleValue(CO->getTrueExpr());
6288 HandleValue(CO->getFalseExpr());
6289 }
6290 }
6291
VisitImplicitCastExpr(ImplicitCastExpr * E)6292 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6293 if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6294 (isRecordType && E->getCastKind() == CK_NoOp))
6295 HandleValue(E->getSubExpr());
6296
6297 Inherited::VisitImplicitCastExpr(E);
6298 }
6299
VisitMemberExpr(MemberExpr * E)6300 void VisitMemberExpr(MemberExpr *E) {
6301 // Don't warn on arrays since they can be treated as pointers.
6302 if (E->getType()->canDecayToPointerType()) return;
6303
6304 ValueDecl *VD = E->getMemberDecl();
6305 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6306 if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6307 if (DeclRefExpr *DRE
6308 = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6309 HandleDeclRefExpr(DRE);
6310 return;
6311 }
6312
6313 Inherited::VisitMemberExpr(E);
6314 }
6315
VisitUnaryOperator(UnaryOperator * E)6316 void VisitUnaryOperator(UnaryOperator *E) {
6317 // For POD record types, addresses of its own members are well-defined.
6318 if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6319 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6320 Inherited::VisitUnaryOperator(E);
6321 }
6322
VisitObjCMessageExpr(ObjCMessageExpr * E)6323 void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6324
HandleDeclRefExpr(DeclRefExpr * DRE)6325 void HandleDeclRefExpr(DeclRefExpr *DRE) {
6326 Decl* ReferenceDecl = DRE->getDecl();
6327 if (OrigDecl != ReferenceDecl) return;
6328 LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6329 Sema::NotForRedeclaration);
6330 unsigned diag = isReferenceType
6331 ? diag::warn_uninit_self_reference_in_reference_init
6332 : diag::warn_uninit_self_reference_in_init;
6333 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6334 S.PDiag(diag)
6335 << Result.getLookupName()
6336 << OrigDecl->getLocation()
6337 << DRE->getSourceRange());
6338 }
6339 };
6340 }
6341
6342 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Decl * OrigDecl,Expr * E)6343 void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6344 SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6345 }
6346
6347 /// AddInitializerToDecl - Adds the initializer Init to the
6348 /// declaration dcl. If DirectInit is true, this is C++ direct
6349 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)6350 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6351 bool DirectInit, bool TypeMayContainAuto) {
6352 // If there is no declaration, there was an error parsing it. Just ignore
6353 // the initializer.
6354 if (RealDecl == 0 || RealDecl->isInvalidDecl())
6355 return;
6356
6357 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6358 // With declarators parsed the way they are, the parser cannot
6359 // distinguish between a normal initializer and a pure-specifier.
6360 // Thus this grotesque test.
6361 IntegerLiteral *IL;
6362 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6363 Context.getCanonicalType(IL->getType()) == Context.IntTy)
6364 CheckPureMethod(Method, Init->getSourceRange());
6365 else {
6366 Diag(Method->getLocation(), diag::err_member_function_initialization)
6367 << Method->getDeclName() << Init->getSourceRange();
6368 Method->setInvalidDecl();
6369 }
6370 return;
6371 }
6372
6373 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6374 if (!VDecl) {
6375 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6376 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6377 RealDecl->setInvalidDecl();
6378 return;
6379 }
6380
6381 // Check for self-references within variable initializers.
6382 // Variables declared within a function/method body (except for references)
6383 // are handled by a dataflow analysis.
6384 // Record types initialized by initializer list are handled here.
6385 // Initialization by constructors are handled in TryConstructorInitialization.
6386 if ((!VDecl->hasLocalStorage() || VDecl->getType()->isReferenceType()) &&
6387 (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
6388 CheckSelfReference(RealDecl, Init);
6389
6390 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6391
6392 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6393 AutoType *Auto = 0;
6394 if (TypeMayContainAuto &&
6395 (Auto = VDecl->getType()->getContainedAutoType()) &&
6396 !Auto->isDeduced()) {
6397 Expr *DeduceInit = Init;
6398 // Initializer could be a C++ direct-initializer. Deduction only works if it
6399 // contains exactly one expression.
6400 if (CXXDirectInit) {
6401 if (CXXDirectInit->getNumExprs() == 0) {
6402 // It isn't possible to write this directly, but it is possible to
6403 // end up in this situation with "auto x(some_pack...);"
6404 Diag(CXXDirectInit->getLocStart(),
6405 diag::err_auto_var_init_no_expression)
6406 << VDecl->getDeclName() << VDecl->getType()
6407 << VDecl->getSourceRange();
6408 RealDecl->setInvalidDecl();
6409 return;
6410 } else if (CXXDirectInit->getNumExprs() > 1) {
6411 Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6412 diag::err_auto_var_init_multiple_expressions)
6413 << VDecl->getDeclName() << VDecl->getType()
6414 << VDecl->getSourceRange();
6415 RealDecl->setInvalidDecl();
6416 return;
6417 } else {
6418 DeduceInit = CXXDirectInit->getExpr(0);
6419 }
6420 }
6421 TypeSourceInfo *DeducedType = 0;
6422 if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6423 DAR_Failed)
6424 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6425 if (!DeducedType) {
6426 RealDecl->setInvalidDecl();
6427 return;
6428 }
6429 VDecl->setTypeSourceInfo(DeducedType);
6430 VDecl->setType(DeducedType->getType());
6431 VDecl->ClearLinkageCache();
6432
6433 // In ARC, infer lifetime.
6434 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6435 VDecl->setInvalidDecl();
6436
6437 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6438 // 'id' instead of a specific object type prevents most of our usual checks.
6439 // We only want to warn outside of template instantiations, though:
6440 // inside a template, the 'id' could have come from a parameter.
6441 if (ActiveTemplateInstantiations.empty() &&
6442 DeducedType->getType()->isObjCIdType()) {
6443 SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6444 Diag(Loc, diag::warn_auto_var_is_id)
6445 << VDecl->getDeclName() << DeduceInit->getSourceRange();
6446 }
6447
6448 // If this is a redeclaration, check that the type we just deduced matches
6449 // the previously declared type.
6450 if (VarDecl *Old = VDecl->getPreviousDecl())
6451 MergeVarDeclTypes(VDecl, Old);
6452 }
6453
6454 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6455 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6456 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6457 VDecl->setInvalidDecl();
6458 return;
6459 }
6460
6461 if (!VDecl->getType()->isDependentType()) {
6462 // A definition must end up with a complete type, which means it must be
6463 // complete with the restriction that an array type might be completed by
6464 // the initializer; note that later code assumes this restriction.
6465 QualType BaseDeclType = VDecl->getType();
6466 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6467 BaseDeclType = Array->getElementType();
6468 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6469 diag::err_typecheck_decl_incomplete_type)) {
6470 RealDecl->setInvalidDecl();
6471 return;
6472 }
6473
6474 // The variable can not have an abstract class type.
6475 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6476 diag::err_abstract_type_in_decl,
6477 AbstractVariableType))
6478 VDecl->setInvalidDecl();
6479 }
6480
6481 const VarDecl *Def;
6482 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6483 Diag(VDecl->getLocation(), diag::err_redefinition)
6484 << VDecl->getDeclName();
6485 Diag(Def->getLocation(), diag::note_previous_definition);
6486 VDecl->setInvalidDecl();
6487 return;
6488 }
6489
6490 const VarDecl* PrevInit = 0;
6491 if (getLangOpts().CPlusPlus) {
6492 // C++ [class.static.data]p4
6493 // If a static data member is of const integral or const
6494 // enumeration type, its declaration in the class definition can
6495 // specify a constant-initializer which shall be an integral
6496 // constant expression (5.19). In that case, the member can appear
6497 // in integral constant expressions. The member shall still be
6498 // defined in a namespace scope if it is used in the program and the
6499 // namespace scope definition shall not contain an initializer.
6500 //
6501 // We already performed a redefinition check above, but for static
6502 // data members we also need to check whether there was an in-class
6503 // declaration with an initializer.
6504 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6505 Diag(VDecl->getLocation(), diag::err_redefinition)
6506 << VDecl->getDeclName();
6507 Diag(PrevInit->getLocation(), diag::note_previous_definition);
6508 return;
6509 }
6510
6511 if (VDecl->hasLocalStorage())
6512 getCurFunction()->setHasBranchProtectedScope();
6513
6514 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6515 VDecl->setInvalidDecl();
6516 return;
6517 }
6518 }
6519
6520 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6521 // a kernel function cannot be initialized."
6522 if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6523 Diag(VDecl->getLocation(), diag::err_local_cant_init);
6524 VDecl->setInvalidDecl();
6525 return;
6526 }
6527
6528 // Get the decls type and save a reference for later, since
6529 // CheckInitializerTypes may change it.
6530 QualType DclT = VDecl->getType(), SavT = DclT;
6531
6532 // Top-level message sends default to 'id' when we're in a debugger
6533 // and we are assigning it to a variable of 'id' type.
6534 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6535 if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6536 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6537 if (Result.isInvalid()) {
6538 VDecl->setInvalidDecl();
6539 return;
6540 }
6541 Init = Result.take();
6542 }
6543
6544 // Perform the initialization.
6545 if (!VDecl->isInvalidDecl()) {
6546 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6547 InitializationKind Kind
6548 = DirectInit ?
6549 CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6550 Init->getLocStart(),
6551 Init->getLocEnd())
6552 : InitializationKind::CreateDirectList(
6553 VDecl->getLocation())
6554 : InitializationKind::CreateCopy(VDecl->getLocation(),
6555 Init->getLocStart());
6556
6557 Expr **Args = &Init;
6558 unsigned NumArgs = 1;
6559 if (CXXDirectInit) {
6560 Args = CXXDirectInit->getExprs();
6561 NumArgs = CXXDirectInit->getNumExprs();
6562 }
6563 InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6564 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6565 MultiExprArg(Args, NumArgs), &DclT);
6566 if (Result.isInvalid()) {
6567 VDecl->setInvalidDecl();
6568 return;
6569 }
6570
6571 Init = Result.takeAs<Expr>();
6572 }
6573
6574 // If the type changed, it means we had an incomplete type that was
6575 // completed by the initializer. For example:
6576 // int ary[] = { 1, 3, 5 };
6577 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6578 if (!VDecl->isInvalidDecl() && (DclT != SavT))
6579 VDecl->setType(DclT);
6580
6581 // Check any implicit conversions within the expression.
6582 CheckImplicitConversions(Init, VDecl->getLocation());
6583
6584 if (!VDecl->isInvalidDecl())
6585 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6586
6587 Init = MaybeCreateExprWithCleanups(Init);
6588 // Attach the initializer to the decl.
6589 VDecl->setInit(Init);
6590
6591 if (VDecl->isLocalVarDecl()) {
6592 // C99 6.7.8p4: All the expressions in an initializer for an object that has
6593 // static storage duration shall be constant expressions or string literals.
6594 // C++ does not have this restriction.
6595 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6596 VDecl->getStorageClass() == SC_Static)
6597 CheckForConstantInitializer(Init, DclT);
6598 } else if (VDecl->isStaticDataMember() &&
6599 VDecl->getLexicalDeclContext()->isRecord()) {
6600 // This is an in-class initialization for a static data member, e.g.,
6601 //
6602 // struct S {
6603 // static const int value = 17;
6604 // };
6605
6606 // C++ [class.mem]p4:
6607 // A member-declarator can contain a constant-initializer only
6608 // if it declares a static member (9.4) of const integral or
6609 // const enumeration type, see 9.4.2.
6610 //
6611 // C++11 [class.static.data]p3:
6612 // If a non-volatile const static data member is of integral or
6613 // enumeration type, its declaration in the class definition can
6614 // specify a brace-or-equal-initializer in which every initalizer-clause
6615 // that is an assignment-expression is a constant expression. A static
6616 // data member of literal type can be declared in the class definition
6617 // with the constexpr specifier; if so, its declaration shall specify a
6618 // brace-or-equal-initializer in which every initializer-clause that is
6619 // an assignment-expression is a constant expression.
6620
6621 // Do nothing on dependent types.
6622 if (DclT->isDependentType()) {
6623
6624 // Allow any 'static constexpr' members, whether or not they are of literal
6625 // type. We separately check that every constexpr variable is of literal
6626 // type.
6627 } else if (VDecl->isConstexpr()) {
6628
6629 // Require constness.
6630 } else if (!DclT.isConstQualified()) {
6631 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6632 << Init->getSourceRange();
6633 VDecl->setInvalidDecl();
6634
6635 // We allow integer constant expressions in all cases.
6636 } else if (DclT->isIntegralOrEnumerationType()) {
6637 // Check whether the expression is a constant expression.
6638 SourceLocation Loc;
6639 if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6640 // In C++11, a non-constexpr const static data member with an
6641 // in-class initializer cannot be volatile.
6642 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6643 else if (Init->isValueDependent())
6644 ; // Nothing to check.
6645 else if (Init->isIntegerConstantExpr(Context, &Loc))
6646 ; // Ok, it's an ICE!
6647 else if (Init->isEvaluatable(Context)) {
6648 // If we can constant fold the initializer through heroics, accept it,
6649 // but report this as a use of an extension for -pedantic.
6650 Diag(Loc, diag::ext_in_class_initializer_non_constant)
6651 << Init->getSourceRange();
6652 } else {
6653 // Otherwise, this is some crazy unknown case. Report the issue at the
6654 // location provided by the isIntegerConstantExpr failed check.
6655 Diag(Loc, diag::err_in_class_initializer_non_constant)
6656 << Init->getSourceRange();
6657 VDecl->setInvalidDecl();
6658 }
6659
6660 // We allow foldable floating-point constants as an extension.
6661 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6662 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6663 << DclT << Init->getSourceRange();
6664 if (getLangOpts().CPlusPlus0x)
6665 Diag(VDecl->getLocation(),
6666 diag::note_in_class_initializer_float_type_constexpr)
6667 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6668
6669 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6670 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6671 << Init->getSourceRange();
6672 VDecl->setInvalidDecl();
6673 }
6674
6675 // Suggest adding 'constexpr' in C++11 for literal types.
6676 } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6677 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6678 << DclT << Init->getSourceRange()
6679 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6680 VDecl->setConstexpr(true);
6681
6682 } else {
6683 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6684 << DclT << Init->getSourceRange();
6685 VDecl->setInvalidDecl();
6686 }
6687 } else if (VDecl->isFileVarDecl()) {
6688 if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6689 (!getLangOpts().CPlusPlus ||
6690 !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6691 Diag(VDecl->getLocation(), diag::warn_extern_init);
6692
6693 // C99 6.7.8p4. All file scoped initializers need to be constant.
6694 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6695 CheckForConstantInitializer(Init, DclT);
6696 }
6697
6698 // We will represent direct-initialization similarly to copy-initialization:
6699 // int x(1); -as-> int x = 1;
6700 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6701 //
6702 // Clients that want to distinguish between the two forms, can check for
6703 // direct initializer using VarDecl::getInitStyle().
6704 // A major benefit is that clients that don't particularly care about which
6705 // exactly form was it (like the CodeGen) can handle both cases without
6706 // special case code.
6707
6708 // C++ 8.5p11:
6709 // The form of initialization (using parentheses or '=') is generally
6710 // insignificant, but does matter when the entity being initialized has a
6711 // class type.
6712 if (CXXDirectInit) {
6713 assert(DirectInit && "Call-style initializer must be direct init.");
6714 VDecl->setInitStyle(VarDecl::CallInit);
6715 } else if (DirectInit) {
6716 // This must be list-initialization. No other way is direct-initialization.
6717 VDecl->setInitStyle(VarDecl::ListInit);
6718 }
6719
6720 CheckCompleteVariableDeclaration(VDecl);
6721 }
6722
6723 /// ActOnInitializerError - Given that there was an error parsing an
6724 /// initializer for the given declaration, try to return to some form
6725 /// of sanity.
ActOnInitializerError(Decl * D)6726 void Sema::ActOnInitializerError(Decl *D) {
6727 // Our main concern here is re-establishing invariants like "a
6728 // variable's type is either dependent or complete".
6729 if (!D || D->isInvalidDecl()) return;
6730
6731 VarDecl *VD = dyn_cast<VarDecl>(D);
6732 if (!VD) return;
6733
6734 // Auto types are meaningless if we can't make sense of the initializer.
6735 if (ParsingInitForAutoVars.count(D)) {
6736 D->setInvalidDecl();
6737 return;
6738 }
6739
6740 QualType Ty = VD->getType();
6741 if (Ty->isDependentType()) return;
6742
6743 // Require a complete type.
6744 if (RequireCompleteType(VD->getLocation(),
6745 Context.getBaseElementType(Ty),
6746 diag::err_typecheck_decl_incomplete_type)) {
6747 VD->setInvalidDecl();
6748 return;
6749 }
6750
6751 // Require an abstract type.
6752 if (RequireNonAbstractType(VD->getLocation(), Ty,
6753 diag::err_abstract_type_in_decl,
6754 AbstractVariableType)) {
6755 VD->setInvalidDecl();
6756 return;
6757 }
6758
6759 // Don't bother complaining about constructors or destructors,
6760 // though.
6761 }
6762
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)6763 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6764 bool TypeMayContainAuto) {
6765 // If there is no declaration, there was an error parsing it. Just ignore it.
6766 if (RealDecl == 0)
6767 return;
6768
6769 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6770 QualType Type = Var->getType();
6771
6772 // C++11 [dcl.spec.auto]p3
6773 if (TypeMayContainAuto && Type->getContainedAutoType()) {
6774 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6775 << Var->getDeclName() << Type;
6776 Var->setInvalidDecl();
6777 return;
6778 }
6779
6780 // C++11 [class.static.data]p3: A static data member can be declared with
6781 // the constexpr specifier; if so, its declaration shall specify
6782 // a brace-or-equal-initializer.
6783 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6784 // the definition of a variable [...] or the declaration of a static data
6785 // member.
6786 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6787 if (Var->isStaticDataMember())
6788 Diag(Var->getLocation(),
6789 diag::err_constexpr_static_mem_var_requires_init)
6790 << Var->getDeclName();
6791 else
6792 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6793 Var->setInvalidDecl();
6794 return;
6795 }
6796
6797 switch (Var->isThisDeclarationADefinition()) {
6798 case VarDecl::Definition:
6799 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6800 break;
6801
6802 // We have an out-of-line definition of a static data member
6803 // that has an in-class initializer, so we type-check this like
6804 // a declaration.
6805 //
6806 // Fall through
6807
6808 case VarDecl::DeclarationOnly:
6809 // It's only a declaration.
6810
6811 // Block scope. C99 6.7p7: If an identifier for an object is
6812 // declared with no linkage (C99 6.2.2p6), the type for the
6813 // object shall be complete.
6814 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6815 !Var->getLinkage() && !Var->isInvalidDecl() &&
6816 RequireCompleteType(Var->getLocation(), Type,
6817 diag::err_typecheck_decl_incomplete_type))
6818 Var->setInvalidDecl();
6819
6820 // Make sure that the type is not abstract.
6821 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6822 RequireNonAbstractType(Var->getLocation(), Type,
6823 diag::err_abstract_type_in_decl,
6824 AbstractVariableType))
6825 Var->setInvalidDecl();
6826 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6827 Var->getStorageClass() == SC_PrivateExtern) {
6828 Diag(Var->getLocation(), diag::warn_private_extern);
6829 Diag(Var->getLocation(), diag::note_private_extern);
6830 }
6831
6832 return;
6833
6834 case VarDecl::TentativeDefinition:
6835 // File scope. C99 6.9.2p2: A declaration of an identifier for an
6836 // object that has file scope without an initializer, and without a
6837 // storage-class specifier or with the storage-class specifier "static",
6838 // constitutes a tentative definition. Note: A tentative definition with
6839 // external linkage is valid (C99 6.2.2p5).
6840 if (!Var->isInvalidDecl()) {
6841 if (const IncompleteArrayType *ArrayT
6842 = Context.getAsIncompleteArrayType(Type)) {
6843 if (RequireCompleteType(Var->getLocation(),
6844 ArrayT->getElementType(),
6845 diag::err_illegal_decl_array_incomplete_type))
6846 Var->setInvalidDecl();
6847 } else if (Var->getStorageClass() == SC_Static) {
6848 // C99 6.9.2p3: If the declaration of an identifier for an object is
6849 // a tentative definition and has internal linkage (C99 6.2.2p3), the
6850 // declared type shall not be an incomplete type.
6851 // NOTE: code such as the following
6852 // static struct s;
6853 // struct s { int a; };
6854 // is accepted by gcc. Hence here we issue a warning instead of
6855 // an error and we do not invalidate the static declaration.
6856 // NOTE: to avoid multiple warnings, only check the first declaration.
6857 if (Var->getPreviousDecl() == 0)
6858 RequireCompleteType(Var->getLocation(), Type,
6859 diag::ext_typecheck_decl_incomplete_type);
6860 }
6861 }
6862
6863 // Record the tentative definition; we're done.
6864 if (!Var->isInvalidDecl())
6865 TentativeDefinitions.push_back(Var);
6866 return;
6867 }
6868
6869 // Provide a specific diagnostic for uninitialized variable
6870 // definitions with incomplete array type.
6871 if (Type->isIncompleteArrayType()) {
6872 Diag(Var->getLocation(),
6873 diag::err_typecheck_incomplete_array_needs_initializer);
6874 Var->setInvalidDecl();
6875 return;
6876 }
6877
6878 // Provide a specific diagnostic for uninitialized variable
6879 // definitions with reference type.
6880 if (Type->isReferenceType()) {
6881 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6882 << Var->getDeclName()
6883 << SourceRange(Var->getLocation(), Var->getLocation());
6884 Var->setInvalidDecl();
6885 return;
6886 }
6887
6888 // Do not attempt to type-check the default initializer for a
6889 // variable with dependent type.
6890 if (Type->isDependentType())
6891 return;
6892
6893 if (Var->isInvalidDecl())
6894 return;
6895
6896 if (RequireCompleteType(Var->getLocation(),
6897 Context.getBaseElementType(Type),
6898 diag::err_typecheck_decl_incomplete_type)) {
6899 Var->setInvalidDecl();
6900 return;
6901 }
6902
6903 // The variable can not have an abstract class type.
6904 if (RequireNonAbstractType(Var->getLocation(), Type,
6905 diag::err_abstract_type_in_decl,
6906 AbstractVariableType)) {
6907 Var->setInvalidDecl();
6908 return;
6909 }
6910
6911 // Check for jumps past the implicit initializer. C++0x
6912 // clarifies that this applies to a "variable with automatic
6913 // storage duration", not a "local variable".
6914 // C++11 [stmt.dcl]p3
6915 // A program that jumps from a point where a variable with automatic
6916 // storage duration is not in scope to a point where it is in scope is
6917 // ill-formed unless the variable has scalar type, class type with a
6918 // trivial default constructor and a trivial destructor, a cv-qualified
6919 // version of one of these types, or an array of one of the preceding
6920 // types and is declared without an initializer.
6921 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6922 if (const RecordType *Record
6923 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6924 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6925 // Mark the function for further checking even if the looser rules of
6926 // C++11 do not require such checks, so that we can diagnose
6927 // incompatibilities with C++98.
6928 if (!CXXRecord->isPOD())
6929 getCurFunction()->setHasBranchProtectedScope();
6930 }
6931 }
6932
6933 // C++03 [dcl.init]p9:
6934 // If no initializer is specified for an object, and the
6935 // object is of (possibly cv-qualified) non-POD class type (or
6936 // array thereof), the object shall be default-initialized; if
6937 // the object is of const-qualified type, the underlying class
6938 // type shall have a user-declared default
6939 // constructor. Otherwise, if no initializer is specified for
6940 // a non- static object, the object and its subobjects, if
6941 // any, have an indeterminate initial value); if the object
6942 // or any of its subobjects are of const-qualified type, the
6943 // program is ill-formed.
6944 // C++0x [dcl.init]p11:
6945 // If no initializer is specified for an object, the object is
6946 // default-initialized; [...].
6947 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6948 InitializationKind Kind
6949 = InitializationKind::CreateDefault(Var->getLocation());
6950
6951 InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6952 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
6953 if (Init.isInvalid())
6954 Var->setInvalidDecl();
6955 else if (Init.get()) {
6956 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6957 // This is important for template substitution.
6958 Var->setInitStyle(VarDecl::CallInit);
6959 }
6960
6961 CheckCompleteVariableDeclaration(Var);
6962 }
6963 }
6964
ActOnCXXForRangeDecl(Decl * D)6965 void Sema::ActOnCXXForRangeDecl(Decl *D) {
6966 VarDecl *VD = dyn_cast<VarDecl>(D);
6967 if (!VD) {
6968 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6969 D->setInvalidDecl();
6970 return;
6971 }
6972
6973 VD->setCXXForRangeDecl(true);
6974
6975 // for-range-declaration cannot be given a storage class specifier.
6976 int Error = -1;
6977 switch (VD->getStorageClassAsWritten()) {
6978 case SC_None:
6979 break;
6980 case SC_Extern:
6981 Error = 0;
6982 break;
6983 case SC_Static:
6984 Error = 1;
6985 break;
6986 case SC_PrivateExtern:
6987 Error = 2;
6988 break;
6989 case SC_Auto:
6990 Error = 3;
6991 break;
6992 case SC_Register:
6993 Error = 4;
6994 break;
6995 case SC_OpenCLWorkGroupLocal:
6996 llvm_unreachable("Unexpected storage class");
6997 }
6998 if (VD->isConstexpr())
6999 Error = 5;
7000 if (Error != -1) {
7001 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7002 << VD->getDeclName() << Error;
7003 D->setInvalidDecl();
7004 }
7005 }
7006
CheckCompleteVariableDeclaration(VarDecl * var)7007 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7008 if (var->isInvalidDecl()) return;
7009
7010 // In ARC, don't allow jumps past the implicit initialization of a
7011 // local retaining variable.
7012 if (getLangOpts().ObjCAutoRefCount &&
7013 var->hasLocalStorage()) {
7014 switch (var->getType().getObjCLifetime()) {
7015 case Qualifiers::OCL_None:
7016 case Qualifiers::OCL_ExplicitNone:
7017 case Qualifiers::OCL_Autoreleasing:
7018 break;
7019
7020 case Qualifiers::OCL_Weak:
7021 case Qualifiers::OCL_Strong:
7022 getCurFunction()->setHasBranchProtectedScope();
7023 break;
7024 }
7025 }
7026
7027 // All the following checks are C++ only.
7028 if (!getLangOpts().CPlusPlus) return;
7029
7030 QualType baseType = Context.getBaseElementType(var->getType());
7031 if (baseType->isDependentType()) return;
7032
7033 // __block variables might require us to capture a copy-initializer.
7034 if (var->hasAttr<BlocksAttr>()) {
7035 // It's currently invalid to ever have a __block variable with an
7036 // array type; should we diagnose that here?
7037
7038 // Regardless, we don't want to ignore array nesting when
7039 // constructing this copy.
7040 QualType type = var->getType();
7041
7042 if (type->isStructureOrClassType()) {
7043 SourceLocation poi = var->getLocation();
7044 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7045 ExprResult result =
7046 PerformCopyInitialization(
7047 InitializedEntity::InitializeBlock(poi, type, false),
7048 poi, Owned(varRef));
7049 if (!result.isInvalid()) {
7050 result = MaybeCreateExprWithCleanups(result);
7051 Expr *init = result.takeAs<Expr>();
7052 Context.setBlockVarCopyInits(var, init);
7053 }
7054 }
7055 }
7056
7057 Expr *Init = var->getInit();
7058 bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7059
7060 if (!var->getDeclContext()->isDependentContext() && Init) {
7061 if (IsGlobal && !var->isConstexpr() &&
7062 getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7063 var->getLocation())
7064 != DiagnosticsEngine::Ignored &&
7065 !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7066 Diag(var->getLocation(), diag::warn_global_constructor)
7067 << Init->getSourceRange();
7068
7069 if (var->isConstexpr()) {
7070 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7071 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7072 SourceLocation DiagLoc = var->getLocation();
7073 // If the note doesn't add any useful information other than a source
7074 // location, fold it into the primary diagnostic.
7075 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7076 diag::note_invalid_subexpr_in_const_expr) {
7077 DiagLoc = Notes[0].first;
7078 Notes.clear();
7079 }
7080 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7081 << var << Init->getSourceRange();
7082 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7083 Diag(Notes[I].first, Notes[I].second);
7084 }
7085 } else if (var->isUsableInConstantExpressions(Context)) {
7086 // Check whether the initializer of a const variable of integral or
7087 // enumeration type is an ICE now, since we can't tell whether it was
7088 // initialized by a constant expression if we check later.
7089 var->checkInitIsICE();
7090 }
7091 }
7092
7093 // Require the destructor.
7094 if (const RecordType *recordType = baseType->getAs<RecordType>())
7095 FinalizeVarWithDestructor(var, recordType);
7096 }
7097
7098 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7099 /// any semantic actions necessary after any initializer has been attached.
7100 void
FinalizeDeclaration(Decl * ThisDecl)7101 Sema::FinalizeDeclaration(Decl *ThisDecl) {
7102 // Note that we are no longer parsing the initializer for this declaration.
7103 ParsingInitForAutoVars.erase(ThisDecl);
7104
7105 // Now we have parsed the initializer and can update the table of magic
7106 // tag values.
7107 if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7108 const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7109 if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7110 for (specific_attr_iterator<TypeTagForDatatypeAttr>
7111 I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7112 E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7113 I != E; ++I) {
7114 const Expr *MagicValueExpr = VD->getInit();
7115 if (!MagicValueExpr) {
7116 continue;
7117 }
7118 llvm::APSInt MagicValueInt;
7119 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7120 Diag(I->getRange().getBegin(),
7121 diag::err_type_tag_for_datatype_not_ice)
7122 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7123 continue;
7124 }
7125 if (MagicValueInt.getActiveBits() > 64) {
7126 Diag(I->getRange().getBegin(),
7127 diag::err_type_tag_for_datatype_too_large)
7128 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7129 continue;
7130 }
7131 uint64_t MagicValue = MagicValueInt.getZExtValue();
7132 RegisterTypeTagForDatatype(I->getArgumentKind(),
7133 MagicValue,
7134 I->getMatchingCType(),
7135 I->getLayoutCompatible(),
7136 I->getMustBeNull());
7137 }
7138 }
7139 }
7140 }
7141
7142 Sema::DeclGroupPtrTy
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,Decl ** Group,unsigned NumDecls)7143 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7144 Decl **Group, unsigned NumDecls) {
7145 SmallVector<Decl*, 8> Decls;
7146
7147 if (DS.isTypeSpecOwned())
7148 Decls.push_back(DS.getRepAsDecl());
7149
7150 for (unsigned i = 0; i != NumDecls; ++i)
7151 if (Decl *D = Group[i])
7152 Decls.push_back(D);
7153
7154 return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7155 DS.getTypeSpecType() == DeclSpec::TST_auto);
7156 }
7157
7158 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
7159 /// group, performing any necessary semantic checking.
7160 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(Decl ** Group,unsigned NumDecls,bool TypeMayContainAuto)7161 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7162 bool TypeMayContainAuto) {
7163 // C++0x [dcl.spec.auto]p7:
7164 // If the type deduced for the template parameter U is not the same in each
7165 // deduction, the program is ill-formed.
7166 // FIXME: When initializer-list support is added, a distinction is needed
7167 // between the deduced type U and the deduced type which 'auto' stands for.
7168 // auto a = 0, b = { 1, 2, 3 };
7169 // is legal because the deduced type U is 'int' in both cases.
7170 if (TypeMayContainAuto && NumDecls > 1) {
7171 QualType Deduced;
7172 CanQualType DeducedCanon;
7173 VarDecl *DeducedDecl = 0;
7174 for (unsigned i = 0; i != NumDecls; ++i) {
7175 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7176 AutoType *AT = D->getType()->getContainedAutoType();
7177 // Don't reissue diagnostics when instantiating a template.
7178 if (AT && D->isInvalidDecl())
7179 break;
7180 if (AT && AT->isDeduced()) {
7181 QualType U = AT->getDeducedType();
7182 CanQualType UCanon = Context.getCanonicalType(U);
7183 if (Deduced.isNull()) {
7184 Deduced = U;
7185 DeducedCanon = UCanon;
7186 DeducedDecl = D;
7187 } else if (DeducedCanon != UCanon) {
7188 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7189 diag::err_auto_different_deductions)
7190 << Deduced << DeducedDecl->getDeclName()
7191 << U << D->getDeclName()
7192 << DeducedDecl->getInit()->getSourceRange()
7193 << D->getInit()->getSourceRange();
7194 D->setInvalidDecl();
7195 break;
7196 }
7197 }
7198 }
7199 }
7200 }
7201
7202 ActOnDocumentableDecls(Group, NumDecls);
7203
7204 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7205 }
7206
ActOnDocumentableDecl(Decl * D)7207 void Sema::ActOnDocumentableDecl(Decl *D) {
7208 ActOnDocumentableDecls(&D, 1);
7209 }
7210
ActOnDocumentableDecls(Decl ** Group,unsigned NumDecls)7211 void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7212 // Don't parse the comment if Doxygen diagnostics are ignored.
7213 if (NumDecls == 0 || !Group[0])
7214 return;
7215
7216 if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7217 Group[0]->getLocation())
7218 == DiagnosticsEngine::Ignored)
7219 return;
7220
7221 if (NumDecls >= 2) {
7222 // This is a decl group. Normally it will contain only declarations
7223 // procuded from declarator list. But in case we have any definitions or
7224 // additional declaration references:
7225 // 'typedef struct S {} S;'
7226 // 'typedef struct S *S;'
7227 // 'struct S *pS;'
7228 // FinalizeDeclaratorGroup adds these as separate declarations.
7229 Decl *MaybeTagDecl = Group[0];
7230 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7231 Group++;
7232 NumDecls--;
7233 }
7234 }
7235
7236 // See if there are any new comments that are not attached to a decl.
7237 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7238 if (!Comments.empty() &&
7239 !Comments.back()->isAttached()) {
7240 // There is at least one comment that not attached to a decl.
7241 // Maybe it should be attached to one of these decls?
7242 //
7243 // Note that this way we pick up not only comments that precede the
7244 // declaration, but also comments that *follow* the declaration -- thanks to
7245 // the lookahead in the lexer: we've consumed the semicolon and looked
7246 // ahead through comments.
7247 for (unsigned i = 0; i != NumDecls; ++i)
7248 Context.getCommentForDecl(Group[i]);
7249 }
7250 }
7251
7252 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7253 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)7254 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7255 const DeclSpec &DS = D.getDeclSpec();
7256
7257 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7258 // C++03 [dcl.stc]p2 also permits 'auto'.
7259 VarDecl::StorageClass StorageClass = SC_None;
7260 VarDecl::StorageClass StorageClassAsWritten = SC_None;
7261 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7262 StorageClass = SC_Register;
7263 StorageClassAsWritten = SC_Register;
7264 } else if (getLangOpts().CPlusPlus &&
7265 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7266 StorageClass = SC_Auto;
7267 StorageClassAsWritten = SC_Auto;
7268 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7269 Diag(DS.getStorageClassSpecLoc(),
7270 diag::err_invalid_storage_class_in_func_decl);
7271 D.getMutableDeclSpec().ClearStorageClassSpecs();
7272 }
7273
7274 if (D.getDeclSpec().isThreadSpecified())
7275 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7276 if (D.getDeclSpec().isConstexprSpecified())
7277 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7278 << 0;
7279
7280 DiagnoseFunctionSpecifiers(D);
7281
7282 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7283 QualType parmDeclType = TInfo->getType();
7284
7285 if (getLangOpts().CPlusPlus) {
7286 // Check that there are no default arguments inside the type of this
7287 // parameter.
7288 CheckExtraCXXDefaultArguments(D);
7289
7290 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7291 if (D.getCXXScopeSpec().isSet()) {
7292 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7293 << D.getCXXScopeSpec().getRange();
7294 D.getCXXScopeSpec().clear();
7295 }
7296 }
7297
7298 // Ensure we have a valid name
7299 IdentifierInfo *II = 0;
7300 if (D.hasName()) {
7301 II = D.getIdentifier();
7302 if (!II) {
7303 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7304 << GetNameForDeclarator(D).getName().getAsString();
7305 D.setInvalidType(true);
7306 }
7307 }
7308
7309 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7310 if (II) {
7311 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7312 ForRedeclaration);
7313 LookupName(R, S);
7314 if (R.isSingleResult()) {
7315 NamedDecl *PrevDecl = R.getFoundDecl();
7316 if (PrevDecl->isTemplateParameter()) {
7317 // Maybe we will complain about the shadowed template parameter.
7318 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7319 // Just pretend that we didn't see the previous declaration.
7320 PrevDecl = 0;
7321 } else if (S->isDeclScope(PrevDecl)) {
7322 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7323 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7324
7325 // Recover by removing the name
7326 II = 0;
7327 D.SetIdentifier(0, D.getIdentifierLoc());
7328 D.setInvalidType(true);
7329 }
7330 }
7331 }
7332
7333 // Temporarily put parameter variables in the translation unit, not
7334 // the enclosing context. This prevents them from accidentally
7335 // looking like class members in C++.
7336 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7337 D.getLocStart(),
7338 D.getIdentifierLoc(), II,
7339 parmDeclType, TInfo,
7340 StorageClass, StorageClassAsWritten);
7341
7342 if (D.isInvalidType())
7343 New->setInvalidDecl();
7344
7345 assert(S->isFunctionPrototypeScope());
7346 assert(S->getFunctionPrototypeDepth() >= 1);
7347 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7348 S->getNextFunctionPrototypeIndex());
7349
7350 // Add the parameter declaration into this scope.
7351 S->AddDecl(New);
7352 if (II)
7353 IdResolver.AddDecl(New);
7354
7355 ProcessDeclAttributes(S, New, D);
7356
7357 if (D.getDeclSpec().isModulePrivateSpecified())
7358 Diag(New->getLocation(), diag::err_module_private_local)
7359 << 1 << New->getDeclName()
7360 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7361 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7362
7363 if (New->hasAttr<BlocksAttr>()) {
7364 Diag(New->getLocation(), diag::err_block_on_nonlocal);
7365 }
7366 return New;
7367 }
7368
7369 /// \brief Synthesizes a variable for a parameter arising from a
7370 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)7371 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7372 SourceLocation Loc,
7373 QualType T) {
7374 /* FIXME: setting StartLoc == Loc.
7375 Would it be worth to modify callers so as to provide proper source
7376 location for the unnamed parameters, embedding the parameter's type? */
7377 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7378 T, Context.getTrivialTypeSourceInfo(T, Loc),
7379 SC_None, SC_None, 0);
7380 Param->setImplicit();
7381 return Param;
7382 }
7383
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)7384 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7385 ParmVarDecl * const *ParamEnd) {
7386 // Don't diagnose unused-parameter errors in template instantiations; we
7387 // will already have done so in the template itself.
7388 if (!ActiveTemplateInstantiations.empty())
7389 return;
7390
7391 for (; Param != ParamEnd; ++Param) {
7392 if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7393 !(*Param)->hasAttr<UnusedAttr>()) {
7394 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7395 << (*Param)->getDeclName();
7396 }
7397 }
7398 }
7399
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)7400 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7401 ParmVarDecl * const *ParamEnd,
7402 QualType ReturnTy,
7403 NamedDecl *D) {
7404 if (LangOpts.NumLargeByValueCopy == 0) // No check.
7405 return;
7406
7407 // Warn if the return value is pass-by-value and larger than the specified
7408 // threshold.
7409 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7410 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7411 if (Size > LangOpts.NumLargeByValueCopy)
7412 Diag(D->getLocation(), diag::warn_return_value_size)
7413 << D->getDeclName() << Size;
7414 }
7415
7416 // Warn if any parameter is pass-by-value and larger than the specified
7417 // threshold.
7418 for (; Param != ParamEnd; ++Param) {
7419 QualType T = (*Param)->getType();
7420 if (T->isDependentType() || !T.isPODType(Context))
7421 continue;
7422 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7423 if (Size > LangOpts.NumLargeByValueCopy)
7424 Diag((*Param)->getLocation(), diag::warn_parameter_size)
7425 << (*Param)->getDeclName() << Size;
7426 }
7427 }
7428
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass,VarDecl::StorageClass StorageClassAsWritten)7429 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7430 SourceLocation NameLoc, IdentifierInfo *Name,
7431 QualType T, TypeSourceInfo *TSInfo,
7432 VarDecl::StorageClass StorageClass,
7433 VarDecl::StorageClass StorageClassAsWritten) {
7434 // In ARC, infer a lifetime qualifier for appropriate parameter types.
7435 if (getLangOpts().ObjCAutoRefCount &&
7436 T.getObjCLifetime() == Qualifiers::OCL_None &&
7437 T->isObjCLifetimeType()) {
7438
7439 Qualifiers::ObjCLifetime lifetime;
7440
7441 // Special cases for arrays:
7442 // - if it's const, use __unsafe_unretained
7443 // - otherwise, it's an error
7444 if (T->isArrayType()) {
7445 if (!T.isConstQualified()) {
7446 DelayedDiagnostics.add(
7447 sema::DelayedDiagnostic::makeForbiddenType(
7448 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7449 }
7450 lifetime = Qualifiers::OCL_ExplicitNone;
7451 } else {
7452 lifetime = T->getObjCARCImplicitLifetime();
7453 }
7454 T = Context.getLifetimeQualifiedType(T, lifetime);
7455 }
7456
7457 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7458 Context.getAdjustedParameterType(T),
7459 TSInfo,
7460 StorageClass, StorageClassAsWritten,
7461 0);
7462
7463 // Parameters can not be abstract class types.
7464 // For record types, this is done by the AbstractClassUsageDiagnoser once
7465 // the class has been completely parsed.
7466 if (!CurContext->isRecord() &&
7467 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7468 AbstractParamType))
7469 New->setInvalidDecl();
7470
7471 // Parameter declarators cannot be interface types. All ObjC objects are
7472 // passed by reference.
7473 if (T->isObjCObjectType()) {
7474 SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7475 Diag(NameLoc,
7476 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7477 << FixItHint::CreateInsertion(TypeEndLoc, "*");
7478 T = Context.getObjCObjectPointerType(T);
7479 New->setType(T);
7480 }
7481
7482 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7483 // duration shall not be qualified by an address-space qualifier."
7484 // Since all parameters have automatic store duration, they can not have
7485 // an address space.
7486 if (T.getAddressSpace() != 0) {
7487 Diag(NameLoc, diag::err_arg_with_address_space);
7488 New->setInvalidDecl();
7489 }
7490
7491 return New;
7492 }
7493
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)7494 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7495 SourceLocation LocAfterDecls) {
7496 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7497
7498 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7499 // for a K&R function.
7500 if (!FTI.hasPrototype) {
7501 for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7502 --i;
7503 if (FTI.ArgInfo[i].Param == 0) {
7504 SmallString<256> Code;
7505 llvm::raw_svector_ostream(Code) << " int "
7506 << FTI.ArgInfo[i].Ident->getName()
7507 << ";\n";
7508 Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7509 << FTI.ArgInfo[i].Ident
7510 << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7511
7512 // Implicitly declare the argument as type 'int' for lack of a better
7513 // type.
7514 AttributeFactory attrs;
7515 DeclSpec DS(attrs);
7516 const char* PrevSpec; // unused
7517 unsigned DiagID; // unused
7518 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7519 PrevSpec, DiagID);
7520 Declarator ParamD(DS, Declarator::KNRTypeListContext);
7521 ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7522 FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7523 }
7524 }
7525 }
7526 }
7527
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)7528 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7529 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7530 assert(D.isFunctionDeclarator() && "Not a function declarator!");
7531 Scope *ParentScope = FnBodyScope->getParent();
7532
7533 D.setFunctionDefinitionKind(FDK_Definition);
7534 Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7535 return ActOnStartOfFunctionDef(FnBodyScope, DP);
7536 }
7537
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD)7538 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7539 // Don't warn about invalid declarations.
7540 if (FD->isInvalidDecl())
7541 return false;
7542
7543 // Or declarations that aren't global.
7544 if (!FD->isGlobal())
7545 return false;
7546
7547 // Don't warn about C++ member functions.
7548 if (isa<CXXMethodDecl>(FD))
7549 return false;
7550
7551 // Don't warn about 'main'.
7552 if (FD->isMain())
7553 return false;
7554
7555 // Don't warn about inline functions.
7556 if (FD->isInlined())
7557 return false;
7558
7559 // Don't warn about function templates.
7560 if (FD->getDescribedFunctionTemplate())
7561 return false;
7562
7563 // Don't warn about function template specializations.
7564 if (FD->isFunctionTemplateSpecialization())
7565 return false;
7566
7567 // Don't warn for OpenCL kernels.
7568 if (FD->hasAttr<OpenCLKernelAttr>())
7569 return false;
7570
7571 bool MissingPrototype = true;
7572 for (const FunctionDecl *Prev = FD->getPreviousDecl();
7573 Prev; Prev = Prev->getPreviousDecl()) {
7574 // Ignore any declarations that occur in function or method
7575 // scope, because they aren't visible from the header.
7576 if (Prev->getDeclContext()->isFunctionOrMethod())
7577 continue;
7578
7579 MissingPrototype = !Prev->getType()->isFunctionProtoType();
7580 break;
7581 }
7582
7583 return MissingPrototype;
7584 }
7585
CheckForFunctionRedefinition(FunctionDecl * FD)7586 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7587 // Don't complain if we're in GNU89 mode and the previous definition
7588 // was an extern inline function.
7589 const FunctionDecl *Definition;
7590 if (FD->isDefined(Definition) &&
7591 !canRedefineFunction(Definition, getLangOpts())) {
7592 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7593 Definition->getStorageClass() == SC_Extern)
7594 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7595 << FD->getDeclName() << getLangOpts().CPlusPlus;
7596 else
7597 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7598 Diag(Definition->getLocation(), diag::note_previous_definition);
7599 FD->setInvalidDecl();
7600 }
7601 }
7602
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)7603 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7604 // Clear the last template instantiation error context.
7605 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7606
7607 if (!D)
7608 return D;
7609 FunctionDecl *FD = 0;
7610
7611 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7612 FD = FunTmpl->getTemplatedDecl();
7613 else
7614 FD = cast<FunctionDecl>(D);
7615
7616 // Enter a new function scope
7617 PushFunctionScope();
7618
7619 // See if this is a redefinition.
7620 if (!FD->isLateTemplateParsed())
7621 CheckForFunctionRedefinition(FD);
7622
7623 // Builtin functions cannot be defined.
7624 if (unsigned BuiltinID = FD->getBuiltinID()) {
7625 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7626 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7627 FD->setInvalidDecl();
7628 }
7629 }
7630
7631 // The return type of a function definition must be complete
7632 // (C99 6.9.1p3, C++ [dcl.fct]p6).
7633 QualType ResultType = FD->getResultType();
7634 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7635 !FD->isInvalidDecl() &&
7636 RequireCompleteType(FD->getLocation(), ResultType,
7637 diag::err_func_def_incomplete_result))
7638 FD->setInvalidDecl();
7639
7640 // GNU warning -Wmissing-prototypes:
7641 // Warn if a global function is defined without a previous
7642 // prototype declaration. This warning is issued even if the
7643 // definition itself provides a prototype. The aim is to detect
7644 // global functions that fail to be declared in header files.
7645 if (ShouldWarnAboutMissingPrototype(FD))
7646 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7647
7648 if (FnBodyScope)
7649 PushDeclContext(FnBodyScope, FD);
7650
7651 // Check the validity of our function parameters
7652 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7653 /*CheckParameterNames=*/true);
7654
7655 // Introduce our parameters into the function scope
7656 for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7657 ParmVarDecl *Param = FD->getParamDecl(p);
7658 Param->setOwningFunction(FD);
7659
7660 // If this has an identifier, add it to the scope stack.
7661 if (Param->getIdentifier() && FnBodyScope) {
7662 CheckShadow(FnBodyScope, Param);
7663
7664 PushOnScopeChains(Param, FnBodyScope);
7665 }
7666 }
7667
7668 // If we had any tags defined in the function prototype,
7669 // introduce them into the function scope.
7670 if (FnBodyScope) {
7671 for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7672 E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7673 NamedDecl *D = *I;
7674
7675 // Some of these decls (like enums) may have been pinned to the translation unit
7676 // for lack of a real context earlier. If so, remove from the translation unit
7677 // and reattach to the current context.
7678 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7679 // Is the decl actually in the context?
7680 for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7681 DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7682 if (*DI == D) {
7683 Context.getTranslationUnitDecl()->removeDecl(D);
7684 break;
7685 }
7686 }
7687 // Either way, reassign the lexical decl context to our FunctionDecl.
7688 D->setLexicalDeclContext(CurContext);
7689 }
7690
7691 // If the decl has a non-null name, make accessible in the current scope.
7692 if (!D->getName().empty())
7693 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7694
7695 // Similarly, dive into enums and fish their constants out, making them
7696 // accessible in this scope.
7697 if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7698 for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7699 EE = ED->enumerator_end(); EI != EE; ++EI)
7700 PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7701 }
7702 }
7703 }
7704
7705 // Ensure that the function's exception specification is instantiated.
7706 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7707 ResolveExceptionSpec(D->getLocation(), FPT);
7708
7709 // Checking attributes of current function definition
7710 // dllimport attribute.
7711 DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7712 if (DA && (!FD->getAttr<DLLExportAttr>())) {
7713 // dllimport attribute cannot be directly applied to definition.
7714 // Microsoft accepts dllimport for functions defined within class scope.
7715 if (!DA->isInherited() &&
7716 !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7717 Diag(FD->getLocation(),
7718 diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7719 << "dllimport";
7720 FD->setInvalidDecl();
7721 return FD;
7722 }
7723
7724 // Visual C++ appears to not think this is an issue, so only issue
7725 // a warning when Microsoft extensions are disabled.
7726 if (!LangOpts.MicrosoftExt) {
7727 // If a symbol previously declared dllimport is later defined, the
7728 // attribute is ignored in subsequent references, and a warning is
7729 // emitted.
7730 Diag(FD->getLocation(),
7731 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7732 << FD->getName() << "dllimport";
7733 }
7734 }
7735 // We want to attach documentation to original Decl (which might be
7736 // a function template).
7737 ActOnDocumentableDecl(D);
7738 return FD;
7739 }
7740
7741 /// \brief Given the set of return statements within a function body,
7742 /// compute the variables that are subject to the named return value
7743 /// optimization.
7744 ///
7745 /// Each of the variables that is subject to the named return value
7746 /// optimization will be marked as NRVO variables in the AST, and any
7747 /// return statement that has a marked NRVO variable as its NRVO candidate can
7748 /// use the named return value optimization.
7749 ///
7750 /// This function applies a very simplistic algorithm for NRVO: if every return
7751 /// statement in the function has the same NRVO candidate, that candidate is
7752 /// the NRVO variable.
7753 ///
7754 /// FIXME: Employ a smarter algorithm that accounts for multiple return
7755 /// statements and the lifetimes of the NRVO candidates. We should be able to
7756 /// find a maximal set of NRVO variables.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)7757 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7758 ReturnStmt **Returns = Scope->Returns.data();
7759
7760 const VarDecl *NRVOCandidate = 0;
7761 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7762 if (!Returns[I]->getNRVOCandidate())
7763 return;
7764
7765 if (!NRVOCandidate)
7766 NRVOCandidate = Returns[I]->getNRVOCandidate();
7767 else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7768 return;
7769 }
7770
7771 if (NRVOCandidate)
7772 const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7773 }
7774
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)7775 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7776 return ActOnFinishFunctionBody(D, BodyArg, false);
7777 }
7778
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)7779 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7780 bool IsInstantiation) {
7781 FunctionDecl *FD = 0;
7782 FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7783 if (FunTmpl)
7784 FD = FunTmpl->getTemplatedDecl();
7785 else
7786 FD = dyn_cast_or_null<FunctionDecl>(dcl);
7787
7788 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7789 sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7790
7791 if (FD) {
7792 FD->setBody(Body);
7793
7794 // If the function implicitly returns zero (like 'main') or is naked,
7795 // don't complain about missing return statements.
7796 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7797 WP.disableCheckFallThrough();
7798
7799 // MSVC permits the use of pure specifier (=0) on function definition,
7800 // defined at class scope, warn about this non standard construct.
7801 if (getLangOpts().MicrosoftExt && FD->isPure())
7802 Diag(FD->getLocation(), diag::warn_pure_function_definition);
7803
7804 if (!FD->isInvalidDecl()) {
7805 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7806 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7807 FD->getResultType(), FD);
7808
7809 // If this is a constructor, we need a vtable.
7810 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7811 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7812
7813 // Try to apply the named return value optimization. We have to check
7814 // if we can do this here because lambdas keep return statements around
7815 // to deduce an implicit return type.
7816 if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7817 !FD->isDependentContext())
7818 computeNRVO(Body, getCurFunction());
7819 }
7820
7821 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7822 "Function parsing confused");
7823 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7824 assert(MD == getCurMethodDecl() && "Method parsing confused");
7825 MD->setBody(Body);
7826 if (!MD->isInvalidDecl()) {
7827 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7828 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7829 MD->getResultType(), MD);
7830
7831 if (Body)
7832 computeNRVO(Body, getCurFunction());
7833 }
7834 if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7835 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
7836 << MD->getSelector().getAsString();
7837 getCurFunction()->ObjCShouldCallSuperDealloc = false;
7838 }
7839 if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7840 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7841 getCurFunction()->ObjCShouldCallSuperFinalize = false;
7842 }
7843 } else {
7844 return 0;
7845 }
7846
7847 assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7848 "This should only be set for ObjC methods, which should have been "
7849 "handled in the block above.");
7850 assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7851 "This should only be set for ObjC methods, which should have been "
7852 "handled in the block above.");
7853
7854 // Verify and clean out per-function state.
7855 if (Body) {
7856 // C++ constructors that have function-try-blocks can't have return
7857 // statements in the handlers of that block. (C++ [except.handle]p14)
7858 // Verify this.
7859 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7860 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7861
7862 // Verify that gotos and switch cases don't jump into scopes illegally.
7863 if (getCurFunction()->NeedsScopeChecking() &&
7864 !dcl->isInvalidDecl() &&
7865 !hasAnyUnrecoverableErrorsInThisFunction() &&
7866 !PP.isCodeCompletionEnabled())
7867 DiagnoseInvalidJumps(Body);
7868
7869 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7870 if (!Destructor->getParent()->isDependentType())
7871 CheckDestructor(Destructor);
7872
7873 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7874 Destructor->getParent());
7875 }
7876
7877 // If any errors have occurred, clear out any temporaries that may have
7878 // been leftover. This ensures that these temporaries won't be picked up for
7879 // deletion in some later function.
7880 if (PP.getDiagnostics().hasErrorOccurred() ||
7881 PP.getDiagnostics().getSuppressAllDiagnostics()) {
7882 DiscardCleanupsInEvaluationContext();
7883 } else if (!isa<FunctionTemplateDecl>(dcl)) {
7884 // Since the body is valid, issue any analysis-based warnings that are
7885 // enabled.
7886 ActivePolicy = &WP;
7887 }
7888
7889 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7890 (!CheckConstexprFunctionDecl(FD) ||
7891 !CheckConstexprFunctionBody(FD, Body)))
7892 FD->setInvalidDecl();
7893
7894 assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7895 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7896 assert(MaybeODRUseExprs.empty() &&
7897 "Leftover expressions for odr-use checking");
7898 }
7899
7900 if (!IsInstantiation)
7901 PopDeclContext();
7902
7903 PopFunctionScopeInfo(ActivePolicy, dcl);
7904
7905 // If any errors have occurred, clear out any temporaries that may have
7906 // been leftover. This ensures that these temporaries won't be picked up for
7907 // deletion in some later function.
7908 if (getDiagnostics().hasErrorOccurred()) {
7909 DiscardCleanupsInEvaluationContext();
7910 }
7911
7912 return dcl;
7913 }
7914
7915
7916 /// When we finish delayed parsing of an attribute, we must attach it to the
7917 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)7918 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7919 ParsedAttributes &Attrs) {
7920 // Always attach attributes to the underlying decl.
7921 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7922 D = TD->getTemplatedDecl();
7923 ProcessDeclAttributeList(S, D, Attrs.getList());
7924
7925 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7926 if (Method->isStatic())
7927 checkThisInStaticMemberFunctionAttributes(Method);
7928 }
7929
7930
7931 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7932 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)7933 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7934 IdentifierInfo &II, Scope *S) {
7935 // Before we produce a declaration for an implicitly defined
7936 // function, see whether there was a locally-scoped declaration of
7937 // this name as a function or variable. If so, use that
7938 // (non-visible) declaration, and complain about it.
7939 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7940 = findLocallyScopedExternalDecl(&II);
7941 if (Pos != LocallyScopedExternalDecls.end()) {
7942 Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7943 Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7944 return Pos->second;
7945 }
7946
7947 // Extension in C99. Legal in C90, but warn about it.
7948 unsigned diag_id;
7949 if (II.getName().startswith("__builtin_"))
7950 diag_id = diag::warn_builtin_unknown;
7951 else if (getLangOpts().C99)
7952 diag_id = diag::ext_implicit_function_decl;
7953 else
7954 diag_id = diag::warn_implicit_function_decl;
7955 Diag(Loc, diag_id) << &II;
7956
7957 // Because typo correction is expensive, only do it if the implicit
7958 // function declaration is going to be treated as an error.
7959 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7960 TypoCorrection Corrected;
7961 DeclFilterCCC<FunctionDecl> Validator;
7962 if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7963 LookupOrdinaryName, S, 0, Validator))) {
7964 std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7965 std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7966 FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7967
7968 Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7969 << FixItHint::CreateReplacement(Loc, CorrectedStr);
7970
7971 if (Func->getLocation().isValid()
7972 && !II.getName().startswith("__builtin_"))
7973 Diag(Func->getLocation(), diag::note_previous_decl)
7974 << CorrectedQuotedStr;
7975 }
7976 }
7977
7978 // Set a Declarator for the implicit definition: int foo();
7979 const char *Dummy;
7980 AttributeFactory attrFactory;
7981 DeclSpec DS(attrFactory);
7982 unsigned DiagID;
7983 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7984 (void)Error; // Silence warning.
7985 assert(!Error && "Error setting up implicit decl!");
7986 Declarator D(DS, Declarator::BlockContext);
7987 D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
7988 SourceLocation(), 0, 0, 0, true,
7989 SourceLocation(), SourceLocation(),
7990 SourceLocation(), SourceLocation(),
7991 EST_None, SourceLocation(),
7992 0, 0, 0, 0, Loc, Loc, D),
7993 DS.getAttributes(),
7994 SourceLocation());
7995 D.SetIdentifier(&II, Loc);
7996
7997 // Insert this function into translation-unit scope.
7998
7999 DeclContext *PrevDC = CurContext;
8000 CurContext = Context.getTranslationUnitDecl();
8001
8002 FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8003 FD->setImplicit();
8004
8005 CurContext = PrevDC;
8006
8007 AddKnownFunctionAttributes(FD);
8008
8009 return FD;
8010 }
8011
8012 /// \brief Adds any function attributes that we know a priori based on
8013 /// the declaration of this function.
8014 ///
8015 /// These attributes can apply both to implicitly-declared builtins
8016 /// (like __builtin___printf_chk) or to library-declared functions
8017 /// like NSLog or printf.
8018 ///
8019 /// We need to check for duplicate attributes both here and where user-written
8020 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)8021 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8022 if (FD->isInvalidDecl())
8023 return;
8024
8025 // If this is a built-in function, map its builtin attributes to
8026 // actual attributes.
8027 if (unsigned BuiltinID = FD->getBuiltinID()) {
8028 // Handle printf-formatting attributes.
8029 unsigned FormatIdx;
8030 bool HasVAListArg;
8031 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8032 if (!FD->getAttr<FormatAttr>()) {
8033 const char *fmt = "printf";
8034 unsigned int NumParams = FD->getNumParams();
8035 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8036 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8037 fmt = "NSString";
8038 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8039 fmt, FormatIdx+1,
8040 HasVAListArg ? 0 : FormatIdx+2));
8041 }
8042 }
8043 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8044 HasVAListArg)) {
8045 if (!FD->getAttr<FormatAttr>())
8046 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8047 "scanf", FormatIdx+1,
8048 HasVAListArg ? 0 : FormatIdx+2));
8049 }
8050
8051 // Mark const if we don't care about errno and that is the only
8052 // thing preventing the function from being const. This allows
8053 // IRgen to use LLVM intrinsics for such functions.
8054 if (!getLangOpts().MathErrno &&
8055 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8056 if (!FD->getAttr<ConstAttr>())
8057 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8058 }
8059
8060 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8061 !FD->getAttr<ReturnsTwiceAttr>())
8062 FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8063 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8064 FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8065 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8066 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8067 }
8068
8069 IdentifierInfo *Name = FD->getIdentifier();
8070 if (!Name)
8071 return;
8072 if ((!getLangOpts().CPlusPlus &&
8073 FD->getDeclContext()->isTranslationUnit()) ||
8074 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8075 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8076 LinkageSpecDecl::lang_c)) {
8077 // Okay: this could be a libc/libm/Objective-C function we know
8078 // about.
8079 } else
8080 return;
8081
8082 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8083 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8084 // target-specific builtins, perhaps?
8085 if (!FD->getAttr<FormatAttr>())
8086 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8087 "printf", 2,
8088 Name->isStr("vasprintf") ? 0 : 3));
8089 }
8090
8091 if (Name->isStr("__CFStringMakeConstantString")) {
8092 // We already have a __builtin___CFStringMakeConstantString,
8093 // but builds that use -fno-constant-cfstrings don't go through that.
8094 if (!FD->getAttr<FormatArgAttr>())
8095 FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8096 }
8097 }
8098
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)8099 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8100 TypeSourceInfo *TInfo) {
8101 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8102 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8103
8104 if (!TInfo) {
8105 assert(D.isInvalidType() && "no declarator info for valid type");
8106 TInfo = Context.getTrivialTypeSourceInfo(T);
8107 }
8108
8109 // Scope manipulation handled by caller.
8110 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8111 D.getLocStart(),
8112 D.getIdentifierLoc(),
8113 D.getIdentifier(),
8114 TInfo);
8115
8116 // Bail out immediately if we have an invalid declaration.
8117 if (D.isInvalidType()) {
8118 NewTD->setInvalidDecl();
8119 return NewTD;
8120 }
8121
8122 if (D.getDeclSpec().isModulePrivateSpecified()) {
8123 if (CurContext->isFunctionOrMethod())
8124 Diag(NewTD->getLocation(), diag::err_module_private_local)
8125 << 2 << NewTD->getDeclName()
8126 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8127 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8128 else
8129 NewTD->setModulePrivate();
8130 }
8131
8132 // C++ [dcl.typedef]p8:
8133 // If the typedef declaration defines an unnamed class (or
8134 // enum), the first typedef-name declared by the declaration
8135 // to be that class type (or enum type) is used to denote the
8136 // class type (or enum type) for linkage purposes only.
8137 // We need to check whether the type was declared in the declaration.
8138 switch (D.getDeclSpec().getTypeSpecType()) {
8139 case TST_enum:
8140 case TST_struct:
8141 case TST_interface:
8142 case TST_union:
8143 case TST_class: {
8144 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8145
8146 // Do nothing if the tag is not anonymous or already has an
8147 // associated typedef (from an earlier typedef in this decl group).
8148 if (tagFromDeclSpec->getIdentifier()) break;
8149 if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8150
8151 // A well-formed anonymous tag must always be a TUK_Definition.
8152 assert(tagFromDeclSpec->isThisDeclarationADefinition());
8153
8154 // The type must match the tag exactly; no qualifiers allowed.
8155 if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8156 break;
8157
8158 // Otherwise, set this is the anon-decl typedef for the tag.
8159 tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8160 break;
8161 }
8162
8163 default:
8164 break;
8165 }
8166
8167 return NewTD;
8168 }
8169
8170
8171 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)8172 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8173 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8174 QualType T = TI->getType();
8175
8176 if (T->isDependentType() || T->isIntegralType(Context))
8177 return false;
8178
8179 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8180 return true;
8181 }
8182
8183 /// Check whether this is a valid redeclaration of a previous enumeration.
8184 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)8185 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8186 QualType EnumUnderlyingTy,
8187 const EnumDecl *Prev) {
8188 bool IsFixed = !EnumUnderlyingTy.isNull();
8189
8190 if (IsScoped != Prev->isScoped()) {
8191 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8192 << Prev->isScoped();
8193 Diag(Prev->getLocation(), diag::note_previous_use);
8194 return true;
8195 }
8196
8197 if (IsFixed && Prev->isFixed()) {
8198 if (!EnumUnderlyingTy->isDependentType() &&
8199 !Prev->getIntegerType()->isDependentType() &&
8200 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8201 Prev->getIntegerType())) {
8202 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8203 << EnumUnderlyingTy << Prev->getIntegerType();
8204 Diag(Prev->getLocation(), diag::note_previous_use);
8205 return true;
8206 }
8207 } else if (IsFixed != Prev->isFixed()) {
8208 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8209 << Prev->isFixed();
8210 Diag(Prev->getLocation(), diag::note_previous_use);
8211 return true;
8212 }
8213
8214 return false;
8215 }
8216
8217 /// \brief Get diagnostic %select index for tag kind for
8218 /// redeclaration diagnostic message.
8219 /// WARNING: Indexes apply to particular diagnostics only!
8220 ///
8221 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)8222 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8223 switch (Tag) {
8224 case TTK_Struct: return 0;
8225 case TTK_Interface: return 1;
8226 case TTK_Class: return 2;
8227 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8228 }
8229 }
8230
8231 /// \brief Determine if tag kind is a class-key compatible with
8232 /// class for redeclaration (class, struct, or __interface).
8233 ///
8234 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)8235 static bool isClassCompatTagKind(TagTypeKind Tag)
8236 {
8237 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8238 }
8239
8240 /// \brief Determine whether a tag with a given kind is acceptable
8241 /// as a redeclaration of the given tag declaration.
8242 ///
8243 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)8244 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8245 TagTypeKind NewTag, bool isDefinition,
8246 SourceLocation NewTagLoc,
8247 const IdentifierInfo &Name) {
8248 // C++ [dcl.type.elab]p3:
8249 // The class-key or enum keyword present in the
8250 // elaborated-type-specifier shall agree in kind with the
8251 // declaration to which the name in the elaborated-type-specifier
8252 // refers. This rule also applies to the form of
8253 // elaborated-type-specifier that declares a class-name or
8254 // friend class since it can be construed as referring to the
8255 // definition of the class. Thus, in any
8256 // elaborated-type-specifier, the enum keyword shall be used to
8257 // refer to an enumeration (7.2), the union class-key shall be
8258 // used to refer to a union (clause 9), and either the class or
8259 // struct class-key shall be used to refer to a class (clause 9)
8260 // declared using the class or struct class-key.
8261 TagTypeKind OldTag = Previous->getTagKind();
8262 if (!isDefinition || !isClassCompatTagKind(NewTag))
8263 if (OldTag == NewTag)
8264 return true;
8265
8266 if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8267 // Warn about the struct/class tag mismatch.
8268 bool isTemplate = false;
8269 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8270 isTemplate = Record->getDescribedClassTemplate();
8271
8272 if (!ActiveTemplateInstantiations.empty()) {
8273 // In a template instantiation, do not offer fix-its for tag mismatches
8274 // since they usually mess up the template instead of fixing the problem.
8275 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8276 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8277 << getRedeclDiagFromTagKind(OldTag);
8278 return true;
8279 }
8280
8281 if (isDefinition) {
8282 // On definitions, check previous tags and issue a fix-it for each
8283 // one that doesn't match the current tag.
8284 if (Previous->getDefinition()) {
8285 // Don't suggest fix-its for redefinitions.
8286 return true;
8287 }
8288
8289 bool previousMismatch = false;
8290 for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8291 E(Previous->redecls_end()); I != E; ++I) {
8292 if (I->getTagKind() != NewTag) {
8293 if (!previousMismatch) {
8294 previousMismatch = true;
8295 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8296 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8297 << getRedeclDiagFromTagKind(I->getTagKind());
8298 }
8299 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8300 << getRedeclDiagFromTagKind(NewTag)
8301 << FixItHint::CreateReplacement(I->getInnerLocStart(),
8302 TypeWithKeyword::getTagTypeKindName(NewTag));
8303 }
8304 }
8305 return true;
8306 }
8307
8308 // Check for a previous definition. If current tag and definition
8309 // are same type, do nothing. If no definition, but disagree with
8310 // with previous tag type, give a warning, but no fix-it.
8311 const TagDecl *Redecl = Previous->getDefinition() ?
8312 Previous->getDefinition() : Previous;
8313 if (Redecl->getTagKind() == NewTag) {
8314 return true;
8315 }
8316
8317 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8318 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8319 << getRedeclDiagFromTagKind(OldTag);
8320 Diag(Redecl->getLocation(), diag::note_previous_use);
8321
8322 // If there is a previous defintion, suggest a fix-it.
8323 if (Previous->getDefinition()) {
8324 Diag(NewTagLoc, diag::note_struct_class_suggestion)
8325 << getRedeclDiagFromTagKind(Redecl->getTagKind())
8326 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8327 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8328 }
8329
8330 return true;
8331 }
8332 return false;
8333 }
8334
8335 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
8336 /// former case, Name will be non-null. In the later case, Name will be null.
8337 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8338 /// reference/declaration/definition of a tag.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType)8339 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8340 SourceLocation KWLoc, CXXScopeSpec &SS,
8341 IdentifierInfo *Name, SourceLocation NameLoc,
8342 AttributeList *Attr, AccessSpecifier AS,
8343 SourceLocation ModulePrivateLoc,
8344 MultiTemplateParamsArg TemplateParameterLists,
8345 bool &OwnedDecl, bool &IsDependent,
8346 SourceLocation ScopedEnumKWLoc,
8347 bool ScopedEnumUsesClassTag,
8348 TypeResult UnderlyingType) {
8349 // If this is not a definition, it must have a name.
8350 IdentifierInfo *OrigName = Name;
8351 assert((Name != 0 || TUK == TUK_Definition) &&
8352 "Nameless record must be a definition!");
8353 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8354
8355 OwnedDecl = false;
8356 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8357 bool ScopedEnum = ScopedEnumKWLoc.isValid();
8358
8359 // FIXME: Check explicit specializations more carefully.
8360 bool isExplicitSpecialization = false;
8361 bool Invalid = false;
8362
8363 // We only need to do this matching if we have template parameters
8364 // or a scope specifier, which also conveniently avoids this work
8365 // for non-C++ cases.
8366 if (TemplateParameterLists.size() > 0 ||
8367 (SS.isNotEmpty() && TUK != TUK_Reference)) {
8368 if (TemplateParameterList *TemplateParams
8369 = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8370 TemplateParameterLists.data(),
8371 TemplateParameterLists.size(),
8372 TUK == TUK_Friend,
8373 isExplicitSpecialization,
8374 Invalid)) {
8375 if (TemplateParams->size() > 0) {
8376 // This is a declaration or definition of a class template (which may
8377 // be a member of another template).
8378
8379 if (Invalid)
8380 return 0;
8381
8382 OwnedDecl = false;
8383 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8384 SS, Name, NameLoc, Attr,
8385 TemplateParams, AS,
8386 ModulePrivateLoc,
8387 TemplateParameterLists.size()-1,
8388 TemplateParameterLists.data());
8389 return Result.get();
8390 } else {
8391 // The "template<>" header is extraneous.
8392 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8393 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8394 isExplicitSpecialization = true;
8395 }
8396 }
8397 }
8398
8399 // Figure out the underlying type if this a enum declaration. We need to do
8400 // this early, because it's needed to detect if this is an incompatible
8401 // redeclaration.
8402 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8403
8404 if (Kind == TTK_Enum) {
8405 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8406 // No underlying type explicitly specified, or we failed to parse the
8407 // type, default to int.
8408 EnumUnderlying = Context.IntTy.getTypePtr();
8409 else if (UnderlyingType.get()) {
8410 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8411 // integral type; any cv-qualification is ignored.
8412 TypeSourceInfo *TI = 0;
8413 GetTypeFromParser(UnderlyingType.get(), &TI);
8414 EnumUnderlying = TI;
8415
8416 if (CheckEnumUnderlyingType(TI))
8417 // Recover by falling back to int.
8418 EnumUnderlying = Context.IntTy.getTypePtr();
8419
8420 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8421 UPPC_FixedUnderlyingType))
8422 EnumUnderlying = Context.IntTy.getTypePtr();
8423
8424 } else if (getLangOpts().MicrosoftMode)
8425 // Microsoft enums are always of int type.
8426 EnumUnderlying = Context.IntTy.getTypePtr();
8427 }
8428
8429 DeclContext *SearchDC = CurContext;
8430 DeclContext *DC = CurContext;
8431 bool isStdBadAlloc = false;
8432
8433 RedeclarationKind Redecl = ForRedeclaration;
8434 if (TUK == TUK_Friend || TUK == TUK_Reference)
8435 Redecl = NotForRedeclaration;
8436
8437 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8438
8439 if (Name && SS.isNotEmpty()) {
8440 // We have a nested-name tag ('struct foo::bar').
8441
8442 // Check for invalid 'foo::'.
8443 if (SS.isInvalid()) {
8444 Name = 0;
8445 goto CreateNewDecl;
8446 }
8447
8448 // If this is a friend or a reference to a class in a dependent
8449 // context, don't try to make a decl for it.
8450 if (TUK == TUK_Friend || TUK == TUK_Reference) {
8451 DC = computeDeclContext(SS, false);
8452 if (!DC) {
8453 IsDependent = true;
8454 return 0;
8455 }
8456 } else {
8457 DC = computeDeclContext(SS, true);
8458 if (!DC) {
8459 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8460 << SS.getRange();
8461 return 0;
8462 }
8463 }
8464
8465 if (RequireCompleteDeclContext(SS, DC))
8466 return 0;
8467
8468 SearchDC = DC;
8469 // Look-up name inside 'foo::'.
8470 LookupQualifiedName(Previous, DC);
8471
8472 if (Previous.isAmbiguous())
8473 return 0;
8474
8475 if (Previous.empty()) {
8476 // Name lookup did not find anything. However, if the
8477 // nested-name-specifier refers to the current instantiation,
8478 // and that current instantiation has any dependent base
8479 // classes, we might find something at instantiation time: treat
8480 // this as a dependent elaborated-type-specifier.
8481 // But this only makes any sense for reference-like lookups.
8482 if (Previous.wasNotFoundInCurrentInstantiation() &&
8483 (TUK == TUK_Reference || TUK == TUK_Friend)) {
8484 IsDependent = true;
8485 return 0;
8486 }
8487
8488 // A tag 'foo::bar' must already exist.
8489 Diag(NameLoc, diag::err_not_tag_in_scope)
8490 << Kind << Name << DC << SS.getRange();
8491 Name = 0;
8492 Invalid = true;
8493 goto CreateNewDecl;
8494 }
8495 } else if (Name) {
8496 // If this is a named struct, check to see if there was a previous forward
8497 // declaration or definition.
8498 // FIXME: We're looking into outer scopes here, even when we
8499 // shouldn't be. Doing so can result in ambiguities that we
8500 // shouldn't be diagnosing.
8501 LookupName(Previous, S);
8502
8503 if (Previous.isAmbiguous() &&
8504 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8505 LookupResult::Filter F = Previous.makeFilter();
8506 while (F.hasNext()) {
8507 NamedDecl *ND = F.next();
8508 if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8509 F.erase();
8510 }
8511 F.done();
8512 }
8513
8514 // Note: there used to be some attempt at recovery here.
8515 if (Previous.isAmbiguous())
8516 return 0;
8517
8518 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8519 // FIXME: This makes sure that we ignore the contexts associated
8520 // with C structs, unions, and enums when looking for a matching
8521 // tag declaration or definition. See the similar lookup tweak
8522 // in Sema::LookupName; is there a better way to deal with this?
8523 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8524 SearchDC = SearchDC->getParent();
8525 }
8526 } else if (S->isFunctionPrototypeScope()) {
8527 // If this is an enum declaration in function prototype scope, set its
8528 // initial context to the translation unit.
8529 // FIXME: [citation needed]
8530 SearchDC = Context.getTranslationUnitDecl();
8531 }
8532
8533 if (Previous.isSingleResult() &&
8534 Previous.getFoundDecl()->isTemplateParameter()) {
8535 // Maybe we will complain about the shadowed template parameter.
8536 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8537 // Just pretend that we didn't see the previous declaration.
8538 Previous.clear();
8539 }
8540
8541 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8542 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8543 // This is a declaration of or a reference to "std::bad_alloc".
8544 isStdBadAlloc = true;
8545
8546 if (Previous.empty() && StdBadAlloc) {
8547 // std::bad_alloc has been implicitly declared (but made invisible to
8548 // name lookup). Fill in this implicit declaration as the previous
8549 // declaration, so that the declarations get chained appropriately.
8550 Previous.addDecl(getStdBadAlloc());
8551 }
8552 }
8553
8554 // If we didn't find a previous declaration, and this is a reference
8555 // (or friend reference), move to the correct scope. In C++, we
8556 // also need to do a redeclaration lookup there, just in case
8557 // there's a shadow friend decl.
8558 if (Name && Previous.empty() &&
8559 (TUK == TUK_Reference || TUK == TUK_Friend)) {
8560 if (Invalid) goto CreateNewDecl;
8561 assert(SS.isEmpty());
8562
8563 if (TUK == TUK_Reference) {
8564 // C++ [basic.scope.pdecl]p5:
8565 // -- for an elaborated-type-specifier of the form
8566 //
8567 // class-key identifier
8568 //
8569 // if the elaborated-type-specifier is used in the
8570 // decl-specifier-seq or parameter-declaration-clause of a
8571 // function defined in namespace scope, the identifier is
8572 // declared as a class-name in the namespace that contains
8573 // the declaration; otherwise, except as a friend
8574 // declaration, the identifier is declared in the smallest
8575 // non-class, non-function-prototype scope that contains the
8576 // declaration.
8577 //
8578 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8579 // C structs and unions.
8580 //
8581 // It is an error in C++ to declare (rather than define) an enum
8582 // type, including via an elaborated type specifier. We'll
8583 // diagnose that later; for now, declare the enum in the same
8584 // scope as we would have picked for any other tag type.
8585 //
8586 // GNU C also supports this behavior as part of its incomplete
8587 // enum types extension, while GNU C++ does not.
8588 //
8589 // Find the context where we'll be declaring the tag.
8590 // FIXME: We would like to maintain the current DeclContext as the
8591 // lexical context,
8592 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8593 SearchDC = SearchDC->getParent();
8594
8595 // Find the scope where we'll be declaring the tag.
8596 while (S->isClassScope() ||
8597 (getLangOpts().CPlusPlus &&
8598 S->isFunctionPrototypeScope()) ||
8599 ((S->getFlags() & Scope::DeclScope) == 0) ||
8600 (S->getEntity() &&
8601 ((DeclContext *)S->getEntity())->isTransparentContext()))
8602 S = S->getParent();
8603 } else {
8604 assert(TUK == TUK_Friend);
8605 // C++ [namespace.memdef]p3:
8606 // If a friend declaration in a non-local class first declares a
8607 // class or function, the friend class or function is a member of
8608 // the innermost enclosing namespace.
8609 SearchDC = SearchDC->getEnclosingNamespaceContext();
8610 }
8611
8612 // In C++, we need to do a redeclaration lookup to properly
8613 // diagnose some problems.
8614 if (getLangOpts().CPlusPlus) {
8615 Previous.setRedeclarationKind(ForRedeclaration);
8616 LookupQualifiedName(Previous, SearchDC);
8617 }
8618 }
8619
8620 if (!Previous.empty()) {
8621 NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8622
8623 // It's okay to have a tag decl in the same scope as a typedef
8624 // which hides a tag decl in the same scope. Finding this
8625 // insanity with a redeclaration lookup can only actually happen
8626 // in C++.
8627 //
8628 // This is also okay for elaborated-type-specifiers, which is
8629 // technically forbidden by the current standard but which is
8630 // okay according to the likely resolution of an open issue;
8631 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8632 if (getLangOpts().CPlusPlus) {
8633 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8634 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8635 TagDecl *Tag = TT->getDecl();
8636 if (Tag->getDeclName() == Name &&
8637 Tag->getDeclContext()->getRedeclContext()
8638 ->Equals(TD->getDeclContext()->getRedeclContext())) {
8639 PrevDecl = Tag;
8640 Previous.clear();
8641 Previous.addDecl(Tag);
8642 Previous.resolveKind();
8643 }
8644 }
8645 }
8646 }
8647
8648 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8649 // If this is a use of a previous tag, or if the tag is already declared
8650 // in the same scope (so that the definition/declaration completes or
8651 // rementions the tag), reuse the decl.
8652 if (TUK == TUK_Reference || TUK == TUK_Friend ||
8653 isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8654 // Make sure that this wasn't declared as an enum and now used as a
8655 // struct or something similar.
8656 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8657 TUK == TUK_Definition, KWLoc,
8658 *Name)) {
8659 bool SafeToContinue
8660 = (PrevTagDecl->getTagKind() != TTK_Enum &&
8661 Kind != TTK_Enum);
8662 if (SafeToContinue)
8663 Diag(KWLoc, diag::err_use_with_wrong_tag)
8664 << Name
8665 << FixItHint::CreateReplacement(SourceRange(KWLoc),
8666 PrevTagDecl->getKindName());
8667 else
8668 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8669 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8670
8671 if (SafeToContinue)
8672 Kind = PrevTagDecl->getTagKind();
8673 else {
8674 // Recover by making this an anonymous redefinition.
8675 Name = 0;
8676 Previous.clear();
8677 Invalid = true;
8678 }
8679 }
8680
8681 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8682 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8683
8684 // If this is an elaborated-type-specifier for a scoped enumeration,
8685 // the 'class' keyword is not necessary and not permitted.
8686 if (TUK == TUK_Reference || TUK == TUK_Friend) {
8687 if (ScopedEnum)
8688 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8689 << PrevEnum->isScoped()
8690 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8691 return PrevTagDecl;
8692 }
8693
8694 QualType EnumUnderlyingTy;
8695 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8696 EnumUnderlyingTy = TI->getType();
8697 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8698 EnumUnderlyingTy = QualType(T, 0);
8699
8700 // All conflicts with previous declarations are recovered by
8701 // returning the previous declaration, unless this is a definition,
8702 // in which case we want the caller to bail out.
8703 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8704 ScopedEnum, EnumUnderlyingTy, PrevEnum))
8705 return TUK == TUK_Declaration ? PrevTagDecl : 0;
8706 }
8707
8708 if (!Invalid) {
8709 // If this is a use, just return the declaration we found.
8710
8711 // FIXME: In the future, return a variant or some other clue
8712 // for the consumer of this Decl to know it doesn't own it.
8713 // For our current ASTs this shouldn't be a problem, but will
8714 // need to be changed with DeclGroups.
8715 if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8716 getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8717 return PrevTagDecl;
8718
8719 // Diagnose attempts to redefine a tag.
8720 if (TUK == TUK_Definition) {
8721 if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8722 // If we're defining a specialization and the previous definition
8723 // is from an implicit instantiation, don't emit an error
8724 // here; we'll catch this in the general case below.
8725 bool IsExplicitSpecializationAfterInstantiation = false;
8726 if (isExplicitSpecialization) {
8727 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8728 IsExplicitSpecializationAfterInstantiation =
8729 RD->getTemplateSpecializationKind() !=
8730 TSK_ExplicitSpecialization;
8731 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8732 IsExplicitSpecializationAfterInstantiation =
8733 ED->getTemplateSpecializationKind() !=
8734 TSK_ExplicitSpecialization;
8735 }
8736
8737 if (!IsExplicitSpecializationAfterInstantiation) {
8738 // A redeclaration in function prototype scope in C isn't
8739 // visible elsewhere, so merely issue a warning.
8740 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8741 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8742 else
8743 Diag(NameLoc, diag::err_redefinition) << Name;
8744 Diag(Def->getLocation(), diag::note_previous_definition);
8745 // If this is a redefinition, recover by making this
8746 // struct be anonymous, which will make any later
8747 // references get the previous definition.
8748 Name = 0;
8749 Previous.clear();
8750 Invalid = true;
8751 }
8752 } else {
8753 // If the type is currently being defined, complain
8754 // about a nested redefinition.
8755 const TagType *Tag
8756 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8757 if (Tag->isBeingDefined()) {
8758 Diag(NameLoc, diag::err_nested_redefinition) << Name;
8759 Diag(PrevTagDecl->getLocation(),
8760 diag::note_previous_definition);
8761 Name = 0;
8762 Previous.clear();
8763 Invalid = true;
8764 }
8765 }
8766
8767 // Okay, this is definition of a previously declared or referenced
8768 // tag PrevDecl. We're going to create a new Decl for it.
8769 }
8770 }
8771 // If we get here we have (another) forward declaration or we
8772 // have a definition. Just create a new decl.
8773
8774 } else {
8775 // If we get here, this is a definition of a new tag type in a nested
8776 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8777 // new decl/type. We set PrevDecl to NULL so that the entities
8778 // have distinct types.
8779 Previous.clear();
8780 }
8781 // If we get here, we're going to create a new Decl. If PrevDecl
8782 // is non-NULL, it's a definition of the tag declared by
8783 // PrevDecl. If it's NULL, we have a new definition.
8784
8785
8786 // Otherwise, PrevDecl is not a tag, but was found with tag
8787 // lookup. This is only actually possible in C++, where a few
8788 // things like templates still live in the tag namespace.
8789 } else {
8790 // Use a better diagnostic if an elaborated-type-specifier
8791 // found the wrong kind of type on the first
8792 // (non-redeclaration) lookup.
8793 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8794 !Previous.isForRedeclaration()) {
8795 unsigned Kind = 0;
8796 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8797 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8798 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8799 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8800 Diag(PrevDecl->getLocation(), diag::note_declared_at);
8801 Invalid = true;
8802
8803 // Otherwise, only diagnose if the declaration is in scope.
8804 } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8805 isExplicitSpecialization)) {
8806 // do nothing
8807
8808 // Diagnose implicit declarations introduced by elaborated types.
8809 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8810 unsigned Kind = 0;
8811 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8812 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8813 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8814 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8815 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8816 Invalid = true;
8817
8818 // Otherwise it's a declaration. Call out a particularly common
8819 // case here.
8820 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8821 unsigned Kind = 0;
8822 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8823 Diag(NameLoc, diag::err_tag_definition_of_typedef)
8824 << Name << Kind << TND->getUnderlyingType();
8825 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8826 Invalid = true;
8827
8828 // Otherwise, diagnose.
8829 } else {
8830 // The tag name clashes with something else in the target scope,
8831 // issue an error and recover by making this tag be anonymous.
8832 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8833 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8834 Name = 0;
8835 Invalid = true;
8836 }
8837
8838 // The existing declaration isn't relevant to us; we're in a
8839 // new scope, so clear out the previous declaration.
8840 Previous.clear();
8841 }
8842 }
8843
8844 CreateNewDecl:
8845
8846 TagDecl *PrevDecl = 0;
8847 if (Previous.isSingleResult())
8848 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8849
8850 // If there is an identifier, use the location of the identifier as the
8851 // location of the decl, otherwise use the location of the struct/union
8852 // keyword.
8853 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8854
8855 // Otherwise, create a new declaration. If there is a previous
8856 // declaration of the same entity, the two will be linked via
8857 // PrevDecl.
8858 TagDecl *New;
8859
8860 bool IsForwardReference = false;
8861 if (Kind == TTK_Enum) {
8862 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8863 // enum X { A, B, C } D; D should chain to X.
8864 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8865 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8866 ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8867 // If this is an undefined enum, warn.
8868 if (TUK != TUK_Definition && !Invalid) {
8869 TagDecl *Def;
8870 if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8871 // C++0x: 7.2p2: opaque-enum-declaration.
8872 // Conflicts are diagnosed above. Do nothing.
8873 }
8874 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8875 Diag(Loc, diag::ext_forward_ref_enum_def)
8876 << New;
8877 Diag(Def->getLocation(), diag::note_previous_definition);
8878 } else {
8879 unsigned DiagID = diag::ext_forward_ref_enum;
8880 if (getLangOpts().MicrosoftMode)
8881 DiagID = diag::ext_ms_forward_ref_enum;
8882 else if (getLangOpts().CPlusPlus)
8883 DiagID = diag::err_forward_ref_enum;
8884 Diag(Loc, DiagID);
8885
8886 // If this is a forward-declared reference to an enumeration, make a
8887 // note of it; we won't actually be introducing the declaration into
8888 // the declaration context.
8889 if (TUK == TUK_Reference)
8890 IsForwardReference = true;
8891 }
8892 }
8893
8894 if (EnumUnderlying) {
8895 EnumDecl *ED = cast<EnumDecl>(New);
8896 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8897 ED->setIntegerTypeSourceInfo(TI);
8898 else
8899 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8900 ED->setPromotionType(ED->getIntegerType());
8901 }
8902
8903 } else {
8904 // struct/union/class
8905
8906 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8907 // struct X { int A; } D; D should chain to X.
8908 if (getLangOpts().CPlusPlus) {
8909 // FIXME: Look for a way to use RecordDecl for simple structs.
8910 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8911 cast_or_null<CXXRecordDecl>(PrevDecl));
8912
8913 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8914 StdBadAlloc = cast<CXXRecordDecl>(New);
8915 } else
8916 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8917 cast_or_null<RecordDecl>(PrevDecl));
8918 }
8919
8920 // Maybe add qualifier info.
8921 if (SS.isNotEmpty()) {
8922 if (SS.isSet()) {
8923 // If this is either a declaration or a definition, check the
8924 // nested-name-specifier against the current context. We don't do this
8925 // for explicit specializations, because they have similar checking
8926 // (with more specific diagnostics) in the call to
8927 // CheckMemberSpecialization, below.
8928 if (!isExplicitSpecialization &&
8929 (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8930 diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8931 Invalid = true;
8932
8933 New->setQualifierInfo(SS.getWithLocInContext(Context));
8934 if (TemplateParameterLists.size() > 0) {
8935 New->setTemplateParameterListsInfo(Context,
8936 TemplateParameterLists.size(),
8937 TemplateParameterLists.data());
8938 }
8939 }
8940 else
8941 Invalid = true;
8942 }
8943
8944 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8945 // Add alignment attributes if necessary; these attributes are checked when
8946 // the ASTContext lays out the structure.
8947 //
8948 // It is important for implementing the correct semantics that this
8949 // happen here (in act on tag decl). The #pragma pack stack is
8950 // maintained as a result of parser callbacks which can occur at
8951 // many points during the parsing of a struct declaration (because
8952 // the #pragma tokens are effectively skipped over during the
8953 // parsing of the struct).
8954 if (TUK == TUK_Definition) {
8955 AddAlignmentAttributesForRecord(RD);
8956 AddMsStructLayoutForRecord(RD);
8957 }
8958 }
8959
8960 if (ModulePrivateLoc.isValid()) {
8961 if (isExplicitSpecialization)
8962 Diag(New->getLocation(), diag::err_module_private_specialization)
8963 << 2
8964 << FixItHint::CreateRemoval(ModulePrivateLoc);
8965 // __module_private__ does not apply to local classes. However, we only
8966 // diagnose this as an error when the declaration specifiers are
8967 // freestanding. Here, we just ignore the __module_private__.
8968 else if (!SearchDC->isFunctionOrMethod())
8969 New->setModulePrivate();
8970 }
8971
8972 // If this is a specialization of a member class (of a class template),
8973 // check the specialization.
8974 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8975 Invalid = true;
8976
8977 if (Invalid)
8978 New->setInvalidDecl();
8979
8980 if (Attr)
8981 ProcessDeclAttributeList(S, New, Attr);
8982
8983 // If we're declaring or defining a tag in function prototype scope
8984 // in C, note that this type can only be used within the function.
8985 if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8986 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8987
8988 // Set the lexical context. If the tag has a C++ scope specifier, the
8989 // lexical context will be different from the semantic context.
8990 New->setLexicalDeclContext(CurContext);
8991
8992 // Mark this as a friend decl if applicable.
8993 // In Microsoft mode, a friend declaration also acts as a forward
8994 // declaration so we always pass true to setObjectOfFriendDecl to make
8995 // the tag name visible.
8996 if (TUK == TUK_Friend)
8997 New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8998 getLangOpts().MicrosoftExt);
8999
9000 // Set the access specifier.
9001 if (!Invalid && SearchDC->isRecord())
9002 SetMemberAccessSpecifier(New, PrevDecl, AS);
9003
9004 if (TUK == TUK_Definition)
9005 New->startDefinition();
9006
9007 // If this has an identifier, add it to the scope stack.
9008 if (TUK == TUK_Friend) {
9009 // We might be replacing an existing declaration in the lookup tables;
9010 // if so, borrow its access specifier.
9011 if (PrevDecl)
9012 New->setAccess(PrevDecl->getAccess());
9013
9014 DeclContext *DC = New->getDeclContext()->getRedeclContext();
9015 DC->makeDeclVisibleInContext(New);
9016 if (Name) // can be null along some error paths
9017 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9018 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9019 } else if (Name) {
9020 S = getNonFieldDeclScope(S);
9021 PushOnScopeChains(New, S, !IsForwardReference);
9022 if (IsForwardReference)
9023 SearchDC->makeDeclVisibleInContext(New);
9024
9025 } else {
9026 CurContext->addDecl(New);
9027 }
9028
9029 // If this is the C FILE type, notify the AST context.
9030 if (IdentifierInfo *II = New->getIdentifier())
9031 if (!New->isInvalidDecl() &&
9032 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9033 II->isStr("FILE"))
9034 Context.setFILEDecl(New);
9035
9036 // If we were in function prototype scope (and not in C++ mode), add this
9037 // tag to the list of decls to inject into the function definition scope.
9038 if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9039 InFunctionDeclarator && Name)
9040 DeclsInPrototypeScope.push_back(New);
9041
9042 if (PrevDecl)
9043 mergeDeclAttributes(New, PrevDecl);
9044
9045 // If there's a #pragma GCC visibility in scope, set the visibility of this
9046 // record.
9047 AddPushedVisibilityAttribute(New);
9048
9049 OwnedDecl = true;
9050 return New;
9051 }
9052
ActOnTagStartDefinition(Scope * S,Decl * TagD)9053 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9054 AdjustDeclIfTemplate(TagD);
9055 TagDecl *Tag = cast<TagDecl>(TagD);
9056
9057 // Enter the tag context.
9058 PushDeclContext(S, Tag);
9059
9060 ActOnDocumentableDecl(TagD);
9061
9062 // If there's a #pragma GCC visibility in scope, set the visibility of this
9063 // record.
9064 AddPushedVisibilityAttribute(Tag);
9065 }
9066
ActOnObjCContainerStartDefinition(Decl * IDecl)9067 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9068 assert(isa<ObjCContainerDecl>(IDecl) &&
9069 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9070 DeclContext *OCD = cast<DeclContext>(IDecl);
9071 assert(getContainingDC(OCD) == CurContext &&
9072 "The next DeclContext should be lexically contained in the current one.");
9073 CurContext = OCD;
9074 return IDecl;
9075 }
9076
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,SourceLocation LBraceLoc)9077 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9078 SourceLocation FinalLoc,
9079 SourceLocation LBraceLoc) {
9080 AdjustDeclIfTemplate(TagD);
9081 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9082
9083 FieldCollector->StartClass();
9084
9085 if (!Record->getIdentifier())
9086 return;
9087
9088 if (FinalLoc.isValid())
9089 Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9090
9091 // C++ [class]p2:
9092 // [...] The class-name is also inserted into the scope of the
9093 // class itself; this is known as the injected-class-name. For
9094 // purposes of access checking, the injected-class-name is treated
9095 // as if it were a public member name.
9096 CXXRecordDecl *InjectedClassName
9097 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9098 Record->getLocStart(), Record->getLocation(),
9099 Record->getIdentifier(),
9100 /*PrevDecl=*/0,
9101 /*DelayTypeCreation=*/true);
9102 Context.getTypeDeclType(InjectedClassName, Record);
9103 InjectedClassName->setImplicit();
9104 InjectedClassName->setAccess(AS_public);
9105 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9106 InjectedClassName->setDescribedClassTemplate(Template);
9107 PushOnScopeChains(InjectedClassName, S);
9108 assert(InjectedClassName->isInjectedClassName() &&
9109 "Broken injected-class-name");
9110 }
9111
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)9112 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9113 SourceLocation RBraceLoc) {
9114 AdjustDeclIfTemplate(TagD);
9115 TagDecl *Tag = cast<TagDecl>(TagD);
9116 Tag->setRBraceLoc(RBraceLoc);
9117
9118 // Make sure we "complete" the definition even it is invalid.
9119 if (Tag->isBeingDefined()) {
9120 assert(Tag->isInvalidDecl() && "We should already have completed it");
9121 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9122 RD->completeDefinition();
9123 }
9124
9125 if (isa<CXXRecordDecl>(Tag))
9126 FieldCollector->FinishClass();
9127
9128 // Exit this scope of this tag's definition.
9129 PopDeclContext();
9130
9131 // Notify the consumer that we've defined a tag.
9132 Consumer.HandleTagDeclDefinition(Tag);
9133 }
9134
ActOnObjCContainerFinishDefinition()9135 void Sema::ActOnObjCContainerFinishDefinition() {
9136 // Exit this scope of this interface definition.
9137 PopDeclContext();
9138 }
9139
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)9140 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9141 assert(DC == CurContext && "Mismatch of container contexts");
9142 OriginalLexicalContext = DC;
9143 ActOnObjCContainerFinishDefinition();
9144 }
9145
ActOnObjCReenterContainerContext(DeclContext * DC)9146 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9147 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9148 OriginalLexicalContext = 0;
9149 }
9150
ActOnTagDefinitionError(Scope * S,Decl * TagD)9151 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9152 AdjustDeclIfTemplate(TagD);
9153 TagDecl *Tag = cast<TagDecl>(TagD);
9154 Tag->setInvalidDecl();
9155
9156 // Make sure we "complete" the definition even it is invalid.
9157 if (Tag->isBeingDefined()) {
9158 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9159 RD->completeDefinition();
9160 }
9161
9162 // We're undoing ActOnTagStartDefinition here, not
9163 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9164 // the FieldCollector.
9165
9166 PopDeclContext();
9167 }
9168
9169 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,Expr * BitWidth,bool * ZeroWidth)9170 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9171 IdentifierInfo *FieldName,
9172 QualType FieldTy, Expr *BitWidth,
9173 bool *ZeroWidth) {
9174 // Default to true; that shouldn't confuse checks for emptiness
9175 if (ZeroWidth)
9176 *ZeroWidth = true;
9177
9178 // C99 6.7.2.1p4 - verify the field type.
9179 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9180 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9181 // Handle incomplete types with specific error.
9182 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9183 return ExprError();
9184 if (FieldName)
9185 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9186 << FieldName << FieldTy << BitWidth->getSourceRange();
9187 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9188 << FieldTy << BitWidth->getSourceRange();
9189 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9190 UPPC_BitFieldWidth))
9191 return ExprError();
9192
9193 // If the bit-width is type- or value-dependent, don't try to check
9194 // it now.
9195 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9196 return Owned(BitWidth);
9197
9198 llvm::APSInt Value;
9199 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9200 if (ICE.isInvalid())
9201 return ICE;
9202 BitWidth = ICE.take();
9203
9204 if (Value != 0 && ZeroWidth)
9205 *ZeroWidth = false;
9206
9207 // Zero-width bitfield is ok for anonymous field.
9208 if (Value == 0 && FieldName)
9209 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9210
9211 if (Value.isSigned() && Value.isNegative()) {
9212 if (FieldName)
9213 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9214 << FieldName << Value.toString(10);
9215 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9216 << Value.toString(10);
9217 }
9218
9219 if (!FieldTy->isDependentType()) {
9220 uint64_t TypeSize = Context.getTypeSize(FieldTy);
9221 if (Value.getZExtValue() > TypeSize) {
9222 if (!getLangOpts().CPlusPlus) {
9223 if (FieldName)
9224 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9225 << FieldName << (unsigned)Value.getZExtValue()
9226 << (unsigned)TypeSize;
9227
9228 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9229 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9230 }
9231
9232 if (FieldName)
9233 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9234 << FieldName << (unsigned)Value.getZExtValue()
9235 << (unsigned)TypeSize;
9236 else
9237 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9238 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9239 }
9240 }
9241
9242 return Owned(BitWidth);
9243 }
9244
9245 /// ActOnField - Each field of a C struct/union is passed into this in order
9246 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)9247 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9248 Declarator &D, Expr *BitfieldWidth) {
9249 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9250 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9251 /*InitStyle=*/ICIS_NoInit, AS_public);
9252 return Res;
9253 }
9254
9255 /// HandleField - Analyze a field of a C struct or a C++ data member.
9256 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)9257 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9258 SourceLocation DeclStart,
9259 Declarator &D, Expr *BitWidth,
9260 InClassInitStyle InitStyle,
9261 AccessSpecifier AS) {
9262 IdentifierInfo *II = D.getIdentifier();
9263 SourceLocation Loc = DeclStart;
9264 if (II) Loc = D.getIdentifierLoc();
9265
9266 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9267 QualType T = TInfo->getType();
9268 if (getLangOpts().CPlusPlus) {
9269 CheckExtraCXXDefaultArguments(D);
9270
9271 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9272 UPPC_DataMemberType)) {
9273 D.setInvalidType();
9274 T = Context.IntTy;
9275 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9276 }
9277 }
9278
9279 DiagnoseFunctionSpecifiers(D);
9280
9281 if (D.getDeclSpec().isThreadSpecified())
9282 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9283 if (D.getDeclSpec().isConstexprSpecified())
9284 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9285 << 2;
9286
9287 // Check to see if this name was declared as a member previously
9288 NamedDecl *PrevDecl = 0;
9289 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9290 LookupName(Previous, S);
9291 switch (Previous.getResultKind()) {
9292 case LookupResult::Found:
9293 case LookupResult::FoundUnresolvedValue:
9294 PrevDecl = Previous.getAsSingle<NamedDecl>();
9295 break;
9296
9297 case LookupResult::FoundOverloaded:
9298 PrevDecl = Previous.getRepresentativeDecl();
9299 break;
9300
9301 case LookupResult::NotFound:
9302 case LookupResult::NotFoundInCurrentInstantiation:
9303 case LookupResult::Ambiguous:
9304 break;
9305 }
9306 Previous.suppressDiagnostics();
9307
9308 if (PrevDecl && PrevDecl->isTemplateParameter()) {
9309 // Maybe we will complain about the shadowed template parameter.
9310 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9311 // Just pretend that we didn't see the previous declaration.
9312 PrevDecl = 0;
9313 }
9314
9315 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9316 PrevDecl = 0;
9317
9318 bool Mutable
9319 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9320 SourceLocation TSSL = D.getLocStart();
9321 FieldDecl *NewFD
9322 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9323 TSSL, AS, PrevDecl, &D);
9324
9325 if (NewFD->isInvalidDecl())
9326 Record->setInvalidDecl();
9327
9328 if (D.getDeclSpec().isModulePrivateSpecified())
9329 NewFD->setModulePrivate();
9330
9331 if (NewFD->isInvalidDecl() && PrevDecl) {
9332 // Don't introduce NewFD into scope; there's already something
9333 // with the same name in the same scope.
9334 } else if (II) {
9335 PushOnScopeChains(NewFD, S);
9336 } else
9337 Record->addDecl(NewFD);
9338
9339 return NewFD;
9340 }
9341
9342 /// \brief Build a new FieldDecl and check its well-formedness.
9343 ///
9344 /// This routine builds a new FieldDecl given the fields name, type,
9345 /// record, etc. \p PrevDecl should refer to any previous declaration
9346 /// with the same name and in the same scope as the field to be
9347 /// created.
9348 ///
9349 /// \returns a new FieldDecl.
9350 ///
9351 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)9352 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9353 TypeSourceInfo *TInfo,
9354 RecordDecl *Record, SourceLocation Loc,
9355 bool Mutable, Expr *BitWidth,
9356 InClassInitStyle InitStyle,
9357 SourceLocation TSSL,
9358 AccessSpecifier AS, NamedDecl *PrevDecl,
9359 Declarator *D) {
9360 IdentifierInfo *II = Name.getAsIdentifierInfo();
9361 bool InvalidDecl = false;
9362 if (D) InvalidDecl = D->isInvalidType();
9363
9364 // If we receive a broken type, recover by assuming 'int' and
9365 // marking this declaration as invalid.
9366 if (T.isNull()) {
9367 InvalidDecl = true;
9368 T = Context.IntTy;
9369 }
9370
9371 QualType EltTy = Context.getBaseElementType(T);
9372 if (!EltTy->isDependentType()) {
9373 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9374 // Fields of incomplete type force their record to be invalid.
9375 Record->setInvalidDecl();
9376 InvalidDecl = true;
9377 } else {
9378 NamedDecl *Def;
9379 EltTy->isIncompleteType(&Def);
9380 if (Def && Def->isInvalidDecl()) {
9381 Record->setInvalidDecl();
9382 InvalidDecl = true;
9383 }
9384 }
9385 }
9386
9387 // C99 6.7.2.1p8: A member of a structure or union may have any type other
9388 // than a variably modified type.
9389 if (!InvalidDecl && T->isVariablyModifiedType()) {
9390 bool SizeIsNegative;
9391 llvm::APSInt Oversized;
9392 QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9393 SizeIsNegative,
9394 Oversized);
9395 if (!FixedTy.isNull()) {
9396 Diag(Loc, diag::warn_illegal_constant_array_size);
9397 T = FixedTy;
9398 } else {
9399 if (SizeIsNegative)
9400 Diag(Loc, diag::err_typecheck_negative_array_size);
9401 else if (Oversized.getBoolValue())
9402 Diag(Loc, diag::err_array_too_large)
9403 << Oversized.toString(10);
9404 else
9405 Diag(Loc, diag::err_typecheck_field_variable_size);
9406 InvalidDecl = true;
9407 }
9408 }
9409
9410 // Fields can not have abstract class types
9411 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9412 diag::err_abstract_type_in_decl,
9413 AbstractFieldType))
9414 InvalidDecl = true;
9415
9416 bool ZeroWidth = false;
9417 // If this is declared as a bit-field, check the bit-field.
9418 if (!InvalidDecl && BitWidth) {
9419 BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9420 if (!BitWidth) {
9421 InvalidDecl = true;
9422 BitWidth = 0;
9423 ZeroWidth = false;
9424 }
9425 }
9426
9427 // Check that 'mutable' is consistent with the type of the declaration.
9428 if (!InvalidDecl && Mutable) {
9429 unsigned DiagID = 0;
9430 if (T->isReferenceType())
9431 DiagID = diag::err_mutable_reference;
9432 else if (T.isConstQualified())
9433 DiagID = diag::err_mutable_const;
9434
9435 if (DiagID) {
9436 SourceLocation ErrLoc = Loc;
9437 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9438 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9439 Diag(ErrLoc, DiagID);
9440 Mutable = false;
9441 InvalidDecl = true;
9442 }
9443 }
9444
9445 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9446 BitWidth, Mutable, InitStyle);
9447 if (InvalidDecl)
9448 NewFD->setInvalidDecl();
9449
9450 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9451 Diag(Loc, diag::err_duplicate_member) << II;
9452 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9453 NewFD->setInvalidDecl();
9454 }
9455
9456 if (!InvalidDecl && getLangOpts().CPlusPlus) {
9457 if (Record->isUnion()) {
9458 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9459 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9460 if (RDecl->getDefinition()) {
9461 // C++ [class.union]p1: An object of a class with a non-trivial
9462 // constructor, a non-trivial copy constructor, a non-trivial
9463 // destructor, or a non-trivial copy assignment operator
9464 // cannot be a member of a union, nor can an array of such
9465 // objects.
9466 if (CheckNontrivialField(NewFD))
9467 NewFD->setInvalidDecl();
9468 }
9469 }
9470
9471 // C++ [class.union]p1: If a union contains a member of reference type,
9472 // the program is ill-formed.
9473 if (EltTy->isReferenceType()) {
9474 Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9475 << NewFD->getDeclName() << EltTy;
9476 NewFD->setInvalidDecl();
9477 }
9478 }
9479 }
9480
9481 // FIXME: We need to pass in the attributes given an AST
9482 // representation, not a parser representation.
9483 if (D)
9484 // FIXME: What to pass instead of TUScope?
9485 ProcessDeclAttributes(TUScope, NewFD, *D);
9486
9487 // In auto-retain/release, infer strong retension for fields of
9488 // retainable type.
9489 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9490 NewFD->setInvalidDecl();
9491
9492 if (T.isObjCGCWeak())
9493 Diag(Loc, diag::warn_attribute_weak_on_field);
9494
9495 NewFD->setAccess(AS);
9496 return NewFD;
9497 }
9498
CheckNontrivialField(FieldDecl * FD)9499 bool Sema::CheckNontrivialField(FieldDecl *FD) {
9500 assert(FD);
9501 assert(getLangOpts().CPlusPlus && "valid check only for C++");
9502
9503 if (FD->isInvalidDecl())
9504 return true;
9505
9506 QualType EltTy = Context.getBaseElementType(FD->getType());
9507 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9508 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9509 if (RDecl->getDefinition()) {
9510 // We check for copy constructors before constructors
9511 // because otherwise we'll never get complaints about
9512 // copy constructors.
9513
9514 CXXSpecialMember member = CXXInvalid;
9515 if (!RDecl->hasTrivialCopyConstructor())
9516 member = CXXCopyConstructor;
9517 else if (!RDecl->hasTrivialDefaultConstructor())
9518 member = CXXDefaultConstructor;
9519 else if (!RDecl->hasTrivialCopyAssignment())
9520 member = CXXCopyAssignment;
9521 else if (!RDecl->hasTrivialDestructor())
9522 member = CXXDestructor;
9523
9524 if (member != CXXInvalid) {
9525 if (!getLangOpts().CPlusPlus0x &&
9526 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9527 // Objective-C++ ARC: it is an error to have a non-trivial field of
9528 // a union. However, system headers in Objective-C programs
9529 // occasionally have Objective-C lifetime objects within unions,
9530 // and rather than cause the program to fail, we make those
9531 // members unavailable.
9532 SourceLocation Loc = FD->getLocation();
9533 if (getSourceManager().isInSystemHeader(Loc)) {
9534 if (!FD->hasAttr<UnavailableAttr>())
9535 FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9536 "this system field has retaining ownership"));
9537 return false;
9538 }
9539 }
9540
9541 Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9542 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9543 diag::err_illegal_union_or_anon_struct_member)
9544 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9545 DiagnoseNontrivial(RT, member);
9546 return !getLangOpts().CPlusPlus0x;
9547 }
9548 }
9549 }
9550
9551 return false;
9552 }
9553
9554 /// If the given constructor is user-declared, produce a diagnostic explaining
9555 /// that it makes the class non-trivial.
diagnoseNonTrivialUserDeclaredCtor(Sema & S,QualType QT,CXXConstructorDecl * CD,Sema::CXXSpecialMember CSM)9556 static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
9557 CXXConstructorDecl *CD,
9558 Sema::CXXSpecialMember CSM) {
9559 if (CD->isImplicit())
9560 return false;
9561
9562 SourceLocation CtorLoc = CD->getLocation();
9563 S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9564 return true;
9565 }
9566
9567 /// DiagnoseNontrivial - Given that a class has a non-trivial
9568 /// special member, figure out why.
DiagnoseNontrivial(const RecordType * T,CXXSpecialMember member)9569 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9570 QualType QT(T, 0U);
9571 CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9572
9573 // Check whether the member was user-declared.
9574 switch (member) {
9575 case CXXInvalid:
9576 break;
9577
9578 case CXXDefaultConstructor:
9579 if (RD->hasUserDeclaredConstructor()) {
9580 typedef CXXRecordDecl::ctor_iterator ctor_iter;
9581 for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9582 if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
9583 return;
9584
9585 // No user-delcared constructors; look for constructor templates.
9586 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9587 tmpl_iter;
9588 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9589 TI != TE; ++TI) {
9590 CXXConstructorDecl *CD =
9591 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9592 if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
9593 return;
9594 }
9595 }
9596 break;
9597
9598 case CXXCopyConstructor:
9599 if (RD->hasUserDeclaredCopyConstructor()) {
9600 SourceLocation CtorLoc =
9601 RD->getCopyConstructor(0)->getLocation();
9602 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9603 return;
9604 }
9605 break;
9606
9607 case CXXMoveConstructor:
9608 if (RD->hasUserDeclaredMoveConstructor()) {
9609 SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9610 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9611 return;
9612 }
9613 break;
9614
9615 case CXXCopyAssignment:
9616 if (RD->hasUserDeclaredCopyAssignment()) {
9617 SourceLocation AssignLoc =
9618 RD->getCopyAssignmentOperator(0)->getLocation();
9619 Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9620 return;
9621 }
9622 break;
9623
9624 case CXXMoveAssignment:
9625 if (RD->hasUserDeclaredMoveAssignment()) {
9626 SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9627 Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9628 return;
9629 }
9630 break;
9631
9632 case CXXDestructor:
9633 if (RD->hasUserDeclaredDestructor()) {
9634 SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9635 Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9636 return;
9637 }
9638 break;
9639 }
9640
9641 typedef CXXRecordDecl::base_class_iterator base_iter;
9642
9643 // Virtual bases and members inhibit trivial copying/construction,
9644 // but not trivial destruction.
9645 if (member != CXXDestructor) {
9646 // Check for virtual bases. vbases includes indirect virtual bases,
9647 // so we just iterate through the direct bases.
9648 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9649 if (bi->isVirtual()) {
9650 SourceLocation BaseLoc = bi->getLocStart();
9651 Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9652 return;
9653 }
9654
9655 // Check for virtual methods.
9656 typedef CXXRecordDecl::method_iterator meth_iter;
9657 for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9658 ++mi) {
9659 if (mi->isVirtual()) {
9660 SourceLocation MLoc = mi->getLocStart();
9661 Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9662 return;
9663 }
9664 }
9665 }
9666
9667 bool (CXXRecordDecl::*hasTrivial)() const;
9668 switch (member) {
9669 case CXXDefaultConstructor:
9670 hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9671 case CXXCopyConstructor:
9672 hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9673 case CXXCopyAssignment:
9674 hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9675 case CXXDestructor:
9676 hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9677 default:
9678 llvm_unreachable("unexpected special member");
9679 }
9680
9681 // Check for nontrivial bases (and recurse).
9682 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9683 const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9684 assert(BaseRT && "Don't know how to handle dependent bases");
9685 CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9686 if (!(BaseRecTy->*hasTrivial)()) {
9687 SourceLocation BaseLoc = bi->getLocStart();
9688 Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9689 DiagnoseNontrivial(BaseRT, member);
9690 return;
9691 }
9692 }
9693
9694 // Check for nontrivial members (and recurse).
9695 typedef RecordDecl::field_iterator field_iter;
9696 for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9697 ++fi) {
9698 QualType EltTy = Context.getBaseElementType(fi->getType());
9699 if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9700 CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9701
9702 if (!(EltRD->*hasTrivial)()) {
9703 SourceLocation FLoc = fi->getLocation();
9704 Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9705 DiagnoseNontrivial(EltRT, member);
9706 return;
9707 }
9708 }
9709
9710 if (EltTy->isObjCLifetimeType()) {
9711 switch (EltTy.getObjCLifetime()) {
9712 case Qualifiers::OCL_None:
9713 case Qualifiers::OCL_ExplicitNone:
9714 break;
9715
9716 case Qualifiers::OCL_Autoreleasing:
9717 case Qualifiers::OCL_Weak:
9718 case Qualifiers::OCL_Strong:
9719 Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9720 << QT << EltTy.getObjCLifetime();
9721 return;
9722 }
9723 }
9724 }
9725
9726 llvm_unreachable("found no explanation for non-trivial member");
9727 }
9728
9729 /// TranslateIvarVisibility - Translate visibility from a token ID to an
9730 /// AST enum value.
9731 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)9732 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9733 switch (ivarVisibility) {
9734 default: llvm_unreachable("Unknown visitibility kind");
9735 case tok::objc_private: return ObjCIvarDecl::Private;
9736 case tok::objc_public: return ObjCIvarDecl::Public;
9737 case tok::objc_protected: return ObjCIvarDecl::Protected;
9738 case tok::objc_package: return ObjCIvarDecl::Package;
9739 }
9740 }
9741
9742 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
9743 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)9744 Decl *Sema::ActOnIvar(Scope *S,
9745 SourceLocation DeclStart,
9746 Declarator &D, Expr *BitfieldWidth,
9747 tok::ObjCKeywordKind Visibility) {
9748
9749 IdentifierInfo *II = D.getIdentifier();
9750 Expr *BitWidth = (Expr*)BitfieldWidth;
9751 SourceLocation Loc = DeclStart;
9752 if (II) Loc = D.getIdentifierLoc();
9753
9754 // FIXME: Unnamed fields can be handled in various different ways, for
9755 // example, unnamed unions inject all members into the struct namespace!
9756
9757 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9758 QualType T = TInfo->getType();
9759
9760 if (BitWidth) {
9761 // 6.7.2.1p3, 6.7.2.1p4
9762 BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9763 if (!BitWidth)
9764 D.setInvalidType();
9765 } else {
9766 // Not a bitfield.
9767
9768 // validate II.
9769
9770 }
9771 if (T->isReferenceType()) {
9772 Diag(Loc, diag::err_ivar_reference_type);
9773 D.setInvalidType();
9774 }
9775 // C99 6.7.2.1p8: A member of a structure or union may have any type other
9776 // than a variably modified type.
9777 else if (T->isVariablyModifiedType()) {
9778 Diag(Loc, diag::err_typecheck_ivar_variable_size);
9779 D.setInvalidType();
9780 }
9781
9782 // Get the visibility (access control) for this ivar.
9783 ObjCIvarDecl::AccessControl ac =
9784 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9785 : ObjCIvarDecl::None;
9786 // Must set ivar's DeclContext to its enclosing interface.
9787 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9788 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9789 return 0;
9790 ObjCContainerDecl *EnclosingContext;
9791 if (ObjCImplementationDecl *IMPDecl =
9792 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9793 if (LangOpts.ObjCRuntime.isFragile()) {
9794 // Case of ivar declared in an implementation. Context is that of its class.
9795 EnclosingContext = IMPDecl->getClassInterface();
9796 assert(EnclosingContext && "Implementation has no class interface!");
9797 }
9798 else
9799 EnclosingContext = EnclosingDecl;
9800 } else {
9801 if (ObjCCategoryDecl *CDecl =
9802 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9803 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9804 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9805 return 0;
9806 }
9807 }
9808 EnclosingContext = EnclosingDecl;
9809 }
9810
9811 // Construct the decl.
9812 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9813 DeclStart, Loc, II, T,
9814 TInfo, ac, (Expr *)BitfieldWidth);
9815
9816 if (II) {
9817 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9818 ForRedeclaration);
9819 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9820 && !isa<TagDecl>(PrevDecl)) {
9821 Diag(Loc, diag::err_duplicate_member) << II;
9822 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9823 NewID->setInvalidDecl();
9824 }
9825 }
9826
9827 // Process attributes attached to the ivar.
9828 ProcessDeclAttributes(S, NewID, D);
9829
9830 if (D.isInvalidType())
9831 NewID->setInvalidDecl();
9832
9833 // In ARC, infer 'retaining' for ivars of retainable type.
9834 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9835 NewID->setInvalidDecl();
9836
9837 if (D.getDeclSpec().isModulePrivateSpecified())
9838 NewID->setModulePrivate();
9839
9840 if (II) {
9841 // FIXME: When interfaces are DeclContexts, we'll need to add
9842 // these to the interface.
9843 S->AddDecl(NewID);
9844 IdResolver.AddDecl(NewID);
9845 }
9846
9847 if (LangOpts.ObjCRuntime.isNonFragile() &&
9848 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9849 Diag(Loc, diag::warn_ivars_in_interface);
9850
9851 return NewID;
9852 }
9853
9854 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9855 /// class and class extensions. For every class @interface and class
9856 /// extension @interface, if the last ivar is a bitfield of any type,
9857 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)9858 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9859 SmallVectorImpl<Decl *> &AllIvarDecls) {
9860 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9861 return;
9862
9863 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9864 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9865
9866 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9867 return;
9868 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9869 if (!ID) {
9870 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9871 if (!CD->IsClassExtension())
9872 return;
9873 }
9874 // No need to add this to end of @implementation.
9875 else
9876 return;
9877 }
9878 // All conditions are met. Add a new bitfield to the tail end of ivars.
9879 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9880 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9881
9882 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9883 DeclLoc, DeclLoc, 0,
9884 Context.CharTy,
9885 Context.getTrivialTypeSourceInfo(Context.CharTy,
9886 DeclLoc),
9887 ObjCIvarDecl::Private, BW,
9888 true);
9889 AllIvarDecls.push_back(Ivar);
9890 }
9891
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,llvm::ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)9892 void Sema::ActOnFields(Scope* S,
9893 SourceLocation RecLoc, Decl *EnclosingDecl,
9894 llvm::ArrayRef<Decl *> Fields,
9895 SourceLocation LBrac, SourceLocation RBrac,
9896 AttributeList *Attr) {
9897 assert(EnclosingDecl && "missing record or interface decl");
9898
9899 // If this is an Objective-C @implementation or category and we have
9900 // new fields here we should reset the layout of the interface since
9901 // it will now change.
9902 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9903 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9904 switch (DC->getKind()) {
9905 default: break;
9906 case Decl::ObjCCategory:
9907 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9908 break;
9909 case Decl::ObjCImplementation:
9910 Context.
9911 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9912 break;
9913 }
9914 }
9915
9916 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9917
9918 // Start counting up the number of named members; make sure to include
9919 // members of anonymous structs and unions in the total.
9920 unsigned NumNamedMembers = 0;
9921 if (Record) {
9922 for (RecordDecl::decl_iterator i = Record->decls_begin(),
9923 e = Record->decls_end(); i != e; i++) {
9924 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9925 if (IFD->getDeclName())
9926 ++NumNamedMembers;
9927 }
9928 }
9929
9930 // Verify that all the fields are okay.
9931 SmallVector<FieldDecl*, 32> RecFields;
9932
9933 bool ARCErrReported = false;
9934 for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9935 i != end; ++i) {
9936 FieldDecl *FD = cast<FieldDecl>(*i);
9937
9938 // Get the type for the field.
9939 const Type *FDTy = FD->getType().getTypePtr();
9940
9941 if (!FD->isAnonymousStructOrUnion()) {
9942 // Remember all fields written by the user.
9943 RecFields.push_back(FD);
9944 }
9945
9946 // If the field is already invalid for some reason, don't emit more
9947 // diagnostics about it.
9948 if (FD->isInvalidDecl()) {
9949 EnclosingDecl->setInvalidDecl();
9950 continue;
9951 }
9952
9953 // C99 6.7.2.1p2:
9954 // A structure or union shall not contain a member with
9955 // incomplete or function type (hence, a structure shall not
9956 // contain an instance of itself, but may contain a pointer to
9957 // an instance of itself), except that the last member of a
9958 // structure with more than one named member may have incomplete
9959 // array type; such a structure (and any union containing,
9960 // possibly recursively, a member that is such a structure)
9961 // shall not be a member of a structure or an element of an
9962 // array.
9963 if (FDTy->isFunctionType()) {
9964 // Field declared as a function.
9965 Diag(FD->getLocation(), diag::err_field_declared_as_function)
9966 << FD->getDeclName();
9967 FD->setInvalidDecl();
9968 EnclosingDecl->setInvalidDecl();
9969 continue;
9970 } else if (FDTy->isIncompleteArrayType() && Record &&
9971 ((i + 1 == Fields.end() && !Record->isUnion()) ||
9972 ((getLangOpts().MicrosoftExt ||
9973 getLangOpts().CPlusPlus) &&
9974 (i + 1 == Fields.end() || Record->isUnion())))) {
9975 // Flexible array member.
9976 // Microsoft and g++ is more permissive regarding flexible array.
9977 // It will accept flexible array in union and also
9978 // as the sole element of a struct/class.
9979 if (getLangOpts().MicrosoftExt) {
9980 if (Record->isUnion())
9981 Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9982 << FD->getDeclName();
9983 else if (Fields.size() == 1)
9984 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9985 << FD->getDeclName() << Record->getTagKind();
9986 } else if (getLangOpts().CPlusPlus) {
9987 if (Record->isUnion())
9988 Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9989 << FD->getDeclName();
9990 else if (Fields.size() == 1)
9991 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9992 << FD->getDeclName() << Record->getTagKind();
9993 } else if (!getLangOpts().C99) {
9994 if (Record->isUnion())
9995 Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9996 << FD->getDeclName();
9997 else
9998 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9999 << FD->getDeclName() << Record->getTagKind();
10000 } else if (NumNamedMembers < 1) {
10001 Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10002 << FD->getDeclName();
10003 FD->setInvalidDecl();
10004 EnclosingDecl->setInvalidDecl();
10005 continue;
10006 }
10007 if (!FD->getType()->isDependentType() &&
10008 !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10009 Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10010 << FD->getDeclName() << FD->getType();
10011 FD->setInvalidDecl();
10012 EnclosingDecl->setInvalidDecl();
10013 continue;
10014 }
10015 // Okay, we have a legal flexible array member at the end of the struct.
10016 if (Record)
10017 Record->setHasFlexibleArrayMember(true);
10018 } else if (!FDTy->isDependentType() &&
10019 RequireCompleteType(FD->getLocation(), FD->getType(),
10020 diag::err_field_incomplete)) {
10021 // Incomplete type
10022 FD->setInvalidDecl();
10023 EnclosingDecl->setInvalidDecl();
10024 continue;
10025 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10026 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10027 // If this is a member of a union, then entire union becomes "flexible".
10028 if (Record && Record->isUnion()) {
10029 Record->setHasFlexibleArrayMember(true);
10030 } else {
10031 // If this is a struct/class and this is not the last element, reject
10032 // it. Note that GCC supports variable sized arrays in the middle of
10033 // structures.
10034 if (i + 1 != Fields.end())
10035 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10036 << FD->getDeclName() << FD->getType();
10037 else {
10038 // We support flexible arrays at the end of structs in
10039 // other structs as an extension.
10040 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10041 << FD->getDeclName();
10042 if (Record)
10043 Record->setHasFlexibleArrayMember(true);
10044 }
10045 }
10046 }
10047 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10048 RequireNonAbstractType(FD->getLocation(), FD->getType(),
10049 diag::err_abstract_type_in_decl,
10050 AbstractIvarType)) {
10051 // Ivars can not have abstract class types
10052 FD->setInvalidDecl();
10053 }
10054 if (Record && FDTTy->getDecl()->hasObjectMember())
10055 Record->setHasObjectMember(true);
10056 } else if (FDTy->isObjCObjectType()) {
10057 /// A field cannot be an Objective-c object
10058 Diag(FD->getLocation(), diag::err_statically_allocated_object)
10059 << FixItHint::CreateInsertion(FD->getLocation(), "*");
10060 QualType T = Context.getObjCObjectPointerType(FD->getType());
10061 FD->setType(T);
10062 } else if (!getLangOpts().CPlusPlus) {
10063 if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10064 // It's an error in ARC if a field has lifetime.
10065 // We don't want to report this in a system header, though,
10066 // so we just make the field unavailable.
10067 // FIXME: that's really not sufficient; we need to make the type
10068 // itself invalid to, say, initialize or copy.
10069 QualType T = FD->getType();
10070 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10071 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10072 SourceLocation loc = FD->getLocation();
10073 if (getSourceManager().isInSystemHeader(loc)) {
10074 if (!FD->hasAttr<UnavailableAttr>()) {
10075 FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10076 "this system field has retaining ownership"));
10077 }
10078 } else {
10079 Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10080 << T->isBlockPointerType();
10081 }
10082 ARCErrReported = true;
10083 }
10084 }
10085 else if (getLangOpts().ObjC1 &&
10086 getLangOpts().getGC() != LangOptions::NonGC &&
10087 Record && !Record->hasObjectMember()) {
10088 if (FD->getType()->isObjCObjectPointerType() ||
10089 FD->getType().isObjCGCStrong())
10090 Record->setHasObjectMember(true);
10091 else if (Context.getAsArrayType(FD->getType())) {
10092 QualType BaseType = Context.getBaseElementType(FD->getType());
10093 if (BaseType->isRecordType() &&
10094 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10095 Record->setHasObjectMember(true);
10096 else if (BaseType->isObjCObjectPointerType() ||
10097 BaseType.isObjCGCStrong())
10098 Record->setHasObjectMember(true);
10099 }
10100 }
10101 }
10102 // Keep track of the number of named members.
10103 if (FD->getIdentifier())
10104 ++NumNamedMembers;
10105 }
10106
10107 // Okay, we successfully defined 'Record'.
10108 if (Record) {
10109 bool Completed = false;
10110 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10111 if (!CXXRecord->isInvalidDecl()) {
10112 // Set access bits correctly on the directly-declared conversions.
10113 UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10114 for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10115 I != E; ++I)
10116 Convs->setAccess(I, (*I)->getAccess());
10117
10118 if (!CXXRecord->isDependentType()) {
10119 // Objective-C Automatic Reference Counting:
10120 // If a class has a non-static data member of Objective-C pointer
10121 // type (or array thereof), it is a non-POD type and its
10122 // default constructor (if any), copy constructor, copy assignment
10123 // operator, and destructor are non-trivial.
10124 //
10125 // This rule is also handled by CXXRecordDecl::completeDefinition().
10126 // However, here we check whether this particular class is only
10127 // non-POD because of the presence of an Objective-C pointer member.
10128 // If so, objects of this type cannot be shared between code compiled
10129 // with ARC and code compiled with manual retain/release.
10130 if (getLangOpts().ObjCAutoRefCount &&
10131 CXXRecord->hasObjectMember() &&
10132 CXXRecord->getLinkage() == ExternalLinkage) {
10133 if (CXXRecord->isPOD()) {
10134 Diag(CXXRecord->getLocation(),
10135 diag::warn_arc_non_pod_class_with_object_member)
10136 << CXXRecord;
10137 } else {
10138 // FIXME: Fix-Its would be nice here, but finding a good location
10139 // for them is going to be tricky.
10140 if (CXXRecord->hasTrivialCopyConstructor())
10141 Diag(CXXRecord->getLocation(),
10142 diag::warn_arc_trivial_member_function_with_object_member)
10143 << CXXRecord << 0;
10144 if (CXXRecord->hasTrivialCopyAssignment())
10145 Diag(CXXRecord->getLocation(),
10146 diag::warn_arc_trivial_member_function_with_object_member)
10147 << CXXRecord << 1;
10148 if (CXXRecord->hasTrivialDestructor())
10149 Diag(CXXRecord->getLocation(),
10150 diag::warn_arc_trivial_member_function_with_object_member)
10151 << CXXRecord << 2;
10152 }
10153 }
10154
10155 // Adjust user-defined destructor exception spec.
10156 if (getLangOpts().CPlusPlus0x &&
10157 CXXRecord->hasUserDeclaredDestructor())
10158 AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10159
10160 // Add any implicitly-declared members to this class.
10161 AddImplicitlyDeclaredMembersToClass(CXXRecord);
10162
10163 // If we have virtual base classes, we may end up finding multiple
10164 // final overriders for a given virtual function. Check for this
10165 // problem now.
10166 if (CXXRecord->getNumVBases()) {
10167 CXXFinalOverriderMap FinalOverriders;
10168 CXXRecord->getFinalOverriders(FinalOverriders);
10169
10170 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10171 MEnd = FinalOverriders.end();
10172 M != MEnd; ++M) {
10173 for (OverridingMethods::iterator SO = M->second.begin(),
10174 SOEnd = M->second.end();
10175 SO != SOEnd; ++SO) {
10176 assert(SO->second.size() > 0 &&
10177 "Virtual function without overridding functions?");
10178 if (SO->second.size() == 1)
10179 continue;
10180
10181 // C++ [class.virtual]p2:
10182 // In a derived class, if a virtual member function of a base
10183 // class subobject has more than one final overrider the
10184 // program is ill-formed.
10185 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10186 << (const NamedDecl *)M->first << Record;
10187 Diag(M->first->getLocation(),
10188 diag::note_overridden_virtual_function);
10189 for (OverridingMethods::overriding_iterator
10190 OM = SO->second.begin(),
10191 OMEnd = SO->second.end();
10192 OM != OMEnd; ++OM)
10193 Diag(OM->Method->getLocation(), diag::note_final_overrider)
10194 << (const NamedDecl *)M->first << OM->Method->getParent();
10195
10196 Record->setInvalidDecl();
10197 }
10198 }
10199 CXXRecord->completeDefinition(&FinalOverriders);
10200 Completed = true;
10201 }
10202 }
10203 }
10204 }
10205
10206 if (!Completed)
10207 Record->completeDefinition();
10208
10209 } else {
10210 ObjCIvarDecl **ClsFields =
10211 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10212 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10213 ID->setEndOfDefinitionLoc(RBrac);
10214 // Add ivar's to class's DeclContext.
10215 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10216 ClsFields[i]->setLexicalDeclContext(ID);
10217 ID->addDecl(ClsFields[i]);
10218 }
10219 // Must enforce the rule that ivars in the base classes may not be
10220 // duplicates.
10221 if (ID->getSuperClass())
10222 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10223 } else if (ObjCImplementationDecl *IMPDecl =
10224 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10225 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10226 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10227 // Ivar declared in @implementation never belongs to the implementation.
10228 // Only it is in implementation's lexical context.
10229 ClsFields[I]->setLexicalDeclContext(IMPDecl);
10230 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10231 IMPDecl->setIvarLBraceLoc(LBrac);
10232 IMPDecl->setIvarRBraceLoc(RBrac);
10233 } else if (ObjCCategoryDecl *CDecl =
10234 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10235 // case of ivars in class extension; all other cases have been
10236 // reported as errors elsewhere.
10237 // FIXME. Class extension does not have a LocEnd field.
10238 // CDecl->setLocEnd(RBrac);
10239 // Add ivar's to class extension's DeclContext.
10240 // Diagnose redeclaration of private ivars.
10241 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10242 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10243 if (IDecl) {
10244 if (const ObjCIvarDecl *ClsIvar =
10245 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10246 Diag(ClsFields[i]->getLocation(),
10247 diag::err_duplicate_ivar_declaration);
10248 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10249 continue;
10250 }
10251 for (const ObjCCategoryDecl *ClsExtDecl =
10252 IDecl->getFirstClassExtension();
10253 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10254 if (const ObjCIvarDecl *ClsExtIvar =
10255 ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10256 Diag(ClsFields[i]->getLocation(),
10257 diag::err_duplicate_ivar_declaration);
10258 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10259 continue;
10260 }
10261 }
10262 }
10263 ClsFields[i]->setLexicalDeclContext(CDecl);
10264 CDecl->addDecl(ClsFields[i]);
10265 }
10266 CDecl->setIvarLBraceLoc(LBrac);
10267 CDecl->setIvarRBraceLoc(RBrac);
10268 }
10269 }
10270
10271 if (Attr)
10272 ProcessDeclAttributeList(S, Record, Attr);
10273 }
10274
10275 /// \brief Determine whether the given integral value is representable within
10276 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)10277 static bool isRepresentableIntegerValue(ASTContext &Context,
10278 llvm::APSInt &Value,
10279 QualType T) {
10280 assert(T->isIntegralType(Context) && "Integral type required!");
10281 unsigned BitWidth = Context.getIntWidth(T);
10282
10283 if (Value.isUnsigned() || Value.isNonNegative()) {
10284 if (T->isSignedIntegerOrEnumerationType())
10285 --BitWidth;
10286 return Value.getActiveBits() <= BitWidth;
10287 }
10288 return Value.getMinSignedBits() <= BitWidth;
10289 }
10290
10291 // \brief Given an integral type, return the next larger integral type
10292 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)10293 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10294 // FIXME: Int128/UInt128 support, which also needs to be introduced into
10295 // enum checking below.
10296 assert(T->isIntegralType(Context) && "Integral type required!");
10297 const unsigned NumTypes = 4;
10298 QualType SignedIntegralTypes[NumTypes] = {
10299 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10300 };
10301 QualType UnsignedIntegralTypes[NumTypes] = {
10302 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10303 Context.UnsignedLongLongTy
10304 };
10305
10306 unsigned BitWidth = Context.getTypeSize(T);
10307 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10308 : UnsignedIntegralTypes;
10309 for (unsigned I = 0; I != NumTypes; ++I)
10310 if (Context.getTypeSize(Types[I]) > BitWidth)
10311 return Types[I];
10312
10313 return QualType();
10314 }
10315
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)10316 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10317 EnumConstantDecl *LastEnumConst,
10318 SourceLocation IdLoc,
10319 IdentifierInfo *Id,
10320 Expr *Val) {
10321 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10322 llvm::APSInt EnumVal(IntWidth);
10323 QualType EltTy;
10324
10325 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10326 Val = 0;
10327
10328 if (Val)
10329 Val = DefaultLvalueConversion(Val).take();
10330
10331 if (Val) {
10332 if (Enum->isDependentType() || Val->isTypeDependent())
10333 EltTy = Context.DependentTy;
10334 else {
10335 SourceLocation ExpLoc;
10336 if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10337 !getLangOpts().MicrosoftMode) {
10338 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10339 // constant-expression in the enumerator-definition shall be a converted
10340 // constant expression of the underlying type.
10341 EltTy = Enum->getIntegerType();
10342 ExprResult Converted =
10343 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10344 CCEK_Enumerator);
10345 if (Converted.isInvalid())
10346 Val = 0;
10347 else
10348 Val = Converted.take();
10349 } else if (!Val->isValueDependent() &&
10350 !(Val = VerifyIntegerConstantExpression(Val,
10351 &EnumVal).take())) {
10352 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10353 } else {
10354 if (Enum->isFixed()) {
10355 EltTy = Enum->getIntegerType();
10356
10357 // In Obj-C and Microsoft mode, require the enumeration value to be
10358 // representable in the underlying type of the enumeration. In C++11,
10359 // we perform a non-narrowing conversion as part of converted constant
10360 // expression checking.
10361 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10362 if (getLangOpts().MicrosoftMode) {
10363 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10364 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10365 } else
10366 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10367 } else
10368 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10369 } else if (getLangOpts().CPlusPlus) {
10370 // C++11 [dcl.enum]p5:
10371 // If the underlying type is not fixed, the type of each enumerator
10372 // is the type of its initializing value:
10373 // - If an initializer is specified for an enumerator, the
10374 // initializing value has the same type as the expression.
10375 EltTy = Val->getType();
10376 } else {
10377 // C99 6.7.2.2p2:
10378 // The expression that defines the value of an enumeration constant
10379 // shall be an integer constant expression that has a value
10380 // representable as an int.
10381
10382 // Complain if the value is not representable in an int.
10383 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10384 Diag(IdLoc, diag::ext_enum_value_not_int)
10385 << EnumVal.toString(10) << Val->getSourceRange()
10386 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10387 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10388 // Force the type of the expression to 'int'.
10389 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10390 }
10391 EltTy = Val->getType();
10392 }
10393 }
10394 }
10395 }
10396
10397 if (!Val) {
10398 if (Enum->isDependentType())
10399 EltTy = Context.DependentTy;
10400 else if (!LastEnumConst) {
10401 // C++0x [dcl.enum]p5:
10402 // If the underlying type is not fixed, the type of each enumerator
10403 // is the type of its initializing value:
10404 // - If no initializer is specified for the first enumerator, the
10405 // initializing value has an unspecified integral type.
10406 //
10407 // GCC uses 'int' for its unspecified integral type, as does
10408 // C99 6.7.2.2p3.
10409 if (Enum->isFixed()) {
10410 EltTy = Enum->getIntegerType();
10411 }
10412 else {
10413 EltTy = Context.IntTy;
10414 }
10415 } else {
10416 // Assign the last value + 1.
10417 EnumVal = LastEnumConst->getInitVal();
10418 ++EnumVal;
10419 EltTy = LastEnumConst->getType();
10420
10421 // Check for overflow on increment.
10422 if (EnumVal < LastEnumConst->getInitVal()) {
10423 // C++0x [dcl.enum]p5:
10424 // If the underlying type is not fixed, the type of each enumerator
10425 // is the type of its initializing value:
10426 //
10427 // - Otherwise the type of the initializing value is the same as
10428 // the type of the initializing value of the preceding enumerator
10429 // unless the incremented value is not representable in that type,
10430 // in which case the type is an unspecified integral type
10431 // sufficient to contain the incremented value. If no such type
10432 // exists, the program is ill-formed.
10433 QualType T = getNextLargerIntegralType(Context, EltTy);
10434 if (T.isNull() || Enum->isFixed()) {
10435 // There is no integral type larger enough to represent this
10436 // value. Complain, then allow the value to wrap around.
10437 EnumVal = LastEnumConst->getInitVal();
10438 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10439 ++EnumVal;
10440 if (Enum->isFixed())
10441 // When the underlying type is fixed, this is ill-formed.
10442 Diag(IdLoc, diag::err_enumerator_wrapped)
10443 << EnumVal.toString(10)
10444 << EltTy;
10445 else
10446 Diag(IdLoc, diag::warn_enumerator_too_large)
10447 << EnumVal.toString(10);
10448 } else {
10449 EltTy = T;
10450 }
10451
10452 // Retrieve the last enumerator's value, extent that type to the
10453 // type that is supposed to be large enough to represent the incremented
10454 // value, then increment.
10455 EnumVal = LastEnumConst->getInitVal();
10456 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10457 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10458 ++EnumVal;
10459
10460 // If we're not in C++, diagnose the overflow of enumerator values,
10461 // which in C99 means that the enumerator value is not representable in
10462 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10463 // permits enumerator values that are representable in some larger
10464 // integral type.
10465 if (!getLangOpts().CPlusPlus && !T.isNull())
10466 Diag(IdLoc, diag::warn_enum_value_overflow);
10467 } else if (!getLangOpts().CPlusPlus &&
10468 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10469 // Enforce C99 6.7.2.2p2 even when we compute the next value.
10470 Diag(IdLoc, diag::ext_enum_value_not_int)
10471 << EnumVal.toString(10) << 1;
10472 }
10473 }
10474 }
10475
10476 if (!EltTy->isDependentType()) {
10477 // Make the enumerator value match the signedness and size of the
10478 // enumerator's type.
10479 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10480 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10481 }
10482
10483 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10484 Val, EnumVal);
10485 }
10486
10487
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)10488 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10489 SourceLocation IdLoc, IdentifierInfo *Id,
10490 AttributeList *Attr,
10491 SourceLocation EqualLoc, Expr *Val) {
10492 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10493 EnumConstantDecl *LastEnumConst =
10494 cast_or_null<EnumConstantDecl>(lastEnumConst);
10495
10496 // The scope passed in may not be a decl scope. Zip up the scope tree until
10497 // we find one that is.
10498 S = getNonFieldDeclScope(S);
10499
10500 // Verify that there isn't already something declared with this name in this
10501 // scope.
10502 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10503 ForRedeclaration);
10504 if (PrevDecl && PrevDecl->isTemplateParameter()) {
10505 // Maybe we will complain about the shadowed template parameter.
10506 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10507 // Just pretend that we didn't see the previous declaration.
10508 PrevDecl = 0;
10509 }
10510
10511 if (PrevDecl) {
10512 // When in C++, we may get a TagDecl with the same name; in this case the
10513 // enum constant will 'hide' the tag.
10514 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10515 "Received TagDecl when not in C++!");
10516 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10517 if (isa<EnumConstantDecl>(PrevDecl))
10518 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10519 else
10520 Diag(IdLoc, diag::err_redefinition) << Id;
10521 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10522 return 0;
10523 }
10524 }
10525
10526 // C++ [class.mem]p15:
10527 // If T is the name of a class, then each of the following shall have a name
10528 // different from T:
10529 // - every enumerator of every member of class T that is an unscoped
10530 // enumerated type
10531 if (CXXRecordDecl *Record
10532 = dyn_cast<CXXRecordDecl>(
10533 TheEnumDecl->getDeclContext()->getRedeclContext()))
10534 if (!TheEnumDecl->isScoped() &&
10535 Record->getIdentifier() && Record->getIdentifier() == Id)
10536 Diag(IdLoc, diag::err_member_name_of_class) << Id;
10537
10538 EnumConstantDecl *New =
10539 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10540
10541 if (New) {
10542 // Process attributes.
10543 if (Attr) ProcessDeclAttributeList(S, New, Attr);
10544
10545 // Register this decl in the current scope stack.
10546 New->setAccess(TheEnumDecl->getAccess());
10547 PushOnScopeChains(New, S);
10548 }
10549
10550 ActOnDocumentableDecl(New);
10551
10552 return New;
10553 }
10554
10555 // Emits a warning if every element in the enum is the same value and if
10556 // every element is initialized with a integer or boolean literal.
CheckForUniqueEnumValues(Sema & S,Decl ** Elements,unsigned NumElements,EnumDecl * Enum,QualType EnumType)10557 static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10558 unsigned NumElements, EnumDecl *Enum,
10559 QualType EnumType) {
10560 if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10561 Enum->getLocation()) ==
10562 DiagnosticsEngine::Ignored)
10563 return;
10564
10565 if (NumElements < 2)
10566 return;
10567
10568 if (!Enum->getIdentifier())
10569 return;
10570
10571 llvm::APSInt FirstVal;
10572
10573 for (unsigned i = 0; i != NumElements; ++i) {
10574 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10575 if (!ECD)
10576 return;
10577
10578 Expr *InitExpr = ECD->getInitExpr();
10579 if (!InitExpr)
10580 return;
10581 InitExpr = InitExpr->IgnoreImpCasts();
10582 if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10583 return;
10584
10585 if (i == 0) {
10586 FirstVal = ECD->getInitVal();
10587 continue;
10588 }
10589
10590 if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
10591 return;
10592 }
10593
10594 S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10595 << EnumType << FirstVal.toString(10)
10596 << Enum->getSourceRange();
10597
10598 EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10599 *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10600
10601 S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10602 << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10603 Next->getName());
10604 }
10605
10606 // Returns true when the enum initial expression does not trigger the
10607 // duplicate enum warning. A few common cases are exempted as follows:
10608 // Element2 = Element1
10609 // Element2 = Element1 + 1
10610 // Element2 = Element1 - 1
10611 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)10612 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
10613 Expr *InitExpr = ECD->getInitExpr();
10614 if (!InitExpr)
10615 return true;
10616 InitExpr = InitExpr->IgnoreImpCasts();
10617
10618 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
10619 if (!BO->isAdditiveOp())
10620 return true;
10621 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
10622 if (!IL)
10623 return true;
10624 if (IL->getValue() != 1)
10625 return true;
10626
10627 InitExpr = BO->getLHS();
10628 }
10629
10630 // This checks if the elements are from the same enum.
10631 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
10632 if (!DRE)
10633 return true;
10634
10635 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
10636 if (!EnumConstant)
10637 return true;
10638
10639 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
10640 Enum)
10641 return true;
10642
10643 return false;
10644 }
10645
10646 struct DupKey {
10647 int64_t val;
10648 bool isTombstoneOrEmptyKey;
DupKeyDupKey10649 DupKey(int64_t val, bool isTombstoneOrEmptyKey)
10650 : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
10651 };
10652
GetDupKey(const llvm::APSInt & Val)10653 static DupKey GetDupKey(const llvm::APSInt& Val) {
10654 return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
10655 false);
10656 }
10657
10658 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey10659 static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey10660 static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey10661 static unsigned getHashValue(const DupKey Key) {
10662 return (unsigned)(Key.val * 37);
10663 }
isEqualDenseMapInfoDupKey10664 static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
10665 return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
10666 LHS.val == RHS.val;
10667 }
10668 };
10669
10670 // Emits a warning when an element is implicitly set a value that
10671 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,Decl ** Elements,unsigned NumElements,EnumDecl * Enum,QualType EnumType)10672 static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
10673 unsigned NumElements, EnumDecl *Enum,
10674 QualType EnumType) {
10675 if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
10676 Enum->getLocation()) ==
10677 DiagnosticsEngine::Ignored)
10678 return;
10679 // Avoid anonymous enums
10680 if (!Enum->getIdentifier())
10681 return;
10682
10683 // Only check for small enums.
10684 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
10685 return;
10686
10687 typedef llvm::SmallVector<EnumConstantDecl*, 3> ECDVector;
10688 typedef llvm::SmallVector<ECDVector*, 3> DuplicatesVector;
10689
10690 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
10691 typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
10692 ValueToVectorMap;
10693
10694 DuplicatesVector DupVector;
10695 ValueToVectorMap EnumMap;
10696
10697 // Populate the EnumMap with all values represented by enum constants without
10698 // an initialier.
10699 for (unsigned i = 0; i < NumElements; ++i) {
10700 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10701
10702 // Null EnumConstantDecl means a previous diagnostic has been emitted for
10703 // this constant. Skip this enum since it may be ill-formed.
10704 if (!ECD) {
10705 return;
10706 }
10707
10708 if (ECD->getInitExpr())
10709 continue;
10710
10711 DupKey Key = GetDupKey(ECD->getInitVal());
10712 DeclOrVector &Entry = EnumMap[Key];
10713
10714 // First time encountering this value.
10715 if (Entry.isNull())
10716 Entry = ECD;
10717 }
10718
10719 // Create vectors for any values that has duplicates.
10720 for (unsigned i = 0; i < NumElements; ++i) {
10721 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10722 if (!ValidDuplicateEnum(ECD, Enum))
10723 continue;
10724
10725 DupKey Key = GetDupKey(ECD->getInitVal());
10726
10727 DeclOrVector& Entry = EnumMap[Key];
10728 if (Entry.isNull())
10729 continue;
10730
10731 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
10732 // Ensure constants are different.
10733 if (D == ECD)
10734 continue;
10735
10736 // Create new vector and push values onto it.
10737 ECDVector *Vec = new ECDVector();
10738 Vec->push_back(D);
10739 Vec->push_back(ECD);
10740
10741 // Update entry to point to the duplicates vector.
10742 Entry = Vec;
10743
10744 // Store the vector somewhere we can consult later for quick emission of
10745 // diagnostics.
10746 DupVector.push_back(Vec);
10747 continue;
10748 }
10749
10750 ECDVector *Vec = Entry.get<ECDVector*>();
10751 // Make sure constants are not added more than once.
10752 if (*Vec->begin() == ECD)
10753 continue;
10754
10755 Vec->push_back(ECD);
10756 }
10757
10758 // Emit diagnostics.
10759 for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
10760 DupVectorEnd = DupVector.end();
10761 DupVectorIter != DupVectorEnd; ++DupVectorIter) {
10762 ECDVector *Vec = *DupVectorIter;
10763 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
10764
10765 // Emit warning for one enum constant.
10766 ECDVector::iterator I = Vec->begin();
10767 S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
10768 << (*I)->getName() << (*I)->getInitVal().toString(10)
10769 << (*I)->getSourceRange();
10770 ++I;
10771
10772 // Emit one note for each of the remaining enum constants with
10773 // the same value.
10774 for (ECDVector::iterator E = Vec->end(); I != E; ++I)
10775 S.Diag((*I)->getLocation(), diag::note_duplicate_element)
10776 << (*I)->getName() << (*I)->getInitVal().toString(10)
10777 << (*I)->getSourceRange();
10778 delete Vec;
10779 }
10780 }
10781
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,Decl ** Elements,unsigned NumElements,Scope * S,AttributeList * Attr)10782 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10783 SourceLocation RBraceLoc, Decl *EnumDeclX,
10784 Decl **Elements, unsigned NumElements,
10785 Scope *S, AttributeList *Attr) {
10786 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10787 QualType EnumType = Context.getTypeDeclType(Enum);
10788
10789 if (Attr)
10790 ProcessDeclAttributeList(S, Enum, Attr);
10791
10792 if (Enum->isDependentType()) {
10793 for (unsigned i = 0; i != NumElements; ++i) {
10794 EnumConstantDecl *ECD =
10795 cast_or_null<EnumConstantDecl>(Elements[i]);
10796 if (!ECD) continue;
10797
10798 ECD->setType(EnumType);
10799 }
10800
10801 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10802 return;
10803 }
10804
10805 // TODO: If the result value doesn't fit in an int, it must be a long or long
10806 // long value. ISO C does not support this, but GCC does as an extension,
10807 // emit a warning.
10808 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10809 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10810 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10811
10812 // Verify that all the values are okay, compute the size of the values, and
10813 // reverse the list.
10814 unsigned NumNegativeBits = 0;
10815 unsigned NumPositiveBits = 0;
10816
10817 // Keep track of whether all elements have type int.
10818 bool AllElementsInt = true;
10819
10820 for (unsigned i = 0; i != NumElements; ++i) {
10821 EnumConstantDecl *ECD =
10822 cast_or_null<EnumConstantDecl>(Elements[i]);
10823 if (!ECD) continue; // Already issued a diagnostic.
10824
10825 const llvm::APSInt &InitVal = ECD->getInitVal();
10826
10827 // Keep track of the size of positive and negative values.
10828 if (InitVal.isUnsigned() || InitVal.isNonNegative())
10829 NumPositiveBits = std::max(NumPositiveBits,
10830 (unsigned)InitVal.getActiveBits());
10831 else
10832 NumNegativeBits = std::max(NumNegativeBits,
10833 (unsigned)InitVal.getMinSignedBits());
10834
10835 // Keep track of whether every enum element has type int (very commmon).
10836 if (AllElementsInt)
10837 AllElementsInt = ECD->getType() == Context.IntTy;
10838 }
10839
10840 // Figure out the type that should be used for this enum.
10841 QualType BestType;
10842 unsigned BestWidth;
10843
10844 // C++0x N3000 [conv.prom]p3:
10845 // An rvalue of an unscoped enumeration type whose underlying
10846 // type is not fixed can be converted to an rvalue of the first
10847 // of the following types that can represent all the values of
10848 // the enumeration: int, unsigned int, long int, unsigned long
10849 // int, long long int, or unsigned long long int.
10850 // C99 6.4.4.3p2:
10851 // An identifier declared as an enumeration constant has type int.
10852 // The C99 rule is modified by a gcc extension
10853 QualType BestPromotionType;
10854
10855 bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10856 // -fshort-enums is the equivalent to specifying the packed attribute on all
10857 // enum definitions.
10858 if (LangOpts.ShortEnums)
10859 Packed = true;
10860
10861 if (Enum->isFixed()) {
10862 BestType = Enum->getIntegerType();
10863 if (BestType->isPromotableIntegerType())
10864 BestPromotionType = Context.getPromotedIntegerType(BestType);
10865 else
10866 BestPromotionType = BestType;
10867 // We don't need to set BestWidth, because BestType is going to be the type
10868 // of the enumerators, but we do anyway because otherwise some compilers
10869 // warn that it might be used uninitialized.
10870 BestWidth = CharWidth;
10871 }
10872 else if (NumNegativeBits) {
10873 // If there is a negative value, figure out the smallest integer type (of
10874 // int/long/longlong) that fits.
10875 // If it's packed, check also if it fits a char or a short.
10876 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10877 BestType = Context.SignedCharTy;
10878 BestWidth = CharWidth;
10879 } else if (Packed && NumNegativeBits <= ShortWidth &&
10880 NumPositiveBits < ShortWidth) {
10881 BestType = Context.ShortTy;
10882 BestWidth = ShortWidth;
10883 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10884 BestType = Context.IntTy;
10885 BestWidth = IntWidth;
10886 } else {
10887 BestWidth = Context.getTargetInfo().getLongWidth();
10888
10889 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10890 BestType = Context.LongTy;
10891 } else {
10892 BestWidth = Context.getTargetInfo().getLongLongWidth();
10893
10894 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10895 Diag(Enum->getLocation(), diag::warn_enum_too_large);
10896 BestType = Context.LongLongTy;
10897 }
10898 }
10899 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10900 } else {
10901 // If there is no negative value, figure out the smallest type that fits
10902 // all of the enumerator values.
10903 // If it's packed, check also if it fits a char or a short.
10904 if (Packed && NumPositiveBits <= CharWidth) {
10905 BestType = Context.UnsignedCharTy;
10906 BestPromotionType = Context.IntTy;
10907 BestWidth = CharWidth;
10908 } else if (Packed && NumPositiveBits <= ShortWidth) {
10909 BestType = Context.UnsignedShortTy;
10910 BestPromotionType = Context.IntTy;
10911 BestWidth = ShortWidth;
10912 } else if (NumPositiveBits <= IntWidth) {
10913 BestType = Context.UnsignedIntTy;
10914 BestWidth = IntWidth;
10915 BestPromotionType
10916 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10917 ? Context.UnsignedIntTy : Context.IntTy;
10918 } else if (NumPositiveBits <=
10919 (BestWidth = Context.getTargetInfo().getLongWidth())) {
10920 BestType = Context.UnsignedLongTy;
10921 BestPromotionType
10922 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10923 ? Context.UnsignedLongTy : Context.LongTy;
10924 } else {
10925 BestWidth = Context.getTargetInfo().getLongLongWidth();
10926 assert(NumPositiveBits <= BestWidth &&
10927 "How could an initializer get larger than ULL?");
10928 BestType = Context.UnsignedLongLongTy;
10929 BestPromotionType
10930 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10931 ? Context.UnsignedLongLongTy : Context.LongLongTy;
10932 }
10933 }
10934
10935 // Loop over all of the enumerator constants, changing their types to match
10936 // the type of the enum if needed.
10937 for (unsigned i = 0; i != NumElements; ++i) {
10938 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10939 if (!ECD) continue; // Already issued a diagnostic.
10940
10941 // Standard C says the enumerators have int type, but we allow, as an
10942 // extension, the enumerators to be larger than int size. If each
10943 // enumerator value fits in an int, type it as an int, otherwise type it the
10944 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
10945 // that X has type 'int', not 'unsigned'.
10946
10947 // Determine whether the value fits into an int.
10948 llvm::APSInt InitVal = ECD->getInitVal();
10949
10950 // If it fits into an integer type, force it. Otherwise force it to match
10951 // the enum decl type.
10952 QualType NewTy;
10953 unsigned NewWidth;
10954 bool NewSign;
10955 if (!getLangOpts().CPlusPlus &&
10956 !Enum->isFixed() &&
10957 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10958 NewTy = Context.IntTy;
10959 NewWidth = IntWidth;
10960 NewSign = true;
10961 } else if (ECD->getType() == BestType) {
10962 // Already the right type!
10963 if (getLangOpts().CPlusPlus)
10964 // C++ [dcl.enum]p4: Following the closing brace of an
10965 // enum-specifier, each enumerator has the type of its
10966 // enumeration.
10967 ECD->setType(EnumType);
10968 continue;
10969 } else {
10970 NewTy = BestType;
10971 NewWidth = BestWidth;
10972 NewSign = BestType->isSignedIntegerOrEnumerationType();
10973 }
10974
10975 // Adjust the APSInt value.
10976 InitVal = InitVal.extOrTrunc(NewWidth);
10977 InitVal.setIsSigned(NewSign);
10978 ECD->setInitVal(InitVal);
10979
10980 // Adjust the Expr initializer and type.
10981 if (ECD->getInitExpr() &&
10982 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10983 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10984 CK_IntegralCast,
10985 ECD->getInitExpr(),
10986 /*base paths*/ 0,
10987 VK_RValue));
10988 if (getLangOpts().CPlusPlus)
10989 // C++ [dcl.enum]p4: Following the closing brace of an
10990 // enum-specifier, each enumerator has the type of its
10991 // enumeration.
10992 ECD->setType(EnumType);
10993 else
10994 ECD->setType(NewTy);
10995 }
10996
10997 Enum->completeDefinition(BestType, BestPromotionType,
10998 NumPositiveBits, NumNegativeBits);
10999
11000 // If we're declaring a function, ensure this decl isn't forgotten about -
11001 // it needs to go into the function scope.
11002 if (InFunctionDeclarator)
11003 DeclsInPrototypeScope.push_back(Enum);
11004
11005 CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
11006 CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11007 }
11008
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)11009 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11010 SourceLocation StartLoc,
11011 SourceLocation EndLoc) {
11012 StringLiteral *AsmString = cast<StringLiteral>(expr);
11013
11014 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11015 AsmString, StartLoc,
11016 EndLoc);
11017 CurContext->addDecl(New);
11018 return New;
11019 }
11020
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)11021 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11022 SourceLocation ImportLoc,
11023 ModuleIdPath Path) {
11024 Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11025 Module::AllVisible,
11026 /*IsIncludeDirective=*/false);
11027 if (!Mod)
11028 return true;
11029
11030 llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
11031 Module *ModCheck = Mod;
11032 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11033 // If we've run out of module parents, just drop the remaining identifiers.
11034 // We need the length to be consistent.
11035 if (!ModCheck)
11036 break;
11037 ModCheck = ModCheck->Parent;
11038
11039 IdentifierLocs.push_back(Path[I].second);
11040 }
11041
11042 ImportDecl *Import = ImportDecl::Create(Context,
11043 Context.getTranslationUnitDecl(),
11044 AtLoc.isValid()? AtLoc : ImportLoc,
11045 Mod, IdentifierLocs);
11046 Context.getTranslationUnitDecl()->addDecl(Import);
11047 return Import;
11048 }
11049
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)11050 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11051 IdentifierInfo* AliasName,
11052 SourceLocation PragmaLoc,
11053 SourceLocation NameLoc,
11054 SourceLocation AliasNameLoc) {
11055 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11056 LookupOrdinaryName);
11057 AsmLabelAttr *Attr =
11058 ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11059
11060 if (PrevDecl)
11061 PrevDecl->addAttr(Attr);
11062 else
11063 (void)ExtnameUndeclaredIdentifiers.insert(
11064 std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11065 }
11066
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)11067 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11068 SourceLocation PragmaLoc,
11069 SourceLocation NameLoc) {
11070 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11071
11072 if (PrevDecl) {
11073 PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11074 } else {
11075 (void)WeakUndeclaredIdentifiers.insert(
11076 std::pair<IdentifierInfo*,WeakInfo>
11077 (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11078 }
11079 }
11080
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)11081 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11082 IdentifierInfo* AliasName,
11083 SourceLocation PragmaLoc,
11084 SourceLocation NameLoc,
11085 SourceLocation AliasNameLoc) {
11086 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11087 LookupOrdinaryName);
11088 WeakInfo W = WeakInfo(Name, NameLoc);
11089
11090 if (PrevDecl) {
11091 if (!PrevDecl->hasAttr<AliasAttr>())
11092 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11093 DeclApplyPragmaWeak(TUScope, ND, W);
11094 } else {
11095 (void)WeakUndeclaredIdentifiers.insert(
11096 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11097 }
11098 }
11099
getObjCDeclContext() const11100 Decl *Sema::getObjCDeclContext() const {
11101 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11102 }
11103
getCurContextAvailability() const11104 AvailabilityResult Sema::getCurContextAvailability() const {
11105 const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11106 return D->getAvailability();
11107 }
11108