• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/CXXFieldCollector.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "TypeLocBuilder.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/CommentDiagnostic.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/EvaluatedExprVisitor.h"
29 #include "clang/AST/ExprCXX.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Parse/ParseDiagnostic.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Lex/HeaderSearch.h"
42 #include "clang/Lex/ModuleLoader.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/Triple.h"
45 #include <algorithm>
46 #include <cstring>
47 #include <functional>
48 using namespace clang;
49 using namespace sema;
50 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)51 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52   if (OwnedType) {
53     Decl *Group[2] = { OwnedType, Ptr };
54     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55   }
56 
57   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58 }
59 
60 namespace {
61 
62 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false)64   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66     WantExpressionKeywords = false;
67     WantCXXNamedCasts = false;
68     WantRemainingKeywords = false;
69   }
70 
ValidateCandidate(const TypoCorrection & candidate)71   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72     if (NamedDecl *ND = candidate.getCorrectionDecl())
73       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74           (AllowInvalidDecl || !ND->isInvalidDecl());
75     else
76       return !WantClassName && candidate.isKeyword();
77   }
78 
79  private:
80   bool AllowInvalidDecl;
81   bool WantClassName;
82 };
83 
84 }
85 
86 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const87 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88   switch (Kind) {
89   // FIXME: Take into account the current language when deciding whether a
90   // token kind is a valid type specifier
91   case tok::kw_short:
92   case tok::kw_long:
93   case tok::kw___int64:
94   case tok::kw___int128:
95   case tok::kw_signed:
96   case tok::kw_unsigned:
97   case tok::kw_void:
98   case tok::kw_char:
99   case tok::kw_int:
100   case tok::kw_half:
101   case tok::kw_float:
102   case tok::kw_double:
103   case tok::kw_wchar_t:
104   case tok::kw_bool:
105   case tok::kw___underlying_type:
106     return true;
107 
108   case tok::annot_typename:
109   case tok::kw_char16_t:
110   case tok::kw_char32_t:
111   case tok::kw_typeof:
112   case tok::kw_decltype:
113     return getLangOpts().CPlusPlus;
114 
115   default:
116     break;
117   }
118 
119   return false;
120 }
121 
122 /// \brief If the identifier refers to a type name within this scope,
123 /// return the declaration of that type.
124 ///
125 /// This routine performs ordinary name lookup of the identifier II
126 /// within the given scope, with optional C++ scope specifier SS, to
127 /// determine whether the name refers to a type. If so, returns an
128 /// opaque pointer (actually a QualType) corresponding to that
129 /// type. Otherwise, returns NULL.
130 ///
131 /// If name lookup results in an ambiguity, this routine will complain
132 /// and then return NULL.
getTypeName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)133 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                              Scope *S, CXXScopeSpec *SS,
135                              bool isClassName, bool HasTrailingDot,
136                              ParsedType ObjectTypePtr,
137                              bool IsCtorOrDtorName,
138                              bool WantNontrivialTypeSourceInfo,
139                              IdentifierInfo **CorrectedII) {
140   // Determine where we will perform name lookup.
141   DeclContext *LookupCtx = 0;
142   if (ObjectTypePtr) {
143     QualType ObjectType = ObjectTypePtr.get();
144     if (ObjectType->isRecordType())
145       LookupCtx = computeDeclContext(ObjectType);
146   } else if (SS && SS->isNotEmpty()) {
147     LookupCtx = computeDeclContext(*SS, false);
148 
149     if (!LookupCtx) {
150       if (isDependentScopeSpecifier(*SS)) {
151         // C++ [temp.res]p3:
152         //   A qualified-id that refers to a type and in which the
153         //   nested-name-specifier depends on a template-parameter (14.6.2)
154         //   shall be prefixed by the keyword typename to indicate that the
155         //   qualified-id denotes a type, forming an
156         //   elaborated-type-specifier (7.1.5.3).
157         //
158         // We therefore do not perform any name lookup if the result would
159         // refer to a member of an unknown specialization.
160         if (!isClassName && !IsCtorOrDtorName)
161           return ParsedType();
162 
163         // We know from the grammar that this name refers to a type,
164         // so build a dependent node to describe the type.
165         if (WantNontrivialTypeSourceInfo)
166           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167 
168         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169         QualType T =
170           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                             II, NameLoc);
172 
173           return ParsedType::make(T);
174       }
175 
176       return ParsedType();
177     }
178 
179     if (!LookupCtx->isDependentContext() &&
180         RequireCompleteDeclContext(*SS, LookupCtx))
181       return ParsedType();
182   }
183 
184   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185   // lookup for class-names.
186   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                       LookupOrdinaryName;
188   LookupResult Result(*this, &II, NameLoc, Kind);
189   if (LookupCtx) {
190     // Perform "qualified" name lookup into the declaration context we
191     // computed, which is either the type of the base of a member access
192     // expression or the declaration context associated with a prior
193     // nested-name-specifier.
194     LookupQualifiedName(Result, LookupCtx);
195 
196     if (ObjectTypePtr && Result.empty()) {
197       // C++ [basic.lookup.classref]p3:
198       //   If the unqualified-id is ~type-name, the type-name is looked up
199       //   in the context of the entire postfix-expression. If the type T of
200       //   the object expression is of a class type C, the type-name is also
201       //   looked up in the scope of class C. At least one of the lookups shall
202       //   find a name that refers to (possibly cv-qualified) T.
203       LookupName(Result, S);
204     }
205   } else {
206     // Perform unqualified name lookup.
207     LookupName(Result, S);
208   }
209 
210   NamedDecl *IIDecl = 0;
211   switch (Result.getResultKind()) {
212   case LookupResult::NotFound:
213   case LookupResult::NotFoundInCurrentInstantiation:
214     if (CorrectedII) {
215       TypeNameValidatorCCC Validator(true, isClassName);
216       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                               Kind, S, SS, Validator);
218       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219       TemplateTy Template;
220       bool MemberOfUnknownSpecialization;
221       UnqualifiedId TemplateName;
222       TemplateName.setIdentifier(NewII, NameLoc);
223       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224       CXXScopeSpec NewSS, *NewSSPtr = SS;
225       if (SS && NNS) {
226         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227         NewSSPtr = &NewSS;
228       }
229       if (Correction && (NNS || NewII != &II) &&
230           // Ignore a correction to a template type as the to-be-corrected
231           // identifier is not a template (typo correction for template names
232           // is handled elsewhere).
233           !(getLangOpts().CPlusPlus && NewSSPtr &&
234             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                            false, Template, MemberOfUnknownSpecialization))) {
236         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                     isClassName, HasTrailingDot, ObjectTypePtr,
238                                     IsCtorOrDtorName,
239                                     WantNontrivialTypeSourceInfo);
240         if (Ty) {
241           std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242           std::string CorrectedQuotedStr(
243               Correction.getQuoted(getLangOpts()));
244           Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245               << Result.getLookupName() << CorrectedQuotedStr << isClassName
246               << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                               CorrectedStr);
248           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250               << CorrectedQuotedStr;
251 
252           if (SS && NNS)
253             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254           *CorrectedII = NewII;
255           return Ty;
256         }
257       }
258     }
259     // If typo correction failed or was not performed, fall through
260   case LookupResult::FoundOverloaded:
261   case LookupResult::FoundUnresolvedValue:
262     Result.suppressDiagnostics();
263     return ParsedType();
264 
265   case LookupResult::Ambiguous:
266     // Recover from type-hiding ambiguities by hiding the type.  We'll
267     // do the lookup again when looking for an object, and we can
268     // diagnose the error then.  If we don't do this, then the error
269     // about hiding the type will be immediately followed by an error
270     // that only makes sense if the identifier was treated like a type.
271     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272       Result.suppressDiagnostics();
273       return ParsedType();
274     }
275 
276     // Look to see if we have a type anywhere in the list of results.
277     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278          Res != ResEnd; ++Res) {
279       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280         if (!IIDecl ||
281             (*Res)->getLocation().getRawEncoding() <
282               IIDecl->getLocation().getRawEncoding())
283           IIDecl = *Res;
284       }
285     }
286 
287     if (!IIDecl) {
288       // None of the entities we found is a type, so there is no way
289       // to even assume that the result is a type. In this case, don't
290       // complain about the ambiguity. The parser will either try to
291       // perform this lookup again (e.g., as an object name), which
292       // will produce the ambiguity, or will complain that it expected
293       // a type name.
294       Result.suppressDiagnostics();
295       return ParsedType();
296     }
297 
298     // We found a type within the ambiguous lookup; diagnose the
299     // ambiguity and then return that type. This might be the right
300     // answer, or it might not be, but it suppresses any attempt to
301     // perform the name lookup again.
302     break;
303 
304   case LookupResult::Found:
305     IIDecl = Result.getFoundDecl();
306     break;
307   }
308 
309   assert(IIDecl && "Didn't find decl");
310 
311   QualType T;
312   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313     DiagnoseUseOfDecl(IIDecl, NameLoc);
314 
315     if (T.isNull())
316       T = Context.getTypeDeclType(TD);
317 
318     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319     // constructor or destructor name (in such a case, the scope specifier
320     // will be attached to the enclosing Expr or Decl node).
321     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322       if (WantNontrivialTypeSourceInfo) {
323         // Construct a type with type-source information.
324         TypeLocBuilder Builder;
325         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326 
327         T = getElaboratedType(ETK_None, *SS, T);
328         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329         ElabTL.setElaboratedKeywordLoc(SourceLocation());
330         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332       } else {
333         T = getElaboratedType(ETK_None, *SS, T);
334       }
335     }
336   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338     if (!HasTrailingDot)
339       T = Context.getObjCInterfaceType(IDecl);
340   }
341 
342   if (T.isNull()) {
343     // If it's not plausibly a type, suppress diagnostics.
344     Result.suppressDiagnostics();
345     return ParsedType();
346   }
347   return ParsedType::make(T);
348 }
349 
350 /// isTagName() - This method is called *for error recovery purposes only*
351 /// to determine if the specified name is a valid tag name ("struct foo").  If
352 /// so, this returns the TST for the tag corresponding to it (TST_enum,
353 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
354 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)355 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356   // Do a tag name lookup in this scope.
357   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358   LookupName(R, S, false);
359   R.suppressDiagnostics();
360   if (R.getResultKind() == LookupResult::Found)
361     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362       switch (TD->getTagKind()) {
363       case TTK_Struct: return DeclSpec::TST_struct;
364       case TTK_Interface: return DeclSpec::TST_interface;
365       case TTK_Union:  return DeclSpec::TST_union;
366       case TTK_Class:  return DeclSpec::TST_class;
367       case TTK_Enum:   return DeclSpec::TST_enum;
368       }
369     }
370 
371   return DeclSpec::TST_unspecified;
372 }
373 
374 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
375 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
376 /// then downgrade the missing typename error to a warning.
377 /// This is needed for MSVC compatibility; Example:
378 /// @code
379 /// template<class T> class A {
380 /// public:
381 ///   typedef int TYPE;
382 /// };
383 /// template<class T> class B : public A<T> {
384 /// public:
385 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
386 /// };
387 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)388 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
389   if (CurContext->isRecord()) {
390     const Type *Ty = SS->getScopeRep()->getAsType();
391 
392     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
393     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
394           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
395       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
396         return true;
397     return S->isFunctionPrototypeScope();
398   }
399   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
400 }
401 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType)402 bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
403                                    SourceLocation IILoc,
404                                    Scope *S,
405                                    CXXScopeSpec *SS,
406                                    ParsedType &SuggestedType) {
407   // We don't have anything to suggest (yet).
408   SuggestedType = ParsedType();
409 
410   // There may have been a typo in the name of the type. Look up typo
411   // results, in case we have something that we can suggest.
412   TypeNameValidatorCCC Validator(false);
413   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
414                                              LookupOrdinaryName, S, SS,
415                                              Validator)) {
416     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
417     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
418 
419     if (Corrected.isKeyword()) {
420       // We corrected to a keyword.
421       IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
422       if (!isSimpleTypeSpecifier(NewII->getTokenID()))
423         CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
424       Diag(IILoc, diag::err_unknown_typename_suggest)
425         << II << CorrectedQuotedStr
426         << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
427       II = NewII;
428     } else {
429       NamedDecl *Result = Corrected.getCorrectionDecl();
430       // We found a similarly-named type or interface; suggest that.
431       if (!SS || !SS->isSet())
432         Diag(IILoc, diag::err_unknown_typename_suggest)
433           << II << CorrectedQuotedStr
434           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
435       else if (DeclContext *DC = computeDeclContext(*SS, false))
436         Diag(IILoc, diag::err_unknown_nested_typename_suggest)
437           << II << DC << CorrectedQuotedStr << SS->getRange()
438           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
439       else
440         llvm_unreachable("could not have corrected a typo here");
441 
442       Diag(Result->getLocation(), diag::note_previous_decl)
443         << CorrectedQuotedStr;
444 
445       SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                   false, false, ParsedType(),
447                                   /*IsCtorOrDtorName=*/false,
448                                   /*NonTrivialTypeSourceInfo=*/true);
449     }
450     return true;
451   }
452 
453   if (getLangOpts().CPlusPlus) {
454     // See if II is a class template that the user forgot to pass arguments to.
455     UnqualifiedId Name;
456     Name.setIdentifier(II, IILoc);
457     CXXScopeSpec EmptySS;
458     TemplateTy TemplateResult;
459     bool MemberOfUnknownSpecialization;
460     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                        Name, ParsedType(), true, TemplateResult,
462                        MemberOfUnknownSpecialization) == TNK_Type_template) {
463       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464       Diag(IILoc, diag::err_template_missing_args) << TplName;
465       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467           << TplDecl->getTemplateParameters()->getSourceRange();
468       }
469       return true;
470     }
471   }
472 
473   // FIXME: Should we move the logic that tries to recover from a missing tag
474   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475 
476   if (!SS || (!SS->isSet() && !SS->isInvalid()))
477     Diag(IILoc, diag::err_unknown_typename) << II;
478   else if (DeclContext *DC = computeDeclContext(*SS, false))
479     Diag(IILoc, diag::err_typename_nested_not_found)
480       << II << DC << SS->getRange();
481   else if (isDependentScopeSpecifier(*SS)) {
482     unsigned DiagID = diag::err_typename_missing;
483     if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484       DiagID = diag::warn_typename_missing;
485 
486     Diag(SS->getRange().getBegin(), DiagID)
487       << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488       << SourceRange(SS->getRange().getBegin(), IILoc)
489       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490     SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                       *SS, *II, IILoc).get();
492   } else {
493     assert(SS && SS->isInvalid() &&
494            "Invalid scope specifier has already been diagnosed");
495   }
496 
497   return true;
498 }
499 
500 /// \brief Determine whether the given result set contains either a type name
501 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)502 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                        NextToken.is(tok::less);
505 
506   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508       return true;
509 
510     if (CheckTemplate && isa<TemplateDecl>(*I))
511       return true;
512   }
513 
514   return false;
515 }
516 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)517 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                     Scope *S, CXXScopeSpec &SS,
519                                     IdentifierInfo *&Name,
520                                     SourceLocation NameLoc) {
521   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522   SemaRef.LookupParsedName(R, S, &SS);
523   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524     const char *TagName = 0;
525     const char *FixItTagName = 0;
526     switch (Tag->getTagKind()) {
527       case TTK_Class:
528         TagName = "class";
529         FixItTagName = "class ";
530         break;
531 
532       case TTK_Enum:
533         TagName = "enum";
534         FixItTagName = "enum ";
535         break;
536 
537       case TTK_Struct:
538         TagName = "struct";
539         FixItTagName = "struct ";
540         break;
541 
542       case TTK_Interface:
543         TagName = "__interface";
544         FixItTagName = "__interface ";
545         break;
546 
547       case TTK_Union:
548         TagName = "union";
549         FixItTagName = "union ";
550         break;
551     }
552 
553     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556 
557     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558          I != IEnd; ++I)
559       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560         << Name << TagName;
561 
562     // Replace lookup results with just the tag decl.
563     Result.clear(Sema::LookupTagName);
564     SemaRef.LookupParsedName(Result, S, &SS);
565     return true;
566   }
567 
568   return false;
569 }
570 
571 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)572 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                   QualType T, SourceLocation NameLoc) {
574   ASTContext &Context = S.Context;
575 
576   TypeLocBuilder Builder;
577   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578 
579   T = S.getElaboratedType(ETK_None, SS, T);
580   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581   ElabTL.setElaboratedKeywordLoc(SourceLocation());
582   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584 }
585 
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)586 Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                             CXXScopeSpec &SS,
588                                             IdentifierInfo *&Name,
589                                             SourceLocation NameLoc,
590                                             const Token &NextToken,
591                                             bool IsAddressOfOperand,
592                                             CorrectionCandidateCallback *CCC) {
593   DeclarationNameInfo NameInfo(Name, NameLoc);
594   ObjCMethodDecl *CurMethod = getCurMethodDecl();
595 
596   if (NextToken.is(tok::coloncolon)) {
597     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                 QualType(), false, SS, 0, false);
599 
600   }
601 
602   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603   LookupParsedName(Result, S, &SS, !CurMethod);
604 
605   // Perform lookup for Objective-C instance variables (including automatically
606   // synthesized instance variables), if we're in an Objective-C method.
607   // FIXME: This lookup really, really needs to be folded in to the normal
608   // unqualified lookup mechanism.
609   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611     if (E.get() || E.isInvalid())
612       return E;
613   }
614 
615   bool SecondTry = false;
616   bool IsFilteredTemplateName = false;
617 
618 Corrected:
619   switch (Result.getResultKind()) {
620   case LookupResult::NotFound:
621     // If an unqualified-id is followed by a '(', then we have a function
622     // call.
623     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624       // In C++, this is an ADL-only call.
625       // FIXME: Reference?
626       if (getLangOpts().CPlusPlus)
627         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628 
629       // C90 6.3.2.2:
630       //   If the expression that precedes the parenthesized argument list in a
631       //   function call consists solely of an identifier, and if no
632       //   declaration is visible for this identifier, the identifier is
633       //   implicitly declared exactly as if, in the innermost block containing
634       //   the function call, the declaration
635       //
636       //     extern int identifier ();
637       //
638       //   appeared.
639       //
640       // We also allow this in C99 as an extension.
641       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642         Result.addDecl(D);
643         Result.resolveKind();
644         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645       }
646     }
647 
648     // In C, we first see whether there is a tag type by the same name, in
649     // which case it's likely that the user just forget to write "enum",
650     // "struct", or "union".
651     if (!getLangOpts().CPlusPlus && !SecondTry &&
652         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653       break;
654     }
655 
656     // Perform typo correction to determine if there is another name that is
657     // close to this name.
658     if (!SecondTry && CCC) {
659       SecondTry = true;
660       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                  Result.getLookupKind(), S,
662                                                  &SS, *CCC)) {
663         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664         unsigned QualifiedDiag = diag::err_no_member_suggest;
665         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667 
668         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669         NamedDecl *UnderlyingFirstDecl
670           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673           UnqualifiedDiag = diag::err_no_template_suggest;
674           QualifiedDiag = diag::err_no_member_template_suggest;
675         } else if (UnderlyingFirstDecl &&
676                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679            UnqualifiedDiag = diag::err_unknown_typename_suggest;
680            QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681          }
682 
683         if (SS.isEmpty())
684           Diag(NameLoc, UnqualifiedDiag)
685             << Name << CorrectedQuotedStr
686             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687         else
688           Diag(NameLoc, QualifiedDiag)
689             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690             << SS.getRange()
691             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
692 
693         // Update the name, so that the caller has the new name.
694         Name = Corrected.getCorrectionAsIdentifierInfo();
695 
696         // Typo correction corrected to a keyword.
697         if (Corrected.isKeyword())
698           return Corrected.getCorrectionAsIdentifierInfo();
699 
700         // Also update the LookupResult...
701         // FIXME: This should probably go away at some point
702         Result.clear();
703         Result.setLookupName(Corrected.getCorrection());
704         if (FirstDecl) {
705           Result.addDecl(FirstDecl);
706           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
707             << CorrectedQuotedStr;
708         }
709 
710         // If we found an Objective-C instance variable, let
711         // LookupInObjCMethod build the appropriate expression to
712         // reference the ivar.
713         // FIXME: This is a gross hack.
714         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
715           Result.clear();
716           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
717           return E;
718         }
719 
720         goto Corrected;
721       }
722     }
723 
724     // We failed to correct; just fall through and let the parser deal with it.
725     Result.suppressDiagnostics();
726     return NameClassification::Unknown();
727 
728   case LookupResult::NotFoundInCurrentInstantiation: {
729     // We performed name lookup into the current instantiation, and there were
730     // dependent bases, so we treat this result the same way as any other
731     // dependent nested-name-specifier.
732 
733     // C++ [temp.res]p2:
734     //   A name used in a template declaration or definition and that is
735     //   dependent on a template-parameter is assumed not to name a type
736     //   unless the applicable name lookup finds a type name or the name is
737     //   qualified by the keyword typename.
738     //
739     // FIXME: If the next token is '<', we might want to ask the parser to
740     // perform some heroics to see if we actually have a
741     // template-argument-list, which would indicate a missing 'template'
742     // keyword here.
743     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
744                                       NameInfo, IsAddressOfOperand,
745                                       /*TemplateArgs=*/0);
746   }
747 
748   case LookupResult::Found:
749   case LookupResult::FoundOverloaded:
750   case LookupResult::FoundUnresolvedValue:
751     break;
752 
753   case LookupResult::Ambiguous:
754     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
755         hasAnyAcceptableTemplateNames(Result)) {
756       // C++ [temp.local]p3:
757       //   A lookup that finds an injected-class-name (10.2) can result in an
758       //   ambiguity in certain cases (for example, if it is found in more than
759       //   one base class). If all of the injected-class-names that are found
760       //   refer to specializations of the same class template, and if the name
761       //   is followed by a template-argument-list, the reference refers to the
762       //   class template itself and not a specialization thereof, and is not
763       //   ambiguous.
764       //
765       // This filtering can make an ambiguous result into an unambiguous one,
766       // so try again after filtering out template names.
767       FilterAcceptableTemplateNames(Result);
768       if (!Result.isAmbiguous()) {
769         IsFilteredTemplateName = true;
770         break;
771       }
772     }
773 
774     // Diagnose the ambiguity and return an error.
775     return NameClassification::Error();
776   }
777 
778   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
779       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
780     // C++ [temp.names]p3:
781     //   After name lookup (3.4) finds that a name is a template-name or that
782     //   an operator-function-id or a literal- operator-id refers to a set of
783     //   overloaded functions any member of which is a function template if
784     //   this is followed by a <, the < is always taken as the delimiter of a
785     //   template-argument-list and never as the less-than operator.
786     if (!IsFilteredTemplateName)
787       FilterAcceptableTemplateNames(Result);
788 
789     if (!Result.empty()) {
790       bool IsFunctionTemplate;
791       TemplateName Template;
792       if (Result.end() - Result.begin() > 1) {
793         IsFunctionTemplate = true;
794         Template = Context.getOverloadedTemplateName(Result.begin(),
795                                                      Result.end());
796       } else {
797         TemplateDecl *TD
798           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
799         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
800 
801         if (SS.isSet() && !SS.isInvalid())
802           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
803                                                     /*TemplateKeyword=*/false,
804                                                       TD);
805         else
806           Template = TemplateName(TD);
807       }
808 
809       if (IsFunctionTemplate) {
810         // Function templates always go through overload resolution, at which
811         // point we'll perform the various checks (e.g., accessibility) we need
812         // to based on which function we selected.
813         Result.suppressDiagnostics();
814 
815         return NameClassification::FunctionTemplate(Template);
816       }
817 
818       return NameClassification::TypeTemplate(Template);
819     }
820   }
821 
822   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
823   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
824     DiagnoseUseOfDecl(Type, NameLoc);
825     QualType T = Context.getTypeDeclType(Type);
826     if (SS.isNotEmpty())
827       return buildNestedType(*this, SS, T, NameLoc);
828     return ParsedType::make(T);
829   }
830 
831   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
832   if (!Class) {
833     // FIXME: It's unfortunate that we don't have a Type node for handling this.
834     if (ObjCCompatibleAliasDecl *Alias
835                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
836       Class = Alias->getClassInterface();
837   }
838 
839   if (Class) {
840     DiagnoseUseOfDecl(Class, NameLoc);
841 
842     if (NextToken.is(tok::period)) {
843       // Interface. <something> is parsed as a property reference expression.
844       // Just return "unknown" as a fall-through for now.
845       Result.suppressDiagnostics();
846       return NameClassification::Unknown();
847     }
848 
849     QualType T = Context.getObjCInterfaceType(Class);
850     return ParsedType::make(T);
851   }
852 
853   // We can have a type template here if we're classifying a template argument.
854   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
855     return NameClassification::TypeTemplate(
856         TemplateName(cast<TemplateDecl>(FirstDecl)));
857 
858   // Check for a tag type hidden by a non-type decl in a few cases where it
859   // seems likely a type is wanted instead of the non-type that was found.
860   if (!getLangOpts().ObjC1) {
861     bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862     if ((NextToken.is(tok::identifier) ||
863          (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865       TypeDecl *Type = Result.getAsSingle<TypeDecl>();
866       DiagnoseUseOfDecl(Type, NameLoc);
867       QualType T = Context.getTypeDeclType(Type);
868       if (SS.isNotEmpty())
869         return buildNestedType(*this, SS, T, NameLoc);
870       return ParsedType::make(T);
871     }
872   }
873 
874   if (FirstDecl->isCXXClassMember())
875     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
876 
877   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
878   return BuildDeclarationNameExpr(SS, Result, ADL);
879 }
880 
881 // Determines the context to return to after temporarily entering a
882 // context.  This depends in an unnecessarily complicated way on the
883 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)884 DeclContext *Sema::getContainingDC(DeclContext *DC) {
885 
886   // Functions defined inline within classes aren't parsed until we've
887   // finished parsing the top-level class, so the top-level class is
888   // the context we'll need to return to.
889   if (isa<FunctionDecl>(DC)) {
890     DC = DC->getLexicalParent();
891 
892     // A function not defined within a class will always return to its
893     // lexical context.
894     if (!isa<CXXRecordDecl>(DC))
895       return DC;
896 
897     // A C++ inline method/friend is parsed *after* the topmost class
898     // it was declared in is fully parsed ("complete");  the topmost
899     // class is the context we need to return to.
900     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
901       DC = RD;
902 
903     // Return the declaration context of the topmost class the inline method is
904     // declared in.
905     return DC;
906   }
907 
908   return DC->getLexicalParent();
909 }
910 
PushDeclContext(Scope * S,DeclContext * DC)911 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
912   assert(getContainingDC(DC) == CurContext &&
913       "The next DeclContext should be lexically contained in the current one.");
914   CurContext = DC;
915   S->setEntity(DC);
916 }
917 
PopDeclContext()918 void Sema::PopDeclContext() {
919   assert(CurContext && "DeclContext imbalance!");
920 
921   CurContext = getContainingDC(CurContext);
922   assert(CurContext && "Popped translation unit!");
923 }
924 
925 /// EnterDeclaratorContext - Used when we must lookup names in the context
926 /// of a declarator's nested name specifier.
927 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)928 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
929   // C++0x [basic.lookup.unqual]p13:
930   //   A name used in the definition of a static data member of class
931   //   X (after the qualified-id of the static member) is looked up as
932   //   if the name was used in a member function of X.
933   // C++0x [basic.lookup.unqual]p14:
934   //   If a variable member of a namespace is defined outside of the
935   //   scope of its namespace then any name used in the definition of
936   //   the variable member (after the declarator-id) is looked up as
937   //   if the definition of the variable member occurred in its
938   //   namespace.
939   // Both of these imply that we should push a scope whose context
940   // is the semantic context of the declaration.  We can't use
941   // PushDeclContext here because that context is not necessarily
942   // lexically contained in the current context.  Fortunately,
943   // the containing scope should have the appropriate information.
944 
945   assert(!S->getEntity() && "scope already has entity");
946 
947 #ifndef NDEBUG
948   Scope *Ancestor = S->getParent();
949   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
950   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
951 #endif
952 
953   CurContext = DC;
954   S->setEntity(DC);
955 }
956 
ExitDeclaratorContext(Scope * S)957 void Sema::ExitDeclaratorContext(Scope *S) {
958   assert(S->getEntity() == CurContext && "Context imbalance!");
959 
960   // Switch back to the lexical context.  The safety of this is
961   // enforced by an assert in EnterDeclaratorContext.
962   Scope *Ancestor = S->getParent();
963   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
964   CurContext = (DeclContext*) Ancestor->getEntity();
965 
966   // We don't need to do anything with the scope, which is going to
967   // disappear.
968 }
969 
970 
ActOnReenterFunctionContext(Scope * S,Decl * D)971 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
972   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
973   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
974     // We assume that the caller has already called
975     // ActOnReenterTemplateScope
976     FD = TFD->getTemplatedDecl();
977   }
978   if (!FD)
979     return;
980 
981   // Same implementation as PushDeclContext, but enters the context
982   // from the lexical parent, rather than the top-level class.
983   assert(CurContext == FD->getLexicalParent() &&
984     "The next DeclContext should be lexically contained in the current one.");
985   CurContext = FD;
986   S->setEntity(CurContext);
987 
988   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
989     ParmVarDecl *Param = FD->getParamDecl(P);
990     // If the parameter has an identifier, then add it to the scope
991     if (Param->getIdentifier()) {
992       S->AddDecl(Param);
993       IdResolver.AddDecl(Param);
994     }
995   }
996 }
997 
998 
ActOnExitFunctionContext()999 void Sema::ActOnExitFunctionContext() {
1000   // Same implementation as PopDeclContext, but returns to the lexical parent,
1001   // rather than the top-level class.
1002   assert(CurContext && "DeclContext imbalance!");
1003   CurContext = CurContext->getLexicalParent();
1004   assert(CurContext && "Popped translation unit!");
1005 }
1006 
1007 
1008 /// \brief Determine whether we allow overloading of the function
1009 /// PrevDecl with another declaration.
1010 ///
1011 /// This routine determines whether overloading is possible, not
1012 /// whether some new function is actually an overload. It will return
1013 /// true in C++ (where we can always provide overloads) or, as an
1014 /// extension, in C when the previous function is already an
1015 /// overloaded function declaration or has the "overloadable"
1016 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1017 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1018                                        ASTContext &Context) {
1019   if (Context.getLangOpts().CPlusPlus)
1020     return true;
1021 
1022   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1023     return true;
1024 
1025   return (Previous.getResultKind() == LookupResult::Found
1026           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1027 }
1028 
1029 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1030 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1031   // Move up the scope chain until we find the nearest enclosing
1032   // non-transparent context. The declaration will be introduced into this
1033   // scope.
1034   while (S->getEntity() &&
1035          ((DeclContext *)S->getEntity())->isTransparentContext())
1036     S = S->getParent();
1037 
1038   // Add scoped declarations into their context, so that they can be
1039   // found later. Declarations without a context won't be inserted
1040   // into any context.
1041   if (AddToContext)
1042     CurContext->addDecl(D);
1043 
1044   // Out-of-line definitions shouldn't be pushed into scope in C++.
1045   // Out-of-line variable and function definitions shouldn't even in C.
1046   if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1047       D->isOutOfLine() &&
1048       !D->getDeclContext()->getRedeclContext()->Equals(
1049         D->getLexicalDeclContext()->getRedeclContext()))
1050     return;
1051 
1052   // Template instantiations should also not be pushed into scope.
1053   if (isa<FunctionDecl>(D) &&
1054       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1055     return;
1056 
1057   // If this replaces anything in the current scope,
1058   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1059                                IEnd = IdResolver.end();
1060   for (; I != IEnd; ++I) {
1061     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1062       S->RemoveDecl(*I);
1063       IdResolver.RemoveDecl(*I);
1064 
1065       // Should only need to replace one decl.
1066       break;
1067     }
1068   }
1069 
1070   S->AddDecl(D);
1071 
1072   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1073     // Implicitly-generated labels may end up getting generated in an order that
1074     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1075     // the label at the appropriate place in the identifier chain.
1076     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1077       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1078       if (IDC == CurContext) {
1079         if (!S->isDeclScope(*I))
1080           continue;
1081       } else if (IDC->Encloses(CurContext))
1082         break;
1083     }
1084 
1085     IdResolver.InsertDeclAfter(I, D);
1086   } else {
1087     IdResolver.AddDecl(D);
1088   }
1089 }
1090 
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1091 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1092   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1093     TUScope->AddDecl(D);
1094 }
1095 
isDeclInScope(NamedDecl * & D,DeclContext * Ctx,Scope * S,bool ExplicitInstantiationOrSpecialization)1096 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1097                          bool ExplicitInstantiationOrSpecialization) {
1098   return IdResolver.isDeclInScope(D, Ctx, Context, S,
1099                                   ExplicitInstantiationOrSpecialization);
1100 }
1101 
getScopeForDeclContext(Scope * S,DeclContext * DC)1102 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1103   DeclContext *TargetDC = DC->getPrimaryContext();
1104   do {
1105     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1106       if (ScopeDC->getPrimaryContext() == TargetDC)
1107         return S;
1108   } while ((S = S->getParent()));
1109 
1110   return 0;
1111 }
1112 
1113 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1114                                             DeclContext*,
1115                                             ASTContext&);
1116 
1117 /// Filters out lookup results that don't fall within the given scope
1118 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool ExplicitInstantiationOrSpecialization)1119 void Sema::FilterLookupForScope(LookupResult &R,
1120                                 DeclContext *Ctx, Scope *S,
1121                                 bool ConsiderLinkage,
1122                                 bool ExplicitInstantiationOrSpecialization) {
1123   LookupResult::Filter F = R.makeFilter();
1124   while (F.hasNext()) {
1125     NamedDecl *D = F.next();
1126 
1127     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1128       continue;
1129 
1130     if (ConsiderLinkage &&
1131         isOutOfScopePreviousDeclaration(D, Ctx, Context))
1132       continue;
1133 
1134     F.erase();
1135   }
1136 
1137   F.done();
1138 }
1139 
isUsingDecl(NamedDecl * D)1140 static bool isUsingDecl(NamedDecl *D) {
1141   return isa<UsingShadowDecl>(D) ||
1142          isa<UnresolvedUsingTypenameDecl>(D) ||
1143          isa<UnresolvedUsingValueDecl>(D);
1144 }
1145 
1146 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1147 static void RemoveUsingDecls(LookupResult &R) {
1148   LookupResult::Filter F = R.makeFilter();
1149   while (F.hasNext())
1150     if (isUsingDecl(F.next()))
1151       F.erase();
1152 
1153   F.done();
1154 }
1155 
1156 /// \brief Check for this common pattern:
1157 /// @code
1158 /// class S {
1159 ///   S(const S&); // DO NOT IMPLEMENT
1160 ///   void operator=(const S&); // DO NOT IMPLEMENT
1161 /// };
1162 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1163 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1164   // FIXME: Should check for private access too but access is set after we get
1165   // the decl here.
1166   if (D->doesThisDeclarationHaveABody())
1167     return false;
1168 
1169   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1170     return CD->isCopyConstructor();
1171   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1172     return Method->isCopyAssignmentOperator();
1173   return false;
1174 }
1175 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1176 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1177   assert(D);
1178 
1179   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1180     return false;
1181 
1182   // Ignore class templates.
1183   if (D->getDeclContext()->isDependentContext() ||
1184       D->getLexicalDeclContext()->isDependentContext())
1185     return false;
1186 
1187   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1188     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1189       return false;
1190 
1191     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1192       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1193         return false;
1194     } else {
1195       // 'static inline' functions are used in headers; don't warn.
1196       if (FD->getStorageClass() == SC_Static &&
1197           FD->isInlineSpecified())
1198         return false;
1199     }
1200 
1201     if (FD->doesThisDeclarationHaveABody() &&
1202         Context.DeclMustBeEmitted(FD))
1203       return false;
1204   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1205     if (!VD->isFileVarDecl() ||
1206         VD->getType().isConstant(Context) ||
1207         Context.DeclMustBeEmitted(VD))
1208       return false;
1209 
1210     if (VD->isStaticDataMember() &&
1211         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1212       return false;
1213 
1214   } else {
1215     return false;
1216   }
1217 
1218   // Only warn for unused decls internal to the translation unit.
1219   if (D->getLinkage() == ExternalLinkage)
1220     return false;
1221 
1222   return true;
1223 }
1224 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1225 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1226   if (!D)
1227     return;
1228 
1229   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1230     const FunctionDecl *First = FD->getFirstDeclaration();
1231     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1232       return; // First should already be in the vector.
1233   }
1234 
1235   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1236     const VarDecl *First = VD->getFirstDeclaration();
1237     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1238       return; // First should already be in the vector.
1239   }
1240 
1241   if (ShouldWarnIfUnusedFileScopedDecl(D))
1242     UnusedFileScopedDecls.push_back(D);
1243 }
1244 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1245 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1246   if (D->isInvalidDecl())
1247     return false;
1248 
1249   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1250     return false;
1251 
1252   if (isa<LabelDecl>(D))
1253     return true;
1254 
1255   // White-list anything that isn't a local variable.
1256   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1257       !D->getDeclContext()->isFunctionOrMethod())
1258     return false;
1259 
1260   // Types of valid local variables should be complete, so this should succeed.
1261   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1262 
1263     // White-list anything with an __attribute__((unused)) type.
1264     QualType Ty = VD->getType();
1265 
1266     // Only look at the outermost level of typedef.
1267     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1268       if (TT->getDecl()->hasAttr<UnusedAttr>())
1269         return false;
1270     }
1271 
1272     // If we failed to complete the type for some reason, or if the type is
1273     // dependent, don't diagnose the variable.
1274     if (Ty->isIncompleteType() || Ty->isDependentType())
1275       return false;
1276 
1277     if (const TagType *TT = Ty->getAs<TagType>()) {
1278       const TagDecl *Tag = TT->getDecl();
1279       if (Tag->hasAttr<UnusedAttr>())
1280         return false;
1281 
1282       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1283         if (!RD->hasTrivialDestructor())
1284           return false;
1285 
1286         if (const Expr *Init = VD->getInit()) {
1287           const CXXConstructExpr *Construct =
1288             dyn_cast<CXXConstructExpr>(Init);
1289           if (Construct && !Construct->isElidable()) {
1290             CXXConstructorDecl *CD = Construct->getConstructor();
1291             if (!CD->isTrivial())
1292               return false;
1293           }
1294         }
1295       }
1296     }
1297 
1298     // TODO: __attribute__((unused)) templates?
1299   }
1300 
1301   return true;
1302 }
1303 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1304 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1305                                      FixItHint &Hint) {
1306   if (isa<LabelDecl>(D)) {
1307     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1308                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1309     if (AfterColon.isInvalid())
1310       return;
1311     Hint = FixItHint::CreateRemoval(CharSourceRange::
1312                                     getCharRange(D->getLocStart(), AfterColon));
1313   }
1314   return;
1315 }
1316 
1317 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1318 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1319 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1320   FixItHint Hint;
1321   if (!ShouldDiagnoseUnusedDecl(D))
1322     return;
1323 
1324   GenerateFixForUnusedDecl(D, Context, Hint);
1325 
1326   unsigned DiagID;
1327   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1328     DiagID = diag::warn_unused_exception_param;
1329   else if (isa<LabelDecl>(D))
1330     DiagID = diag::warn_unused_label;
1331   else
1332     DiagID = diag::warn_unused_variable;
1333 
1334   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1335 }
1336 
CheckPoppedLabel(LabelDecl * L,Sema & S)1337 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1338   // Verify that we have no forward references left.  If so, there was a goto
1339   // or address of a label taken, but no definition of it.  Label fwd
1340   // definitions are indicated with a null substmt.
1341   if (L->getStmt() == 0)
1342     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1343 }
1344 
ActOnPopScope(SourceLocation Loc,Scope * S)1345 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1346   if (S->decl_empty()) return;
1347   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1348          "Scope shouldn't contain decls!");
1349 
1350   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1351        I != E; ++I) {
1352     Decl *TmpD = (*I);
1353     assert(TmpD && "This decl didn't get pushed??");
1354 
1355     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1356     NamedDecl *D = cast<NamedDecl>(TmpD);
1357 
1358     if (!D->getDeclName()) continue;
1359 
1360     // Diagnose unused variables in this scope.
1361     if (!S->hasErrorOccurred())
1362       DiagnoseUnusedDecl(D);
1363 
1364     // If this was a forward reference to a label, verify it was defined.
1365     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1366       CheckPoppedLabel(LD, *this);
1367 
1368     // Remove this name from our lexical scope.
1369     IdResolver.RemoveDecl(D);
1370   }
1371 }
1372 
ActOnStartFunctionDeclarator()1373 void Sema::ActOnStartFunctionDeclarator() {
1374   ++InFunctionDeclarator;
1375 }
1376 
ActOnEndFunctionDeclarator()1377 void Sema::ActOnEndFunctionDeclarator() {
1378   assert(InFunctionDeclarator);
1379   --InFunctionDeclarator;
1380 }
1381 
1382 /// \brief Look for an Objective-C class in the translation unit.
1383 ///
1384 /// \param Id The name of the Objective-C class we're looking for. If
1385 /// typo-correction fixes this name, the Id will be updated
1386 /// to the fixed name.
1387 ///
1388 /// \param IdLoc The location of the name in the translation unit.
1389 ///
1390 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1391 /// if there is no class with the given name.
1392 ///
1393 /// \returns The declaration of the named Objective-C class, or NULL if the
1394 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1395 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1396                                               SourceLocation IdLoc,
1397                                               bool DoTypoCorrection) {
1398   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1399   // creation from this context.
1400   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1401 
1402   if (!IDecl && DoTypoCorrection) {
1403     // Perform typo correction at the given location, but only if we
1404     // find an Objective-C class name.
1405     DeclFilterCCC<ObjCInterfaceDecl> Validator;
1406     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1407                                        LookupOrdinaryName, TUScope, NULL,
1408                                        Validator)) {
1409       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1410       Diag(IdLoc, diag::err_undef_interface_suggest)
1411         << Id << IDecl->getDeclName()
1412         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1413       Diag(IDecl->getLocation(), diag::note_previous_decl)
1414         << IDecl->getDeclName();
1415 
1416       Id = IDecl->getIdentifier();
1417     }
1418   }
1419   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1420   // This routine must always return a class definition, if any.
1421   if (Def && Def->getDefinition())
1422       Def = Def->getDefinition();
1423   return Def;
1424 }
1425 
1426 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1427 /// from S, where a non-field would be declared. This routine copes
1428 /// with the difference between C and C++ scoping rules in structs and
1429 /// unions. For example, the following code is well-formed in C but
1430 /// ill-formed in C++:
1431 /// @code
1432 /// struct S6 {
1433 ///   enum { BAR } e;
1434 /// };
1435 ///
1436 /// void test_S6() {
1437 ///   struct S6 a;
1438 ///   a.e = BAR;
1439 /// }
1440 /// @endcode
1441 /// For the declaration of BAR, this routine will return a different
1442 /// scope. The scope S will be the scope of the unnamed enumeration
1443 /// within S6. In C++, this routine will return the scope associated
1444 /// with S6, because the enumeration's scope is a transparent
1445 /// context but structures can contain non-field names. In C, this
1446 /// routine will return the translation unit scope, since the
1447 /// enumeration's scope is a transparent context and structures cannot
1448 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1449 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1450   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1451          (S->getEntity() &&
1452           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1453          (S->isClassScope() && !getLangOpts().CPlusPlus))
1454     S = S->getParent();
1455   return S;
1456 }
1457 
1458 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1459 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1460 /// if we're creating this built-in in anticipation of redeclaring the
1461 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1462 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1463                                      Scope *S, bool ForRedeclaration,
1464                                      SourceLocation Loc) {
1465   Builtin::ID BID = (Builtin::ID)bid;
1466 
1467   ASTContext::GetBuiltinTypeError Error;
1468   QualType R = Context.GetBuiltinType(BID, Error);
1469   switch (Error) {
1470   case ASTContext::GE_None:
1471     // Okay
1472     break;
1473 
1474   case ASTContext::GE_Missing_stdio:
1475     if (ForRedeclaration)
1476       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1477         << Context.BuiltinInfo.GetName(BID);
1478     return 0;
1479 
1480   case ASTContext::GE_Missing_setjmp:
1481     if (ForRedeclaration)
1482       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1483         << Context.BuiltinInfo.GetName(BID);
1484     return 0;
1485 
1486   case ASTContext::GE_Missing_ucontext:
1487     if (ForRedeclaration)
1488       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1489         << Context.BuiltinInfo.GetName(BID);
1490     return 0;
1491   }
1492 
1493   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1494     Diag(Loc, diag::ext_implicit_lib_function_decl)
1495       << Context.BuiltinInfo.GetName(BID)
1496       << R;
1497     if (Context.BuiltinInfo.getHeaderName(BID) &&
1498         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1499           != DiagnosticsEngine::Ignored)
1500       Diag(Loc, diag::note_please_include_header)
1501         << Context.BuiltinInfo.getHeaderName(BID)
1502         << Context.BuiltinInfo.GetName(BID);
1503   }
1504 
1505   FunctionDecl *New = FunctionDecl::Create(Context,
1506                                            Context.getTranslationUnitDecl(),
1507                                            Loc, Loc, II, R, /*TInfo=*/0,
1508                                            SC_Extern,
1509                                            SC_None, false,
1510                                            /*hasPrototype=*/true);
1511   New->setImplicit();
1512 
1513   // Create Decl objects for each parameter, adding them to the
1514   // FunctionDecl.
1515   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1516     SmallVector<ParmVarDecl*, 16> Params;
1517     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1518       ParmVarDecl *parm =
1519         ParmVarDecl::Create(Context, New, SourceLocation(),
1520                             SourceLocation(), 0,
1521                             FT->getArgType(i), /*TInfo=*/0,
1522                             SC_None, SC_None, 0);
1523       parm->setScopeInfo(0, i);
1524       Params.push_back(parm);
1525     }
1526     New->setParams(Params);
1527   }
1528 
1529   AddKnownFunctionAttributes(New);
1530 
1531   // TUScope is the translation-unit scope to insert this function into.
1532   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1533   // relate Scopes to DeclContexts, and probably eliminate CurContext
1534   // entirely, but we're not there yet.
1535   DeclContext *SavedContext = CurContext;
1536   CurContext = Context.getTranslationUnitDecl();
1537   PushOnScopeChains(New, TUScope);
1538   CurContext = SavedContext;
1539   return New;
1540 }
1541 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1542 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1543   QualType OldType;
1544   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1545     OldType = OldTypedef->getUnderlyingType();
1546   else
1547     OldType = Context.getTypeDeclType(Old);
1548   QualType NewType = New->getUnderlyingType();
1549 
1550   if (NewType->isVariablyModifiedType()) {
1551     // Must not redefine a typedef with a variably-modified type.
1552     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1553     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1554       << Kind << NewType;
1555     if (Old->getLocation().isValid())
1556       Diag(Old->getLocation(), diag::note_previous_definition);
1557     New->setInvalidDecl();
1558     return true;
1559   }
1560 
1561   if (OldType != NewType &&
1562       !OldType->isDependentType() &&
1563       !NewType->isDependentType() &&
1564       !Context.hasSameType(OldType, NewType)) {
1565     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1566     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1567       << Kind << NewType << OldType;
1568     if (Old->getLocation().isValid())
1569       Diag(Old->getLocation(), diag::note_previous_definition);
1570     New->setInvalidDecl();
1571     return true;
1572   }
1573   return false;
1574 }
1575 
1576 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1577 /// same name and scope as a previous declaration 'Old'.  Figure out
1578 /// how to resolve this situation, merging decls or emitting
1579 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1580 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1581 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1582   // If the new decl is known invalid already, don't bother doing any
1583   // merging checks.
1584   if (New->isInvalidDecl()) return;
1585 
1586   // Allow multiple definitions for ObjC built-in typedefs.
1587   // FIXME: Verify the underlying types are equivalent!
1588   if (getLangOpts().ObjC1) {
1589     const IdentifierInfo *TypeID = New->getIdentifier();
1590     switch (TypeID->getLength()) {
1591     default: break;
1592     case 2:
1593       {
1594         if (!TypeID->isStr("id"))
1595           break;
1596         QualType T = New->getUnderlyingType();
1597         if (!T->isPointerType())
1598           break;
1599         if (!T->isVoidPointerType()) {
1600           QualType PT = T->getAs<PointerType>()->getPointeeType();
1601           if (!PT->isStructureType())
1602             break;
1603         }
1604         Context.setObjCIdRedefinitionType(T);
1605         // Install the built-in type for 'id', ignoring the current definition.
1606         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1607         return;
1608       }
1609     case 5:
1610       if (!TypeID->isStr("Class"))
1611         break;
1612       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1613       // Install the built-in type for 'Class', ignoring the current definition.
1614       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1615       return;
1616     case 3:
1617       if (!TypeID->isStr("SEL"))
1618         break;
1619       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1620       // Install the built-in type for 'SEL', ignoring the current definition.
1621       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1622       return;
1623     }
1624     // Fall through - the typedef name was not a builtin type.
1625   }
1626 
1627   // Verify the old decl was also a type.
1628   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1629   if (!Old) {
1630     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1631       << New->getDeclName();
1632 
1633     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1634     if (OldD->getLocation().isValid())
1635       Diag(OldD->getLocation(), diag::note_previous_definition);
1636 
1637     return New->setInvalidDecl();
1638   }
1639 
1640   // If the old declaration is invalid, just give up here.
1641   if (Old->isInvalidDecl())
1642     return New->setInvalidDecl();
1643 
1644   // If the typedef types are not identical, reject them in all languages and
1645   // with any extensions enabled.
1646   if (isIncompatibleTypedef(Old, New))
1647     return;
1648 
1649   // The types match.  Link up the redeclaration chain if the old
1650   // declaration was a typedef.
1651   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1652     New->setPreviousDeclaration(Typedef);
1653 
1654   if (getLangOpts().MicrosoftExt)
1655     return;
1656 
1657   if (getLangOpts().CPlusPlus) {
1658     // C++ [dcl.typedef]p2:
1659     //   In a given non-class scope, a typedef specifier can be used to
1660     //   redefine the name of any type declared in that scope to refer
1661     //   to the type to which it already refers.
1662     if (!isa<CXXRecordDecl>(CurContext))
1663       return;
1664 
1665     // C++0x [dcl.typedef]p4:
1666     //   In a given class scope, a typedef specifier can be used to redefine
1667     //   any class-name declared in that scope that is not also a typedef-name
1668     //   to refer to the type to which it already refers.
1669     //
1670     // This wording came in via DR424, which was a correction to the
1671     // wording in DR56, which accidentally banned code like:
1672     //
1673     //   struct S {
1674     //     typedef struct A { } A;
1675     //   };
1676     //
1677     // in the C++03 standard. We implement the C++0x semantics, which
1678     // allow the above but disallow
1679     //
1680     //   struct S {
1681     //     typedef int I;
1682     //     typedef int I;
1683     //   };
1684     //
1685     // since that was the intent of DR56.
1686     if (!isa<TypedefNameDecl>(Old))
1687       return;
1688 
1689     Diag(New->getLocation(), diag::err_redefinition)
1690       << New->getDeclName();
1691     Diag(Old->getLocation(), diag::note_previous_definition);
1692     return New->setInvalidDecl();
1693   }
1694 
1695   // Modules always permit redefinition of typedefs, as does C11.
1696   if (getLangOpts().Modules || getLangOpts().C11)
1697     return;
1698 
1699   // If we have a redefinition of a typedef in C, emit a warning.  This warning
1700   // is normally mapped to an error, but can be controlled with
1701   // -Wtypedef-redefinition.  If either the original or the redefinition is
1702   // in a system header, don't emit this for compatibility with GCC.
1703   if (getDiagnostics().getSuppressSystemWarnings() &&
1704       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1705        Context.getSourceManager().isInSystemHeader(New->getLocation())))
1706     return;
1707 
1708   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1709     << New->getDeclName();
1710   Diag(Old->getLocation(), diag::note_previous_definition);
1711   return;
1712 }
1713 
1714 /// DeclhasAttr - returns true if decl Declaration already has the target
1715 /// attribute.
1716 static bool
DeclHasAttr(const Decl * D,const Attr * A)1717 DeclHasAttr(const Decl *D, const Attr *A) {
1718   // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1719   // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1720   // responsible for making sure they are consistent.
1721   const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1722   if (AA)
1723     return false;
1724 
1725   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1726   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1727   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1728     if ((*i)->getKind() == A->getKind()) {
1729       if (Ann) {
1730         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1731           return true;
1732         continue;
1733       }
1734       // FIXME: Don't hardcode this check
1735       if (OA && isa<OwnershipAttr>(*i))
1736         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1737       return true;
1738     }
1739 
1740   return false;
1741 }
1742 
mergeDeclAttribute(Decl * D,InheritableAttr * Attr)1743 bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1744   InheritableAttr *NewAttr = NULL;
1745   if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1746     NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1747                                     AA->getIntroduced(), AA->getDeprecated(),
1748                                     AA->getObsoleted(), AA->getUnavailable(),
1749                                     AA->getMessage());
1750   else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1751     NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1752   else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1753     NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1754   else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1755     NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1756   else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1757     NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1758                               FA->getFormatIdx(), FA->getFirstArg());
1759   else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1760     NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1761   else if (!DeclHasAttr(D, Attr))
1762     NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1763 
1764   if (NewAttr) {
1765     NewAttr->setInherited(true);
1766     D->addAttr(NewAttr);
1767     return true;
1768   }
1769 
1770   return false;
1771 }
1772 
getDefinition(const Decl * D)1773 static const Decl *getDefinition(const Decl *D) {
1774   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1775     return TD->getDefinition();
1776   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1777     return VD->getDefinition();
1778   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1779     const FunctionDecl* Def;
1780     if (FD->hasBody(Def))
1781       return Def;
1782   }
1783   return NULL;
1784 }
1785 
hasAttribute(const Decl * D,attr::Kind Kind)1786 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1787   for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1788        I != E; ++I) {
1789     Attr *Attribute = *I;
1790     if (Attribute->getKind() == Kind)
1791       return true;
1792   }
1793   return false;
1794 }
1795 
1796 /// checkNewAttributesAfterDef - If we already have a definition, check that
1797 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)1798 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1799   if (!New->hasAttrs())
1800     return;
1801 
1802   const Decl *Def = getDefinition(Old);
1803   if (!Def || Def == New)
1804     return;
1805 
1806   AttrVec &NewAttributes = New->getAttrs();
1807   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1808     const Attr *NewAttribute = NewAttributes[I];
1809     if (hasAttribute(Def, NewAttribute->getKind())) {
1810       ++I;
1811       continue; // regular attr merging will take care of validating this.
1812     }
1813     S.Diag(NewAttribute->getLocation(),
1814            diag::warn_attribute_precede_definition);
1815     S.Diag(Def->getLocation(), diag::note_previous_definition);
1816     NewAttributes.erase(NewAttributes.begin() + I);
1817     --E;
1818   }
1819 }
1820 
1821 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(Decl * New,Decl * Old,bool MergeDeprecation)1822 void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1823                                bool MergeDeprecation) {
1824   // attributes declared post-definition are currently ignored
1825   checkNewAttributesAfterDef(*this, New, Old);
1826 
1827   if (!Old->hasAttrs())
1828     return;
1829 
1830   bool foundAny = New->hasAttrs();
1831 
1832   // Ensure that any moving of objects within the allocated map is done before
1833   // we process them.
1834   if (!foundAny) New->setAttrs(AttrVec());
1835 
1836   for (specific_attr_iterator<InheritableAttr>
1837          i = Old->specific_attr_begin<InheritableAttr>(),
1838          e = Old->specific_attr_end<InheritableAttr>();
1839        i != e; ++i) {
1840     // Ignore deprecated/unavailable/availability attributes if requested.
1841     if (!MergeDeprecation &&
1842         (isa<DeprecatedAttr>(*i) ||
1843          isa<UnavailableAttr>(*i) ||
1844          isa<AvailabilityAttr>(*i)))
1845       continue;
1846 
1847     if (mergeDeclAttribute(New, *i))
1848       foundAny = true;
1849   }
1850 
1851   if (!foundAny) New->dropAttrs();
1852 }
1853 
1854 /// mergeParamDeclAttributes - Copy attributes from the old parameter
1855 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,ASTContext & C)1856 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1857                                      const ParmVarDecl *oldDecl,
1858                                      ASTContext &C) {
1859   if (!oldDecl->hasAttrs())
1860     return;
1861 
1862   bool foundAny = newDecl->hasAttrs();
1863 
1864   // Ensure that any moving of objects within the allocated map is
1865   // done before we process them.
1866   if (!foundAny) newDecl->setAttrs(AttrVec());
1867 
1868   for (specific_attr_iterator<InheritableParamAttr>
1869        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1870        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1871     if (!DeclHasAttr(newDecl, *i)) {
1872       InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1873       newAttr->setInherited(true);
1874       newDecl->addAttr(newAttr);
1875       foundAny = true;
1876     }
1877   }
1878 
1879   if (!foundAny) newDecl->dropAttrs();
1880 }
1881 
1882 namespace {
1883 
1884 /// Used in MergeFunctionDecl to keep track of function parameters in
1885 /// C.
1886 struct GNUCompatibleParamWarning {
1887   ParmVarDecl *OldParm;
1888   ParmVarDecl *NewParm;
1889   QualType PromotedType;
1890 };
1891 
1892 }
1893 
1894 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)1895 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1896   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1897     if (Ctor->isDefaultConstructor())
1898       return Sema::CXXDefaultConstructor;
1899 
1900     if (Ctor->isCopyConstructor())
1901       return Sema::CXXCopyConstructor;
1902 
1903     if (Ctor->isMoveConstructor())
1904       return Sema::CXXMoveConstructor;
1905   } else if (isa<CXXDestructorDecl>(MD)) {
1906     return Sema::CXXDestructor;
1907   } else if (MD->isCopyAssignmentOperator()) {
1908     return Sema::CXXCopyAssignment;
1909   } else if (MD->isMoveAssignmentOperator()) {
1910     return Sema::CXXMoveAssignment;
1911   }
1912 
1913   return Sema::CXXInvalid;
1914 }
1915 
1916 /// canRedefineFunction - checks if a function can be redefined. Currently,
1917 /// only extern inline functions can be redefined, and even then only in
1918 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)1919 static bool canRedefineFunction(const FunctionDecl *FD,
1920                                 const LangOptions& LangOpts) {
1921   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1922           !LangOpts.CPlusPlus &&
1923           FD->isInlineSpecified() &&
1924           FD->getStorageClass() == SC_Extern);
1925 }
1926 
1927 /// Is the given calling convention the ABI default for the given
1928 /// declaration?
isABIDefaultCC(Sema & S,CallingConv CC,FunctionDecl * D)1929 static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1930   CallingConv ABIDefaultCC;
1931   if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1932     ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1933   } else {
1934     // Free C function or a static method.
1935     ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1936   }
1937   return ABIDefaultCC == CC;
1938 }
1939 
1940 /// MergeFunctionDecl - We just parsed a function 'New' from
1941 /// declarator D which has the same name and scope as a previous
1942 /// declaration 'Old'.  Figure out how to resolve this situation,
1943 /// merging decls or emitting diagnostics as appropriate.
1944 ///
1945 /// In C++, New and Old must be declarations that are not
1946 /// overloaded. Use IsOverload to determine whether New and Old are
1947 /// overloaded, and to select the Old declaration that New should be
1948 /// merged with.
1949 ///
1950 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,Decl * OldD,Scope * S)1951 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1952   // Verify the old decl was also a function.
1953   FunctionDecl *Old = 0;
1954   if (FunctionTemplateDecl *OldFunctionTemplate
1955         = dyn_cast<FunctionTemplateDecl>(OldD))
1956     Old = OldFunctionTemplate->getTemplatedDecl();
1957   else
1958     Old = dyn_cast<FunctionDecl>(OldD);
1959   if (!Old) {
1960     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1961       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1962       Diag(Shadow->getTargetDecl()->getLocation(),
1963            diag::note_using_decl_target);
1964       Diag(Shadow->getUsingDecl()->getLocation(),
1965            diag::note_using_decl) << 0;
1966       return true;
1967     }
1968 
1969     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1970       << New->getDeclName();
1971     Diag(OldD->getLocation(), diag::note_previous_definition);
1972     return true;
1973   }
1974 
1975   // Determine whether the previous declaration was a definition,
1976   // implicit declaration, or a declaration.
1977   diag::kind PrevDiag;
1978   if (Old->isThisDeclarationADefinition())
1979     PrevDiag = diag::note_previous_definition;
1980   else if (Old->isImplicit())
1981     PrevDiag = diag::note_previous_implicit_declaration;
1982   else
1983     PrevDiag = diag::note_previous_declaration;
1984 
1985   QualType OldQType = Context.getCanonicalType(Old->getType());
1986   QualType NewQType = Context.getCanonicalType(New->getType());
1987 
1988   // Don't complain about this if we're in GNU89 mode and the old function
1989   // is an extern inline function.
1990   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1991       New->getStorageClass() == SC_Static &&
1992       Old->getStorageClass() != SC_Static &&
1993       !canRedefineFunction(Old, getLangOpts())) {
1994     if (getLangOpts().MicrosoftExt) {
1995       Diag(New->getLocation(), diag::warn_static_non_static) << New;
1996       Diag(Old->getLocation(), PrevDiag);
1997     } else {
1998       Diag(New->getLocation(), diag::err_static_non_static) << New;
1999       Diag(Old->getLocation(), PrevDiag);
2000       return true;
2001     }
2002   }
2003 
2004   // If a function is first declared with a calling convention, but is
2005   // later declared or defined without one, the second decl assumes the
2006   // calling convention of the first.
2007   //
2008   // It's OK if a function is first declared without a calling convention,
2009   // but is later declared or defined with the default calling convention.
2010   //
2011   // For the new decl, we have to look at the NON-canonical type to tell the
2012   // difference between a function that really doesn't have a calling
2013   // convention and one that is declared cdecl. That's because in
2014   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2015   // because it is the default calling convention.
2016   //
2017   // Note also that we DO NOT return at this point, because we still have
2018   // other tests to run.
2019   const FunctionType *OldType = cast<FunctionType>(OldQType);
2020   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2021   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2022   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2023   bool RequiresAdjustment = false;
2024   if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2025     // Fast path: nothing to do.
2026 
2027   // Inherit the CC from the previous declaration if it was specified
2028   // there but not here.
2029   } else if (NewTypeInfo.getCC() == CC_Default) {
2030     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2031     RequiresAdjustment = true;
2032 
2033   // Don't complain about mismatches when the default CC is
2034   // effectively the same as the explict one.
2035   } else if (OldTypeInfo.getCC() == CC_Default &&
2036              isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2037     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2038     RequiresAdjustment = true;
2039 
2040   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2041                                      NewTypeInfo.getCC())) {
2042     // Calling conventions really aren't compatible, so complain.
2043     Diag(New->getLocation(), diag::err_cconv_change)
2044       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2045       << (OldTypeInfo.getCC() == CC_Default)
2046       << (OldTypeInfo.getCC() == CC_Default ? "" :
2047           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2048     Diag(Old->getLocation(), diag::note_previous_declaration);
2049     return true;
2050   }
2051 
2052   // FIXME: diagnose the other way around?
2053   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2054     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2055     RequiresAdjustment = true;
2056   }
2057 
2058   // Merge regparm attribute.
2059   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2060       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2061     if (NewTypeInfo.getHasRegParm()) {
2062       Diag(New->getLocation(), diag::err_regparm_mismatch)
2063         << NewType->getRegParmType()
2064         << OldType->getRegParmType();
2065       Diag(Old->getLocation(), diag::note_previous_declaration);
2066       return true;
2067     }
2068 
2069     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2070     RequiresAdjustment = true;
2071   }
2072 
2073   // Merge ns_returns_retained attribute.
2074   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2075     if (NewTypeInfo.getProducesResult()) {
2076       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2077       Diag(Old->getLocation(), diag::note_previous_declaration);
2078       return true;
2079     }
2080 
2081     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2082     RequiresAdjustment = true;
2083   }
2084 
2085   if (RequiresAdjustment) {
2086     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2087     New->setType(QualType(NewType, 0));
2088     NewQType = Context.getCanonicalType(New->getType());
2089   }
2090 
2091   if (getLangOpts().CPlusPlus) {
2092     // (C++98 13.1p2):
2093     //   Certain function declarations cannot be overloaded:
2094     //     -- Function declarations that differ only in the return type
2095     //        cannot be overloaded.
2096     QualType OldReturnType = OldType->getResultType();
2097     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2098     QualType ResQT;
2099     if (OldReturnType != NewReturnType) {
2100       if (NewReturnType->isObjCObjectPointerType()
2101           && OldReturnType->isObjCObjectPointerType())
2102         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2103       if (ResQT.isNull()) {
2104         if (New->isCXXClassMember() && New->isOutOfLine())
2105           Diag(New->getLocation(),
2106                diag::err_member_def_does_not_match_ret_type) << New;
2107         else
2108           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2109         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2110         return true;
2111       }
2112       else
2113         NewQType = ResQT;
2114     }
2115 
2116     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2117     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2118     if (OldMethod && NewMethod) {
2119       // Preserve triviality.
2120       NewMethod->setTrivial(OldMethod->isTrivial());
2121 
2122       // MSVC allows explicit template specialization at class scope:
2123       // 2 CXMethodDecls referring to the same function will be injected.
2124       // We don't want a redeclartion error.
2125       bool IsClassScopeExplicitSpecialization =
2126                               OldMethod->isFunctionTemplateSpecialization() &&
2127                               NewMethod->isFunctionTemplateSpecialization();
2128       bool isFriend = NewMethod->getFriendObjectKind();
2129 
2130       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2131           !IsClassScopeExplicitSpecialization) {
2132         //    -- Member function declarations with the same name and the
2133         //       same parameter types cannot be overloaded if any of them
2134         //       is a static member function declaration.
2135         if (OldMethod->isStatic() || NewMethod->isStatic()) {
2136           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2137           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2138           return true;
2139         }
2140 
2141         // C++ [class.mem]p1:
2142         //   [...] A member shall not be declared twice in the
2143         //   member-specification, except that a nested class or member
2144         //   class template can be declared and then later defined.
2145         if (ActiveTemplateInstantiations.empty()) {
2146           unsigned NewDiag;
2147           if (isa<CXXConstructorDecl>(OldMethod))
2148             NewDiag = diag::err_constructor_redeclared;
2149           else if (isa<CXXDestructorDecl>(NewMethod))
2150             NewDiag = diag::err_destructor_redeclared;
2151           else if (isa<CXXConversionDecl>(NewMethod))
2152             NewDiag = diag::err_conv_function_redeclared;
2153           else
2154             NewDiag = diag::err_member_redeclared;
2155 
2156           Diag(New->getLocation(), NewDiag);
2157         } else {
2158           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2159             << New << New->getType();
2160         }
2161         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2162 
2163       // Complain if this is an explicit declaration of a special
2164       // member that was initially declared implicitly.
2165       //
2166       // As an exception, it's okay to befriend such methods in order
2167       // to permit the implicit constructor/destructor/operator calls.
2168       } else if (OldMethod->isImplicit()) {
2169         if (isFriend) {
2170           NewMethod->setImplicit();
2171         } else {
2172           Diag(NewMethod->getLocation(),
2173                diag::err_definition_of_implicitly_declared_member)
2174             << New << getSpecialMember(OldMethod);
2175           return true;
2176         }
2177       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2178         Diag(NewMethod->getLocation(),
2179              diag::err_definition_of_explicitly_defaulted_member)
2180           << getSpecialMember(OldMethod);
2181         return true;
2182       }
2183     }
2184 
2185     // (C++98 8.3.5p3):
2186     //   All declarations for a function shall agree exactly in both the
2187     //   return type and the parameter-type-list.
2188     // We also want to respect all the extended bits except noreturn.
2189 
2190     // noreturn should now match unless the old type info didn't have it.
2191     QualType OldQTypeForComparison = OldQType;
2192     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2193       assert(OldQType == QualType(OldType, 0));
2194       const FunctionType *OldTypeForComparison
2195         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2196       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2197       assert(OldQTypeForComparison.isCanonical());
2198     }
2199 
2200     if (OldQTypeForComparison == NewQType)
2201       return MergeCompatibleFunctionDecls(New, Old, S);
2202 
2203     // Fall through for conflicting redeclarations and redefinitions.
2204   }
2205 
2206   // C: Function types need to be compatible, not identical. This handles
2207   // duplicate function decls like "void f(int); void f(enum X);" properly.
2208   if (!getLangOpts().CPlusPlus &&
2209       Context.typesAreCompatible(OldQType, NewQType)) {
2210     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2211     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2212     const FunctionProtoType *OldProto = 0;
2213     if (isa<FunctionNoProtoType>(NewFuncType) &&
2214         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2215       // The old declaration provided a function prototype, but the
2216       // new declaration does not. Merge in the prototype.
2217       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2218       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2219                                                  OldProto->arg_type_end());
2220       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2221                                          ParamTypes.data(), ParamTypes.size(),
2222                                          OldProto->getExtProtoInfo());
2223       New->setType(NewQType);
2224       New->setHasInheritedPrototype();
2225 
2226       // Synthesize a parameter for each argument type.
2227       SmallVector<ParmVarDecl*, 16> Params;
2228       for (FunctionProtoType::arg_type_iterator
2229              ParamType = OldProto->arg_type_begin(),
2230              ParamEnd = OldProto->arg_type_end();
2231            ParamType != ParamEnd; ++ParamType) {
2232         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2233                                                  SourceLocation(),
2234                                                  SourceLocation(), 0,
2235                                                  *ParamType, /*TInfo=*/0,
2236                                                  SC_None, SC_None,
2237                                                  0);
2238         Param->setScopeInfo(0, Params.size());
2239         Param->setImplicit();
2240         Params.push_back(Param);
2241       }
2242 
2243       New->setParams(Params);
2244     }
2245 
2246     return MergeCompatibleFunctionDecls(New, Old, S);
2247   }
2248 
2249   // GNU C permits a K&R definition to follow a prototype declaration
2250   // if the declared types of the parameters in the K&R definition
2251   // match the types in the prototype declaration, even when the
2252   // promoted types of the parameters from the K&R definition differ
2253   // from the types in the prototype. GCC then keeps the types from
2254   // the prototype.
2255   //
2256   // If a variadic prototype is followed by a non-variadic K&R definition,
2257   // the K&R definition becomes variadic.  This is sort of an edge case, but
2258   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2259   // C99 6.9.1p8.
2260   if (!getLangOpts().CPlusPlus &&
2261       Old->hasPrototype() && !New->hasPrototype() &&
2262       New->getType()->getAs<FunctionProtoType>() &&
2263       Old->getNumParams() == New->getNumParams()) {
2264     SmallVector<QualType, 16> ArgTypes;
2265     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2266     const FunctionProtoType *OldProto
2267       = Old->getType()->getAs<FunctionProtoType>();
2268     const FunctionProtoType *NewProto
2269       = New->getType()->getAs<FunctionProtoType>();
2270 
2271     // Determine whether this is the GNU C extension.
2272     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2273                                                NewProto->getResultType());
2274     bool LooseCompatible = !MergedReturn.isNull();
2275     for (unsigned Idx = 0, End = Old->getNumParams();
2276          LooseCompatible && Idx != End; ++Idx) {
2277       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2278       ParmVarDecl *NewParm = New->getParamDecl(Idx);
2279       if (Context.typesAreCompatible(OldParm->getType(),
2280                                      NewProto->getArgType(Idx))) {
2281         ArgTypes.push_back(NewParm->getType());
2282       } else if (Context.typesAreCompatible(OldParm->getType(),
2283                                             NewParm->getType(),
2284                                             /*CompareUnqualified=*/true)) {
2285         GNUCompatibleParamWarning Warn
2286           = { OldParm, NewParm, NewProto->getArgType(Idx) };
2287         Warnings.push_back(Warn);
2288         ArgTypes.push_back(NewParm->getType());
2289       } else
2290         LooseCompatible = false;
2291     }
2292 
2293     if (LooseCompatible) {
2294       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2295         Diag(Warnings[Warn].NewParm->getLocation(),
2296              diag::ext_param_promoted_not_compatible_with_prototype)
2297           << Warnings[Warn].PromotedType
2298           << Warnings[Warn].OldParm->getType();
2299         if (Warnings[Warn].OldParm->getLocation().isValid())
2300           Diag(Warnings[Warn].OldParm->getLocation(),
2301                diag::note_previous_declaration);
2302       }
2303 
2304       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2305                                            ArgTypes.size(),
2306                                            OldProto->getExtProtoInfo()));
2307       return MergeCompatibleFunctionDecls(New, Old, S);
2308     }
2309 
2310     // Fall through to diagnose conflicting types.
2311   }
2312 
2313   // A function that has already been declared has been redeclared or defined
2314   // with a different type- show appropriate diagnostic
2315   if (unsigned BuiltinID = Old->getBuiltinID()) {
2316     // The user has declared a builtin function with an incompatible
2317     // signature.
2318     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2319       // The function the user is redeclaring is a library-defined
2320       // function like 'malloc' or 'printf'. Warn about the
2321       // redeclaration, then pretend that we don't know about this
2322       // library built-in.
2323       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2324       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2325         << Old << Old->getType();
2326       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2327       Old->setInvalidDecl();
2328       return false;
2329     }
2330 
2331     PrevDiag = diag::note_previous_builtin_declaration;
2332   }
2333 
2334   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2335   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2336   return true;
2337 }
2338 
2339 /// \brief Completes the merge of two function declarations that are
2340 /// known to be compatible.
2341 ///
2342 /// This routine handles the merging of attributes and other
2343 /// properties of function declarations form the old declaration to
2344 /// the new declaration, once we know that New is in fact a
2345 /// redeclaration of Old.
2346 ///
2347 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S)2348 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2349                                         Scope *S) {
2350   // Merge the attributes
2351   mergeDeclAttributes(New, Old);
2352 
2353   // Merge the storage class.
2354   if (Old->getStorageClass() != SC_Extern &&
2355       Old->getStorageClass() != SC_None)
2356     New->setStorageClass(Old->getStorageClass());
2357 
2358   // Merge "pure" flag.
2359   if (Old->isPure())
2360     New->setPure();
2361 
2362   // Merge attributes from the parameters.  These can mismatch with K&R
2363   // declarations.
2364   if (New->getNumParams() == Old->getNumParams())
2365     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2366       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2367                                Context);
2368 
2369   if (getLangOpts().CPlusPlus)
2370     return MergeCXXFunctionDecl(New, Old, S);
2371 
2372   return false;
2373 }
2374 
2375 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)2376 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2377                                 ObjCMethodDecl *oldMethod) {
2378 
2379   // Merge the attributes, including deprecated/unavailable
2380   mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2381 
2382   // Merge attributes from the parameters.
2383   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2384                                        oe = oldMethod->param_end();
2385   for (ObjCMethodDecl::param_iterator
2386          ni = newMethod->param_begin(), ne = newMethod->param_end();
2387        ni != ne && oi != oe; ++ni, ++oi)
2388     mergeParamDeclAttributes(*ni, *oi, Context);
2389 
2390   CheckObjCMethodOverride(newMethod, oldMethod, true);
2391 }
2392 
2393 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2394 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2395 /// emitting diagnostics as appropriate.
2396 ///
2397 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2398 /// to here in AddInitializerToDecl. We can't check them before the initializer
2399 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old)2400 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2401   if (New->isInvalidDecl() || Old->isInvalidDecl())
2402     return;
2403 
2404   QualType MergedT;
2405   if (getLangOpts().CPlusPlus) {
2406     AutoType *AT = New->getType()->getContainedAutoType();
2407     if (AT && !AT->isDeduced()) {
2408       // We don't know what the new type is until the initializer is attached.
2409       return;
2410     } else if (Context.hasSameType(New->getType(), Old->getType())) {
2411       // These could still be something that needs exception specs checked.
2412       return MergeVarDeclExceptionSpecs(New, Old);
2413     }
2414     // C++ [basic.link]p10:
2415     //   [...] the types specified by all declarations referring to a given
2416     //   object or function shall be identical, except that declarations for an
2417     //   array object can specify array types that differ by the presence or
2418     //   absence of a major array bound (8.3.4).
2419     else if (Old->getType()->isIncompleteArrayType() &&
2420              New->getType()->isArrayType()) {
2421       CanQual<ArrayType> OldArray
2422         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2423       CanQual<ArrayType> NewArray
2424         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2425       if (OldArray->getElementType() == NewArray->getElementType())
2426         MergedT = New->getType();
2427     } else if (Old->getType()->isArrayType() &&
2428              New->getType()->isIncompleteArrayType()) {
2429       CanQual<ArrayType> OldArray
2430         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2431       CanQual<ArrayType> NewArray
2432         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2433       if (OldArray->getElementType() == NewArray->getElementType())
2434         MergedT = Old->getType();
2435     } else if (New->getType()->isObjCObjectPointerType()
2436                && Old->getType()->isObjCObjectPointerType()) {
2437         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2438                                                         Old->getType());
2439     }
2440   } else {
2441     MergedT = Context.mergeTypes(New->getType(), Old->getType());
2442   }
2443   if (MergedT.isNull()) {
2444     Diag(New->getLocation(), diag::err_redefinition_different_type)
2445       << New->getDeclName();
2446     Diag(Old->getLocation(), diag::note_previous_definition);
2447     return New->setInvalidDecl();
2448   }
2449   New->setType(MergedT);
2450 }
2451 
2452 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2453 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2454 /// situation, merging decls or emitting diagnostics as appropriate.
2455 ///
2456 /// Tentative definition rules (C99 6.9.2p2) are checked by
2457 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2458 /// definitions here, since the initializer hasn't been attached.
2459 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)2460 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2461   // If the new decl is already invalid, don't do any other checking.
2462   if (New->isInvalidDecl())
2463     return;
2464 
2465   // Verify the old decl was also a variable.
2466   VarDecl *Old = 0;
2467   if (!Previous.isSingleResult() ||
2468       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2469     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2470       << New->getDeclName();
2471     Diag(Previous.getRepresentativeDecl()->getLocation(),
2472          diag::note_previous_definition);
2473     return New->setInvalidDecl();
2474   }
2475 
2476   // C++ [class.mem]p1:
2477   //   A member shall not be declared twice in the member-specification [...]
2478   //
2479   // Here, we need only consider static data members.
2480   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2481     Diag(New->getLocation(), diag::err_duplicate_member)
2482       << New->getIdentifier();
2483     Diag(Old->getLocation(), diag::note_previous_declaration);
2484     New->setInvalidDecl();
2485   }
2486 
2487   mergeDeclAttributes(New, Old);
2488   // Warn if an already-declared variable is made a weak_import in a subsequent
2489   // declaration
2490   if (New->getAttr<WeakImportAttr>() &&
2491       Old->getStorageClass() == SC_None &&
2492       !Old->getAttr<WeakImportAttr>()) {
2493     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2494     Diag(Old->getLocation(), diag::note_previous_definition);
2495     // Remove weak_import attribute on new declaration.
2496     New->dropAttr<WeakImportAttr>();
2497   }
2498 
2499   // Merge the types.
2500   MergeVarDeclTypes(New, Old);
2501   if (New->isInvalidDecl())
2502     return;
2503 
2504   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2505   if (New->getStorageClass() == SC_Static &&
2506       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2507     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2508     Diag(Old->getLocation(), diag::note_previous_definition);
2509     return New->setInvalidDecl();
2510   }
2511   // C99 6.2.2p4:
2512   //   For an identifier declared with the storage-class specifier
2513   //   extern in a scope in which a prior declaration of that
2514   //   identifier is visible,23) if the prior declaration specifies
2515   //   internal or external linkage, the linkage of the identifier at
2516   //   the later declaration is the same as the linkage specified at
2517   //   the prior declaration. If no prior declaration is visible, or
2518   //   if the prior declaration specifies no linkage, then the
2519   //   identifier has external linkage.
2520   if (New->hasExternalStorage() && Old->hasLinkage())
2521     /* Okay */;
2522   else if (New->getStorageClass() != SC_Static &&
2523            Old->getStorageClass() == SC_Static) {
2524     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2525     Diag(Old->getLocation(), diag::note_previous_definition);
2526     return New->setInvalidDecl();
2527   }
2528 
2529   // Check if extern is followed by non-extern and vice-versa.
2530   if (New->hasExternalStorage() &&
2531       !Old->hasLinkage() && Old->isLocalVarDecl()) {
2532     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2533     Diag(Old->getLocation(), diag::note_previous_definition);
2534     return New->setInvalidDecl();
2535   }
2536   if (Old->hasExternalStorage() &&
2537       !New->hasLinkage() && New->isLocalVarDecl()) {
2538     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2539     Diag(Old->getLocation(), diag::note_previous_definition);
2540     return New->setInvalidDecl();
2541   }
2542 
2543   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2544 
2545   // FIXME: The test for external storage here seems wrong? We still
2546   // need to check for mismatches.
2547   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2548       // Don't complain about out-of-line definitions of static members.
2549       !(Old->getLexicalDeclContext()->isRecord() &&
2550         !New->getLexicalDeclContext()->isRecord())) {
2551     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2552     Diag(Old->getLocation(), diag::note_previous_definition);
2553     return New->setInvalidDecl();
2554   }
2555 
2556   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2557     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2558     Diag(Old->getLocation(), diag::note_previous_definition);
2559   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2560     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2561     Diag(Old->getLocation(), diag::note_previous_definition);
2562   }
2563 
2564   // C++ doesn't have tentative definitions, so go right ahead and check here.
2565   const VarDecl *Def;
2566   if (getLangOpts().CPlusPlus &&
2567       New->isThisDeclarationADefinition() == VarDecl::Definition &&
2568       (Def = Old->getDefinition())) {
2569     Diag(New->getLocation(), diag::err_redefinition)
2570       << New->getDeclName();
2571     Diag(Def->getLocation(), diag::note_previous_definition);
2572     New->setInvalidDecl();
2573     return;
2574   }
2575   // c99 6.2.2 P4.
2576   // For an identifier declared with the storage-class specifier extern in a
2577   // scope in which a prior declaration of that identifier is visible, if
2578   // the prior declaration specifies internal or external linkage, the linkage
2579   // of the identifier at the later declaration is the same as the linkage
2580   // specified at the prior declaration.
2581   // FIXME. revisit this code.
2582   if (New->hasExternalStorage() &&
2583       Old->getLinkage() == InternalLinkage &&
2584       New->getDeclContext() == Old->getDeclContext())
2585     New->setStorageClass(Old->getStorageClass());
2586 
2587   // Keep a chain of previous declarations.
2588   New->setPreviousDeclaration(Old);
2589 
2590   // Inherit access appropriately.
2591   New->setAccess(Old->getAccess());
2592 }
2593 
2594 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2595 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)2596 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2597                                        DeclSpec &DS) {
2598   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2599 }
2600 
2601 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2602 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2603 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams)2604 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2605                                        DeclSpec &DS,
2606                                        MultiTemplateParamsArg TemplateParams) {
2607   Decl *TagD = 0;
2608   TagDecl *Tag = 0;
2609   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2610       DS.getTypeSpecType() == DeclSpec::TST_struct ||
2611       DS.getTypeSpecType() == DeclSpec::TST_interface ||
2612       DS.getTypeSpecType() == DeclSpec::TST_union ||
2613       DS.getTypeSpecType() == DeclSpec::TST_enum) {
2614     TagD = DS.getRepAsDecl();
2615 
2616     if (!TagD) // We probably had an error
2617       return 0;
2618 
2619     // Note that the above type specs guarantee that the
2620     // type rep is a Decl, whereas in many of the others
2621     // it's a Type.
2622     if (isa<TagDecl>(TagD))
2623       Tag = cast<TagDecl>(TagD);
2624     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2625       Tag = CTD->getTemplatedDecl();
2626   }
2627 
2628   if (Tag) {
2629     Tag->setFreeStanding();
2630     if (Tag->isInvalidDecl())
2631       return Tag;
2632   }
2633 
2634   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2635     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2636     // or incomplete types shall not be restrict-qualified."
2637     if (TypeQuals & DeclSpec::TQ_restrict)
2638       Diag(DS.getRestrictSpecLoc(),
2639            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2640            << DS.getSourceRange();
2641   }
2642 
2643   if (DS.isConstexprSpecified()) {
2644     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2645     // and definitions of functions and variables.
2646     if (Tag)
2647       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2648         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2649             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2650             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2651             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2652     else
2653       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2654     // Don't emit warnings after this error.
2655     return TagD;
2656   }
2657 
2658   if (DS.isFriendSpecified()) {
2659     // If we're dealing with a decl but not a TagDecl, assume that
2660     // whatever routines created it handled the friendship aspect.
2661     if (TagD && !Tag)
2662       return 0;
2663     return ActOnFriendTypeDecl(S, DS, TemplateParams);
2664   }
2665 
2666   // Track whether we warned about the fact that there aren't any
2667   // declarators.
2668   bool emittedWarning = false;
2669 
2670   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2671     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2672         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2673       if (getLangOpts().CPlusPlus ||
2674           Record->getDeclContext()->isRecord())
2675         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2676 
2677       Diag(DS.getLocStart(), diag::ext_no_declarators)
2678         << DS.getSourceRange();
2679       emittedWarning = true;
2680     }
2681   }
2682 
2683   // Check for Microsoft C extension: anonymous struct.
2684   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2685       CurContext->isRecord() &&
2686       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2687     // Handle 2 kinds of anonymous struct:
2688     //   struct STRUCT;
2689     // and
2690     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2691     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2692     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2693         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2694          DS.getRepAsType().get()->isStructureType())) {
2695       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2696         << DS.getSourceRange();
2697       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2698     }
2699   }
2700 
2701   if (getLangOpts().CPlusPlus &&
2702       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2703     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2704       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2705           !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2706         Diag(Enum->getLocation(), diag::ext_no_declarators)
2707           << DS.getSourceRange();
2708         emittedWarning = true;
2709       }
2710 
2711   // Skip all the checks below if we have a type error.
2712   if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2713 
2714   if (!DS.isMissingDeclaratorOk()) {
2715     // Warn about typedefs of enums without names, since this is an
2716     // extension in both Microsoft and GNU.
2717     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2718         Tag && isa<EnumDecl>(Tag)) {
2719       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2720         << DS.getSourceRange();
2721       return Tag;
2722     }
2723 
2724     Diag(DS.getLocStart(), diag::ext_no_declarators)
2725       << DS.getSourceRange();
2726     emittedWarning = true;
2727   }
2728 
2729   // We're going to complain about a bunch of spurious specifiers;
2730   // only do this if we're declaring a tag, because otherwise we
2731   // should be getting diag::ext_no_declarators.
2732   if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2733     return TagD;
2734 
2735   // Note that a linkage-specification sets a storage class, but
2736   // 'extern "C" struct foo;' is actually valid and not theoretically
2737   // useless.
2738   if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2739     if (!DS.isExternInLinkageSpec())
2740       Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2741         << DeclSpec::getSpecifierName(scs);
2742 
2743   if (DS.isThreadSpecified())
2744     Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2745   if (DS.getTypeQualifiers()) {
2746     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2747       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2748     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2749       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2750     // Restrict is covered above.
2751   }
2752   if (DS.isInlineSpecified())
2753     Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2754   if (DS.isVirtualSpecified())
2755     Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2756   if (DS.isExplicitSpecified())
2757     Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2758 
2759   if (DS.isModulePrivateSpecified() &&
2760       Tag && Tag->getDeclContext()->isFunctionOrMethod())
2761     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2762       << Tag->getTagKind()
2763       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2764 
2765   // Warn about ignored type attributes, for example:
2766   // __attribute__((aligned)) struct A;
2767   // Attributes should be placed after tag to apply to type declaration.
2768   if (!DS.getAttributes().empty()) {
2769     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2770     if (TypeSpecType == DeclSpec::TST_class ||
2771         TypeSpecType == DeclSpec::TST_struct ||
2772         TypeSpecType == DeclSpec::TST_interface ||
2773         TypeSpecType == DeclSpec::TST_union ||
2774         TypeSpecType == DeclSpec::TST_enum) {
2775       AttributeList* attrs = DS.getAttributes().getList();
2776       while (attrs) {
2777         Diag(attrs->getScopeLoc(),
2778              diag::warn_declspec_attribute_ignored)
2779         << attrs->getName()
2780         << (TypeSpecType == DeclSpec::TST_class ? 0 :
2781             TypeSpecType == DeclSpec::TST_struct ? 1 :
2782             TypeSpecType == DeclSpec::TST_union ? 2 :
2783             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2784         attrs = attrs->getNext();
2785       }
2786     }
2787   }
2788 
2789   ActOnDocumentableDecl(TagD);
2790 
2791   return TagD;
2792 }
2793 
2794 /// We are trying to inject an anonymous member into the given scope;
2795 /// check if there's an existing declaration that can't be overloaded.
2796 ///
2797 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)2798 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2799                                          Scope *S,
2800                                          DeclContext *Owner,
2801                                          DeclarationName Name,
2802                                          SourceLocation NameLoc,
2803                                          unsigned diagnostic) {
2804   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2805                  Sema::ForRedeclaration);
2806   if (!SemaRef.LookupName(R, S)) return false;
2807 
2808   if (R.getAsSingle<TagDecl>())
2809     return false;
2810 
2811   // Pick a representative declaration.
2812   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2813   assert(PrevDecl && "Expected a non-null Decl");
2814 
2815   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2816     return false;
2817 
2818   SemaRef.Diag(NameLoc, diagnostic) << Name;
2819   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2820 
2821   return true;
2822 }
2823 
2824 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
2825 /// anonymous struct or union AnonRecord into the owning context Owner
2826 /// and scope S. This routine will be invoked just after we realize
2827 /// that an unnamed union or struct is actually an anonymous union or
2828 /// struct, e.g.,
2829 ///
2830 /// @code
2831 /// union {
2832 ///   int i;
2833 ///   float f;
2834 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2835 ///    // f into the surrounding scope.x
2836 /// @endcode
2837 ///
2838 /// This routine is recursive, injecting the names of nested anonymous
2839 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVector<NamedDecl *,2> & Chaining,bool MSAnonStruct)2840 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2841                                                 DeclContext *Owner,
2842                                                 RecordDecl *AnonRecord,
2843                                                 AccessSpecifier AS,
2844                               SmallVector<NamedDecl*, 2> &Chaining,
2845                                                       bool MSAnonStruct) {
2846   unsigned diagKind
2847     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2848                             : diag::err_anonymous_struct_member_redecl;
2849 
2850   bool Invalid = false;
2851 
2852   // Look every FieldDecl and IndirectFieldDecl with a name.
2853   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2854                                DEnd = AnonRecord->decls_end();
2855        D != DEnd; ++D) {
2856     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2857         cast<NamedDecl>(*D)->getDeclName()) {
2858       ValueDecl *VD = cast<ValueDecl>(*D);
2859       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2860                                        VD->getLocation(), diagKind)) {
2861         // C++ [class.union]p2:
2862         //   The names of the members of an anonymous union shall be
2863         //   distinct from the names of any other entity in the
2864         //   scope in which the anonymous union is declared.
2865         Invalid = true;
2866       } else {
2867         // C++ [class.union]p2:
2868         //   For the purpose of name lookup, after the anonymous union
2869         //   definition, the members of the anonymous union are
2870         //   considered to have been defined in the scope in which the
2871         //   anonymous union is declared.
2872         unsigned OldChainingSize = Chaining.size();
2873         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2874           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2875                PE = IF->chain_end(); PI != PE; ++PI)
2876             Chaining.push_back(*PI);
2877         else
2878           Chaining.push_back(VD);
2879 
2880         assert(Chaining.size() >= 2);
2881         NamedDecl **NamedChain =
2882           new (SemaRef.Context)NamedDecl*[Chaining.size()];
2883         for (unsigned i = 0; i < Chaining.size(); i++)
2884           NamedChain[i] = Chaining[i];
2885 
2886         IndirectFieldDecl* IndirectField =
2887           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2888                                     VD->getIdentifier(), VD->getType(),
2889                                     NamedChain, Chaining.size());
2890 
2891         IndirectField->setAccess(AS);
2892         IndirectField->setImplicit();
2893         SemaRef.PushOnScopeChains(IndirectField, S);
2894 
2895         // That includes picking up the appropriate access specifier.
2896         if (AS != AS_none) IndirectField->setAccess(AS);
2897 
2898         Chaining.resize(OldChainingSize);
2899       }
2900     }
2901   }
2902 
2903   return Invalid;
2904 }
2905 
2906 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2907 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
2908 /// illegal input values are mapped to SC_None.
2909 static StorageClass
StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec)2910 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2911   switch (StorageClassSpec) {
2912   case DeclSpec::SCS_unspecified:    return SC_None;
2913   case DeclSpec::SCS_extern:         return SC_Extern;
2914   case DeclSpec::SCS_static:         return SC_Static;
2915   case DeclSpec::SCS_auto:           return SC_Auto;
2916   case DeclSpec::SCS_register:       return SC_Register;
2917   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2918     // Illegal SCSs map to None: error reporting is up to the caller.
2919   case DeclSpec::SCS_mutable:        // Fall through.
2920   case DeclSpec::SCS_typedef:        return SC_None;
2921   }
2922   llvm_unreachable("unknown storage class specifier");
2923 }
2924 
2925 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2926 /// a StorageClass. Any error reporting is up to the caller:
2927 /// illegal input values are mapped to SC_None.
2928 static StorageClass
StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec)2929 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2930   switch (StorageClassSpec) {
2931   case DeclSpec::SCS_unspecified:    return SC_None;
2932   case DeclSpec::SCS_extern:         return SC_Extern;
2933   case DeclSpec::SCS_static:         return SC_Static;
2934   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2935     // Illegal SCSs map to None: error reporting is up to the caller.
2936   case DeclSpec::SCS_auto:           // Fall through.
2937   case DeclSpec::SCS_mutable:        // Fall through.
2938   case DeclSpec::SCS_register:       // Fall through.
2939   case DeclSpec::SCS_typedef:        return SC_None;
2940   }
2941   llvm_unreachable("unknown storage class specifier");
2942 }
2943 
2944 /// BuildAnonymousStructOrUnion - Handle the declaration of an
2945 /// anonymous structure or union. Anonymous unions are a C++ feature
2946 /// (C++ [class.union]) and a C11 feature; anonymous structures
2947 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record)2948 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2949                                              AccessSpecifier AS,
2950                                              RecordDecl *Record) {
2951   DeclContext *Owner = Record->getDeclContext();
2952 
2953   // Diagnose whether this anonymous struct/union is an extension.
2954   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2955     Diag(Record->getLocation(), diag::ext_anonymous_union);
2956   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2957     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2958   else if (!Record->isUnion() && !getLangOpts().C11)
2959     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2960 
2961   // C and C++ require different kinds of checks for anonymous
2962   // structs/unions.
2963   bool Invalid = false;
2964   if (getLangOpts().CPlusPlus) {
2965     const char* PrevSpec = 0;
2966     unsigned DiagID;
2967     if (Record->isUnion()) {
2968       // C++ [class.union]p6:
2969       //   Anonymous unions declared in a named namespace or in the
2970       //   global namespace shall be declared static.
2971       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2972           (isa<TranslationUnitDecl>(Owner) ||
2973            (isa<NamespaceDecl>(Owner) &&
2974             cast<NamespaceDecl>(Owner)->getDeclName()))) {
2975         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2976           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2977 
2978         // Recover by adding 'static'.
2979         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2980                                PrevSpec, DiagID);
2981       }
2982       // C++ [class.union]p6:
2983       //   A storage class is not allowed in a declaration of an
2984       //   anonymous union in a class scope.
2985       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2986                isa<RecordDecl>(Owner)) {
2987         Diag(DS.getStorageClassSpecLoc(),
2988              diag::err_anonymous_union_with_storage_spec)
2989           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2990 
2991         // Recover by removing the storage specifier.
2992         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2993                                SourceLocation(),
2994                                PrevSpec, DiagID);
2995       }
2996     }
2997 
2998     // Ignore const/volatile/restrict qualifiers.
2999     if (DS.getTypeQualifiers()) {
3000       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3001         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3002           << Record->isUnion() << 0
3003           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3004       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3005         Diag(DS.getVolatileSpecLoc(),
3006              diag::ext_anonymous_struct_union_qualified)
3007           << Record->isUnion() << 1
3008           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3009       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3010         Diag(DS.getRestrictSpecLoc(),
3011              diag::ext_anonymous_struct_union_qualified)
3012           << Record->isUnion() << 2
3013           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3014 
3015       DS.ClearTypeQualifiers();
3016     }
3017 
3018     // C++ [class.union]p2:
3019     //   The member-specification of an anonymous union shall only
3020     //   define non-static data members. [Note: nested types and
3021     //   functions cannot be declared within an anonymous union. ]
3022     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3023                                  MemEnd = Record->decls_end();
3024          Mem != MemEnd; ++Mem) {
3025       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3026         // C++ [class.union]p3:
3027         //   An anonymous union shall not have private or protected
3028         //   members (clause 11).
3029         assert(FD->getAccess() != AS_none);
3030         if (FD->getAccess() != AS_public) {
3031           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3032             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3033           Invalid = true;
3034         }
3035 
3036         // C++ [class.union]p1
3037         //   An object of a class with a non-trivial constructor, a non-trivial
3038         //   copy constructor, a non-trivial destructor, or a non-trivial copy
3039         //   assignment operator cannot be a member of a union, nor can an
3040         //   array of such objects.
3041         if (CheckNontrivialField(FD))
3042           Invalid = true;
3043       } else if ((*Mem)->isImplicit()) {
3044         // Any implicit members are fine.
3045       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3046         // This is a type that showed up in an
3047         // elaborated-type-specifier inside the anonymous struct or
3048         // union, but which actually declares a type outside of the
3049         // anonymous struct or union. It's okay.
3050       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3051         if (!MemRecord->isAnonymousStructOrUnion() &&
3052             MemRecord->getDeclName()) {
3053           // Visual C++ allows type definition in anonymous struct or union.
3054           if (getLangOpts().MicrosoftExt)
3055             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3056               << (int)Record->isUnion();
3057           else {
3058             // This is a nested type declaration.
3059             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3060               << (int)Record->isUnion();
3061             Invalid = true;
3062           }
3063         }
3064       } else if (isa<AccessSpecDecl>(*Mem)) {
3065         // Any access specifier is fine.
3066       } else {
3067         // We have something that isn't a non-static data
3068         // member. Complain about it.
3069         unsigned DK = diag::err_anonymous_record_bad_member;
3070         if (isa<TypeDecl>(*Mem))
3071           DK = diag::err_anonymous_record_with_type;
3072         else if (isa<FunctionDecl>(*Mem))
3073           DK = diag::err_anonymous_record_with_function;
3074         else if (isa<VarDecl>(*Mem))
3075           DK = diag::err_anonymous_record_with_static;
3076 
3077         // Visual C++ allows type definition in anonymous struct or union.
3078         if (getLangOpts().MicrosoftExt &&
3079             DK == diag::err_anonymous_record_with_type)
3080           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3081             << (int)Record->isUnion();
3082         else {
3083           Diag((*Mem)->getLocation(), DK)
3084               << (int)Record->isUnion();
3085           Invalid = true;
3086         }
3087       }
3088     }
3089   }
3090 
3091   if (!Record->isUnion() && !Owner->isRecord()) {
3092     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3093       << (int)getLangOpts().CPlusPlus;
3094     Invalid = true;
3095   }
3096 
3097   // Mock up a declarator.
3098   Declarator Dc(DS, Declarator::MemberContext);
3099   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3100   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3101 
3102   // Create a declaration for this anonymous struct/union.
3103   NamedDecl *Anon = 0;
3104   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3105     Anon = FieldDecl::Create(Context, OwningClass,
3106                              DS.getLocStart(),
3107                              Record->getLocation(),
3108                              /*IdentifierInfo=*/0,
3109                              Context.getTypeDeclType(Record),
3110                              TInfo,
3111                              /*BitWidth=*/0, /*Mutable=*/false,
3112                              /*InitStyle=*/ICIS_NoInit);
3113     Anon->setAccess(AS);
3114     if (getLangOpts().CPlusPlus)
3115       FieldCollector->Add(cast<FieldDecl>(Anon));
3116   } else {
3117     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3118     assert(SCSpec != DeclSpec::SCS_typedef &&
3119            "Parser allowed 'typedef' as storage class VarDecl.");
3120     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3121     if (SCSpec == DeclSpec::SCS_mutable) {
3122       // mutable can only appear on non-static class members, so it's always
3123       // an error here
3124       Diag(Record->getLocation(), diag::err_mutable_nonmember);
3125       Invalid = true;
3126       SC = SC_None;
3127     }
3128     SCSpec = DS.getStorageClassSpecAsWritten();
3129     VarDecl::StorageClass SCAsWritten
3130       = StorageClassSpecToVarDeclStorageClass(SCSpec);
3131 
3132     Anon = VarDecl::Create(Context, Owner,
3133                            DS.getLocStart(),
3134                            Record->getLocation(), /*IdentifierInfo=*/0,
3135                            Context.getTypeDeclType(Record),
3136                            TInfo, SC, SCAsWritten);
3137 
3138     // Default-initialize the implicit variable. This initialization will be
3139     // trivial in almost all cases, except if a union member has an in-class
3140     // initializer:
3141     //   union { int n = 0; };
3142     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3143   }
3144   Anon->setImplicit();
3145 
3146   // Add the anonymous struct/union object to the current
3147   // context. We'll be referencing this object when we refer to one of
3148   // its members.
3149   Owner->addDecl(Anon);
3150 
3151   // Inject the members of the anonymous struct/union into the owning
3152   // context and into the identifier resolver chain for name lookup
3153   // purposes.
3154   SmallVector<NamedDecl*, 2> Chain;
3155   Chain.push_back(Anon);
3156 
3157   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3158                                           Chain, false))
3159     Invalid = true;
3160 
3161   // Mark this as an anonymous struct/union type. Note that we do not
3162   // do this until after we have already checked and injected the
3163   // members of this anonymous struct/union type, because otherwise
3164   // the members could be injected twice: once by DeclContext when it
3165   // builds its lookup table, and once by
3166   // InjectAnonymousStructOrUnionMembers.
3167   Record->setAnonymousStructOrUnion(true);
3168 
3169   if (Invalid)
3170     Anon->setInvalidDecl();
3171 
3172   return Anon;
3173 }
3174 
3175 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3176 /// Microsoft C anonymous structure.
3177 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3178 /// Example:
3179 ///
3180 /// struct A { int a; };
3181 /// struct B { struct A; int b; };
3182 ///
3183 /// void foo() {
3184 ///   B var;
3185 ///   var.a = 3;
3186 /// }
3187 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)3188 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3189                                            RecordDecl *Record) {
3190 
3191   // If there is no Record, get the record via the typedef.
3192   if (!Record)
3193     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3194 
3195   // Mock up a declarator.
3196   Declarator Dc(DS, Declarator::TypeNameContext);
3197   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3198   assert(TInfo && "couldn't build declarator info for anonymous struct");
3199 
3200   // Create a declaration for this anonymous struct.
3201   NamedDecl* Anon = FieldDecl::Create(Context,
3202                              cast<RecordDecl>(CurContext),
3203                              DS.getLocStart(),
3204                              DS.getLocStart(),
3205                              /*IdentifierInfo=*/0,
3206                              Context.getTypeDeclType(Record),
3207                              TInfo,
3208                              /*BitWidth=*/0, /*Mutable=*/false,
3209                              /*InitStyle=*/ICIS_NoInit);
3210   Anon->setImplicit();
3211 
3212   // Add the anonymous struct object to the current context.
3213   CurContext->addDecl(Anon);
3214 
3215   // Inject the members of the anonymous struct into the current
3216   // context and into the identifier resolver chain for name lookup
3217   // purposes.
3218   SmallVector<NamedDecl*, 2> Chain;
3219   Chain.push_back(Anon);
3220 
3221   RecordDecl *RecordDef = Record->getDefinition();
3222   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3223                                                         RecordDef, AS_none,
3224                                                         Chain, true))
3225     Anon->setInvalidDecl();
3226 
3227   return Anon;
3228 }
3229 
3230 /// GetNameForDeclarator - Determine the full declaration name for the
3231 /// given Declarator.
GetNameForDeclarator(Declarator & D)3232 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3233   return GetNameFromUnqualifiedId(D.getName());
3234 }
3235 
3236 /// \brief Retrieves the declaration name from a parsed unqualified-id.
3237 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)3238 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3239   DeclarationNameInfo NameInfo;
3240   NameInfo.setLoc(Name.StartLocation);
3241 
3242   switch (Name.getKind()) {
3243 
3244   case UnqualifiedId::IK_ImplicitSelfParam:
3245   case UnqualifiedId::IK_Identifier:
3246     NameInfo.setName(Name.Identifier);
3247     NameInfo.setLoc(Name.StartLocation);
3248     return NameInfo;
3249 
3250   case UnqualifiedId::IK_OperatorFunctionId:
3251     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3252                                            Name.OperatorFunctionId.Operator));
3253     NameInfo.setLoc(Name.StartLocation);
3254     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3255       = Name.OperatorFunctionId.SymbolLocations[0];
3256     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3257       = Name.EndLocation.getRawEncoding();
3258     return NameInfo;
3259 
3260   case UnqualifiedId::IK_LiteralOperatorId:
3261     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3262                                                            Name.Identifier));
3263     NameInfo.setLoc(Name.StartLocation);
3264     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3265     return NameInfo;
3266 
3267   case UnqualifiedId::IK_ConversionFunctionId: {
3268     TypeSourceInfo *TInfo;
3269     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3270     if (Ty.isNull())
3271       return DeclarationNameInfo();
3272     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3273                                                Context.getCanonicalType(Ty)));
3274     NameInfo.setLoc(Name.StartLocation);
3275     NameInfo.setNamedTypeInfo(TInfo);
3276     return NameInfo;
3277   }
3278 
3279   case UnqualifiedId::IK_ConstructorName: {
3280     TypeSourceInfo *TInfo;
3281     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3282     if (Ty.isNull())
3283       return DeclarationNameInfo();
3284     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3285                                               Context.getCanonicalType(Ty)));
3286     NameInfo.setLoc(Name.StartLocation);
3287     NameInfo.setNamedTypeInfo(TInfo);
3288     return NameInfo;
3289   }
3290 
3291   case UnqualifiedId::IK_ConstructorTemplateId: {
3292     // In well-formed code, we can only have a constructor
3293     // template-id that refers to the current context, so go there
3294     // to find the actual type being constructed.
3295     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3296     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3297       return DeclarationNameInfo();
3298 
3299     // Determine the type of the class being constructed.
3300     QualType CurClassType = Context.getTypeDeclType(CurClass);
3301 
3302     // FIXME: Check two things: that the template-id names the same type as
3303     // CurClassType, and that the template-id does not occur when the name
3304     // was qualified.
3305 
3306     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3307                                     Context.getCanonicalType(CurClassType)));
3308     NameInfo.setLoc(Name.StartLocation);
3309     // FIXME: should we retrieve TypeSourceInfo?
3310     NameInfo.setNamedTypeInfo(0);
3311     return NameInfo;
3312   }
3313 
3314   case UnqualifiedId::IK_DestructorName: {
3315     TypeSourceInfo *TInfo;
3316     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3317     if (Ty.isNull())
3318       return DeclarationNameInfo();
3319     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3320                                               Context.getCanonicalType(Ty)));
3321     NameInfo.setLoc(Name.StartLocation);
3322     NameInfo.setNamedTypeInfo(TInfo);
3323     return NameInfo;
3324   }
3325 
3326   case UnqualifiedId::IK_TemplateId: {
3327     TemplateName TName = Name.TemplateId->Template.get();
3328     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3329     return Context.getNameForTemplate(TName, TNameLoc);
3330   }
3331 
3332   } // switch (Name.getKind())
3333 
3334   llvm_unreachable("Unknown name kind");
3335 }
3336 
getCoreType(QualType Ty)3337 static QualType getCoreType(QualType Ty) {
3338   do {
3339     if (Ty->isPointerType() || Ty->isReferenceType())
3340       Ty = Ty->getPointeeType();
3341     else if (Ty->isArrayType())
3342       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3343     else
3344       return Ty.withoutLocalFastQualifiers();
3345   } while (true);
3346 }
3347 
3348 /// hasSimilarParameters - Determine whether the C++ functions Declaration
3349 /// and Definition have "nearly" matching parameters. This heuristic is
3350 /// used to improve diagnostics in the case where an out-of-line function
3351 /// definition doesn't match any declaration within the class or namespace.
3352 /// Also sets Params to the list of indices to the parameters that differ
3353 /// between the declaration and the definition. If hasSimilarParameters
3354 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,llvm::SmallVectorImpl<unsigned> & Params)3355 static bool hasSimilarParameters(ASTContext &Context,
3356                                      FunctionDecl *Declaration,
3357                                      FunctionDecl *Definition,
3358                                      llvm::SmallVectorImpl<unsigned> &Params) {
3359   Params.clear();
3360   if (Declaration->param_size() != Definition->param_size())
3361     return false;
3362   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3363     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3364     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3365 
3366     // The parameter types are identical
3367     if (Context.hasSameType(DefParamTy, DeclParamTy))
3368       continue;
3369 
3370     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3371     QualType DefParamBaseTy = getCoreType(DefParamTy);
3372     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3373     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3374 
3375     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3376         (DeclTyName && DeclTyName == DefTyName))
3377       Params.push_back(Idx);
3378     else  // The two parameters aren't even close
3379       return false;
3380   }
3381 
3382   return true;
3383 }
3384 
3385 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3386 /// declarator needs to be rebuilt in the current instantiation.
3387 /// Any bits of declarator which appear before the name are valid for
3388 /// consideration here.  That's specifically the type in the decl spec
3389 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)3390 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3391                                                     DeclarationName Name) {
3392   // The types we specifically need to rebuild are:
3393   //   - typenames, typeofs, and decltypes
3394   //   - types which will become injected class names
3395   // Of course, we also need to rebuild any type referencing such a
3396   // type.  It's safest to just say "dependent", but we call out a
3397   // few cases here.
3398 
3399   DeclSpec &DS = D.getMutableDeclSpec();
3400   switch (DS.getTypeSpecType()) {
3401   case DeclSpec::TST_typename:
3402   case DeclSpec::TST_typeofType:
3403   case DeclSpec::TST_decltype:
3404   case DeclSpec::TST_underlyingType:
3405   case DeclSpec::TST_atomic: {
3406     // Grab the type from the parser.
3407     TypeSourceInfo *TSI = 0;
3408     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3409     if (T.isNull() || !T->isDependentType()) break;
3410 
3411     // Make sure there's a type source info.  This isn't really much
3412     // of a waste; most dependent types should have type source info
3413     // attached already.
3414     if (!TSI)
3415       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3416 
3417     // Rebuild the type in the current instantiation.
3418     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3419     if (!TSI) return true;
3420 
3421     // Store the new type back in the decl spec.
3422     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3423     DS.UpdateTypeRep(LocType);
3424     break;
3425   }
3426 
3427   case DeclSpec::TST_typeofExpr: {
3428     Expr *E = DS.getRepAsExpr();
3429     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3430     if (Result.isInvalid()) return true;
3431     DS.UpdateExprRep(Result.get());
3432     break;
3433   }
3434 
3435   default:
3436     // Nothing to do for these decl specs.
3437     break;
3438   }
3439 
3440   // It doesn't matter what order we do this in.
3441   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3442     DeclaratorChunk &Chunk = D.getTypeObject(I);
3443 
3444     // The only type information in the declarator which can come
3445     // before the declaration name is the base type of a member
3446     // pointer.
3447     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3448       continue;
3449 
3450     // Rebuild the scope specifier in-place.
3451     CXXScopeSpec &SS = Chunk.Mem.Scope();
3452     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3453       return true;
3454   }
3455 
3456   return false;
3457 }
3458 
ActOnDeclarator(Scope * S,Declarator & D)3459 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3460   D.setFunctionDefinitionKind(FDK_Declaration);
3461   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3462 
3463   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3464       Dcl && Dcl->getDeclContext()->isFileContext())
3465     Dcl->setTopLevelDeclInObjCContainer();
3466 
3467   return Dcl;
3468 }
3469 
3470 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3471 ///   If T is the name of a class, then each of the following shall have a
3472 ///   name different from T:
3473 ///     - every static data member of class T;
3474 ///     - every member function of class T
3475 ///     - every member of class T that is itself a type;
3476 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)3477 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3478                                    DeclarationNameInfo NameInfo) {
3479   DeclarationName Name = NameInfo.getName();
3480 
3481   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3482     if (Record->getIdentifier() && Record->getDeclName() == Name) {
3483       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3484       return true;
3485     }
3486 
3487   return false;
3488 }
3489 
3490 /// \brief Diagnose a declaration whose declarator-id has the given
3491 /// nested-name-specifier.
3492 ///
3493 /// \param SS The nested-name-specifier of the declarator-id.
3494 ///
3495 /// \param DC The declaration context to which the nested-name-specifier
3496 /// resolves.
3497 ///
3498 /// \param Name The name of the entity being declared.
3499 ///
3500 /// \param Loc The location of the name of the entity being declared.
3501 ///
3502 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)3503 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3504                                         DeclarationName Name,
3505                                       SourceLocation Loc) {
3506   DeclContext *Cur = CurContext;
3507   while (isa<LinkageSpecDecl>(Cur))
3508     Cur = Cur->getParent();
3509 
3510   // C++ [dcl.meaning]p1:
3511   //   A declarator-id shall not be qualified except for the definition
3512   //   of a member function (9.3) or static data member (9.4) outside of
3513   //   its class, the definition or explicit instantiation of a function
3514   //   or variable member of a namespace outside of its namespace, or the
3515   //   definition of an explicit specialization outside of its namespace,
3516   //   or the declaration of a friend function that is a member of
3517   //   another class or namespace (11.3). [...]
3518 
3519   // The user provided a superfluous scope specifier that refers back to the
3520   // class or namespaces in which the entity is already declared.
3521   //
3522   // class X {
3523   //   void X::f();
3524   // };
3525   if (Cur->Equals(DC)) {
3526     Diag(Loc, diag::warn_member_extra_qualification)
3527       << Name << FixItHint::CreateRemoval(SS.getRange());
3528     SS.clear();
3529     return false;
3530   }
3531 
3532   // Check whether the qualifying scope encloses the scope of the original
3533   // declaration.
3534   if (!Cur->Encloses(DC)) {
3535     if (Cur->isRecord())
3536       Diag(Loc, diag::err_member_qualification)
3537         << Name << SS.getRange();
3538     else if (isa<TranslationUnitDecl>(DC))
3539       Diag(Loc, diag::err_invalid_declarator_global_scope)
3540         << Name << SS.getRange();
3541     else if (isa<FunctionDecl>(Cur))
3542       Diag(Loc, diag::err_invalid_declarator_in_function)
3543         << Name << SS.getRange();
3544     else
3545       Diag(Loc, diag::err_invalid_declarator_scope)
3546       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3547 
3548     return true;
3549   }
3550 
3551   if (Cur->isRecord()) {
3552     // Cannot qualify members within a class.
3553     Diag(Loc, diag::err_member_qualification)
3554       << Name << SS.getRange();
3555     SS.clear();
3556 
3557     // C++ constructors and destructors with incorrect scopes can break
3558     // our AST invariants by having the wrong underlying types. If
3559     // that's the case, then drop this declaration entirely.
3560     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3561          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3562         !Context.hasSameType(Name.getCXXNameType(),
3563                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3564       return true;
3565 
3566     return false;
3567   }
3568 
3569   // C++11 [dcl.meaning]p1:
3570   //   [...] "The nested-name-specifier of the qualified declarator-id shall
3571   //   not begin with a decltype-specifer"
3572   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3573   while (SpecLoc.getPrefix())
3574     SpecLoc = SpecLoc.getPrefix();
3575   if (dyn_cast_or_null<DecltypeType>(
3576         SpecLoc.getNestedNameSpecifier()->getAsType()))
3577     Diag(Loc, diag::err_decltype_in_declarator)
3578       << SpecLoc.getTypeLoc().getSourceRange();
3579 
3580   return false;
3581 }
3582 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)3583 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3584                              MultiTemplateParamsArg TemplateParamLists) {
3585   // TODO: consider using NameInfo for diagnostic.
3586   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3587   DeclarationName Name = NameInfo.getName();
3588 
3589   // All of these full declarators require an identifier.  If it doesn't have
3590   // one, the ParsedFreeStandingDeclSpec action should be used.
3591   if (!Name) {
3592     if (!D.isInvalidType())  // Reject this if we think it is valid.
3593       Diag(D.getDeclSpec().getLocStart(),
3594            diag::err_declarator_need_ident)
3595         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3596     return 0;
3597   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3598     return 0;
3599 
3600   // The scope passed in may not be a decl scope.  Zip up the scope tree until
3601   // we find one that is.
3602   while ((S->getFlags() & Scope::DeclScope) == 0 ||
3603          (S->getFlags() & Scope::TemplateParamScope) != 0)
3604     S = S->getParent();
3605 
3606   DeclContext *DC = CurContext;
3607   if (D.getCXXScopeSpec().isInvalid())
3608     D.setInvalidType();
3609   else if (D.getCXXScopeSpec().isSet()) {
3610     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3611                                         UPPC_DeclarationQualifier))
3612       return 0;
3613 
3614     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3615     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3616     if (!DC) {
3617       // If we could not compute the declaration context, it's because the
3618       // declaration context is dependent but does not refer to a class,
3619       // class template, or class template partial specialization. Complain
3620       // and return early, to avoid the coming semantic disaster.
3621       Diag(D.getIdentifierLoc(),
3622            diag::err_template_qualified_declarator_no_match)
3623         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3624         << D.getCXXScopeSpec().getRange();
3625       return 0;
3626     }
3627     bool IsDependentContext = DC->isDependentContext();
3628 
3629     if (!IsDependentContext &&
3630         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3631       return 0;
3632 
3633     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3634       Diag(D.getIdentifierLoc(),
3635            diag::err_member_def_undefined_record)
3636         << Name << DC << D.getCXXScopeSpec().getRange();
3637       D.setInvalidType();
3638     } else if (!D.getDeclSpec().isFriendSpecified()) {
3639       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3640                                       Name, D.getIdentifierLoc())) {
3641         if (DC->isRecord())
3642           return 0;
3643 
3644         D.setInvalidType();
3645       }
3646     }
3647 
3648     // Check whether we need to rebuild the type of the given
3649     // declaration in the current instantiation.
3650     if (EnteringContext && IsDependentContext &&
3651         TemplateParamLists.size() != 0) {
3652       ContextRAII SavedContext(*this, DC);
3653       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3654         D.setInvalidType();
3655     }
3656   }
3657 
3658   if (DiagnoseClassNameShadow(DC, NameInfo))
3659     // If this is a typedef, we'll end up spewing multiple diagnostics.
3660     // Just return early; it's safer.
3661     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3662       return 0;
3663 
3664   NamedDecl *New;
3665 
3666   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3667   QualType R = TInfo->getType();
3668 
3669   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3670                                       UPPC_DeclarationType))
3671     D.setInvalidType();
3672 
3673   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3674                         ForRedeclaration);
3675 
3676   // See if this is a redefinition of a variable in the same scope.
3677   if (!D.getCXXScopeSpec().isSet()) {
3678     bool IsLinkageLookup = false;
3679 
3680     // If the declaration we're planning to build will be a function
3681     // or object with linkage, then look for another declaration with
3682     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3683     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3684       /* Do nothing*/;
3685     else if (R->isFunctionType()) {
3686       if (CurContext->isFunctionOrMethod() ||
3687           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3688         IsLinkageLookup = true;
3689     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3690       IsLinkageLookup = true;
3691     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3692              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3693       IsLinkageLookup = true;
3694 
3695     if (IsLinkageLookup)
3696       Previous.clear(LookupRedeclarationWithLinkage);
3697 
3698     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3699   } else { // Something like "int foo::x;"
3700     LookupQualifiedName(Previous, DC);
3701 
3702     // C++ [dcl.meaning]p1:
3703     //   When the declarator-id is qualified, the declaration shall refer to a
3704     //  previously declared member of the class or namespace to which the
3705     //  qualifier refers (or, in the case of a namespace, of an element of the
3706     //  inline namespace set of that namespace (7.3.1)) or to a specialization
3707     //  thereof; [...]
3708     //
3709     // Note that we already checked the context above, and that we do not have
3710     // enough information to make sure that Previous contains the declaration
3711     // we want to match. For example, given:
3712     //
3713     //   class X {
3714     //     void f();
3715     //     void f(float);
3716     //   };
3717     //
3718     //   void X::f(int) { } // ill-formed
3719     //
3720     // In this case, Previous will point to the overload set
3721     // containing the two f's declared in X, but neither of them
3722     // matches.
3723 
3724     // C++ [dcl.meaning]p1:
3725     //   [...] the member shall not merely have been introduced by a
3726     //   using-declaration in the scope of the class or namespace nominated by
3727     //   the nested-name-specifier of the declarator-id.
3728     RemoveUsingDecls(Previous);
3729   }
3730 
3731   if (Previous.isSingleResult() &&
3732       Previous.getFoundDecl()->isTemplateParameter()) {
3733     // Maybe we will complain about the shadowed template parameter.
3734     if (!D.isInvalidType())
3735       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3736                                       Previous.getFoundDecl());
3737 
3738     // Just pretend that we didn't see the previous declaration.
3739     Previous.clear();
3740   }
3741 
3742   // In C++, the previous declaration we find might be a tag type
3743   // (class or enum). In this case, the new declaration will hide the
3744   // tag type. Note that this does does not apply if we're declaring a
3745   // typedef (C++ [dcl.typedef]p4).
3746   if (Previous.isSingleTagDecl() &&
3747       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3748     Previous.clear();
3749 
3750   bool AddToScope = true;
3751   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3752     if (TemplateParamLists.size()) {
3753       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3754       return 0;
3755     }
3756 
3757     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3758   } else if (R->isFunctionType()) {
3759     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3760                                   TemplateParamLists,
3761                                   AddToScope);
3762   } else {
3763     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3764                                   TemplateParamLists);
3765   }
3766 
3767   if (New == 0)
3768     return 0;
3769 
3770   // If this has an identifier and is not an invalid redeclaration or
3771   // function template specialization, add it to the scope stack.
3772   if (New->getDeclName() && AddToScope &&
3773        !(D.isRedeclaration() && New->isInvalidDecl()))
3774     PushOnScopeChains(New, S);
3775 
3776   return New;
3777 }
3778 
3779 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3780 /// types into constant array types in certain situations which would otherwise
3781 /// be errors (for GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)3782 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3783                                                     ASTContext &Context,
3784                                                     bool &SizeIsNegative,
3785                                                     llvm::APSInt &Oversized) {
3786   // This method tries to turn a variable array into a constant
3787   // array even when the size isn't an ICE.  This is necessary
3788   // for compatibility with code that depends on gcc's buggy
3789   // constant expression folding, like struct {char x[(int)(char*)2];}
3790   SizeIsNegative = false;
3791   Oversized = 0;
3792 
3793   if (T->isDependentType())
3794     return QualType();
3795 
3796   QualifierCollector Qs;
3797   const Type *Ty = Qs.strip(T);
3798 
3799   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3800     QualType Pointee = PTy->getPointeeType();
3801     QualType FixedType =
3802         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3803                                             Oversized);
3804     if (FixedType.isNull()) return FixedType;
3805     FixedType = Context.getPointerType(FixedType);
3806     return Qs.apply(Context, FixedType);
3807   }
3808   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3809     QualType Inner = PTy->getInnerType();
3810     QualType FixedType =
3811         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3812                                             Oversized);
3813     if (FixedType.isNull()) return FixedType;
3814     FixedType = Context.getParenType(FixedType);
3815     return Qs.apply(Context, FixedType);
3816   }
3817 
3818   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3819   if (!VLATy)
3820     return QualType();
3821   // FIXME: We should probably handle this case
3822   if (VLATy->getElementType()->isVariablyModifiedType())
3823     return QualType();
3824 
3825   llvm::APSInt Res;
3826   if (!VLATy->getSizeExpr() ||
3827       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3828     return QualType();
3829 
3830   // Check whether the array size is negative.
3831   if (Res.isSigned() && Res.isNegative()) {
3832     SizeIsNegative = true;
3833     return QualType();
3834   }
3835 
3836   // Check whether the array is too large to be addressed.
3837   unsigned ActiveSizeBits
3838     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3839                                               Res);
3840   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3841     Oversized = Res;
3842     return QualType();
3843   }
3844 
3845   return Context.getConstantArrayType(VLATy->getElementType(),
3846                                       Res, ArrayType::Normal, 0);
3847 }
3848 
3849 /// \brief Register the given locally-scoped external C declaration so
3850 /// that it can be found later for redeclarations
3851 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,const LookupResult & Previous,Scope * S)3852 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3853                                        const LookupResult &Previous,
3854                                        Scope *S) {
3855   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3856          "Decl is not a locally-scoped decl!");
3857   // Note that we have a locally-scoped external with this name.
3858   LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3859 
3860   if (!Previous.isSingleResult())
3861     return;
3862 
3863   NamedDecl *PrevDecl = Previous.getFoundDecl();
3864 
3865   // If there was a previous declaration of this variable, it may be
3866   // in our identifier chain. Update the identifier chain with the new
3867   // declaration.
3868   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3869     // The previous declaration was found on the identifer resolver
3870     // chain, so remove it from its scope.
3871 
3872     if (S->isDeclScope(PrevDecl)) {
3873       // Special case for redeclarations in the SAME scope.
3874       // Because this declaration is going to be added to the identifier chain
3875       // later, we should temporarily take it OFF the chain.
3876       IdResolver.RemoveDecl(ND);
3877 
3878     } else {
3879       // Find the scope for the original declaration.
3880       while (S && !S->isDeclScope(PrevDecl))
3881         S = S->getParent();
3882     }
3883 
3884     if (S)
3885       S->RemoveDecl(PrevDecl);
3886   }
3887 }
3888 
3889 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
findLocallyScopedExternalDecl(DeclarationName Name)3890 Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3891   if (ExternalSource) {
3892     // Load locally-scoped external decls from the external source.
3893     SmallVector<NamedDecl *, 4> Decls;
3894     ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3895     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3896       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3897         = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3898       if (Pos == LocallyScopedExternalDecls.end())
3899         LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3900     }
3901   }
3902 
3903   return LocallyScopedExternalDecls.find(Name);
3904 }
3905 
3906 /// \brief Diagnose function specifiers on a declaration of an identifier that
3907 /// does not identify a function.
DiagnoseFunctionSpecifiers(Declarator & D)3908 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3909   // FIXME: We should probably indicate the identifier in question to avoid
3910   // confusion for constructs like "inline int a(), b;"
3911   if (D.getDeclSpec().isInlineSpecified())
3912     Diag(D.getDeclSpec().getInlineSpecLoc(),
3913          diag::err_inline_non_function);
3914 
3915   if (D.getDeclSpec().isVirtualSpecified())
3916     Diag(D.getDeclSpec().getVirtualSpecLoc(),
3917          diag::err_virtual_non_function);
3918 
3919   if (D.getDeclSpec().isExplicitSpecified())
3920     Diag(D.getDeclSpec().getExplicitSpecLoc(),
3921          diag::err_explicit_non_function);
3922 }
3923 
3924 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)3925 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3926                              TypeSourceInfo *TInfo, LookupResult &Previous) {
3927   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3928   if (D.getCXXScopeSpec().isSet()) {
3929     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3930       << D.getCXXScopeSpec().getRange();
3931     D.setInvalidType();
3932     // Pretend we didn't see the scope specifier.
3933     DC = CurContext;
3934     Previous.clear();
3935   }
3936 
3937   if (getLangOpts().CPlusPlus) {
3938     // Check that there are no default arguments (C++ only).
3939     CheckExtraCXXDefaultArguments(D);
3940   }
3941 
3942   DiagnoseFunctionSpecifiers(D);
3943 
3944   if (D.getDeclSpec().isThreadSpecified())
3945     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3946   if (D.getDeclSpec().isConstexprSpecified())
3947     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3948       << 1;
3949 
3950   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3951     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3952       << D.getName().getSourceRange();
3953     return 0;
3954   }
3955 
3956   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3957   if (!NewTD) return 0;
3958 
3959   // Handle attributes prior to checking for duplicates in MergeVarDecl
3960   ProcessDeclAttributes(S, NewTD, D);
3961 
3962   CheckTypedefForVariablyModifiedType(S, NewTD);
3963 
3964   bool Redeclaration = D.isRedeclaration();
3965   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3966   D.setRedeclaration(Redeclaration);
3967   return ND;
3968 }
3969 
3970 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)3971 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3972   // C99 6.7.7p2: If a typedef name specifies a variably modified type
3973   // then it shall have block scope.
3974   // Note that variably modified types must be fixed before merging the decl so
3975   // that redeclarations will match.
3976   QualType T = NewTD->getUnderlyingType();
3977   if (T->isVariablyModifiedType()) {
3978     getCurFunction()->setHasBranchProtectedScope();
3979 
3980     if (S->getFnParent() == 0) {
3981       bool SizeIsNegative;
3982       llvm::APSInt Oversized;
3983       QualType FixedTy =
3984           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3985                                               Oversized);
3986       if (!FixedTy.isNull()) {
3987         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3988         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3989       } else {
3990         if (SizeIsNegative)
3991           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3992         else if (T->isVariableArrayType())
3993           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3994         else if (Oversized.getBoolValue())
3995           Diag(NewTD->getLocation(), diag::err_array_too_large)
3996             << Oversized.toString(10);
3997         else
3998           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3999         NewTD->setInvalidDecl();
4000       }
4001     }
4002   }
4003 }
4004 
4005 
4006 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4007 /// declares a typedef-name, either using the 'typedef' type specifier or via
4008 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4009 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)4010 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4011                            LookupResult &Previous, bool &Redeclaration) {
4012   // Merge the decl with the existing one if appropriate. If the decl is
4013   // in an outer scope, it isn't the same thing.
4014   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4015                        /*ExplicitInstantiationOrSpecialization=*/false);
4016   if (!Previous.empty()) {
4017     Redeclaration = true;
4018     MergeTypedefNameDecl(NewTD, Previous);
4019   }
4020 
4021   // If this is the C FILE type, notify the AST context.
4022   if (IdentifierInfo *II = NewTD->getIdentifier())
4023     if (!NewTD->isInvalidDecl() &&
4024         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4025       if (II->isStr("FILE"))
4026         Context.setFILEDecl(NewTD);
4027       else if (II->isStr("jmp_buf"))
4028         Context.setjmp_bufDecl(NewTD);
4029       else if (II->isStr("sigjmp_buf"))
4030         Context.setsigjmp_bufDecl(NewTD);
4031       else if (II->isStr("ucontext_t"))
4032         Context.setucontext_tDecl(NewTD);
4033     }
4034 
4035   return NewTD;
4036 }
4037 
4038 /// \brief Determines whether the given declaration is an out-of-scope
4039 /// previous declaration.
4040 ///
4041 /// This routine should be invoked when name lookup has found a
4042 /// previous declaration (PrevDecl) that is not in the scope where a
4043 /// new declaration by the same name is being introduced. If the new
4044 /// declaration occurs in a local scope, previous declarations with
4045 /// linkage may still be considered previous declarations (C99
4046 /// 6.2.2p4-5, C++ [basic.link]p6).
4047 ///
4048 /// \param PrevDecl the previous declaration found by name
4049 /// lookup
4050 ///
4051 /// \param DC the context in which the new declaration is being
4052 /// declared.
4053 ///
4054 /// \returns true if PrevDecl is an out-of-scope previous declaration
4055 /// for a new delcaration with the same name.
4056 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)4057 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4058                                 ASTContext &Context) {
4059   if (!PrevDecl)
4060     return false;
4061 
4062   if (!PrevDecl->hasLinkage())
4063     return false;
4064 
4065   if (Context.getLangOpts().CPlusPlus) {
4066     // C++ [basic.link]p6:
4067     //   If there is a visible declaration of an entity with linkage
4068     //   having the same name and type, ignoring entities declared
4069     //   outside the innermost enclosing namespace scope, the block
4070     //   scope declaration declares that same entity and receives the
4071     //   linkage of the previous declaration.
4072     DeclContext *OuterContext = DC->getRedeclContext();
4073     if (!OuterContext->isFunctionOrMethod())
4074       // This rule only applies to block-scope declarations.
4075       return false;
4076 
4077     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4078     if (PrevOuterContext->isRecord())
4079       // We found a member function: ignore it.
4080       return false;
4081 
4082     // Find the innermost enclosing namespace for the new and
4083     // previous declarations.
4084     OuterContext = OuterContext->getEnclosingNamespaceContext();
4085     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4086 
4087     // The previous declaration is in a different namespace, so it
4088     // isn't the same function.
4089     if (!OuterContext->Equals(PrevOuterContext))
4090       return false;
4091   }
4092 
4093   return true;
4094 }
4095 
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)4096 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4097   CXXScopeSpec &SS = D.getCXXScopeSpec();
4098   if (!SS.isSet()) return;
4099   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4100 }
4101 
inferObjCARCLifetime(ValueDecl * decl)4102 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4103   QualType type = decl->getType();
4104   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4105   if (lifetime == Qualifiers::OCL_Autoreleasing) {
4106     // Various kinds of declaration aren't allowed to be __autoreleasing.
4107     unsigned kind = -1U;
4108     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4109       if (var->hasAttr<BlocksAttr>())
4110         kind = 0; // __block
4111       else if (!var->hasLocalStorage())
4112         kind = 1; // global
4113     } else if (isa<ObjCIvarDecl>(decl)) {
4114       kind = 3; // ivar
4115     } else if (isa<FieldDecl>(decl)) {
4116       kind = 2; // field
4117     }
4118 
4119     if (kind != -1U) {
4120       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4121         << kind;
4122     }
4123   } else if (lifetime == Qualifiers::OCL_None) {
4124     // Try to infer lifetime.
4125     if (!type->isObjCLifetimeType())
4126       return false;
4127 
4128     lifetime = type->getObjCARCImplicitLifetime();
4129     type = Context.getLifetimeQualifiedType(type, lifetime);
4130     decl->setType(type);
4131   }
4132 
4133   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4134     // Thread-local variables cannot have lifetime.
4135     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4136         var->isThreadSpecified()) {
4137       Diag(var->getLocation(), diag::err_arc_thread_ownership)
4138         << var->getType();
4139       return true;
4140     }
4141   }
4142 
4143   return false;
4144 }
4145 
4146 NamedDecl*
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists)4147 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4148                               TypeSourceInfo *TInfo, LookupResult &Previous,
4149                               MultiTemplateParamsArg TemplateParamLists) {
4150   QualType R = TInfo->getType();
4151   DeclarationName Name = GetNameForDeclarator(D).getName();
4152 
4153   // Check that there are no default arguments (C++ only).
4154   if (getLangOpts().CPlusPlus)
4155     CheckExtraCXXDefaultArguments(D);
4156 
4157   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4158   assert(SCSpec != DeclSpec::SCS_typedef &&
4159          "Parser allowed 'typedef' as storage class VarDecl.");
4160   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4161   if (SCSpec == DeclSpec::SCS_mutable) {
4162     // mutable can only appear on non-static class members, so it's always
4163     // an error here
4164     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4165     D.setInvalidType();
4166     SC = SC_None;
4167   }
4168   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4169   VarDecl::StorageClass SCAsWritten
4170     = StorageClassSpecToVarDeclStorageClass(SCSpec);
4171 
4172   IdentifierInfo *II = Name.getAsIdentifierInfo();
4173   if (!II) {
4174     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4175       << Name;
4176     return 0;
4177   }
4178 
4179   DiagnoseFunctionSpecifiers(D);
4180 
4181   if (!DC->isRecord() && S->getFnParent() == 0) {
4182     // C99 6.9p2: The storage-class specifiers auto and register shall not
4183     // appear in the declaration specifiers in an external declaration.
4184     if (SC == SC_Auto || SC == SC_Register) {
4185 
4186       // If this is a register variable with an asm label specified, then this
4187       // is a GNU extension.
4188       if (SC == SC_Register && D.getAsmLabel())
4189         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4190       else
4191         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4192       D.setInvalidType();
4193     }
4194   }
4195 
4196   if (getLangOpts().OpenCL) {
4197     // Set up the special work-group-local storage class for variables in the
4198     // OpenCL __local address space.
4199     if (R.getAddressSpace() == LangAS::opencl_local)
4200       SC = SC_OpenCLWorkGroupLocal;
4201   }
4202 
4203   bool isExplicitSpecialization = false;
4204   VarDecl *NewVD;
4205   if (!getLangOpts().CPlusPlus) {
4206     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4207                             D.getIdentifierLoc(), II,
4208                             R, TInfo, SC, SCAsWritten);
4209 
4210     if (D.isInvalidType())
4211       NewVD->setInvalidDecl();
4212   } else {
4213     if (DC->isRecord() && !CurContext->isRecord()) {
4214       // This is an out-of-line definition of a static data member.
4215       if (SC == SC_Static) {
4216         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4217              diag::err_static_out_of_line)
4218           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4219       } else if (SC == SC_None)
4220         SC = SC_Static;
4221     }
4222     if (SC == SC_Static && CurContext->isRecord()) {
4223       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4224         if (RD->isLocalClass())
4225           Diag(D.getIdentifierLoc(),
4226                diag::err_static_data_member_not_allowed_in_local_class)
4227             << Name << RD->getDeclName();
4228 
4229         // C++98 [class.union]p1: If a union contains a static data member,
4230         // the program is ill-formed. C++11 drops this restriction.
4231         if (RD->isUnion())
4232           Diag(D.getIdentifierLoc(),
4233                getLangOpts().CPlusPlus0x
4234                  ? diag::warn_cxx98_compat_static_data_member_in_union
4235                  : diag::ext_static_data_member_in_union) << Name;
4236         // We conservatively disallow static data members in anonymous structs.
4237         else if (!RD->getDeclName())
4238           Diag(D.getIdentifierLoc(),
4239                diag::err_static_data_member_not_allowed_in_anon_struct)
4240             << Name << RD->isUnion();
4241       }
4242     }
4243 
4244     // Match up the template parameter lists with the scope specifier, then
4245     // determine whether we have a template or a template specialization.
4246     isExplicitSpecialization = false;
4247     bool Invalid = false;
4248     if (TemplateParameterList *TemplateParams
4249         = MatchTemplateParametersToScopeSpecifier(
4250                                   D.getDeclSpec().getLocStart(),
4251                                                   D.getIdentifierLoc(),
4252                                                   D.getCXXScopeSpec(),
4253                                                   TemplateParamLists.data(),
4254                                                   TemplateParamLists.size(),
4255                                                   /*never a friend*/ false,
4256                                                   isExplicitSpecialization,
4257                                                   Invalid)) {
4258       if (TemplateParams->size() > 0) {
4259         // There is no such thing as a variable template.
4260         Diag(D.getIdentifierLoc(), diag::err_template_variable)
4261           << II
4262           << SourceRange(TemplateParams->getTemplateLoc(),
4263                          TemplateParams->getRAngleLoc());
4264         return 0;
4265       } else {
4266         // There is an extraneous 'template<>' for this variable. Complain
4267         // about it, but allow the declaration of the variable.
4268         Diag(TemplateParams->getTemplateLoc(),
4269              diag::err_template_variable_noparams)
4270           << II
4271           << SourceRange(TemplateParams->getTemplateLoc(),
4272                          TemplateParams->getRAngleLoc());
4273       }
4274     }
4275 
4276     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4277                             D.getIdentifierLoc(), II,
4278                             R, TInfo, SC, SCAsWritten);
4279 
4280     // If this decl has an auto type in need of deduction, make a note of the
4281     // Decl so we can diagnose uses of it in its own initializer.
4282     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4283         R->getContainedAutoType())
4284       ParsingInitForAutoVars.insert(NewVD);
4285 
4286     if (D.isInvalidType() || Invalid)
4287       NewVD->setInvalidDecl();
4288 
4289     SetNestedNameSpecifier(NewVD, D);
4290 
4291     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4292       NewVD->setTemplateParameterListsInfo(Context,
4293                                            TemplateParamLists.size(),
4294                                            TemplateParamLists.data());
4295     }
4296 
4297     if (D.getDeclSpec().isConstexprSpecified())
4298       NewVD->setConstexpr(true);
4299   }
4300 
4301   // Set the lexical context. If the declarator has a C++ scope specifier, the
4302   // lexical context will be different from the semantic context.
4303   NewVD->setLexicalDeclContext(CurContext);
4304 
4305   if (D.getDeclSpec().isThreadSpecified()) {
4306     if (NewVD->hasLocalStorage())
4307       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4308     else if (!Context.getTargetInfo().isTLSSupported())
4309       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4310     else
4311       NewVD->setThreadSpecified(true);
4312   }
4313 
4314   if (D.getDeclSpec().isModulePrivateSpecified()) {
4315     if (isExplicitSpecialization)
4316       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4317         << 2
4318         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4319     else if (NewVD->hasLocalStorage())
4320       Diag(NewVD->getLocation(), diag::err_module_private_local)
4321         << 0 << NewVD->getDeclName()
4322         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4323         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4324     else
4325       NewVD->setModulePrivate();
4326   }
4327 
4328   // Handle attributes prior to checking for duplicates in MergeVarDecl
4329   ProcessDeclAttributes(S, NewVD, D);
4330 
4331   if (getLangOpts().CUDA) {
4332     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4333     // storage [duration]."
4334     if (SC == SC_None && S->getFnParent() != 0 &&
4335        (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4336       NewVD->setStorageClass(SC_Static);
4337   }
4338 
4339   // In auto-retain/release, infer strong retension for variables of
4340   // retainable type.
4341   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4342     NewVD->setInvalidDecl();
4343 
4344   // Handle GNU asm-label extension (encoded as an attribute).
4345   if (Expr *E = (Expr*)D.getAsmLabel()) {
4346     // The parser guarantees this is a string.
4347     StringLiteral *SE = cast<StringLiteral>(E);
4348     StringRef Label = SE->getString();
4349     if (S->getFnParent() != 0) {
4350       switch (SC) {
4351       case SC_None:
4352       case SC_Auto:
4353         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4354         break;
4355       case SC_Register:
4356         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4357           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4358         break;
4359       case SC_Static:
4360       case SC_Extern:
4361       case SC_PrivateExtern:
4362       case SC_OpenCLWorkGroupLocal:
4363         break;
4364       }
4365     }
4366 
4367     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4368                                                 Context, Label));
4369   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4370     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4371       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4372     if (I != ExtnameUndeclaredIdentifiers.end()) {
4373       NewVD->addAttr(I->second);
4374       ExtnameUndeclaredIdentifiers.erase(I);
4375     }
4376   }
4377 
4378   // Diagnose shadowed variables before filtering for scope.
4379   if (!D.getCXXScopeSpec().isSet())
4380     CheckShadow(S, NewVD, Previous);
4381 
4382   // Don't consider existing declarations that are in a different
4383   // scope and are out-of-semantic-context declarations (if the new
4384   // declaration has linkage).
4385   FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4386                        isExplicitSpecialization);
4387 
4388   if (!getLangOpts().CPlusPlus) {
4389     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4390   } else {
4391     // Merge the decl with the existing one if appropriate.
4392     if (!Previous.empty()) {
4393       if (Previous.isSingleResult() &&
4394           isa<FieldDecl>(Previous.getFoundDecl()) &&
4395           D.getCXXScopeSpec().isSet()) {
4396         // The user tried to define a non-static data member
4397         // out-of-line (C++ [dcl.meaning]p1).
4398         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4399           << D.getCXXScopeSpec().getRange();
4400         Previous.clear();
4401         NewVD->setInvalidDecl();
4402       }
4403     } else if (D.getCXXScopeSpec().isSet()) {
4404       // No previous declaration in the qualifying scope.
4405       Diag(D.getIdentifierLoc(), diag::err_no_member)
4406         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4407         << D.getCXXScopeSpec().getRange();
4408       NewVD->setInvalidDecl();
4409     }
4410 
4411     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4412 
4413     // This is an explicit specialization of a static data member. Check it.
4414     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4415         CheckMemberSpecialization(NewVD, Previous))
4416       NewVD->setInvalidDecl();
4417   }
4418 
4419   // If this is a locally-scoped extern C variable, update the map of
4420   // such variables.
4421   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4422       !NewVD->isInvalidDecl())
4423     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4424 
4425   // If there's a #pragma GCC visibility in scope, and this isn't a class
4426   // member, set the visibility of this variable.
4427   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4428     AddPushedVisibilityAttribute(NewVD);
4429 
4430   MarkUnusedFileScopedDecl(NewVD);
4431 
4432   return NewVD;
4433 }
4434 
4435 /// \brief Diagnose variable or built-in function shadowing.  Implements
4436 /// -Wshadow.
4437 ///
4438 /// This method is called whenever a VarDecl is added to a "useful"
4439 /// scope.
4440 ///
4441 /// \param S the scope in which the shadowing name is being declared
4442 /// \param R the lookup of the name
4443 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)4444 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4445   // Return if warning is ignored.
4446   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4447         DiagnosticsEngine::Ignored)
4448     return;
4449 
4450   // Don't diagnose declarations at file scope.
4451   if (D->hasGlobalStorage())
4452     return;
4453 
4454   DeclContext *NewDC = D->getDeclContext();
4455 
4456   // Only diagnose if we're shadowing an unambiguous field or variable.
4457   if (R.getResultKind() != LookupResult::Found)
4458     return;
4459 
4460   NamedDecl* ShadowedDecl = R.getFoundDecl();
4461   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4462     return;
4463 
4464   // Fields are not shadowed by variables in C++ static methods.
4465   if (isa<FieldDecl>(ShadowedDecl))
4466     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4467       if (MD->isStatic())
4468         return;
4469 
4470   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4471     if (shadowedVar->isExternC()) {
4472       // For shadowing external vars, make sure that we point to the global
4473       // declaration, not a locally scoped extern declaration.
4474       for (VarDecl::redecl_iterator
4475              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4476            I != E; ++I)
4477         if (I->isFileVarDecl()) {
4478           ShadowedDecl = *I;
4479           break;
4480         }
4481     }
4482 
4483   DeclContext *OldDC = ShadowedDecl->getDeclContext();
4484 
4485   // Only warn about certain kinds of shadowing for class members.
4486   if (NewDC && NewDC->isRecord()) {
4487     // In particular, don't warn about shadowing non-class members.
4488     if (!OldDC->isRecord())
4489       return;
4490 
4491     // TODO: should we warn about static data members shadowing
4492     // static data members from base classes?
4493 
4494     // TODO: don't diagnose for inaccessible shadowed members.
4495     // This is hard to do perfectly because we might friend the
4496     // shadowing context, but that's just a false negative.
4497   }
4498 
4499   // Determine what kind of declaration we're shadowing.
4500   unsigned Kind;
4501   if (isa<RecordDecl>(OldDC)) {
4502     if (isa<FieldDecl>(ShadowedDecl))
4503       Kind = 3; // field
4504     else
4505       Kind = 2; // static data member
4506   } else if (OldDC->isFileContext())
4507     Kind = 1; // global
4508   else
4509     Kind = 0; // local
4510 
4511   DeclarationName Name = R.getLookupName();
4512 
4513   // Emit warning and note.
4514   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4515   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4516 }
4517 
4518 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)4519 void Sema::CheckShadow(Scope *S, VarDecl *D) {
4520   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4521         DiagnosticsEngine::Ignored)
4522     return;
4523 
4524   LookupResult R(*this, D->getDeclName(), D->getLocation(),
4525                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4526   LookupName(R, S);
4527   CheckShadow(S, D, R);
4528 }
4529 
4530 /// \brief Perform semantic checking on a newly-created variable
4531 /// declaration.
4532 ///
4533 /// This routine performs all of the type-checking required for a
4534 /// variable declaration once it has been built. It is used both to
4535 /// check variables after they have been parsed and their declarators
4536 /// have been translated into a declaration, and to check variables
4537 /// that have been instantiated from a template.
4538 ///
4539 /// Sets NewVD->isInvalidDecl() if an error was encountered.
4540 ///
4541 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)4542 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4543                                     LookupResult &Previous) {
4544   // If the decl is already known invalid, don't check it.
4545   if (NewVD->isInvalidDecl())
4546     return false;
4547 
4548   QualType T = NewVD->getType();
4549 
4550   if (T->isObjCObjectType()) {
4551     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4552       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4553     T = Context.getObjCObjectPointerType(T);
4554     NewVD->setType(T);
4555   }
4556 
4557   // Emit an error if an address space was applied to decl with local storage.
4558   // This includes arrays of objects with address space qualifiers, but not
4559   // automatic variables that point to other address spaces.
4560   // ISO/IEC TR 18037 S5.1.2
4561   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4562     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4563     NewVD->setInvalidDecl();
4564     return false;
4565   }
4566 
4567   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4568   // scope.
4569   if ((getLangOpts().OpenCLVersion >= 120)
4570       && NewVD->isStaticLocal()) {
4571     Diag(NewVD->getLocation(), diag::err_static_function_scope);
4572     NewVD->setInvalidDecl();
4573     return false;
4574   }
4575 
4576   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4577       && !NewVD->hasAttr<BlocksAttr>()) {
4578     if (getLangOpts().getGC() != LangOptions::NonGC)
4579       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4580     else
4581       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4582   }
4583 
4584   bool isVM = T->isVariablyModifiedType();
4585   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4586       NewVD->hasAttr<BlocksAttr>())
4587     getCurFunction()->setHasBranchProtectedScope();
4588 
4589   if ((isVM && NewVD->hasLinkage()) ||
4590       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4591     bool SizeIsNegative;
4592     llvm::APSInt Oversized;
4593     QualType FixedTy =
4594         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4595                                             Oversized);
4596 
4597     if (FixedTy.isNull() && T->isVariableArrayType()) {
4598       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4599       // FIXME: This won't give the correct result for
4600       // int a[10][n];
4601       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4602 
4603       if (NewVD->isFileVarDecl())
4604         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4605         << SizeRange;
4606       else if (NewVD->getStorageClass() == SC_Static)
4607         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4608         << SizeRange;
4609       else
4610         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4611         << SizeRange;
4612       NewVD->setInvalidDecl();
4613       return false;
4614     }
4615 
4616     if (FixedTy.isNull()) {
4617       if (NewVD->isFileVarDecl())
4618         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4619       else
4620         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4621       NewVD->setInvalidDecl();
4622       return false;
4623     }
4624 
4625     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4626     NewVD->setType(FixedTy);
4627   }
4628 
4629   if (Previous.empty() && NewVD->isExternC()) {
4630     // Since we did not find anything by this name and we're declaring
4631     // an extern "C" variable, look for a non-visible extern "C"
4632     // declaration with the same name.
4633     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4634       = findLocallyScopedExternalDecl(NewVD->getDeclName());
4635     if (Pos != LocallyScopedExternalDecls.end())
4636       Previous.addDecl(Pos->second);
4637   }
4638 
4639   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4640     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4641       << T;
4642     NewVD->setInvalidDecl();
4643     return false;
4644   }
4645 
4646   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4647     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4648     NewVD->setInvalidDecl();
4649     return false;
4650   }
4651 
4652   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4653     Diag(NewVD->getLocation(), diag::err_block_on_vm);
4654     NewVD->setInvalidDecl();
4655     return false;
4656   }
4657 
4658   if (NewVD->isConstexpr() && !T->isDependentType() &&
4659       RequireLiteralType(NewVD->getLocation(), T,
4660                          diag::err_constexpr_var_non_literal)) {
4661     NewVD->setInvalidDecl();
4662     return false;
4663   }
4664 
4665   if (!Previous.empty()) {
4666     MergeVarDecl(NewVD, Previous);
4667     return true;
4668   }
4669   return false;
4670 }
4671 
4672 /// \brief Data used with FindOverriddenMethod
4673 struct FindOverriddenMethodData {
4674   Sema *S;
4675   CXXMethodDecl *Method;
4676 };
4677 
4678 /// \brief Member lookup function that determines whether a given C++
4679 /// method overrides a method in a base class, to be used with
4680 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)4681 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4682                                  CXXBasePath &Path,
4683                                  void *UserData) {
4684   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4685 
4686   FindOverriddenMethodData *Data
4687     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4688 
4689   DeclarationName Name = Data->Method->getDeclName();
4690 
4691   // FIXME: Do we care about other names here too?
4692   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4693     // We really want to find the base class destructor here.
4694     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4695     CanQualType CT = Data->S->Context.getCanonicalType(T);
4696 
4697     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4698   }
4699 
4700   for (Path.Decls = BaseRecord->lookup(Name);
4701        Path.Decls.first != Path.Decls.second;
4702        ++Path.Decls.first) {
4703     NamedDecl *D = *Path.Decls.first;
4704     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4705       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4706         return true;
4707     }
4708   }
4709 
4710   return false;
4711 }
4712 
4713 /// AddOverriddenMethods - See if a method overrides any in the base classes,
4714 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)4715 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4716   // Look for virtual methods in base classes that this method might override.
4717   CXXBasePaths Paths;
4718   FindOverriddenMethodData Data;
4719   Data.Method = MD;
4720   Data.S = this;
4721   bool AddedAny = false;
4722   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4723     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4724          E = Paths.found_decls_end(); I != E; ++I) {
4725       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4726         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4727         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4728             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4729             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4730           AddedAny = true;
4731         }
4732       }
4733     }
4734   }
4735 
4736   return AddedAny;
4737 }
4738 
4739 namespace {
4740   // Struct for holding all of the extra arguments needed by
4741   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4742   struct ActOnFDArgs {
4743     Scope *S;
4744     Declarator &D;
4745     MultiTemplateParamsArg TemplateParamLists;
4746     bool AddToScope;
4747   };
4748 }
4749 
4750 namespace {
4751 
4752 // Callback to only accept typo corrections that have a non-zero edit distance.
4753 // Also only accept corrections that have the same parent decl.
4754 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4755  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)4756   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4757                             CXXRecordDecl *Parent)
4758       : Context(Context), OriginalFD(TypoFD),
4759         ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4760 
ValidateCandidate(const TypoCorrection & candidate)4761   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4762     if (candidate.getEditDistance() == 0)
4763       return false;
4764 
4765     llvm::SmallVector<unsigned, 1> MismatchedParams;
4766     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4767                                           CDeclEnd = candidate.end();
4768          CDecl != CDeclEnd; ++CDecl) {
4769       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4770 
4771       if (FD && !FD->hasBody() &&
4772           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4773         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4774           CXXRecordDecl *Parent = MD->getParent();
4775           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4776             return true;
4777         } else if (!ExpectedParent) {
4778           return true;
4779         }
4780       }
4781     }
4782 
4783     return false;
4784   }
4785 
4786  private:
4787   ASTContext &Context;
4788   FunctionDecl *OriginalFD;
4789   CXXRecordDecl *ExpectedParent;
4790 };
4791 
4792 }
4793 
4794 /// \brief Generate diagnostics for an invalid function redeclaration.
4795 ///
4796 /// This routine handles generating the diagnostic messages for an invalid
4797 /// function redeclaration, including finding possible similar declarations
4798 /// or performing typo correction if there are no previous declarations with
4799 /// the same name.
4800 ///
4801 /// Returns a NamedDecl iff typo correction was performed and substituting in
4802 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs)4803 static NamedDecl* DiagnoseInvalidRedeclaration(
4804     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4805     ActOnFDArgs &ExtraArgs) {
4806   NamedDecl *Result = NULL;
4807   DeclarationName Name = NewFD->getDeclName();
4808   DeclContext *NewDC = NewFD->getDeclContext();
4809   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4810                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4811   llvm::SmallVector<unsigned, 1> MismatchedParams;
4812   llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4813   TypoCorrection Correction;
4814   bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4815                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
4816   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4817                                   : diag::err_member_def_does_not_match;
4818 
4819   NewFD->setInvalidDecl();
4820   SemaRef.LookupQualifiedName(Prev, NewDC);
4821   assert(!Prev.isAmbiguous() &&
4822          "Cannot have an ambiguity in previous-declaration lookup");
4823   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4824   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4825                                       MD ? MD->getParent() : 0);
4826   if (!Prev.empty()) {
4827     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4828          Func != FuncEnd; ++Func) {
4829       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4830       if (FD &&
4831           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4832         // Add 1 to the index so that 0 can mean the mismatch didn't
4833         // involve a parameter
4834         unsigned ParamNum =
4835             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4836         NearMatches.push_back(std::make_pair(FD, ParamNum));
4837       }
4838     }
4839   // If the qualified name lookup yielded nothing, try typo correction
4840   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4841                                          Prev.getLookupKind(), 0, 0,
4842                                          Validator, NewDC))) {
4843     // Trap errors.
4844     Sema::SFINAETrap Trap(SemaRef);
4845 
4846     // Set up everything for the call to ActOnFunctionDeclarator
4847     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4848                               ExtraArgs.D.getIdentifierLoc());
4849     Previous.clear();
4850     Previous.setLookupName(Correction.getCorrection());
4851     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4852                                     CDeclEnd = Correction.end();
4853          CDecl != CDeclEnd; ++CDecl) {
4854       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4855       if (FD && !FD->hasBody() &&
4856           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4857         Previous.addDecl(FD);
4858       }
4859     }
4860     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4861     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4862     // pieces need to verify the typo-corrected C++ declaraction and hopefully
4863     // eliminate the need for the parameter pack ExtraArgs.
4864     Result = SemaRef.ActOnFunctionDeclarator(
4865         ExtraArgs.S, ExtraArgs.D,
4866         Correction.getCorrectionDecl()->getDeclContext(),
4867         NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4868         ExtraArgs.AddToScope);
4869     if (Trap.hasErrorOccurred()) {
4870       // Pretend the typo correction never occurred
4871       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4872                                 ExtraArgs.D.getIdentifierLoc());
4873       ExtraArgs.D.setRedeclaration(wasRedeclaration);
4874       Previous.clear();
4875       Previous.setLookupName(Name);
4876       Result = NULL;
4877     } else {
4878       for (LookupResult::iterator Func = Previous.begin(),
4879                                FuncEnd = Previous.end();
4880            Func != FuncEnd; ++Func) {
4881         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4882           NearMatches.push_back(std::make_pair(FD, 0));
4883       }
4884     }
4885     if (NearMatches.empty()) {
4886       // Ignore the correction if it didn't yield any close FunctionDecl matches
4887       Correction = TypoCorrection();
4888     } else {
4889       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4890                              : diag::err_member_def_does_not_match_suggest;
4891     }
4892   }
4893 
4894   if (Correction) {
4895     SourceRange FixItLoc(NewFD->getLocation());
4896     CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4897     if (Correction.getCorrectionSpecifier() && SS.isValid())
4898       FixItLoc.setBegin(SS.getBeginLoc());
4899     SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4900         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4901         << FixItHint::CreateReplacement(
4902             FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4903   } else {
4904     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4905         << Name << NewDC << NewFD->getLocation();
4906   }
4907 
4908   bool NewFDisConst = false;
4909   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4910     NewFDisConst = NewMD->isConst();
4911 
4912   for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4913        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4914        NearMatch != NearMatchEnd; ++NearMatch) {
4915     FunctionDecl *FD = NearMatch->first;
4916     bool FDisConst = false;
4917     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4918       FDisConst = MD->isConst();
4919 
4920     if (unsigned Idx = NearMatch->second) {
4921       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4922       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4923       if (Loc.isInvalid()) Loc = FD->getLocation();
4924       SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4925           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4926     } else if (Correction) {
4927       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4928           << Correction.getQuoted(SemaRef.getLangOpts());
4929     } else if (FDisConst != NewFDisConst) {
4930       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4931           << NewFDisConst << FD->getSourceRange().getEnd();
4932     } else
4933       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4934   }
4935   return Result;
4936 }
4937 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)4938 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4939                                                           Declarator &D) {
4940   switch (D.getDeclSpec().getStorageClassSpec()) {
4941   default: llvm_unreachable("Unknown storage class!");
4942   case DeclSpec::SCS_auto:
4943   case DeclSpec::SCS_register:
4944   case DeclSpec::SCS_mutable:
4945     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4946                  diag::err_typecheck_sclass_func);
4947     D.setInvalidType();
4948     break;
4949   case DeclSpec::SCS_unspecified: break;
4950   case DeclSpec::SCS_extern: return SC_Extern;
4951   case DeclSpec::SCS_static: {
4952     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4953       // C99 6.7.1p5:
4954       //   The declaration of an identifier for a function that has
4955       //   block scope shall have no explicit storage-class specifier
4956       //   other than extern
4957       // See also (C++ [dcl.stc]p4).
4958       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4959                    diag::err_static_block_func);
4960       break;
4961     } else
4962       return SC_Static;
4963   }
4964   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4965   }
4966 
4967   // No explicit storage class has already been returned
4968   return SC_None;
4969 }
4970 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,FunctionDecl::StorageClass SC,bool & IsVirtualOkay)4971 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4972                                            DeclContext *DC, QualType &R,
4973                                            TypeSourceInfo *TInfo,
4974                                            FunctionDecl::StorageClass SC,
4975                                            bool &IsVirtualOkay) {
4976   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4977   DeclarationName Name = NameInfo.getName();
4978 
4979   FunctionDecl *NewFD = 0;
4980   bool isInline = D.getDeclSpec().isInlineSpecified();
4981   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4982   FunctionDecl::StorageClass SCAsWritten
4983     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4984 
4985   if (!SemaRef.getLangOpts().CPlusPlus) {
4986     // Determine whether the function was written with a
4987     // prototype. This true when:
4988     //   - there is a prototype in the declarator, or
4989     //   - the type R of the function is some kind of typedef or other reference
4990     //     to a type name (which eventually refers to a function type).
4991     bool HasPrototype =
4992       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4993       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4994 
4995     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4996                                  D.getLocStart(), NameInfo, R,
4997                                  TInfo, SC, SCAsWritten, isInline,
4998                                  HasPrototype);
4999     if (D.isInvalidType())
5000       NewFD->setInvalidDecl();
5001 
5002     // Set the lexical context.
5003     NewFD->setLexicalDeclContext(SemaRef.CurContext);
5004 
5005     return NewFD;
5006   }
5007 
5008   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5009   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5010 
5011   // Check that the return type is not an abstract class type.
5012   // For record types, this is done by the AbstractClassUsageDiagnoser once
5013   // the class has been completely parsed.
5014   if (!DC->isRecord() &&
5015       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5016                                      R->getAs<FunctionType>()->getResultType(),
5017                                      diag::err_abstract_type_in_decl,
5018                                      SemaRef.AbstractReturnType))
5019     D.setInvalidType();
5020 
5021   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5022     // This is a C++ constructor declaration.
5023     assert(DC->isRecord() &&
5024            "Constructors can only be declared in a member context");
5025 
5026     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5027     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5028                                       D.getLocStart(), NameInfo,
5029                                       R, TInfo, isExplicit, isInline,
5030                                       /*isImplicitlyDeclared=*/false,
5031                                       isConstexpr);
5032 
5033   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5034     // This is a C++ destructor declaration.
5035     if (DC->isRecord()) {
5036       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5037       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5038       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5039                                         SemaRef.Context, Record,
5040                                         D.getLocStart(),
5041                                         NameInfo, R, TInfo, isInline,
5042                                         /*isImplicitlyDeclared=*/false);
5043 
5044       // If the class is complete, then we now create the implicit exception
5045       // specification. If the class is incomplete or dependent, we can't do
5046       // it yet.
5047       if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5048           Record->getDefinition() && !Record->isBeingDefined() &&
5049           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5050         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5051       }
5052 
5053       IsVirtualOkay = true;
5054       return NewDD;
5055 
5056     } else {
5057       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5058       D.setInvalidType();
5059 
5060       // Create a FunctionDecl to satisfy the function definition parsing
5061       // code path.
5062       return FunctionDecl::Create(SemaRef.Context, DC,
5063                                   D.getLocStart(),
5064                                   D.getIdentifierLoc(), Name, R, TInfo,
5065                                   SC, SCAsWritten, isInline,
5066                                   /*hasPrototype=*/true, isConstexpr);
5067     }
5068 
5069   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5070     if (!DC->isRecord()) {
5071       SemaRef.Diag(D.getIdentifierLoc(),
5072            diag::err_conv_function_not_member);
5073       return 0;
5074     }
5075 
5076     SemaRef.CheckConversionDeclarator(D, R, SC);
5077     IsVirtualOkay = true;
5078     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5079                                      D.getLocStart(), NameInfo,
5080                                      R, TInfo, isInline, isExplicit,
5081                                      isConstexpr, SourceLocation());
5082 
5083   } else if (DC->isRecord()) {
5084     // If the name of the function is the same as the name of the record,
5085     // then this must be an invalid constructor that has a return type.
5086     // (The parser checks for a return type and makes the declarator a
5087     // constructor if it has no return type).
5088     if (Name.getAsIdentifierInfo() &&
5089         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5090       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5091         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5092         << SourceRange(D.getIdentifierLoc());
5093       return 0;
5094     }
5095 
5096     bool isStatic = SC == SC_Static;
5097 
5098     // [class.free]p1:
5099     // Any allocation function for a class T is a static member
5100     // (even if not explicitly declared static).
5101     if (Name.getCXXOverloadedOperator() == OO_New ||
5102         Name.getCXXOverloadedOperator() == OO_Array_New)
5103       isStatic = true;
5104 
5105     // [class.free]p6 Any deallocation function for a class X is a static member
5106     // (even if not explicitly declared static).
5107     if (Name.getCXXOverloadedOperator() == OO_Delete ||
5108         Name.getCXXOverloadedOperator() == OO_Array_Delete)
5109       isStatic = true;
5110 
5111     IsVirtualOkay = !isStatic;
5112 
5113     // This is a C++ method declaration.
5114     return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5115                                  D.getLocStart(), NameInfo, R,
5116                                  TInfo, isStatic, SCAsWritten, isInline,
5117                                  isConstexpr, SourceLocation());
5118 
5119   } else {
5120     // Determine whether the function was written with a
5121     // prototype. This true when:
5122     //   - we're in C++ (where every function has a prototype),
5123     return FunctionDecl::Create(SemaRef.Context, DC,
5124                                 D.getLocStart(),
5125                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5126                                 true/*HasPrototype*/, isConstexpr);
5127   }
5128 }
5129 
5130 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5131 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5132                               TypeSourceInfo *TInfo, LookupResult &Previous,
5133                               MultiTemplateParamsArg TemplateParamLists,
5134                               bool &AddToScope) {
5135   QualType R = TInfo->getType();
5136 
5137   assert(R.getTypePtr()->isFunctionType());
5138 
5139   // TODO: consider using NameInfo for diagnostic.
5140   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5141   DeclarationName Name = NameInfo.getName();
5142   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5143 
5144   if (D.getDeclSpec().isThreadSpecified())
5145     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5146 
5147   // Do not allow returning a objc interface by-value.
5148   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5149     Diag(D.getIdentifierLoc(),
5150          diag::err_object_cannot_be_passed_returned_by_value) << 0
5151     << R->getAs<FunctionType>()->getResultType()
5152     << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5153 
5154     QualType T = R->getAs<FunctionType>()->getResultType();
5155     T = Context.getObjCObjectPointerType(T);
5156     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5157       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5158       R = Context.getFunctionType(T, FPT->arg_type_begin(),
5159                                   FPT->getNumArgs(), EPI);
5160     }
5161     else if (isa<FunctionNoProtoType>(R))
5162       R = Context.getFunctionNoProtoType(T);
5163   }
5164 
5165   bool isFriend = false;
5166   FunctionTemplateDecl *FunctionTemplate = 0;
5167   bool isExplicitSpecialization = false;
5168   bool isFunctionTemplateSpecialization = false;
5169 
5170   bool isDependentClassScopeExplicitSpecialization = false;
5171   bool HasExplicitTemplateArgs = false;
5172   TemplateArgumentListInfo TemplateArgs;
5173 
5174   bool isVirtualOkay = false;
5175 
5176   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5177                                               isVirtualOkay);
5178   if (!NewFD) return 0;
5179 
5180   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5181     NewFD->setTopLevelDeclInObjCContainer();
5182 
5183   if (getLangOpts().CPlusPlus) {
5184     bool isInline = D.getDeclSpec().isInlineSpecified();
5185     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5186     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5187     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5188     isFriend = D.getDeclSpec().isFriendSpecified();
5189     if (isFriend && !isInline && D.isFunctionDefinition()) {
5190       // C++ [class.friend]p5
5191       //   A function can be defined in a friend declaration of a
5192       //   class . . . . Such a function is implicitly inline.
5193       NewFD->setImplicitlyInline();
5194     }
5195 
5196     // if this is a method defined in an __interface, set pure
5197     // (isVirtual will already return true)
5198     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(
5199         NewFD->getDeclContext())) {
5200       if (Parent->getTagKind() == TTK_Interface)
5201         NewFD->setPure(true);
5202     }
5203 
5204     SetNestedNameSpecifier(NewFD, D);
5205     isExplicitSpecialization = false;
5206     isFunctionTemplateSpecialization = false;
5207     if (D.isInvalidType())
5208       NewFD->setInvalidDecl();
5209 
5210     // Set the lexical context. If the declarator has a C++
5211     // scope specifier, or is the object of a friend declaration, the
5212     // lexical context will be different from the semantic context.
5213     NewFD->setLexicalDeclContext(CurContext);
5214 
5215     // Match up the template parameter lists with the scope specifier, then
5216     // determine whether we have a template or a template specialization.
5217     bool Invalid = false;
5218     if (TemplateParameterList *TemplateParams
5219           = MatchTemplateParametersToScopeSpecifier(
5220                                   D.getDeclSpec().getLocStart(),
5221                                   D.getIdentifierLoc(),
5222                                   D.getCXXScopeSpec(),
5223                                   TemplateParamLists.data(),
5224                                   TemplateParamLists.size(),
5225                                   isFriend,
5226                                   isExplicitSpecialization,
5227                                   Invalid)) {
5228       if (TemplateParams->size() > 0) {
5229         // This is a function template
5230 
5231         // Check that we can declare a template here.
5232         if (CheckTemplateDeclScope(S, TemplateParams))
5233           return 0;
5234 
5235         // A destructor cannot be a template.
5236         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5237           Diag(NewFD->getLocation(), diag::err_destructor_template);
5238           return 0;
5239         }
5240 
5241         // If we're adding a template to a dependent context, we may need to
5242         // rebuilding some of the types used within the template parameter list,
5243         // now that we know what the current instantiation is.
5244         if (DC->isDependentContext()) {
5245           ContextRAII SavedContext(*this, DC);
5246           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5247             Invalid = true;
5248         }
5249 
5250 
5251         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5252                                                         NewFD->getLocation(),
5253                                                         Name, TemplateParams,
5254                                                         NewFD);
5255         FunctionTemplate->setLexicalDeclContext(CurContext);
5256         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5257 
5258         // For source fidelity, store the other template param lists.
5259         if (TemplateParamLists.size() > 1) {
5260           NewFD->setTemplateParameterListsInfo(Context,
5261                                                TemplateParamLists.size() - 1,
5262                                                TemplateParamLists.data());
5263         }
5264       } else {
5265         // This is a function template specialization.
5266         isFunctionTemplateSpecialization = true;
5267         // For source fidelity, store all the template param lists.
5268         NewFD->setTemplateParameterListsInfo(Context,
5269                                              TemplateParamLists.size(),
5270                                              TemplateParamLists.data());
5271 
5272         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5273         if (isFriend) {
5274           // We want to remove the "template<>", found here.
5275           SourceRange RemoveRange = TemplateParams->getSourceRange();
5276 
5277           // If we remove the template<> and the name is not a
5278           // template-id, we're actually silently creating a problem:
5279           // the friend declaration will refer to an untemplated decl,
5280           // and clearly the user wants a template specialization.  So
5281           // we need to insert '<>' after the name.
5282           SourceLocation InsertLoc;
5283           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5284             InsertLoc = D.getName().getSourceRange().getEnd();
5285             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5286           }
5287 
5288           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5289             << Name << RemoveRange
5290             << FixItHint::CreateRemoval(RemoveRange)
5291             << FixItHint::CreateInsertion(InsertLoc, "<>");
5292         }
5293       }
5294     }
5295     else {
5296       // All template param lists were matched against the scope specifier:
5297       // this is NOT (an explicit specialization of) a template.
5298       if (TemplateParamLists.size() > 0)
5299         // For source fidelity, store all the template param lists.
5300         NewFD->setTemplateParameterListsInfo(Context,
5301                                              TemplateParamLists.size(),
5302                                              TemplateParamLists.data());
5303     }
5304 
5305     if (Invalid) {
5306       NewFD->setInvalidDecl();
5307       if (FunctionTemplate)
5308         FunctionTemplate->setInvalidDecl();
5309     }
5310 
5311     // C++ [dcl.fct.spec]p5:
5312     //   The virtual specifier shall only be used in declarations of
5313     //   nonstatic class member functions that appear within a
5314     //   member-specification of a class declaration; see 10.3.
5315     //
5316     if (isVirtual && !NewFD->isInvalidDecl()) {
5317       if (!isVirtualOkay) {
5318         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5319              diag::err_virtual_non_function);
5320       } else if (!CurContext->isRecord()) {
5321         // 'virtual' was specified outside of the class.
5322         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5323              diag::err_virtual_out_of_class)
5324           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5325       } else if (NewFD->getDescribedFunctionTemplate()) {
5326         // C++ [temp.mem]p3:
5327         //  A member function template shall not be virtual.
5328         Diag(D.getDeclSpec().getVirtualSpecLoc(),
5329              diag::err_virtual_member_function_template)
5330           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5331       } else {
5332         // Okay: Add virtual to the method.
5333         NewFD->setVirtualAsWritten(true);
5334       }
5335     }
5336 
5337     // C++ [dcl.fct.spec]p3:
5338     //  The inline specifier shall not appear on a block scope function
5339     //  declaration.
5340     if (isInline && !NewFD->isInvalidDecl()) {
5341       if (CurContext->isFunctionOrMethod()) {
5342         // 'inline' is not allowed on block scope function declaration.
5343         Diag(D.getDeclSpec().getInlineSpecLoc(),
5344              diag::err_inline_declaration_block_scope) << Name
5345           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5346       }
5347     }
5348 
5349     // C++ [dcl.fct.spec]p6:
5350     //  The explicit specifier shall be used only in the declaration of a
5351     //  constructor or conversion function within its class definition;
5352     //  see 12.3.1 and 12.3.2.
5353     if (isExplicit && !NewFD->isInvalidDecl()) {
5354       if (!CurContext->isRecord()) {
5355         // 'explicit' was specified outside of the class.
5356         Diag(D.getDeclSpec().getExplicitSpecLoc(),
5357              diag::err_explicit_out_of_class)
5358           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5359       } else if (!isa<CXXConstructorDecl>(NewFD) &&
5360                  !isa<CXXConversionDecl>(NewFD)) {
5361         // 'explicit' was specified on a function that wasn't a constructor
5362         // or conversion function.
5363         Diag(D.getDeclSpec().getExplicitSpecLoc(),
5364              diag::err_explicit_non_ctor_or_conv_function)
5365           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5366       }
5367     }
5368 
5369     if (isConstexpr) {
5370       // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5371       // are implicitly inline.
5372       NewFD->setImplicitlyInline();
5373 
5374       // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5375       // be either constructors or to return a literal type. Therefore,
5376       // destructors cannot be declared constexpr.
5377       if (isa<CXXDestructorDecl>(NewFD))
5378         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5379     }
5380 
5381     // If __module_private__ was specified, mark the function accordingly.
5382     if (D.getDeclSpec().isModulePrivateSpecified()) {
5383       if (isFunctionTemplateSpecialization) {
5384         SourceLocation ModulePrivateLoc
5385           = D.getDeclSpec().getModulePrivateSpecLoc();
5386         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5387           << 0
5388           << FixItHint::CreateRemoval(ModulePrivateLoc);
5389       } else {
5390         NewFD->setModulePrivate();
5391         if (FunctionTemplate)
5392           FunctionTemplate->setModulePrivate();
5393       }
5394     }
5395 
5396     if (isFriend) {
5397       // For now, claim that the objects have no previous declaration.
5398       if (FunctionTemplate) {
5399         FunctionTemplate->setObjectOfFriendDecl(false);
5400         FunctionTemplate->setAccess(AS_public);
5401       }
5402       NewFD->setObjectOfFriendDecl(false);
5403       NewFD->setAccess(AS_public);
5404     }
5405 
5406     // If a function is defined as defaulted or deleted, mark it as such now.
5407     switch (D.getFunctionDefinitionKind()) {
5408       case FDK_Declaration:
5409       case FDK_Definition:
5410         break;
5411 
5412       case FDK_Defaulted:
5413         NewFD->setDefaulted();
5414         break;
5415 
5416       case FDK_Deleted:
5417         NewFD->setDeletedAsWritten();
5418         break;
5419     }
5420 
5421     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5422         D.isFunctionDefinition()) {
5423       // C++ [class.mfct]p2:
5424       //   A member function may be defined (8.4) in its class definition, in
5425       //   which case it is an inline member function (7.1.2)
5426       NewFD->setImplicitlyInline();
5427     }
5428 
5429     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5430         !CurContext->isRecord()) {
5431       // C++ [class.static]p1:
5432       //   A data or function member of a class may be declared static
5433       //   in a class definition, in which case it is a static member of
5434       //   the class.
5435 
5436       // Complain about the 'static' specifier if it's on an out-of-line
5437       // member function definition.
5438       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5439            diag::err_static_out_of_line)
5440         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5441     }
5442   }
5443 
5444   // Filter out previous declarations that don't match the scope.
5445   FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5446                        isExplicitSpecialization ||
5447                        isFunctionTemplateSpecialization);
5448 
5449   // Handle GNU asm-label extension (encoded as an attribute).
5450   if (Expr *E = (Expr*) D.getAsmLabel()) {
5451     // The parser guarantees this is a string.
5452     StringLiteral *SE = cast<StringLiteral>(E);
5453     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5454                                                 SE->getString()));
5455   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5456     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5457       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5458     if (I != ExtnameUndeclaredIdentifiers.end()) {
5459       NewFD->addAttr(I->second);
5460       ExtnameUndeclaredIdentifiers.erase(I);
5461     }
5462   }
5463 
5464   // Copy the parameter declarations from the declarator D to the function
5465   // declaration NewFD, if they are available.  First scavenge them into Params.
5466   SmallVector<ParmVarDecl*, 16> Params;
5467   if (D.isFunctionDeclarator()) {
5468     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5469 
5470     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5471     // function that takes no arguments, not a function that takes a
5472     // single void argument.
5473     // We let through "const void" here because Sema::GetTypeForDeclarator
5474     // already checks for that case.
5475     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5476         FTI.ArgInfo[0].Param &&
5477         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5478       // Empty arg list, don't push any params.
5479       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5480 
5481       // In C++, the empty parameter-type-list must be spelled "void"; a
5482       // typedef of void is not permitted.
5483       if (getLangOpts().CPlusPlus &&
5484           Param->getType().getUnqualifiedType() != Context.VoidTy) {
5485         bool IsTypeAlias = false;
5486         if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5487           IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5488         else if (const TemplateSpecializationType *TST =
5489                    Param->getType()->getAs<TemplateSpecializationType>())
5490           IsTypeAlias = TST->isTypeAlias();
5491         Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5492           << IsTypeAlias;
5493       }
5494     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5495       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5496         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5497         assert(Param->getDeclContext() != NewFD && "Was set before ?");
5498         Param->setDeclContext(NewFD);
5499         Params.push_back(Param);
5500 
5501         if (Param->isInvalidDecl())
5502           NewFD->setInvalidDecl();
5503       }
5504     }
5505 
5506   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5507     // When we're declaring a function with a typedef, typeof, etc as in the
5508     // following example, we'll need to synthesize (unnamed)
5509     // parameters for use in the declaration.
5510     //
5511     // @code
5512     // typedef void fn(int);
5513     // fn f;
5514     // @endcode
5515 
5516     // Synthesize a parameter for each argument type.
5517     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5518          AE = FT->arg_type_end(); AI != AE; ++AI) {
5519       ParmVarDecl *Param =
5520         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5521       Param->setScopeInfo(0, Params.size());
5522       Params.push_back(Param);
5523     }
5524   } else {
5525     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5526            "Should not need args for typedef of non-prototype fn");
5527   }
5528 
5529   // Finally, we know we have the right number of parameters, install them.
5530   NewFD->setParams(Params);
5531 
5532   // Find all anonymous symbols defined during the declaration of this function
5533   // and add to NewFD. This lets us track decls such 'enum Y' in:
5534   //
5535   //   void f(enum Y {AA} x) {}
5536   //
5537   // which would otherwise incorrectly end up in the translation unit scope.
5538   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5539   DeclsInPrototypeScope.clear();
5540 
5541   // Process the non-inheritable attributes on this declaration.
5542   ProcessDeclAttributes(S, NewFD, D,
5543                         /*NonInheritable=*/true, /*Inheritable=*/false);
5544 
5545   // Functions returning a variably modified type violate C99 6.7.5.2p2
5546   // because all functions have linkage.
5547   if (!NewFD->isInvalidDecl() &&
5548       NewFD->getResultType()->isVariablyModifiedType()) {
5549     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5550     NewFD->setInvalidDecl();
5551   }
5552 
5553   // Handle attributes.
5554   ProcessDeclAttributes(S, NewFD, D,
5555                         /*NonInheritable=*/false, /*Inheritable=*/true);
5556 
5557   if (!getLangOpts().CPlusPlus) {
5558     // Perform semantic checking on the function declaration.
5559     bool isExplicitSpecialization=false;
5560     if (!NewFD->isInvalidDecl()) {
5561       if (NewFD->isMain())
5562         CheckMain(NewFD, D.getDeclSpec());
5563       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5564                                                   isExplicitSpecialization));
5565     }
5566     // Make graceful recovery from an invalid redeclaration.
5567     else if (!Previous.empty())
5568            D.setRedeclaration(true);
5569     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5570             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5571            "previous declaration set still overloaded");
5572   } else {
5573     // If the declarator is a template-id, translate the parser's template
5574     // argument list into our AST format.
5575     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5576       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5577       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5578       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5579       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5580                                          TemplateId->NumArgs);
5581       translateTemplateArguments(TemplateArgsPtr,
5582                                  TemplateArgs);
5583 
5584       HasExplicitTemplateArgs = true;
5585 
5586       if (NewFD->isInvalidDecl()) {
5587         HasExplicitTemplateArgs = false;
5588       } else if (FunctionTemplate) {
5589         // Function template with explicit template arguments.
5590         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5591           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5592 
5593         HasExplicitTemplateArgs = false;
5594       } else if (!isFunctionTemplateSpecialization &&
5595                  !D.getDeclSpec().isFriendSpecified()) {
5596         // We have encountered something that the user meant to be a
5597         // specialization (because it has explicitly-specified template
5598         // arguments) but that was not introduced with a "template<>" (or had
5599         // too few of them).
5600         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5601           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5602           << FixItHint::CreateInsertion(
5603                                     D.getDeclSpec().getLocStart(),
5604                                         "template<> ");
5605         isFunctionTemplateSpecialization = true;
5606       } else {
5607         // "friend void foo<>(int);" is an implicit specialization decl.
5608         isFunctionTemplateSpecialization = true;
5609       }
5610     } else if (isFriend && isFunctionTemplateSpecialization) {
5611       // This combination is only possible in a recovery case;  the user
5612       // wrote something like:
5613       //   template <> friend void foo(int);
5614       // which we're recovering from as if the user had written:
5615       //   friend void foo<>(int);
5616       // Go ahead and fake up a template id.
5617       HasExplicitTemplateArgs = true;
5618         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5619       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5620     }
5621 
5622     // If it's a friend (and only if it's a friend), it's possible
5623     // that either the specialized function type or the specialized
5624     // template is dependent, and therefore matching will fail.  In
5625     // this case, don't check the specialization yet.
5626     bool InstantiationDependent = false;
5627     if (isFunctionTemplateSpecialization && isFriend &&
5628         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5629          TemplateSpecializationType::anyDependentTemplateArguments(
5630             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5631             InstantiationDependent))) {
5632       assert(HasExplicitTemplateArgs &&
5633              "friend function specialization without template args");
5634       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5635                                                        Previous))
5636         NewFD->setInvalidDecl();
5637     } else if (isFunctionTemplateSpecialization) {
5638       if (CurContext->isDependentContext() && CurContext->isRecord()
5639           && !isFriend) {
5640         isDependentClassScopeExplicitSpecialization = true;
5641         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5642           diag::ext_function_specialization_in_class :
5643           diag::err_function_specialization_in_class)
5644           << NewFD->getDeclName();
5645       } else if (CheckFunctionTemplateSpecialization(NewFD,
5646                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5647                                                      Previous))
5648         NewFD->setInvalidDecl();
5649 
5650       // C++ [dcl.stc]p1:
5651       //   A storage-class-specifier shall not be specified in an explicit
5652       //   specialization (14.7.3)
5653       if (SC != SC_None) {
5654         if (SC != NewFD->getStorageClass())
5655           Diag(NewFD->getLocation(),
5656                diag::err_explicit_specialization_inconsistent_storage_class)
5657             << SC
5658             << FixItHint::CreateRemoval(
5659                                       D.getDeclSpec().getStorageClassSpecLoc());
5660 
5661         else
5662           Diag(NewFD->getLocation(),
5663                diag::ext_explicit_specialization_storage_class)
5664             << FixItHint::CreateRemoval(
5665                                       D.getDeclSpec().getStorageClassSpecLoc());
5666       }
5667 
5668     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5669       if (CheckMemberSpecialization(NewFD, Previous))
5670           NewFD->setInvalidDecl();
5671     }
5672 
5673     // Perform semantic checking on the function declaration.
5674     if (!isDependentClassScopeExplicitSpecialization) {
5675       if (NewFD->isInvalidDecl()) {
5676         // If this is a class member, mark the class invalid immediately.
5677         // This avoids some consistency errors later.
5678         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5679           methodDecl->getParent()->setInvalidDecl();
5680       } else {
5681         if (NewFD->isMain())
5682           CheckMain(NewFD, D.getDeclSpec());
5683         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5684                                                     isExplicitSpecialization));
5685       }
5686     }
5687 
5688     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5689             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5690            "previous declaration set still overloaded");
5691 
5692     NamedDecl *PrincipalDecl = (FunctionTemplate
5693                                 ? cast<NamedDecl>(FunctionTemplate)
5694                                 : NewFD);
5695 
5696     if (isFriend && D.isRedeclaration()) {
5697       AccessSpecifier Access = AS_public;
5698       if (!NewFD->isInvalidDecl())
5699         Access = NewFD->getPreviousDecl()->getAccess();
5700 
5701       NewFD->setAccess(Access);
5702       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5703 
5704       PrincipalDecl->setObjectOfFriendDecl(true);
5705     }
5706 
5707     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5708         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5709       PrincipalDecl->setNonMemberOperator();
5710 
5711     // If we have a function template, check the template parameter
5712     // list. This will check and merge default template arguments.
5713     if (FunctionTemplate) {
5714       FunctionTemplateDecl *PrevTemplate =
5715                                      FunctionTemplate->getPreviousDecl();
5716       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5717                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5718                             D.getDeclSpec().isFriendSpecified()
5719                               ? (D.isFunctionDefinition()
5720                                    ? TPC_FriendFunctionTemplateDefinition
5721                                    : TPC_FriendFunctionTemplate)
5722                               : (D.getCXXScopeSpec().isSet() &&
5723                                  DC && DC->isRecord() &&
5724                                  DC->isDependentContext())
5725                                   ? TPC_ClassTemplateMember
5726                                   : TPC_FunctionTemplate);
5727     }
5728 
5729     if (NewFD->isInvalidDecl()) {
5730       // Ignore all the rest of this.
5731     } else if (!D.isRedeclaration()) {
5732       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5733                                        AddToScope };
5734       // Fake up an access specifier if it's supposed to be a class member.
5735       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5736         NewFD->setAccess(AS_public);
5737 
5738       // Qualified decls generally require a previous declaration.
5739       if (D.getCXXScopeSpec().isSet()) {
5740         // ...with the major exception of templated-scope or
5741         // dependent-scope friend declarations.
5742 
5743         // TODO: we currently also suppress this check in dependent
5744         // contexts because (1) the parameter depth will be off when
5745         // matching friend templates and (2) we might actually be
5746         // selecting a friend based on a dependent factor.  But there
5747         // are situations where these conditions don't apply and we
5748         // can actually do this check immediately.
5749         if (isFriend &&
5750             (TemplateParamLists.size() ||
5751              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5752              CurContext->isDependentContext())) {
5753           // ignore these
5754         } else {
5755           // The user tried to provide an out-of-line definition for a
5756           // function that is a member of a class or namespace, but there
5757           // was no such member function declared (C++ [class.mfct]p2,
5758           // C++ [namespace.memdef]p2). For example:
5759           //
5760           // class X {
5761           //   void f() const;
5762           // };
5763           //
5764           // void X::f() { } // ill-formed
5765           //
5766           // Complain about this problem, and attempt to suggest close
5767           // matches (e.g., those that differ only in cv-qualifiers and
5768           // whether the parameter types are references).
5769 
5770           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5771                                                                NewFD,
5772                                                                ExtraArgs)) {
5773             AddToScope = ExtraArgs.AddToScope;
5774             return Result;
5775           }
5776         }
5777 
5778         // Unqualified local friend declarations are required to resolve
5779         // to something.
5780       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5781         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5782                                                              NewFD,
5783                                                              ExtraArgs)) {
5784           AddToScope = ExtraArgs.AddToScope;
5785           return Result;
5786         }
5787       }
5788 
5789     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5790                !isFriend && !isFunctionTemplateSpecialization &&
5791                !isExplicitSpecialization) {
5792       // An out-of-line member function declaration must also be a
5793       // definition (C++ [dcl.meaning]p1).
5794       // Note that this is not the case for explicit specializations of
5795       // function templates or member functions of class templates, per
5796       // C++ [temp.expl.spec]p2. We also allow these declarations as an
5797       // extension for compatibility with old SWIG code which likes to
5798       // generate them.
5799       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5800         << D.getCXXScopeSpec().getRange();
5801     }
5802   }
5803 
5804   AddKnownFunctionAttributes(NewFD);
5805 
5806   if (NewFD->hasAttr<OverloadableAttr>() &&
5807       !NewFD->getType()->getAs<FunctionProtoType>()) {
5808     Diag(NewFD->getLocation(),
5809          diag::err_attribute_overloadable_no_prototype)
5810       << NewFD;
5811 
5812     // Turn this into a variadic function with no parameters.
5813     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5814     FunctionProtoType::ExtProtoInfo EPI;
5815     EPI.Variadic = true;
5816     EPI.ExtInfo = FT->getExtInfo();
5817 
5818     QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5819     NewFD->setType(R);
5820   }
5821 
5822   // If there's a #pragma GCC visibility in scope, and this isn't a class
5823   // member, set the visibility of this function.
5824   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5825     AddPushedVisibilityAttribute(NewFD);
5826 
5827   // If there's a #pragma clang arc_cf_code_audited in scope, consider
5828   // marking the function.
5829   AddCFAuditedAttribute(NewFD);
5830 
5831   // If this is a locally-scoped extern C function, update the
5832   // map of such names.
5833   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5834       && !NewFD->isInvalidDecl())
5835     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5836 
5837   // Set this FunctionDecl's range up to the right paren.
5838   NewFD->setRangeEnd(D.getSourceRange().getEnd());
5839 
5840   if (getLangOpts().CPlusPlus) {
5841     if (FunctionTemplate) {
5842       if (NewFD->isInvalidDecl())
5843         FunctionTemplate->setInvalidDecl();
5844       return FunctionTemplate;
5845     }
5846   }
5847 
5848   // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5849   if ((getLangOpts().OpenCLVersion >= 120)
5850       && NewFD->hasAttr<OpenCLKernelAttr>()
5851       && (SC == SC_Static)) {
5852     Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5853     D.setInvalidType();
5854   }
5855 
5856   MarkUnusedFileScopedDecl(NewFD);
5857 
5858   if (getLangOpts().CUDA)
5859     if (IdentifierInfo *II = NewFD->getIdentifier())
5860       if (!NewFD->isInvalidDecl() &&
5861           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5862         if (II->isStr("cudaConfigureCall")) {
5863           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5864             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5865 
5866           Context.setcudaConfigureCallDecl(NewFD);
5867         }
5868       }
5869 
5870   // Here we have an function template explicit specialization at class scope.
5871   // The actually specialization will be postponed to template instatiation
5872   // time via the ClassScopeFunctionSpecializationDecl node.
5873   if (isDependentClassScopeExplicitSpecialization) {
5874     ClassScopeFunctionSpecializationDecl *NewSpec =
5875                          ClassScopeFunctionSpecializationDecl::Create(
5876                                 Context, CurContext, SourceLocation(),
5877                                 cast<CXXMethodDecl>(NewFD),
5878                                 HasExplicitTemplateArgs, TemplateArgs);
5879     CurContext->addDecl(NewSpec);
5880     AddToScope = false;
5881   }
5882 
5883   return NewFD;
5884 }
5885 
5886 /// \brief Perform semantic checking of a new function declaration.
5887 ///
5888 /// Performs semantic analysis of the new function declaration
5889 /// NewFD. This routine performs all semantic checking that does not
5890 /// require the actual declarator involved in the declaration, and is
5891 /// used both for the declaration of functions as they are parsed
5892 /// (called via ActOnDeclarator) and for the declaration of functions
5893 /// that have been instantiated via C++ template instantiation (called
5894 /// via InstantiateDecl).
5895 ///
5896 /// \param IsExplicitSpecialization whether this new function declaration is
5897 /// an explicit specialization of the previous declaration.
5898 ///
5899 /// This sets NewFD->isInvalidDecl() to true if there was an error.
5900 ///
5901 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)5902 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5903                                     LookupResult &Previous,
5904                                     bool IsExplicitSpecialization) {
5905   assert(!NewFD->getResultType()->isVariablyModifiedType()
5906          && "Variably modified return types are not handled here");
5907 
5908   // Check for a previous declaration of this name.
5909   if (Previous.empty() && NewFD->isExternC()) {
5910     // Since we did not find anything by this name and we're declaring
5911     // an extern "C" function, look for a non-visible extern "C"
5912     // declaration with the same name.
5913     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5914       = findLocallyScopedExternalDecl(NewFD->getDeclName());
5915     if (Pos != LocallyScopedExternalDecls.end())
5916       Previous.addDecl(Pos->second);
5917   }
5918 
5919   bool Redeclaration = false;
5920 
5921   // Merge or overload the declaration with an existing declaration of
5922   // the same name, if appropriate.
5923   if (!Previous.empty()) {
5924     // Determine whether NewFD is an overload of PrevDecl or
5925     // a declaration that requires merging. If it's an overload,
5926     // there's no more work to do here; we'll just add the new
5927     // function to the scope.
5928 
5929     NamedDecl *OldDecl = 0;
5930     if (!AllowOverloadingOfFunction(Previous, Context)) {
5931       Redeclaration = true;
5932       OldDecl = Previous.getFoundDecl();
5933     } else {
5934       switch (CheckOverload(S, NewFD, Previous, OldDecl,
5935                             /*NewIsUsingDecl*/ false)) {
5936       case Ovl_Match:
5937         Redeclaration = true;
5938         break;
5939 
5940       case Ovl_NonFunction:
5941         Redeclaration = true;
5942         break;
5943 
5944       case Ovl_Overload:
5945         Redeclaration = false;
5946         break;
5947       }
5948 
5949       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5950         // If a function name is overloadable in C, then every function
5951         // with that name must be marked "overloadable".
5952         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5953           << Redeclaration << NewFD;
5954         NamedDecl *OverloadedDecl = 0;
5955         if (Redeclaration)
5956           OverloadedDecl = OldDecl;
5957         else if (!Previous.empty())
5958           OverloadedDecl = Previous.getRepresentativeDecl();
5959         if (OverloadedDecl)
5960           Diag(OverloadedDecl->getLocation(),
5961                diag::note_attribute_overloadable_prev_overload);
5962         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5963                                                         Context));
5964       }
5965     }
5966 
5967     if (Redeclaration) {
5968       // NewFD and OldDecl represent declarations that need to be
5969       // merged.
5970       if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5971         NewFD->setInvalidDecl();
5972         return Redeclaration;
5973       }
5974 
5975       Previous.clear();
5976       Previous.addDecl(OldDecl);
5977 
5978       if (FunctionTemplateDecl *OldTemplateDecl
5979                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5980         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5981         FunctionTemplateDecl *NewTemplateDecl
5982           = NewFD->getDescribedFunctionTemplate();
5983         assert(NewTemplateDecl && "Template/non-template mismatch");
5984         if (CXXMethodDecl *Method
5985               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5986           Method->setAccess(OldTemplateDecl->getAccess());
5987           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5988         }
5989 
5990         // If this is an explicit specialization of a member that is a function
5991         // template, mark it as a member specialization.
5992         if (IsExplicitSpecialization &&
5993             NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5994           NewTemplateDecl->setMemberSpecialization();
5995           assert(OldTemplateDecl->isMemberSpecialization());
5996         }
5997 
5998       } else {
5999         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6000           NewFD->setAccess(OldDecl->getAccess());
6001         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6002       }
6003     }
6004   }
6005 
6006   // Semantic checking for this function declaration (in isolation).
6007   if (getLangOpts().CPlusPlus) {
6008     // C++-specific checks.
6009     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6010       CheckConstructor(Constructor);
6011     } else if (CXXDestructorDecl *Destructor =
6012                 dyn_cast<CXXDestructorDecl>(NewFD)) {
6013       CXXRecordDecl *Record = Destructor->getParent();
6014       QualType ClassType = Context.getTypeDeclType(Record);
6015 
6016       // FIXME: Shouldn't we be able to perform this check even when the class
6017       // type is dependent? Both gcc and edg can handle that.
6018       if (!ClassType->isDependentType()) {
6019         DeclarationName Name
6020           = Context.DeclarationNames.getCXXDestructorName(
6021                                         Context.getCanonicalType(ClassType));
6022         if (NewFD->getDeclName() != Name) {
6023           Diag(NewFD->getLocation(), diag::err_destructor_name);
6024           NewFD->setInvalidDecl();
6025           return Redeclaration;
6026         }
6027       }
6028     } else if (CXXConversionDecl *Conversion
6029                = dyn_cast<CXXConversionDecl>(NewFD)) {
6030       ActOnConversionDeclarator(Conversion);
6031     }
6032 
6033     // Find any virtual functions that this function overrides.
6034     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6035       if (!Method->isFunctionTemplateSpecialization() &&
6036           !Method->getDescribedFunctionTemplate()) {
6037         if (AddOverriddenMethods(Method->getParent(), Method)) {
6038           // If the function was marked as "static", we have a problem.
6039           if (NewFD->getStorageClass() == SC_Static) {
6040             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
6041               << NewFD->getDeclName();
6042             for (CXXMethodDecl::method_iterator
6043                       Overridden = Method->begin_overridden_methods(),
6044                    OverriddenEnd = Method->end_overridden_methods();
6045                  Overridden != OverriddenEnd;
6046                  ++Overridden) {
6047               Diag((*Overridden)->getLocation(),
6048                    diag::note_overridden_virtual_function);
6049             }
6050           }
6051         }
6052       }
6053 
6054       if (Method->isStatic())
6055         checkThisInStaticMemberFunctionType(Method);
6056     }
6057 
6058     // Extra checking for C++ overloaded operators (C++ [over.oper]).
6059     if (NewFD->isOverloadedOperator() &&
6060         CheckOverloadedOperatorDeclaration(NewFD)) {
6061       NewFD->setInvalidDecl();
6062       return Redeclaration;
6063     }
6064 
6065     // Extra checking for C++0x literal operators (C++0x [over.literal]).
6066     if (NewFD->getLiteralIdentifier() &&
6067         CheckLiteralOperatorDeclaration(NewFD)) {
6068       NewFD->setInvalidDecl();
6069       return Redeclaration;
6070     }
6071 
6072     // In C++, check default arguments now that we have merged decls. Unless
6073     // the lexical context is the class, because in this case this is done
6074     // during delayed parsing anyway.
6075     if (!CurContext->isRecord())
6076       CheckCXXDefaultArguments(NewFD);
6077 
6078     // If this function declares a builtin function, check the type of this
6079     // declaration against the expected type for the builtin.
6080     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6081       ASTContext::GetBuiltinTypeError Error;
6082       QualType T = Context.GetBuiltinType(BuiltinID, Error);
6083       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6084         // The type of this function differs from the type of the builtin,
6085         // so forget about the builtin entirely.
6086         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6087       }
6088     }
6089 
6090     // If this function is declared as being extern "C", then check to see if
6091     // the function returns a UDT (class, struct, or union type) that is not C
6092     // compatible, and if it does, warn the user.
6093     if (NewFD->isExternC()) {
6094       QualType R = NewFD->getResultType();
6095       if (R->isIncompleteType() && !R->isVoidType())
6096         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6097             << NewFD << R;
6098       else if (!R.isPODType(Context) && !R->isVoidType() &&
6099                !R->isObjCObjectPointerType())
6100         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6101     }
6102   }
6103   return Redeclaration;
6104 }
6105 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)6106 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6107   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6108   //   static or constexpr is ill-formed.
6109   // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6110   //   shall not appear in a declaration of main.
6111   // static main is not an error under C99, but we should warn about it.
6112   if (FD->getStorageClass() == SC_Static)
6113     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6114          ? diag::err_static_main : diag::warn_static_main)
6115       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6116   if (FD->isInlineSpecified())
6117     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6118       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6119   if (FD->isConstexpr()) {
6120     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6121       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6122     FD->setConstexpr(false);
6123   }
6124 
6125   QualType T = FD->getType();
6126   assert(T->isFunctionType() && "function decl is not of function type");
6127   const FunctionType* FT = T->castAs<FunctionType>();
6128 
6129   // All the standards say that main() should should return 'int'.
6130   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6131     // In C and C++, main magically returns 0 if you fall off the end;
6132     // set the flag which tells us that.
6133     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6134     FD->setHasImplicitReturnZero(true);
6135 
6136   // In C with GNU extensions we allow main() to have non-integer return
6137   // type, but we should warn about the extension, and we disable the
6138   // implicit-return-zero rule.
6139   } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6140     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6141 
6142   // Otherwise, this is just a flat-out error.
6143   } else {
6144     Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6145     FD->setInvalidDecl(true);
6146   }
6147 
6148   // Treat protoless main() as nullary.
6149   if (isa<FunctionNoProtoType>(FT)) return;
6150 
6151   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6152   unsigned nparams = FTP->getNumArgs();
6153   assert(FD->getNumParams() == nparams);
6154 
6155   bool HasExtraParameters = (nparams > 3);
6156 
6157   // Darwin passes an undocumented fourth argument of type char**.  If
6158   // other platforms start sprouting these, the logic below will start
6159   // getting shifty.
6160   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6161     HasExtraParameters = false;
6162 
6163   if (HasExtraParameters) {
6164     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6165     FD->setInvalidDecl(true);
6166     nparams = 3;
6167   }
6168 
6169   // FIXME: a lot of the following diagnostics would be improved
6170   // if we had some location information about types.
6171 
6172   QualType CharPP =
6173     Context.getPointerType(Context.getPointerType(Context.CharTy));
6174   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6175 
6176   for (unsigned i = 0; i < nparams; ++i) {
6177     QualType AT = FTP->getArgType(i);
6178 
6179     bool mismatch = true;
6180 
6181     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6182       mismatch = false;
6183     else if (Expected[i] == CharPP) {
6184       // As an extension, the following forms are okay:
6185       //   char const **
6186       //   char const * const *
6187       //   char * const *
6188 
6189       QualifierCollector qs;
6190       const PointerType* PT;
6191       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6192           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6193           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6194         qs.removeConst();
6195         mismatch = !qs.empty();
6196       }
6197     }
6198 
6199     if (mismatch) {
6200       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6201       // TODO: suggest replacing given type with expected type
6202       FD->setInvalidDecl(true);
6203     }
6204   }
6205 
6206   if (nparams == 1 && !FD->isInvalidDecl()) {
6207     Diag(FD->getLocation(), diag::warn_main_one_arg);
6208   }
6209 
6210   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6211     Diag(FD->getLocation(), diag::err_main_template_decl);
6212     FD->setInvalidDecl();
6213   }
6214 }
6215 
CheckForConstantInitializer(Expr * Init,QualType DclT)6216 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6217   // FIXME: Need strict checking.  In C89, we need to check for
6218   // any assignment, increment, decrement, function-calls, or
6219   // commas outside of a sizeof.  In C99, it's the same list,
6220   // except that the aforementioned are allowed in unevaluated
6221   // expressions.  Everything else falls under the
6222   // "may accept other forms of constant expressions" exception.
6223   // (We never end up here for C++, so the constant expression
6224   // rules there don't matter.)
6225   if (Init->isConstantInitializer(Context, false))
6226     return false;
6227   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6228     << Init->getSourceRange();
6229   return true;
6230 }
6231 
6232 namespace {
6233   // Visits an initialization expression to see if OrigDecl is evaluated in
6234   // its own initialization and throws a warning if it does.
6235   class SelfReferenceChecker
6236       : public EvaluatedExprVisitor<SelfReferenceChecker> {
6237     Sema &S;
6238     Decl *OrigDecl;
6239     bool isRecordType;
6240     bool isPODType;
6241     bool isReferenceType;
6242 
6243   public:
6244     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6245 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)6246     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6247                                                     S(S), OrigDecl(OrigDecl) {
6248       isPODType = false;
6249       isRecordType = false;
6250       isReferenceType = false;
6251       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6252         isPODType = VD->getType().isPODType(S.Context);
6253         isRecordType = VD->getType()->isRecordType();
6254         isReferenceType = VD->getType()->isReferenceType();
6255       }
6256     }
6257 
6258     // Sometimes, the expression passed in lacks the casts that are used
6259     // to determine which DeclRefExpr's to check.  Assume that the casts
6260     // are present and continue visiting the expression.
HandleExpr(Expr * E)6261     void HandleExpr(Expr *E) {
6262       // Skip checking T a = a where T is not a record or reference type.
6263       // Doing so is a way to silence uninitialized warnings.
6264       if (isRecordType || isReferenceType)
6265         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6266           HandleDeclRefExpr(DRE);
6267 
6268       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6269         HandleValue(CO->getTrueExpr());
6270         HandleValue(CO->getFalseExpr());
6271       }
6272 
6273       Visit(E);
6274     }
6275 
6276     // For most expressions, the cast is directly above the DeclRefExpr.
6277     // For conditional operators, the cast can be outside the conditional
6278     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)6279     void HandleValue(Expr *E) {
6280       E = E->IgnoreParenImpCasts();
6281       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6282         HandleDeclRefExpr(DRE);
6283         return;
6284       }
6285 
6286       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6287         HandleValue(CO->getTrueExpr());
6288         HandleValue(CO->getFalseExpr());
6289       }
6290     }
6291 
VisitImplicitCastExpr(ImplicitCastExpr * E)6292     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6293       if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6294           (isRecordType && E->getCastKind() == CK_NoOp))
6295         HandleValue(E->getSubExpr());
6296 
6297       Inherited::VisitImplicitCastExpr(E);
6298     }
6299 
VisitMemberExpr(MemberExpr * E)6300     void VisitMemberExpr(MemberExpr *E) {
6301       // Don't warn on arrays since they can be treated as pointers.
6302       if (E->getType()->canDecayToPointerType()) return;
6303 
6304       ValueDecl *VD = E->getMemberDecl();
6305       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6306       if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6307         if (DeclRefExpr *DRE
6308               = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6309           HandleDeclRefExpr(DRE);
6310           return;
6311         }
6312 
6313       Inherited::VisitMemberExpr(E);
6314     }
6315 
VisitUnaryOperator(UnaryOperator * E)6316     void VisitUnaryOperator(UnaryOperator *E) {
6317       // For POD record types, addresses of its own members are well-defined.
6318       if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6319           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6320       Inherited::VisitUnaryOperator(E);
6321     }
6322 
VisitObjCMessageExpr(ObjCMessageExpr * E)6323     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6324 
HandleDeclRefExpr(DeclRefExpr * DRE)6325     void HandleDeclRefExpr(DeclRefExpr *DRE) {
6326       Decl* ReferenceDecl = DRE->getDecl();
6327       if (OrigDecl != ReferenceDecl) return;
6328       LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6329                           Sema::NotForRedeclaration);
6330       unsigned diag = isReferenceType
6331           ? diag::warn_uninit_self_reference_in_reference_init
6332           : diag::warn_uninit_self_reference_in_init;
6333       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6334                             S.PDiag(diag)
6335                               << Result.getLookupName()
6336                               << OrigDecl->getLocation()
6337                               << DRE->getSourceRange());
6338     }
6339   };
6340 }
6341 
6342 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Decl * OrigDecl,Expr * E)6343 void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6344   SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6345 }
6346 
6347 /// AddInitializerToDecl - Adds the initializer Init to the
6348 /// declaration dcl. If DirectInit is true, this is C++ direct
6349 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)6350 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6351                                 bool DirectInit, bool TypeMayContainAuto) {
6352   // If there is no declaration, there was an error parsing it.  Just ignore
6353   // the initializer.
6354   if (RealDecl == 0 || RealDecl->isInvalidDecl())
6355     return;
6356 
6357   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6358     // With declarators parsed the way they are, the parser cannot
6359     // distinguish between a normal initializer and a pure-specifier.
6360     // Thus this grotesque test.
6361     IntegerLiteral *IL;
6362     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6363         Context.getCanonicalType(IL->getType()) == Context.IntTy)
6364       CheckPureMethod(Method, Init->getSourceRange());
6365     else {
6366       Diag(Method->getLocation(), diag::err_member_function_initialization)
6367         << Method->getDeclName() << Init->getSourceRange();
6368       Method->setInvalidDecl();
6369     }
6370     return;
6371   }
6372 
6373   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6374   if (!VDecl) {
6375     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6376     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6377     RealDecl->setInvalidDecl();
6378     return;
6379   }
6380 
6381   // Check for self-references within variable initializers.
6382   // Variables declared within a function/method body (except for references)
6383   // are handled by a dataflow analysis.
6384   // Record types initialized by initializer list are handled here.
6385   // Initialization by constructors are handled in TryConstructorInitialization.
6386   if ((!VDecl->hasLocalStorage() || VDecl->getType()->isReferenceType()) &&
6387       (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
6388     CheckSelfReference(RealDecl, Init);
6389 
6390   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6391 
6392   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6393   AutoType *Auto = 0;
6394   if (TypeMayContainAuto &&
6395       (Auto = VDecl->getType()->getContainedAutoType()) &&
6396       !Auto->isDeduced()) {
6397     Expr *DeduceInit = Init;
6398     // Initializer could be a C++ direct-initializer. Deduction only works if it
6399     // contains exactly one expression.
6400     if (CXXDirectInit) {
6401       if (CXXDirectInit->getNumExprs() == 0) {
6402         // It isn't possible to write this directly, but it is possible to
6403         // end up in this situation with "auto x(some_pack...);"
6404         Diag(CXXDirectInit->getLocStart(),
6405              diag::err_auto_var_init_no_expression)
6406           << VDecl->getDeclName() << VDecl->getType()
6407           << VDecl->getSourceRange();
6408         RealDecl->setInvalidDecl();
6409         return;
6410       } else if (CXXDirectInit->getNumExprs() > 1) {
6411         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6412              diag::err_auto_var_init_multiple_expressions)
6413           << VDecl->getDeclName() << VDecl->getType()
6414           << VDecl->getSourceRange();
6415         RealDecl->setInvalidDecl();
6416         return;
6417       } else {
6418         DeduceInit = CXXDirectInit->getExpr(0);
6419       }
6420     }
6421     TypeSourceInfo *DeducedType = 0;
6422     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6423             DAR_Failed)
6424       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6425     if (!DeducedType) {
6426       RealDecl->setInvalidDecl();
6427       return;
6428     }
6429     VDecl->setTypeSourceInfo(DeducedType);
6430     VDecl->setType(DeducedType->getType());
6431     VDecl->ClearLinkageCache();
6432 
6433     // In ARC, infer lifetime.
6434     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6435       VDecl->setInvalidDecl();
6436 
6437     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6438     // 'id' instead of a specific object type prevents most of our usual checks.
6439     // We only want to warn outside of template instantiations, though:
6440     // inside a template, the 'id' could have come from a parameter.
6441     if (ActiveTemplateInstantiations.empty() &&
6442         DeducedType->getType()->isObjCIdType()) {
6443       SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6444       Diag(Loc, diag::warn_auto_var_is_id)
6445         << VDecl->getDeclName() << DeduceInit->getSourceRange();
6446     }
6447 
6448     // If this is a redeclaration, check that the type we just deduced matches
6449     // the previously declared type.
6450     if (VarDecl *Old = VDecl->getPreviousDecl())
6451       MergeVarDeclTypes(VDecl, Old);
6452   }
6453 
6454   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6455     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6456     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6457     VDecl->setInvalidDecl();
6458     return;
6459   }
6460 
6461   if (!VDecl->getType()->isDependentType()) {
6462     // A definition must end up with a complete type, which means it must be
6463     // complete with the restriction that an array type might be completed by
6464     // the initializer; note that later code assumes this restriction.
6465     QualType BaseDeclType = VDecl->getType();
6466     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6467       BaseDeclType = Array->getElementType();
6468     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6469                             diag::err_typecheck_decl_incomplete_type)) {
6470       RealDecl->setInvalidDecl();
6471       return;
6472     }
6473 
6474     // The variable can not have an abstract class type.
6475     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6476                                diag::err_abstract_type_in_decl,
6477                                AbstractVariableType))
6478       VDecl->setInvalidDecl();
6479   }
6480 
6481   const VarDecl *Def;
6482   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6483     Diag(VDecl->getLocation(), diag::err_redefinition)
6484       << VDecl->getDeclName();
6485     Diag(Def->getLocation(), diag::note_previous_definition);
6486     VDecl->setInvalidDecl();
6487     return;
6488   }
6489 
6490   const VarDecl* PrevInit = 0;
6491   if (getLangOpts().CPlusPlus) {
6492     // C++ [class.static.data]p4
6493     //   If a static data member is of const integral or const
6494     //   enumeration type, its declaration in the class definition can
6495     //   specify a constant-initializer which shall be an integral
6496     //   constant expression (5.19). In that case, the member can appear
6497     //   in integral constant expressions. The member shall still be
6498     //   defined in a namespace scope if it is used in the program and the
6499     //   namespace scope definition shall not contain an initializer.
6500     //
6501     // We already performed a redefinition check above, but for static
6502     // data members we also need to check whether there was an in-class
6503     // declaration with an initializer.
6504     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6505       Diag(VDecl->getLocation(), diag::err_redefinition)
6506         << VDecl->getDeclName();
6507       Diag(PrevInit->getLocation(), diag::note_previous_definition);
6508       return;
6509     }
6510 
6511     if (VDecl->hasLocalStorage())
6512       getCurFunction()->setHasBranchProtectedScope();
6513 
6514     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6515       VDecl->setInvalidDecl();
6516       return;
6517     }
6518   }
6519 
6520   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6521   // a kernel function cannot be initialized."
6522   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6523     Diag(VDecl->getLocation(), diag::err_local_cant_init);
6524     VDecl->setInvalidDecl();
6525     return;
6526   }
6527 
6528   // Get the decls type and save a reference for later, since
6529   // CheckInitializerTypes may change it.
6530   QualType DclT = VDecl->getType(), SavT = DclT;
6531 
6532   // Top-level message sends default to 'id' when we're in a debugger
6533   // and we are assigning it to a variable of 'id' type.
6534   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6535     if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6536       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6537       if (Result.isInvalid()) {
6538         VDecl->setInvalidDecl();
6539         return;
6540       }
6541       Init = Result.take();
6542     }
6543 
6544   // Perform the initialization.
6545   if (!VDecl->isInvalidDecl()) {
6546     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6547     InitializationKind Kind
6548       = DirectInit ?
6549           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6550                                                            Init->getLocStart(),
6551                                                            Init->getLocEnd())
6552                         : InitializationKind::CreateDirectList(
6553                                                           VDecl->getLocation())
6554                    : InitializationKind::CreateCopy(VDecl->getLocation(),
6555                                                     Init->getLocStart());
6556 
6557     Expr **Args = &Init;
6558     unsigned NumArgs = 1;
6559     if (CXXDirectInit) {
6560       Args = CXXDirectInit->getExprs();
6561       NumArgs = CXXDirectInit->getNumExprs();
6562     }
6563     InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6564     ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6565                                         MultiExprArg(Args, NumArgs), &DclT);
6566     if (Result.isInvalid()) {
6567       VDecl->setInvalidDecl();
6568       return;
6569     }
6570 
6571     Init = Result.takeAs<Expr>();
6572   }
6573 
6574   // If the type changed, it means we had an incomplete type that was
6575   // completed by the initializer. For example:
6576   //   int ary[] = { 1, 3, 5 };
6577   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6578   if (!VDecl->isInvalidDecl() && (DclT != SavT))
6579     VDecl->setType(DclT);
6580 
6581   // Check any implicit conversions within the expression.
6582   CheckImplicitConversions(Init, VDecl->getLocation());
6583 
6584   if (!VDecl->isInvalidDecl())
6585     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6586 
6587   Init = MaybeCreateExprWithCleanups(Init);
6588   // Attach the initializer to the decl.
6589   VDecl->setInit(Init);
6590 
6591   if (VDecl->isLocalVarDecl()) {
6592     // C99 6.7.8p4: All the expressions in an initializer for an object that has
6593     // static storage duration shall be constant expressions or string literals.
6594     // C++ does not have this restriction.
6595     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6596         VDecl->getStorageClass() == SC_Static)
6597       CheckForConstantInitializer(Init, DclT);
6598   } else if (VDecl->isStaticDataMember() &&
6599              VDecl->getLexicalDeclContext()->isRecord()) {
6600     // This is an in-class initialization for a static data member, e.g.,
6601     //
6602     // struct S {
6603     //   static const int value = 17;
6604     // };
6605 
6606     // C++ [class.mem]p4:
6607     //   A member-declarator can contain a constant-initializer only
6608     //   if it declares a static member (9.4) of const integral or
6609     //   const enumeration type, see 9.4.2.
6610     //
6611     // C++11 [class.static.data]p3:
6612     //   If a non-volatile const static data member is of integral or
6613     //   enumeration type, its declaration in the class definition can
6614     //   specify a brace-or-equal-initializer in which every initalizer-clause
6615     //   that is an assignment-expression is a constant expression. A static
6616     //   data member of literal type can be declared in the class definition
6617     //   with the constexpr specifier; if so, its declaration shall specify a
6618     //   brace-or-equal-initializer in which every initializer-clause that is
6619     //   an assignment-expression is a constant expression.
6620 
6621     // Do nothing on dependent types.
6622     if (DclT->isDependentType()) {
6623 
6624     // Allow any 'static constexpr' members, whether or not they are of literal
6625     // type. We separately check that every constexpr variable is of literal
6626     // type.
6627     } else if (VDecl->isConstexpr()) {
6628 
6629     // Require constness.
6630     } else if (!DclT.isConstQualified()) {
6631       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6632         << Init->getSourceRange();
6633       VDecl->setInvalidDecl();
6634 
6635     // We allow integer constant expressions in all cases.
6636     } else if (DclT->isIntegralOrEnumerationType()) {
6637       // Check whether the expression is a constant expression.
6638       SourceLocation Loc;
6639       if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6640         // In C++11, a non-constexpr const static data member with an
6641         // in-class initializer cannot be volatile.
6642         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6643       else if (Init->isValueDependent())
6644         ; // Nothing to check.
6645       else if (Init->isIntegerConstantExpr(Context, &Loc))
6646         ; // Ok, it's an ICE!
6647       else if (Init->isEvaluatable(Context)) {
6648         // If we can constant fold the initializer through heroics, accept it,
6649         // but report this as a use of an extension for -pedantic.
6650         Diag(Loc, diag::ext_in_class_initializer_non_constant)
6651           << Init->getSourceRange();
6652       } else {
6653         // Otherwise, this is some crazy unknown case.  Report the issue at the
6654         // location provided by the isIntegerConstantExpr failed check.
6655         Diag(Loc, diag::err_in_class_initializer_non_constant)
6656           << Init->getSourceRange();
6657         VDecl->setInvalidDecl();
6658       }
6659 
6660     // We allow foldable floating-point constants as an extension.
6661     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6662       Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6663         << DclT << Init->getSourceRange();
6664       if (getLangOpts().CPlusPlus0x)
6665         Diag(VDecl->getLocation(),
6666              diag::note_in_class_initializer_float_type_constexpr)
6667           << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6668 
6669       if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6670         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6671           << Init->getSourceRange();
6672         VDecl->setInvalidDecl();
6673       }
6674 
6675     // Suggest adding 'constexpr' in C++11 for literal types.
6676     } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6677       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6678         << DclT << Init->getSourceRange()
6679         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6680       VDecl->setConstexpr(true);
6681 
6682     } else {
6683       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6684         << DclT << Init->getSourceRange();
6685       VDecl->setInvalidDecl();
6686     }
6687   } else if (VDecl->isFileVarDecl()) {
6688     if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6689         (!getLangOpts().CPlusPlus ||
6690          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6691       Diag(VDecl->getLocation(), diag::warn_extern_init);
6692 
6693     // C99 6.7.8p4. All file scoped initializers need to be constant.
6694     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6695       CheckForConstantInitializer(Init, DclT);
6696   }
6697 
6698   // We will represent direct-initialization similarly to copy-initialization:
6699   //    int x(1);  -as-> int x = 1;
6700   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6701   //
6702   // Clients that want to distinguish between the two forms, can check for
6703   // direct initializer using VarDecl::getInitStyle().
6704   // A major benefit is that clients that don't particularly care about which
6705   // exactly form was it (like the CodeGen) can handle both cases without
6706   // special case code.
6707 
6708   // C++ 8.5p11:
6709   // The form of initialization (using parentheses or '=') is generally
6710   // insignificant, but does matter when the entity being initialized has a
6711   // class type.
6712   if (CXXDirectInit) {
6713     assert(DirectInit && "Call-style initializer must be direct init.");
6714     VDecl->setInitStyle(VarDecl::CallInit);
6715   } else if (DirectInit) {
6716     // This must be list-initialization. No other way is direct-initialization.
6717     VDecl->setInitStyle(VarDecl::ListInit);
6718   }
6719 
6720   CheckCompleteVariableDeclaration(VDecl);
6721 }
6722 
6723 /// ActOnInitializerError - Given that there was an error parsing an
6724 /// initializer for the given declaration, try to return to some form
6725 /// of sanity.
ActOnInitializerError(Decl * D)6726 void Sema::ActOnInitializerError(Decl *D) {
6727   // Our main concern here is re-establishing invariants like "a
6728   // variable's type is either dependent or complete".
6729   if (!D || D->isInvalidDecl()) return;
6730 
6731   VarDecl *VD = dyn_cast<VarDecl>(D);
6732   if (!VD) return;
6733 
6734   // Auto types are meaningless if we can't make sense of the initializer.
6735   if (ParsingInitForAutoVars.count(D)) {
6736     D->setInvalidDecl();
6737     return;
6738   }
6739 
6740   QualType Ty = VD->getType();
6741   if (Ty->isDependentType()) return;
6742 
6743   // Require a complete type.
6744   if (RequireCompleteType(VD->getLocation(),
6745                           Context.getBaseElementType(Ty),
6746                           diag::err_typecheck_decl_incomplete_type)) {
6747     VD->setInvalidDecl();
6748     return;
6749   }
6750 
6751   // Require an abstract type.
6752   if (RequireNonAbstractType(VD->getLocation(), Ty,
6753                              diag::err_abstract_type_in_decl,
6754                              AbstractVariableType)) {
6755     VD->setInvalidDecl();
6756     return;
6757   }
6758 
6759   // Don't bother complaining about constructors or destructors,
6760   // though.
6761 }
6762 
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)6763 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6764                                   bool TypeMayContainAuto) {
6765   // If there is no declaration, there was an error parsing it. Just ignore it.
6766   if (RealDecl == 0)
6767     return;
6768 
6769   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6770     QualType Type = Var->getType();
6771 
6772     // C++11 [dcl.spec.auto]p3
6773     if (TypeMayContainAuto && Type->getContainedAutoType()) {
6774       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6775         << Var->getDeclName() << Type;
6776       Var->setInvalidDecl();
6777       return;
6778     }
6779 
6780     // C++11 [class.static.data]p3: A static data member can be declared with
6781     // the constexpr specifier; if so, its declaration shall specify
6782     // a brace-or-equal-initializer.
6783     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6784     // the definition of a variable [...] or the declaration of a static data
6785     // member.
6786     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6787       if (Var->isStaticDataMember())
6788         Diag(Var->getLocation(),
6789              diag::err_constexpr_static_mem_var_requires_init)
6790           << Var->getDeclName();
6791       else
6792         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6793       Var->setInvalidDecl();
6794       return;
6795     }
6796 
6797     switch (Var->isThisDeclarationADefinition()) {
6798     case VarDecl::Definition:
6799       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6800         break;
6801 
6802       // We have an out-of-line definition of a static data member
6803       // that has an in-class initializer, so we type-check this like
6804       // a declaration.
6805       //
6806       // Fall through
6807 
6808     case VarDecl::DeclarationOnly:
6809       // It's only a declaration.
6810 
6811       // Block scope. C99 6.7p7: If an identifier for an object is
6812       // declared with no linkage (C99 6.2.2p6), the type for the
6813       // object shall be complete.
6814       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6815           !Var->getLinkage() && !Var->isInvalidDecl() &&
6816           RequireCompleteType(Var->getLocation(), Type,
6817                               diag::err_typecheck_decl_incomplete_type))
6818         Var->setInvalidDecl();
6819 
6820       // Make sure that the type is not abstract.
6821       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6822           RequireNonAbstractType(Var->getLocation(), Type,
6823                                  diag::err_abstract_type_in_decl,
6824                                  AbstractVariableType))
6825         Var->setInvalidDecl();
6826       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6827           Var->getStorageClass() == SC_PrivateExtern) {
6828         Diag(Var->getLocation(), diag::warn_private_extern);
6829         Diag(Var->getLocation(), diag::note_private_extern);
6830       }
6831 
6832       return;
6833 
6834     case VarDecl::TentativeDefinition:
6835       // File scope. C99 6.9.2p2: A declaration of an identifier for an
6836       // object that has file scope without an initializer, and without a
6837       // storage-class specifier or with the storage-class specifier "static",
6838       // constitutes a tentative definition. Note: A tentative definition with
6839       // external linkage is valid (C99 6.2.2p5).
6840       if (!Var->isInvalidDecl()) {
6841         if (const IncompleteArrayType *ArrayT
6842                                     = Context.getAsIncompleteArrayType(Type)) {
6843           if (RequireCompleteType(Var->getLocation(),
6844                                   ArrayT->getElementType(),
6845                                   diag::err_illegal_decl_array_incomplete_type))
6846             Var->setInvalidDecl();
6847         } else if (Var->getStorageClass() == SC_Static) {
6848           // C99 6.9.2p3: If the declaration of an identifier for an object is
6849           // a tentative definition and has internal linkage (C99 6.2.2p3), the
6850           // declared type shall not be an incomplete type.
6851           // NOTE: code such as the following
6852           //     static struct s;
6853           //     struct s { int a; };
6854           // is accepted by gcc. Hence here we issue a warning instead of
6855           // an error and we do not invalidate the static declaration.
6856           // NOTE: to avoid multiple warnings, only check the first declaration.
6857           if (Var->getPreviousDecl() == 0)
6858             RequireCompleteType(Var->getLocation(), Type,
6859                                 diag::ext_typecheck_decl_incomplete_type);
6860         }
6861       }
6862 
6863       // Record the tentative definition; we're done.
6864       if (!Var->isInvalidDecl())
6865         TentativeDefinitions.push_back(Var);
6866       return;
6867     }
6868 
6869     // Provide a specific diagnostic for uninitialized variable
6870     // definitions with incomplete array type.
6871     if (Type->isIncompleteArrayType()) {
6872       Diag(Var->getLocation(),
6873            diag::err_typecheck_incomplete_array_needs_initializer);
6874       Var->setInvalidDecl();
6875       return;
6876     }
6877 
6878     // Provide a specific diagnostic for uninitialized variable
6879     // definitions with reference type.
6880     if (Type->isReferenceType()) {
6881       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6882         << Var->getDeclName()
6883         << SourceRange(Var->getLocation(), Var->getLocation());
6884       Var->setInvalidDecl();
6885       return;
6886     }
6887 
6888     // Do not attempt to type-check the default initializer for a
6889     // variable with dependent type.
6890     if (Type->isDependentType())
6891       return;
6892 
6893     if (Var->isInvalidDecl())
6894       return;
6895 
6896     if (RequireCompleteType(Var->getLocation(),
6897                             Context.getBaseElementType(Type),
6898                             diag::err_typecheck_decl_incomplete_type)) {
6899       Var->setInvalidDecl();
6900       return;
6901     }
6902 
6903     // The variable can not have an abstract class type.
6904     if (RequireNonAbstractType(Var->getLocation(), Type,
6905                                diag::err_abstract_type_in_decl,
6906                                AbstractVariableType)) {
6907       Var->setInvalidDecl();
6908       return;
6909     }
6910 
6911     // Check for jumps past the implicit initializer.  C++0x
6912     // clarifies that this applies to a "variable with automatic
6913     // storage duration", not a "local variable".
6914     // C++11 [stmt.dcl]p3
6915     //   A program that jumps from a point where a variable with automatic
6916     //   storage duration is not in scope to a point where it is in scope is
6917     //   ill-formed unless the variable has scalar type, class type with a
6918     //   trivial default constructor and a trivial destructor, a cv-qualified
6919     //   version of one of these types, or an array of one of the preceding
6920     //   types and is declared without an initializer.
6921     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6922       if (const RecordType *Record
6923             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6924         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6925         // Mark the function for further checking even if the looser rules of
6926         // C++11 do not require such checks, so that we can diagnose
6927         // incompatibilities with C++98.
6928         if (!CXXRecord->isPOD())
6929           getCurFunction()->setHasBranchProtectedScope();
6930       }
6931     }
6932 
6933     // C++03 [dcl.init]p9:
6934     //   If no initializer is specified for an object, and the
6935     //   object is of (possibly cv-qualified) non-POD class type (or
6936     //   array thereof), the object shall be default-initialized; if
6937     //   the object is of const-qualified type, the underlying class
6938     //   type shall have a user-declared default
6939     //   constructor. Otherwise, if no initializer is specified for
6940     //   a non- static object, the object and its subobjects, if
6941     //   any, have an indeterminate initial value); if the object
6942     //   or any of its subobjects are of const-qualified type, the
6943     //   program is ill-formed.
6944     // C++0x [dcl.init]p11:
6945     //   If no initializer is specified for an object, the object is
6946     //   default-initialized; [...].
6947     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6948     InitializationKind Kind
6949       = InitializationKind::CreateDefault(Var->getLocation());
6950 
6951     InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6952     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
6953     if (Init.isInvalid())
6954       Var->setInvalidDecl();
6955     else if (Init.get()) {
6956       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6957       // This is important for template substitution.
6958       Var->setInitStyle(VarDecl::CallInit);
6959     }
6960 
6961     CheckCompleteVariableDeclaration(Var);
6962   }
6963 }
6964 
ActOnCXXForRangeDecl(Decl * D)6965 void Sema::ActOnCXXForRangeDecl(Decl *D) {
6966   VarDecl *VD = dyn_cast<VarDecl>(D);
6967   if (!VD) {
6968     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6969     D->setInvalidDecl();
6970     return;
6971   }
6972 
6973   VD->setCXXForRangeDecl(true);
6974 
6975   // for-range-declaration cannot be given a storage class specifier.
6976   int Error = -1;
6977   switch (VD->getStorageClassAsWritten()) {
6978   case SC_None:
6979     break;
6980   case SC_Extern:
6981     Error = 0;
6982     break;
6983   case SC_Static:
6984     Error = 1;
6985     break;
6986   case SC_PrivateExtern:
6987     Error = 2;
6988     break;
6989   case SC_Auto:
6990     Error = 3;
6991     break;
6992   case SC_Register:
6993     Error = 4;
6994     break;
6995   case SC_OpenCLWorkGroupLocal:
6996     llvm_unreachable("Unexpected storage class");
6997   }
6998   if (VD->isConstexpr())
6999     Error = 5;
7000   if (Error != -1) {
7001     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7002       << VD->getDeclName() << Error;
7003     D->setInvalidDecl();
7004   }
7005 }
7006 
CheckCompleteVariableDeclaration(VarDecl * var)7007 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7008   if (var->isInvalidDecl()) return;
7009 
7010   // In ARC, don't allow jumps past the implicit initialization of a
7011   // local retaining variable.
7012   if (getLangOpts().ObjCAutoRefCount &&
7013       var->hasLocalStorage()) {
7014     switch (var->getType().getObjCLifetime()) {
7015     case Qualifiers::OCL_None:
7016     case Qualifiers::OCL_ExplicitNone:
7017     case Qualifiers::OCL_Autoreleasing:
7018       break;
7019 
7020     case Qualifiers::OCL_Weak:
7021     case Qualifiers::OCL_Strong:
7022       getCurFunction()->setHasBranchProtectedScope();
7023       break;
7024     }
7025   }
7026 
7027   // All the following checks are C++ only.
7028   if (!getLangOpts().CPlusPlus) return;
7029 
7030   QualType baseType = Context.getBaseElementType(var->getType());
7031   if (baseType->isDependentType()) return;
7032 
7033   // __block variables might require us to capture a copy-initializer.
7034   if (var->hasAttr<BlocksAttr>()) {
7035     // It's currently invalid to ever have a __block variable with an
7036     // array type; should we diagnose that here?
7037 
7038     // Regardless, we don't want to ignore array nesting when
7039     // constructing this copy.
7040     QualType type = var->getType();
7041 
7042     if (type->isStructureOrClassType()) {
7043       SourceLocation poi = var->getLocation();
7044       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7045       ExprResult result =
7046         PerformCopyInitialization(
7047                         InitializedEntity::InitializeBlock(poi, type, false),
7048                                   poi, Owned(varRef));
7049       if (!result.isInvalid()) {
7050         result = MaybeCreateExprWithCleanups(result);
7051         Expr *init = result.takeAs<Expr>();
7052         Context.setBlockVarCopyInits(var, init);
7053       }
7054     }
7055   }
7056 
7057   Expr *Init = var->getInit();
7058   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7059 
7060   if (!var->getDeclContext()->isDependentContext() && Init) {
7061     if (IsGlobal && !var->isConstexpr() &&
7062         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7063                                             var->getLocation())
7064           != DiagnosticsEngine::Ignored &&
7065         !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7066       Diag(var->getLocation(), diag::warn_global_constructor)
7067         << Init->getSourceRange();
7068 
7069     if (var->isConstexpr()) {
7070       llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7071       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7072         SourceLocation DiagLoc = var->getLocation();
7073         // If the note doesn't add any useful information other than a source
7074         // location, fold it into the primary diagnostic.
7075         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7076               diag::note_invalid_subexpr_in_const_expr) {
7077           DiagLoc = Notes[0].first;
7078           Notes.clear();
7079         }
7080         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7081           << var << Init->getSourceRange();
7082         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7083           Diag(Notes[I].first, Notes[I].second);
7084       }
7085     } else if (var->isUsableInConstantExpressions(Context)) {
7086       // Check whether the initializer of a const variable of integral or
7087       // enumeration type is an ICE now, since we can't tell whether it was
7088       // initialized by a constant expression if we check later.
7089       var->checkInitIsICE();
7090     }
7091   }
7092 
7093   // Require the destructor.
7094   if (const RecordType *recordType = baseType->getAs<RecordType>())
7095     FinalizeVarWithDestructor(var, recordType);
7096 }
7097 
7098 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7099 /// any semantic actions necessary after any initializer has been attached.
7100 void
FinalizeDeclaration(Decl * ThisDecl)7101 Sema::FinalizeDeclaration(Decl *ThisDecl) {
7102   // Note that we are no longer parsing the initializer for this declaration.
7103   ParsingInitForAutoVars.erase(ThisDecl);
7104 
7105   // Now we have parsed the initializer and can update the table of magic
7106   // tag values.
7107   if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7108     const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7109     if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7110       for (specific_attr_iterator<TypeTagForDatatypeAttr>
7111                I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7112                E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7113            I != E; ++I) {
7114         const Expr *MagicValueExpr = VD->getInit();
7115         if (!MagicValueExpr) {
7116           continue;
7117         }
7118         llvm::APSInt MagicValueInt;
7119         if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7120           Diag(I->getRange().getBegin(),
7121                diag::err_type_tag_for_datatype_not_ice)
7122             << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7123           continue;
7124         }
7125         if (MagicValueInt.getActiveBits() > 64) {
7126           Diag(I->getRange().getBegin(),
7127                diag::err_type_tag_for_datatype_too_large)
7128             << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7129           continue;
7130         }
7131         uint64_t MagicValue = MagicValueInt.getZExtValue();
7132         RegisterTypeTagForDatatype(I->getArgumentKind(),
7133                                    MagicValue,
7134                                    I->getMatchingCType(),
7135                                    I->getLayoutCompatible(),
7136                                    I->getMustBeNull());
7137       }
7138     }
7139   }
7140 }
7141 
7142 Sema::DeclGroupPtrTy
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,Decl ** Group,unsigned NumDecls)7143 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7144                               Decl **Group, unsigned NumDecls) {
7145   SmallVector<Decl*, 8> Decls;
7146 
7147   if (DS.isTypeSpecOwned())
7148     Decls.push_back(DS.getRepAsDecl());
7149 
7150   for (unsigned i = 0; i != NumDecls; ++i)
7151     if (Decl *D = Group[i])
7152       Decls.push_back(D);
7153 
7154   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7155                               DS.getTypeSpecType() == DeclSpec::TST_auto);
7156 }
7157 
7158 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
7159 /// group, performing any necessary semantic checking.
7160 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(Decl ** Group,unsigned NumDecls,bool TypeMayContainAuto)7161 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7162                            bool TypeMayContainAuto) {
7163   // C++0x [dcl.spec.auto]p7:
7164   //   If the type deduced for the template parameter U is not the same in each
7165   //   deduction, the program is ill-formed.
7166   // FIXME: When initializer-list support is added, a distinction is needed
7167   // between the deduced type U and the deduced type which 'auto' stands for.
7168   //   auto a = 0, b = { 1, 2, 3 };
7169   // is legal because the deduced type U is 'int' in both cases.
7170   if (TypeMayContainAuto && NumDecls > 1) {
7171     QualType Deduced;
7172     CanQualType DeducedCanon;
7173     VarDecl *DeducedDecl = 0;
7174     for (unsigned i = 0; i != NumDecls; ++i) {
7175       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7176         AutoType *AT = D->getType()->getContainedAutoType();
7177         // Don't reissue diagnostics when instantiating a template.
7178         if (AT && D->isInvalidDecl())
7179           break;
7180         if (AT && AT->isDeduced()) {
7181           QualType U = AT->getDeducedType();
7182           CanQualType UCanon = Context.getCanonicalType(U);
7183           if (Deduced.isNull()) {
7184             Deduced = U;
7185             DeducedCanon = UCanon;
7186             DeducedDecl = D;
7187           } else if (DeducedCanon != UCanon) {
7188             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7189                  diag::err_auto_different_deductions)
7190               << Deduced << DeducedDecl->getDeclName()
7191               << U << D->getDeclName()
7192               << DeducedDecl->getInit()->getSourceRange()
7193               << D->getInit()->getSourceRange();
7194             D->setInvalidDecl();
7195             break;
7196           }
7197         }
7198       }
7199     }
7200   }
7201 
7202   ActOnDocumentableDecls(Group, NumDecls);
7203 
7204   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7205 }
7206 
ActOnDocumentableDecl(Decl * D)7207 void Sema::ActOnDocumentableDecl(Decl *D) {
7208   ActOnDocumentableDecls(&D, 1);
7209 }
7210 
ActOnDocumentableDecls(Decl ** Group,unsigned NumDecls)7211 void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7212   // Don't parse the comment if Doxygen diagnostics are ignored.
7213   if (NumDecls == 0 || !Group[0])
7214    return;
7215 
7216   if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7217                                Group[0]->getLocation())
7218         == DiagnosticsEngine::Ignored)
7219     return;
7220 
7221   if (NumDecls >= 2) {
7222     // This is a decl group.  Normally it will contain only declarations
7223     // procuded from declarator list.  But in case we have any definitions or
7224     // additional declaration references:
7225     //   'typedef struct S {} S;'
7226     //   'typedef struct S *S;'
7227     //   'struct S *pS;'
7228     // FinalizeDeclaratorGroup adds these as separate declarations.
7229     Decl *MaybeTagDecl = Group[0];
7230     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7231       Group++;
7232       NumDecls--;
7233     }
7234   }
7235 
7236   // See if there are any new comments that are not attached to a decl.
7237   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7238   if (!Comments.empty() &&
7239       !Comments.back()->isAttached()) {
7240     // There is at least one comment that not attached to a decl.
7241     // Maybe it should be attached to one of these decls?
7242     //
7243     // Note that this way we pick up not only comments that precede the
7244     // declaration, but also comments that *follow* the declaration -- thanks to
7245     // the lookahead in the lexer: we've consumed the semicolon and looked
7246     // ahead through comments.
7247     for (unsigned i = 0; i != NumDecls; ++i)
7248       Context.getCommentForDecl(Group[i]);
7249   }
7250 }
7251 
7252 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7253 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)7254 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7255   const DeclSpec &DS = D.getDeclSpec();
7256 
7257   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7258   // C++03 [dcl.stc]p2 also permits 'auto'.
7259   VarDecl::StorageClass StorageClass = SC_None;
7260   VarDecl::StorageClass StorageClassAsWritten = SC_None;
7261   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7262     StorageClass = SC_Register;
7263     StorageClassAsWritten = SC_Register;
7264   } else if (getLangOpts().CPlusPlus &&
7265              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7266     StorageClass = SC_Auto;
7267     StorageClassAsWritten = SC_Auto;
7268   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7269     Diag(DS.getStorageClassSpecLoc(),
7270          diag::err_invalid_storage_class_in_func_decl);
7271     D.getMutableDeclSpec().ClearStorageClassSpecs();
7272   }
7273 
7274   if (D.getDeclSpec().isThreadSpecified())
7275     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7276   if (D.getDeclSpec().isConstexprSpecified())
7277     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7278       << 0;
7279 
7280   DiagnoseFunctionSpecifiers(D);
7281 
7282   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7283   QualType parmDeclType = TInfo->getType();
7284 
7285   if (getLangOpts().CPlusPlus) {
7286     // Check that there are no default arguments inside the type of this
7287     // parameter.
7288     CheckExtraCXXDefaultArguments(D);
7289 
7290     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7291     if (D.getCXXScopeSpec().isSet()) {
7292       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7293         << D.getCXXScopeSpec().getRange();
7294       D.getCXXScopeSpec().clear();
7295     }
7296   }
7297 
7298   // Ensure we have a valid name
7299   IdentifierInfo *II = 0;
7300   if (D.hasName()) {
7301     II = D.getIdentifier();
7302     if (!II) {
7303       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7304         << GetNameForDeclarator(D).getName().getAsString();
7305       D.setInvalidType(true);
7306     }
7307   }
7308 
7309   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7310   if (II) {
7311     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7312                    ForRedeclaration);
7313     LookupName(R, S);
7314     if (R.isSingleResult()) {
7315       NamedDecl *PrevDecl = R.getFoundDecl();
7316       if (PrevDecl->isTemplateParameter()) {
7317         // Maybe we will complain about the shadowed template parameter.
7318         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7319         // Just pretend that we didn't see the previous declaration.
7320         PrevDecl = 0;
7321       } else if (S->isDeclScope(PrevDecl)) {
7322         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7323         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7324 
7325         // Recover by removing the name
7326         II = 0;
7327         D.SetIdentifier(0, D.getIdentifierLoc());
7328         D.setInvalidType(true);
7329       }
7330     }
7331   }
7332 
7333   // Temporarily put parameter variables in the translation unit, not
7334   // the enclosing context.  This prevents them from accidentally
7335   // looking like class members in C++.
7336   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7337                                     D.getLocStart(),
7338                                     D.getIdentifierLoc(), II,
7339                                     parmDeclType, TInfo,
7340                                     StorageClass, StorageClassAsWritten);
7341 
7342   if (D.isInvalidType())
7343     New->setInvalidDecl();
7344 
7345   assert(S->isFunctionPrototypeScope());
7346   assert(S->getFunctionPrototypeDepth() >= 1);
7347   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7348                     S->getNextFunctionPrototypeIndex());
7349 
7350   // Add the parameter declaration into this scope.
7351   S->AddDecl(New);
7352   if (II)
7353     IdResolver.AddDecl(New);
7354 
7355   ProcessDeclAttributes(S, New, D);
7356 
7357   if (D.getDeclSpec().isModulePrivateSpecified())
7358     Diag(New->getLocation(), diag::err_module_private_local)
7359       << 1 << New->getDeclName()
7360       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7361       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7362 
7363   if (New->hasAttr<BlocksAttr>()) {
7364     Diag(New->getLocation(), diag::err_block_on_nonlocal);
7365   }
7366   return New;
7367 }
7368 
7369 /// \brief Synthesizes a variable for a parameter arising from a
7370 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)7371 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7372                                               SourceLocation Loc,
7373                                               QualType T) {
7374   /* FIXME: setting StartLoc == Loc.
7375      Would it be worth to modify callers so as to provide proper source
7376      location for the unnamed parameters, embedding the parameter's type? */
7377   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7378                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
7379                                            SC_None, SC_None, 0);
7380   Param->setImplicit();
7381   return Param;
7382 }
7383 
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)7384 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7385                                     ParmVarDecl * const *ParamEnd) {
7386   // Don't diagnose unused-parameter errors in template instantiations; we
7387   // will already have done so in the template itself.
7388   if (!ActiveTemplateInstantiations.empty())
7389     return;
7390 
7391   for (; Param != ParamEnd; ++Param) {
7392     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7393         !(*Param)->hasAttr<UnusedAttr>()) {
7394       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7395         << (*Param)->getDeclName();
7396     }
7397   }
7398 }
7399 
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)7400 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7401                                                   ParmVarDecl * const *ParamEnd,
7402                                                   QualType ReturnTy,
7403                                                   NamedDecl *D) {
7404   if (LangOpts.NumLargeByValueCopy == 0) // No check.
7405     return;
7406 
7407   // Warn if the return value is pass-by-value and larger than the specified
7408   // threshold.
7409   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7410     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7411     if (Size > LangOpts.NumLargeByValueCopy)
7412       Diag(D->getLocation(), diag::warn_return_value_size)
7413           << D->getDeclName() << Size;
7414   }
7415 
7416   // Warn if any parameter is pass-by-value and larger than the specified
7417   // threshold.
7418   for (; Param != ParamEnd; ++Param) {
7419     QualType T = (*Param)->getType();
7420     if (T->isDependentType() || !T.isPODType(Context))
7421       continue;
7422     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7423     if (Size > LangOpts.NumLargeByValueCopy)
7424       Diag((*Param)->getLocation(), diag::warn_parameter_size)
7425           << (*Param)->getDeclName() << Size;
7426   }
7427 }
7428 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass,VarDecl::StorageClass StorageClassAsWritten)7429 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7430                                   SourceLocation NameLoc, IdentifierInfo *Name,
7431                                   QualType T, TypeSourceInfo *TSInfo,
7432                                   VarDecl::StorageClass StorageClass,
7433                                   VarDecl::StorageClass StorageClassAsWritten) {
7434   // In ARC, infer a lifetime qualifier for appropriate parameter types.
7435   if (getLangOpts().ObjCAutoRefCount &&
7436       T.getObjCLifetime() == Qualifiers::OCL_None &&
7437       T->isObjCLifetimeType()) {
7438 
7439     Qualifiers::ObjCLifetime lifetime;
7440 
7441     // Special cases for arrays:
7442     //   - if it's const, use __unsafe_unretained
7443     //   - otherwise, it's an error
7444     if (T->isArrayType()) {
7445       if (!T.isConstQualified()) {
7446         DelayedDiagnostics.add(
7447             sema::DelayedDiagnostic::makeForbiddenType(
7448             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7449       }
7450       lifetime = Qualifiers::OCL_ExplicitNone;
7451     } else {
7452       lifetime = T->getObjCARCImplicitLifetime();
7453     }
7454     T = Context.getLifetimeQualifiedType(T, lifetime);
7455   }
7456 
7457   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7458                                          Context.getAdjustedParameterType(T),
7459                                          TSInfo,
7460                                          StorageClass, StorageClassAsWritten,
7461                                          0);
7462 
7463   // Parameters can not be abstract class types.
7464   // For record types, this is done by the AbstractClassUsageDiagnoser once
7465   // the class has been completely parsed.
7466   if (!CurContext->isRecord() &&
7467       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7468                              AbstractParamType))
7469     New->setInvalidDecl();
7470 
7471   // Parameter declarators cannot be interface types. All ObjC objects are
7472   // passed by reference.
7473   if (T->isObjCObjectType()) {
7474     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7475     Diag(NameLoc,
7476          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7477       << FixItHint::CreateInsertion(TypeEndLoc, "*");
7478     T = Context.getObjCObjectPointerType(T);
7479     New->setType(T);
7480   }
7481 
7482   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7483   // duration shall not be qualified by an address-space qualifier."
7484   // Since all parameters have automatic store duration, they can not have
7485   // an address space.
7486   if (T.getAddressSpace() != 0) {
7487     Diag(NameLoc, diag::err_arg_with_address_space);
7488     New->setInvalidDecl();
7489   }
7490 
7491   return New;
7492 }
7493 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)7494 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7495                                            SourceLocation LocAfterDecls) {
7496   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7497 
7498   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7499   // for a K&R function.
7500   if (!FTI.hasPrototype) {
7501     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7502       --i;
7503       if (FTI.ArgInfo[i].Param == 0) {
7504         SmallString<256> Code;
7505         llvm::raw_svector_ostream(Code) << "  int "
7506                                         << FTI.ArgInfo[i].Ident->getName()
7507                                         << ";\n";
7508         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7509           << FTI.ArgInfo[i].Ident
7510           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7511 
7512         // Implicitly declare the argument as type 'int' for lack of a better
7513         // type.
7514         AttributeFactory attrs;
7515         DeclSpec DS(attrs);
7516         const char* PrevSpec; // unused
7517         unsigned DiagID; // unused
7518         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7519                            PrevSpec, DiagID);
7520         Declarator ParamD(DS, Declarator::KNRTypeListContext);
7521         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7522         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7523       }
7524     }
7525   }
7526 }
7527 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)7528 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7529   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7530   assert(D.isFunctionDeclarator() && "Not a function declarator!");
7531   Scope *ParentScope = FnBodyScope->getParent();
7532 
7533   D.setFunctionDefinitionKind(FDK_Definition);
7534   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7535   return ActOnStartOfFunctionDef(FnBodyScope, DP);
7536 }
7537 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD)7538 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7539   // Don't warn about invalid declarations.
7540   if (FD->isInvalidDecl())
7541     return false;
7542 
7543   // Or declarations that aren't global.
7544   if (!FD->isGlobal())
7545     return false;
7546 
7547   // Don't warn about C++ member functions.
7548   if (isa<CXXMethodDecl>(FD))
7549     return false;
7550 
7551   // Don't warn about 'main'.
7552   if (FD->isMain())
7553     return false;
7554 
7555   // Don't warn about inline functions.
7556   if (FD->isInlined())
7557     return false;
7558 
7559   // Don't warn about function templates.
7560   if (FD->getDescribedFunctionTemplate())
7561     return false;
7562 
7563   // Don't warn about function template specializations.
7564   if (FD->isFunctionTemplateSpecialization())
7565     return false;
7566 
7567   // Don't warn for OpenCL kernels.
7568   if (FD->hasAttr<OpenCLKernelAttr>())
7569     return false;
7570 
7571   bool MissingPrototype = true;
7572   for (const FunctionDecl *Prev = FD->getPreviousDecl();
7573        Prev; Prev = Prev->getPreviousDecl()) {
7574     // Ignore any declarations that occur in function or method
7575     // scope, because they aren't visible from the header.
7576     if (Prev->getDeclContext()->isFunctionOrMethod())
7577       continue;
7578 
7579     MissingPrototype = !Prev->getType()->isFunctionProtoType();
7580     break;
7581   }
7582 
7583   return MissingPrototype;
7584 }
7585 
CheckForFunctionRedefinition(FunctionDecl * FD)7586 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7587   // Don't complain if we're in GNU89 mode and the previous definition
7588   // was an extern inline function.
7589   const FunctionDecl *Definition;
7590   if (FD->isDefined(Definition) &&
7591       !canRedefineFunction(Definition, getLangOpts())) {
7592     if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7593         Definition->getStorageClass() == SC_Extern)
7594       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7595         << FD->getDeclName() << getLangOpts().CPlusPlus;
7596     else
7597       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7598     Diag(Definition->getLocation(), diag::note_previous_definition);
7599     FD->setInvalidDecl();
7600   }
7601 }
7602 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)7603 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7604   // Clear the last template instantiation error context.
7605   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7606 
7607   if (!D)
7608     return D;
7609   FunctionDecl *FD = 0;
7610 
7611   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7612     FD = FunTmpl->getTemplatedDecl();
7613   else
7614     FD = cast<FunctionDecl>(D);
7615 
7616   // Enter a new function scope
7617   PushFunctionScope();
7618 
7619   // See if this is a redefinition.
7620   if (!FD->isLateTemplateParsed())
7621     CheckForFunctionRedefinition(FD);
7622 
7623   // Builtin functions cannot be defined.
7624   if (unsigned BuiltinID = FD->getBuiltinID()) {
7625     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7626       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7627       FD->setInvalidDecl();
7628     }
7629   }
7630 
7631   // The return type of a function definition must be complete
7632   // (C99 6.9.1p3, C++ [dcl.fct]p6).
7633   QualType ResultType = FD->getResultType();
7634   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7635       !FD->isInvalidDecl() &&
7636       RequireCompleteType(FD->getLocation(), ResultType,
7637                           diag::err_func_def_incomplete_result))
7638     FD->setInvalidDecl();
7639 
7640   // GNU warning -Wmissing-prototypes:
7641   //   Warn if a global function is defined without a previous
7642   //   prototype declaration. This warning is issued even if the
7643   //   definition itself provides a prototype. The aim is to detect
7644   //   global functions that fail to be declared in header files.
7645   if (ShouldWarnAboutMissingPrototype(FD))
7646     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7647 
7648   if (FnBodyScope)
7649     PushDeclContext(FnBodyScope, FD);
7650 
7651   // Check the validity of our function parameters
7652   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7653                            /*CheckParameterNames=*/true);
7654 
7655   // Introduce our parameters into the function scope
7656   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7657     ParmVarDecl *Param = FD->getParamDecl(p);
7658     Param->setOwningFunction(FD);
7659 
7660     // If this has an identifier, add it to the scope stack.
7661     if (Param->getIdentifier() && FnBodyScope) {
7662       CheckShadow(FnBodyScope, Param);
7663 
7664       PushOnScopeChains(Param, FnBodyScope);
7665     }
7666   }
7667 
7668   // If we had any tags defined in the function prototype,
7669   // introduce them into the function scope.
7670   if (FnBodyScope) {
7671     for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7672            E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7673       NamedDecl *D = *I;
7674 
7675       // Some of these decls (like enums) may have been pinned to the translation unit
7676       // for lack of a real context earlier. If so, remove from the translation unit
7677       // and reattach to the current context.
7678       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7679         // Is the decl actually in the context?
7680         for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7681                DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7682           if (*DI == D) {
7683             Context.getTranslationUnitDecl()->removeDecl(D);
7684             break;
7685           }
7686         }
7687         // Either way, reassign the lexical decl context to our FunctionDecl.
7688         D->setLexicalDeclContext(CurContext);
7689       }
7690 
7691       // If the decl has a non-null name, make accessible in the current scope.
7692       if (!D->getName().empty())
7693         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7694 
7695       // Similarly, dive into enums and fish their constants out, making them
7696       // accessible in this scope.
7697       if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7698         for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7699                EE = ED->enumerator_end(); EI != EE; ++EI)
7700           PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7701       }
7702     }
7703   }
7704 
7705   // Ensure that the function's exception specification is instantiated.
7706   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7707     ResolveExceptionSpec(D->getLocation(), FPT);
7708 
7709   // Checking attributes of current function definition
7710   // dllimport attribute.
7711   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7712   if (DA && (!FD->getAttr<DLLExportAttr>())) {
7713     // dllimport attribute cannot be directly applied to definition.
7714     // Microsoft accepts dllimport for functions defined within class scope.
7715     if (!DA->isInherited() &&
7716         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7717       Diag(FD->getLocation(),
7718            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7719         << "dllimport";
7720       FD->setInvalidDecl();
7721       return FD;
7722     }
7723 
7724     // Visual C++ appears to not think this is an issue, so only issue
7725     // a warning when Microsoft extensions are disabled.
7726     if (!LangOpts.MicrosoftExt) {
7727       // If a symbol previously declared dllimport is later defined, the
7728       // attribute is ignored in subsequent references, and a warning is
7729       // emitted.
7730       Diag(FD->getLocation(),
7731            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7732         << FD->getName() << "dllimport";
7733     }
7734   }
7735   // We want to attach documentation to original Decl (which might be
7736   // a function template).
7737   ActOnDocumentableDecl(D);
7738   return FD;
7739 }
7740 
7741 /// \brief Given the set of return statements within a function body,
7742 /// compute the variables that are subject to the named return value
7743 /// optimization.
7744 ///
7745 /// Each of the variables that is subject to the named return value
7746 /// optimization will be marked as NRVO variables in the AST, and any
7747 /// return statement that has a marked NRVO variable as its NRVO candidate can
7748 /// use the named return value optimization.
7749 ///
7750 /// This function applies a very simplistic algorithm for NRVO: if every return
7751 /// statement in the function has the same NRVO candidate, that candidate is
7752 /// the NRVO variable.
7753 ///
7754 /// FIXME: Employ a smarter algorithm that accounts for multiple return
7755 /// statements and the lifetimes of the NRVO candidates. We should be able to
7756 /// find a maximal set of NRVO variables.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)7757 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7758   ReturnStmt **Returns = Scope->Returns.data();
7759 
7760   const VarDecl *NRVOCandidate = 0;
7761   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7762     if (!Returns[I]->getNRVOCandidate())
7763       return;
7764 
7765     if (!NRVOCandidate)
7766       NRVOCandidate = Returns[I]->getNRVOCandidate();
7767     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7768       return;
7769   }
7770 
7771   if (NRVOCandidate)
7772     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7773 }
7774 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)7775 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7776   return ActOnFinishFunctionBody(D, BodyArg, false);
7777 }
7778 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)7779 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7780                                     bool IsInstantiation) {
7781   FunctionDecl *FD = 0;
7782   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7783   if (FunTmpl)
7784     FD = FunTmpl->getTemplatedDecl();
7785   else
7786     FD = dyn_cast_or_null<FunctionDecl>(dcl);
7787 
7788   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7789   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7790 
7791   if (FD) {
7792     FD->setBody(Body);
7793 
7794     // If the function implicitly returns zero (like 'main') or is naked,
7795     // don't complain about missing return statements.
7796     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7797       WP.disableCheckFallThrough();
7798 
7799     // MSVC permits the use of pure specifier (=0) on function definition,
7800     // defined at class scope, warn about this non standard construct.
7801     if (getLangOpts().MicrosoftExt && FD->isPure())
7802       Diag(FD->getLocation(), diag::warn_pure_function_definition);
7803 
7804     if (!FD->isInvalidDecl()) {
7805       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7806       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7807                                              FD->getResultType(), FD);
7808 
7809       // If this is a constructor, we need a vtable.
7810       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7811         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7812 
7813       // Try to apply the named return value optimization. We have to check
7814       // if we can do this here because lambdas keep return statements around
7815       // to deduce an implicit return type.
7816       if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7817           !FD->isDependentContext())
7818         computeNRVO(Body, getCurFunction());
7819     }
7820 
7821     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7822            "Function parsing confused");
7823   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7824     assert(MD == getCurMethodDecl() && "Method parsing confused");
7825     MD->setBody(Body);
7826     if (!MD->isInvalidDecl()) {
7827       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7828       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7829                                              MD->getResultType(), MD);
7830 
7831       if (Body)
7832         computeNRVO(Body, getCurFunction());
7833     }
7834     if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7835       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
7836         << MD->getSelector().getAsString();
7837       getCurFunction()->ObjCShouldCallSuperDealloc = false;
7838     }
7839     if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7840       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7841       getCurFunction()->ObjCShouldCallSuperFinalize = false;
7842     }
7843   } else {
7844     return 0;
7845   }
7846 
7847   assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7848          "This should only be set for ObjC methods, which should have been "
7849          "handled in the block above.");
7850   assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7851          "This should only be set for ObjC methods, which should have been "
7852          "handled in the block above.");
7853 
7854   // Verify and clean out per-function state.
7855   if (Body) {
7856     // C++ constructors that have function-try-blocks can't have return
7857     // statements in the handlers of that block. (C++ [except.handle]p14)
7858     // Verify this.
7859     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7860       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7861 
7862     // Verify that gotos and switch cases don't jump into scopes illegally.
7863     if (getCurFunction()->NeedsScopeChecking() &&
7864         !dcl->isInvalidDecl() &&
7865         !hasAnyUnrecoverableErrorsInThisFunction() &&
7866         !PP.isCodeCompletionEnabled())
7867       DiagnoseInvalidJumps(Body);
7868 
7869     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7870       if (!Destructor->getParent()->isDependentType())
7871         CheckDestructor(Destructor);
7872 
7873       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7874                                              Destructor->getParent());
7875     }
7876 
7877     // If any errors have occurred, clear out any temporaries that may have
7878     // been leftover. This ensures that these temporaries won't be picked up for
7879     // deletion in some later function.
7880     if (PP.getDiagnostics().hasErrorOccurred() ||
7881         PP.getDiagnostics().getSuppressAllDiagnostics()) {
7882       DiscardCleanupsInEvaluationContext();
7883     } else if (!isa<FunctionTemplateDecl>(dcl)) {
7884       // Since the body is valid, issue any analysis-based warnings that are
7885       // enabled.
7886       ActivePolicy = &WP;
7887     }
7888 
7889     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7890         (!CheckConstexprFunctionDecl(FD) ||
7891          !CheckConstexprFunctionBody(FD, Body)))
7892       FD->setInvalidDecl();
7893 
7894     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7895     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7896     assert(MaybeODRUseExprs.empty() &&
7897            "Leftover expressions for odr-use checking");
7898   }
7899 
7900   if (!IsInstantiation)
7901     PopDeclContext();
7902 
7903   PopFunctionScopeInfo(ActivePolicy, dcl);
7904 
7905   // If any errors have occurred, clear out any temporaries that may have
7906   // been leftover. This ensures that these temporaries won't be picked up for
7907   // deletion in some later function.
7908   if (getDiagnostics().hasErrorOccurred()) {
7909     DiscardCleanupsInEvaluationContext();
7910   }
7911 
7912   return dcl;
7913 }
7914 
7915 
7916 /// When we finish delayed parsing of an attribute, we must attach it to the
7917 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)7918 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7919                                        ParsedAttributes &Attrs) {
7920   // Always attach attributes to the underlying decl.
7921   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7922     D = TD->getTemplatedDecl();
7923   ProcessDeclAttributeList(S, D, Attrs.getList());
7924 
7925   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7926     if (Method->isStatic())
7927       checkThisInStaticMemberFunctionAttributes(Method);
7928 }
7929 
7930 
7931 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7932 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)7933 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7934                                           IdentifierInfo &II, Scope *S) {
7935   // Before we produce a declaration for an implicitly defined
7936   // function, see whether there was a locally-scoped declaration of
7937   // this name as a function or variable. If so, use that
7938   // (non-visible) declaration, and complain about it.
7939   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7940     = findLocallyScopedExternalDecl(&II);
7941   if (Pos != LocallyScopedExternalDecls.end()) {
7942     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7943     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7944     return Pos->second;
7945   }
7946 
7947   // Extension in C99.  Legal in C90, but warn about it.
7948   unsigned diag_id;
7949   if (II.getName().startswith("__builtin_"))
7950     diag_id = diag::warn_builtin_unknown;
7951   else if (getLangOpts().C99)
7952     diag_id = diag::ext_implicit_function_decl;
7953   else
7954     diag_id = diag::warn_implicit_function_decl;
7955   Diag(Loc, diag_id) << &II;
7956 
7957   // Because typo correction is expensive, only do it if the implicit
7958   // function declaration is going to be treated as an error.
7959   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7960     TypoCorrection Corrected;
7961     DeclFilterCCC<FunctionDecl> Validator;
7962     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7963                                       LookupOrdinaryName, S, 0, Validator))) {
7964       std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7965       std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7966       FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7967 
7968       Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7969           << FixItHint::CreateReplacement(Loc, CorrectedStr);
7970 
7971       if (Func->getLocation().isValid()
7972           && !II.getName().startswith("__builtin_"))
7973         Diag(Func->getLocation(), diag::note_previous_decl)
7974             << CorrectedQuotedStr;
7975     }
7976   }
7977 
7978   // Set a Declarator for the implicit definition: int foo();
7979   const char *Dummy;
7980   AttributeFactory attrFactory;
7981   DeclSpec DS(attrFactory);
7982   unsigned DiagID;
7983   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7984   (void)Error; // Silence warning.
7985   assert(!Error && "Error setting up implicit decl!");
7986   Declarator D(DS, Declarator::BlockContext);
7987   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
7988                                              SourceLocation(), 0, 0, 0, true,
7989                                              SourceLocation(), SourceLocation(),
7990                                              SourceLocation(), SourceLocation(),
7991                                              EST_None, SourceLocation(),
7992                                              0, 0, 0, 0, Loc, Loc, D),
7993                 DS.getAttributes(),
7994                 SourceLocation());
7995   D.SetIdentifier(&II, Loc);
7996 
7997   // Insert this function into translation-unit scope.
7998 
7999   DeclContext *PrevDC = CurContext;
8000   CurContext = Context.getTranslationUnitDecl();
8001 
8002   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8003   FD->setImplicit();
8004 
8005   CurContext = PrevDC;
8006 
8007   AddKnownFunctionAttributes(FD);
8008 
8009   return FD;
8010 }
8011 
8012 /// \brief Adds any function attributes that we know a priori based on
8013 /// the declaration of this function.
8014 ///
8015 /// These attributes can apply both to implicitly-declared builtins
8016 /// (like __builtin___printf_chk) or to library-declared functions
8017 /// like NSLog or printf.
8018 ///
8019 /// We need to check for duplicate attributes both here and where user-written
8020 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)8021 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8022   if (FD->isInvalidDecl())
8023     return;
8024 
8025   // If this is a built-in function, map its builtin attributes to
8026   // actual attributes.
8027   if (unsigned BuiltinID = FD->getBuiltinID()) {
8028     // Handle printf-formatting attributes.
8029     unsigned FormatIdx;
8030     bool HasVAListArg;
8031     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8032       if (!FD->getAttr<FormatAttr>()) {
8033         const char *fmt = "printf";
8034         unsigned int NumParams = FD->getNumParams();
8035         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8036             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8037           fmt = "NSString";
8038         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8039                                                fmt, FormatIdx+1,
8040                                                HasVAListArg ? 0 : FormatIdx+2));
8041       }
8042     }
8043     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8044                                              HasVAListArg)) {
8045      if (!FD->getAttr<FormatAttr>())
8046        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8047                                               "scanf", FormatIdx+1,
8048                                               HasVAListArg ? 0 : FormatIdx+2));
8049     }
8050 
8051     // Mark const if we don't care about errno and that is the only
8052     // thing preventing the function from being const. This allows
8053     // IRgen to use LLVM intrinsics for such functions.
8054     if (!getLangOpts().MathErrno &&
8055         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8056       if (!FD->getAttr<ConstAttr>())
8057         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8058     }
8059 
8060     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8061         !FD->getAttr<ReturnsTwiceAttr>())
8062       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8063     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8064       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8065     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8066       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8067   }
8068 
8069   IdentifierInfo *Name = FD->getIdentifier();
8070   if (!Name)
8071     return;
8072   if ((!getLangOpts().CPlusPlus &&
8073        FD->getDeclContext()->isTranslationUnit()) ||
8074       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8075        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8076        LinkageSpecDecl::lang_c)) {
8077     // Okay: this could be a libc/libm/Objective-C function we know
8078     // about.
8079   } else
8080     return;
8081 
8082   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8083     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8084     // target-specific builtins, perhaps?
8085     if (!FD->getAttr<FormatAttr>())
8086       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8087                                              "printf", 2,
8088                                              Name->isStr("vasprintf") ? 0 : 3));
8089   }
8090 
8091   if (Name->isStr("__CFStringMakeConstantString")) {
8092     // We already have a __builtin___CFStringMakeConstantString,
8093     // but builds that use -fno-constant-cfstrings don't go through that.
8094     if (!FD->getAttr<FormatArgAttr>())
8095       FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8096   }
8097 }
8098 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)8099 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8100                                     TypeSourceInfo *TInfo) {
8101   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8102   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8103 
8104   if (!TInfo) {
8105     assert(D.isInvalidType() && "no declarator info for valid type");
8106     TInfo = Context.getTrivialTypeSourceInfo(T);
8107   }
8108 
8109   // Scope manipulation handled by caller.
8110   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8111                                            D.getLocStart(),
8112                                            D.getIdentifierLoc(),
8113                                            D.getIdentifier(),
8114                                            TInfo);
8115 
8116   // Bail out immediately if we have an invalid declaration.
8117   if (D.isInvalidType()) {
8118     NewTD->setInvalidDecl();
8119     return NewTD;
8120   }
8121 
8122   if (D.getDeclSpec().isModulePrivateSpecified()) {
8123     if (CurContext->isFunctionOrMethod())
8124       Diag(NewTD->getLocation(), diag::err_module_private_local)
8125         << 2 << NewTD->getDeclName()
8126         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8127         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8128     else
8129       NewTD->setModulePrivate();
8130   }
8131 
8132   // C++ [dcl.typedef]p8:
8133   //   If the typedef declaration defines an unnamed class (or
8134   //   enum), the first typedef-name declared by the declaration
8135   //   to be that class type (or enum type) is used to denote the
8136   //   class type (or enum type) for linkage purposes only.
8137   // We need to check whether the type was declared in the declaration.
8138   switch (D.getDeclSpec().getTypeSpecType()) {
8139   case TST_enum:
8140   case TST_struct:
8141   case TST_interface:
8142   case TST_union:
8143   case TST_class: {
8144     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8145 
8146     // Do nothing if the tag is not anonymous or already has an
8147     // associated typedef (from an earlier typedef in this decl group).
8148     if (tagFromDeclSpec->getIdentifier()) break;
8149     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8150 
8151     // A well-formed anonymous tag must always be a TUK_Definition.
8152     assert(tagFromDeclSpec->isThisDeclarationADefinition());
8153 
8154     // The type must match the tag exactly;  no qualifiers allowed.
8155     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8156       break;
8157 
8158     // Otherwise, set this is the anon-decl typedef for the tag.
8159     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8160     break;
8161   }
8162 
8163   default:
8164     break;
8165   }
8166 
8167   return NewTD;
8168 }
8169 
8170 
8171 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)8172 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8173   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8174   QualType T = TI->getType();
8175 
8176   if (T->isDependentType() || T->isIntegralType(Context))
8177     return false;
8178 
8179   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8180   return true;
8181 }
8182 
8183 /// Check whether this is a valid redeclaration of a previous enumeration.
8184 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)8185 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8186                                   QualType EnumUnderlyingTy,
8187                                   const EnumDecl *Prev) {
8188   bool IsFixed = !EnumUnderlyingTy.isNull();
8189 
8190   if (IsScoped != Prev->isScoped()) {
8191     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8192       << Prev->isScoped();
8193     Diag(Prev->getLocation(), diag::note_previous_use);
8194     return true;
8195   }
8196 
8197   if (IsFixed && Prev->isFixed()) {
8198     if (!EnumUnderlyingTy->isDependentType() &&
8199         !Prev->getIntegerType()->isDependentType() &&
8200         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8201                                         Prev->getIntegerType())) {
8202       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8203         << EnumUnderlyingTy << Prev->getIntegerType();
8204       Diag(Prev->getLocation(), diag::note_previous_use);
8205       return true;
8206     }
8207   } else if (IsFixed != Prev->isFixed()) {
8208     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8209       << Prev->isFixed();
8210     Diag(Prev->getLocation(), diag::note_previous_use);
8211     return true;
8212   }
8213 
8214   return false;
8215 }
8216 
8217 /// \brief Get diagnostic %select index for tag kind for
8218 /// redeclaration diagnostic message.
8219 /// WARNING: Indexes apply to particular diagnostics only!
8220 ///
8221 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)8222 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8223   switch (Tag) {
8224   case TTK_Struct: return 0;
8225   case TTK_Interface: return 1;
8226   case TTK_Class:  return 2;
8227   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8228   }
8229 }
8230 
8231 /// \brief Determine if tag kind is a class-key compatible with
8232 /// class for redeclaration (class, struct, or __interface).
8233 ///
8234 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)8235 static bool isClassCompatTagKind(TagTypeKind Tag)
8236 {
8237   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8238 }
8239 
8240 /// \brief Determine whether a tag with a given kind is acceptable
8241 /// as a redeclaration of the given tag declaration.
8242 ///
8243 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)8244 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8245                                         TagTypeKind NewTag, bool isDefinition,
8246                                         SourceLocation NewTagLoc,
8247                                         const IdentifierInfo &Name) {
8248   // C++ [dcl.type.elab]p3:
8249   //   The class-key or enum keyword present in the
8250   //   elaborated-type-specifier shall agree in kind with the
8251   //   declaration to which the name in the elaborated-type-specifier
8252   //   refers. This rule also applies to the form of
8253   //   elaborated-type-specifier that declares a class-name or
8254   //   friend class since it can be construed as referring to the
8255   //   definition of the class. Thus, in any
8256   //   elaborated-type-specifier, the enum keyword shall be used to
8257   //   refer to an enumeration (7.2), the union class-key shall be
8258   //   used to refer to a union (clause 9), and either the class or
8259   //   struct class-key shall be used to refer to a class (clause 9)
8260   //   declared using the class or struct class-key.
8261   TagTypeKind OldTag = Previous->getTagKind();
8262   if (!isDefinition || !isClassCompatTagKind(NewTag))
8263     if (OldTag == NewTag)
8264       return true;
8265 
8266   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8267     // Warn about the struct/class tag mismatch.
8268     bool isTemplate = false;
8269     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8270       isTemplate = Record->getDescribedClassTemplate();
8271 
8272     if (!ActiveTemplateInstantiations.empty()) {
8273       // In a template instantiation, do not offer fix-its for tag mismatches
8274       // since they usually mess up the template instead of fixing the problem.
8275       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8276         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8277         << getRedeclDiagFromTagKind(OldTag);
8278       return true;
8279     }
8280 
8281     if (isDefinition) {
8282       // On definitions, check previous tags and issue a fix-it for each
8283       // one that doesn't match the current tag.
8284       if (Previous->getDefinition()) {
8285         // Don't suggest fix-its for redefinitions.
8286         return true;
8287       }
8288 
8289       bool previousMismatch = false;
8290       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8291            E(Previous->redecls_end()); I != E; ++I) {
8292         if (I->getTagKind() != NewTag) {
8293           if (!previousMismatch) {
8294             previousMismatch = true;
8295             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8296               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8297               << getRedeclDiagFromTagKind(I->getTagKind());
8298           }
8299           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8300             << getRedeclDiagFromTagKind(NewTag)
8301             << FixItHint::CreateReplacement(I->getInnerLocStart(),
8302                  TypeWithKeyword::getTagTypeKindName(NewTag));
8303         }
8304       }
8305       return true;
8306     }
8307 
8308     // Check for a previous definition.  If current tag and definition
8309     // are same type, do nothing.  If no definition, but disagree with
8310     // with previous tag type, give a warning, but no fix-it.
8311     const TagDecl *Redecl = Previous->getDefinition() ?
8312                             Previous->getDefinition() : Previous;
8313     if (Redecl->getTagKind() == NewTag) {
8314       return true;
8315     }
8316 
8317     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8318       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8319       << getRedeclDiagFromTagKind(OldTag);
8320     Diag(Redecl->getLocation(), diag::note_previous_use);
8321 
8322     // If there is a previous defintion, suggest a fix-it.
8323     if (Previous->getDefinition()) {
8324         Diag(NewTagLoc, diag::note_struct_class_suggestion)
8325           << getRedeclDiagFromTagKind(Redecl->getTagKind())
8326           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8327                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8328     }
8329 
8330     return true;
8331   }
8332   return false;
8333 }
8334 
8335 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8336 /// former case, Name will be non-null.  In the later case, Name will be null.
8337 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8338 /// reference/declaration/definition of a tag.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType)8339 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8340                      SourceLocation KWLoc, CXXScopeSpec &SS,
8341                      IdentifierInfo *Name, SourceLocation NameLoc,
8342                      AttributeList *Attr, AccessSpecifier AS,
8343                      SourceLocation ModulePrivateLoc,
8344                      MultiTemplateParamsArg TemplateParameterLists,
8345                      bool &OwnedDecl, bool &IsDependent,
8346                      SourceLocation ScopedEnumKWLoc,
8347                      bool ScopedEnumUsesClassTag,
8348                      TypeResult UnderlyingType) {
8349   // If this is not a definition, it must have a name.
8350   IdentifierInfo *OrigName = Name;
8351   assert((Name != 0 || TUK == TUK_Definition) &&
8352          "Nameless record must be a definition!");
8353   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8354 
8355   OwnedDecl = false;
8356   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8357   bool ScopedEnum = ScopedEnumKWLoc.isValid();
8358 
8359   // FIXME: Check explicit specializations more carefully.
8360   bool isExplicitSpecialization = false;
8361   bool Invalid = false;
8362 
8363   // We only need to do this matching if we have template parameters
8364   // or a scope specifier, which also conveniently avoids this work
8365   // for non-C++ cases.
8366   if (TemplateParameterLists.size() > 0 ||
8367       (SS.isNotEmpty() && TUK != TUK_Reference)) {
8368     if (TemplateParameterList *TemplateParams
8369           = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8370                                                 TemplateParameterLists.data(),
8371                                                 TemplateParameterLists.size(),
8372                                                     TUK == TUK_Friend,
8373                                                     isExplicitSpecialization,
8374                                                     Invalid)) {
8375       if (TemplateParams->size() > 0) {
8376         // This is a declaration or definition of a class template (which may
8377         // be a member of another template).
8378 
8379         if (Invalid)
8380           return 0;
8381 
8382         OwnedDecl = false;
8383         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8384                                                SS, Name, NameLoc, Attr,
8385                                                TemplateParams, AS,
8386                                                ModulePrivateLoc,
8387                                                TemplateParameterLists.size()-1,
8388                                                TemplateParameterLists.data());
8389         return Result.get();
8390       } else {
8391         // The "template<>" header is extraneous.
8392         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8393           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8394         isExplicitSpecialization = true;
8395       }
8396     }
8397   }
8398 
8399   // Figure out the underlying type if this a enum declaration. We need to do
8400   // this early, because it's needed to detect if this is an incompatible
8401   // redeclaration.
8402   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8403 
8404   if (Kind == TTK_Enum) {
8405     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8406       // No underlying type explicitly specified, or we failed to parse the
8407       // type, default to int.
8408       EnumUnderlying = Context.IntTy.getTypePtr();
8409     else if (UnderlyingType.get()) {
8410       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8411       // integral type; any cv-qualification is ignored.
8412       TypeSourceInfo *TI = 0;
8413       GetTypeFromParser(UnderlyingType.get(), &TI);
8414       EnumUnderlying = TI;
8415 
8416       if (CheckEnumUnderlyingType(TI))
8417         // Recover by falling back to int.
8418         EnumUnderlying = Context.IntTy.getTypePtr();
8419 
8420       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8421                                           UPPC_FixedUnderlyingType))
8422         EnumUnderlying = Context.IntTy.getTypePtr();
8423 
8424     } else if (getLangOpts().MicrosoftMode)
8425       // Microsoft enums are always of int type.
8426       EnumUnderlying = Context.IntTy.getTypePtr();
8427   }
8428 
8429   DeclContext *SearchDC = CurContext;
8430   DeclContext *DC = CurContext;
8431   bool isStdBadAlloc = false;
8432 
8433   RedeclarationKind Redecl = ForRedeclaration;
8434   if (TUK == TUK_Friend || TUK == TUK_Reference)
8435     Redecl = NotForRedeclaration;
8436 
8437   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8438 
8439   if (Name && SS.isNotEmpty()) {
8440     // We have a nested-name tag ('struct foo::bar').
8441 
8442     // Check for invalid 'foo::'.
8443     if (SS.isInvalid()) {
8444       Name = 0;
8445       goto CreateNewDecl;
8446     }
8447 
8448     // If this is a friend or a reference to a class in a dependent
8449     // context, don't try to make a decl for it.
8450     if (TUK == TUK_Friend || TUK == TUK_Reference) {
8451       DC = computeDeclContext(SS, false);
8452       if (!DC) {
8453         IsDependent = true;
8454         return 0;
8455       }
8456     } else {
8457       DC = computeDeclContext(SS, true);
8458       if (!DC) {
8459         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8460           << SS.getRange();
8461         return 0;
8462       }
8463     }
8464 
8465     if (RequireCompleteDeclContext(SS, DC))
8466       return 0;
8467 
8468     SearchDC = DC;
8469     // Look-up name inside 'foo::'.
8470     LookupQualifiedName(Previous, DC);
8471 
8472     if (Previous.isAmbiguous())
8473       return 0;
8474 
8475     if (Previous.empty()) {
8476       // Name lookup did not find anything. However, if the
8477       // nested-name-specifier refers to the current instantiation,
8478       // and that current instantiation has any dependent base
8479       // classes, we might find something at instantiation time: treat
8480       // this as a dependent elaborated-type-specifier.
8481       // But this only makes any sense for reference-like lookups.
8482       if (Previous.wasNotFoundInCurrentInstantiation() &&
8483           (TUK == TUK_Reference || TUK == TUK_Friend)) {
8484         IsDependent = true;
8485         return 0;
8486       }
8487 
8488       // A tag 'foo::bar' must already exist.
8489       Diag(NameLoc, diag::err_not_tag_in_scope)
8490         << Kind << Name << DC << SS.getRange();
8491       Name = 0;
8492       Invalid = true;
8493       goto CreateNewDecl;
8494     }
8495   } else if (Name) {
8496     // If this is a named struct, check to see if there was a previous forward
8497     // declaration or definition.
8498     // FIXME: We're looking into outer scopes here, even when we
8499     // shouldn't be. Doing so can result in ambiguities that we
8500     // shouldn't be diagnosing.
8501     LookupName(Previous, S);
8502 
8503     if (Previous.isAmbiguous() &&
8504         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8505       LookupResult::Filter F = Previous.makeFilter();
8506       while (F.hasNext()) {
8507         NamedDecl *ND = F.next();
8508         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8509           F.erase();
8510       }
8511       F.done();
8512     }
8513 
8514     // Note:  there used to be some attempt at recovery here.
8515     if (Previous.isAmbiguous())
8516       return 0;
8517 
8518     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8519       // FIXME: This makes sure that we ignore the contexts associated
8520       // with C structs, unions, and enums when looking for a matching
8521       // tag declaration or definition. See the similar lookup tweak
8522       // in Sema::LookupName; is there a better way to deal with this?
8523       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8524         SearchDC = SearchDC->getParent();
8525     }
8526   } else if (S->isFunctionPrototypeScope()) {
8527     // If this is an enum declaration in function prototype scope, set its
8528     // initial context to the translation unit.
8529     // FIXME: [citation needed]
8530     SearchDC = Context.getTranslationUnitDecl();
8531   }
8532 
8533   if (Previous.isSingleResult() &&
8534       Previous.getFoundDecl()->isTemplateParameter()) {
8535     // Maybe we will complain about the shadowed template parameter.
8536     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8537     // Just pretend that we didn't see the previous declaration.
8538     Previous.clear();
8539   }
8540 
8541   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8542       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8543     // This is a declaration of or a reference to "std::bad_alloc".
8544     isStdBadAlloc = true;
8545 
8546     if (Previous.empty() && StdBadAlloc) {
8547       // std::bad_alloc has been implicitly declared (but made invisible to
8548       // name lookup). Fill in this implicit declaration as the previous
8549       // declaration, so that the declarations get chained appropriately.
8550       Previous.addDecl(getStdBadAlloc());
8551     }
8552   }
8553 
8554   // If we didn't find a previous declaration, and this is a reference
8555   // (or friend reference), move to the correct scope.  In C++, we
8556   // also need to do a redeclaration lookup there, just in case
8557   // there's a shadow friend decl.
8558   if (Name && Previous.empty() &&
8559       (TUK == TUK_Reference || TUK == TUK_Friend)) {
8560     if (Invalid) goto CreateNewDecl;
8561     assert(SS.isEmpty());
8562 
8563     if (TUK == TUK_Reference) {
8564       // C++ [basic.scope.pdecl]p5:
8565       //   -- for an elaborated-type-specifier of the form
8566       //
8567       //          class-key identifier
8568       //
8569       //      if the elaborated-type-specifier is used in the
8570       //      decl-specifier-seq or parameter-declaration-clause of a
8571       //      function defined in namespace scope, the identifier is
8572       //      declared as a class-name in the namespace that contains
8573       //      the declaration; otherwise, except as a friend
8574       //      declaration, the identifier is declared in the smallest
8575       //      non-class, non-function-prototype scope that contains the
8576       //      declaration.
8577       //
8578       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8579       // C structs and unions.
8580       //
8581       // It is an error in C++ to declare (rather than define) an enum
8582       // type, including via an elaborated type specifier.  We'll
8583       // diagnose that later; for now, declare the enum in the same
8584       // scope as we would have picked for any other tag type.
8585       //
8586       // GNU C also supports this behavior as part of its incomplete
8587       // enum types extension, while GNU C++ does not.
8588       //
8589       // Find the context where we'll be declaring the tag.
8590       // FIXME: We would like to maintain the current DeclContext as the
8591       // lexical context,
8592       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8593         SearchDC = SearchDC->getParent();
8594 
8595       // Find the scope where we'll be declaring the tag.
8596       while (S->isClassScope() ||
8597              (getLangOpts().CPlusPlus &&
8598               S->isFunctionPrototypeScope()) ||
8599              ((S->getFlags() & Scope::DeclScope) == 0) ||
8600              (S->getEntity() &&
8601               ((DeclContext *)S->getEntity())->isTransparentContext()))
8602         S = S->getParent();
8603     } else {
8604       assert(TUK == TUK_Friend);
8605       // C++ [namespace.memdef]p3:
8606       //   If a friend declaration in a non-local class first declares a
8607       //   class or function, the friend class or function is a member of
8608       //   the innermost enclosing namespace.
8609       SearchDC = SearchDC->getEnclosingNamespaceContext();
8610     }
8611 
8612     // In C++, we need to do a redeclaration lookup to properly
8613     // diagnose some problems.
8614     if (getLangOpts().CPlusPlus) {
8615       Previous.setRedeclarationKind(ForRedeclaration);
8616       LookupQualifiedName(Previous, SearchDC);
8617     }
8618   }
8619 
8620   if (!Previous.empty()) {
8621     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8622 
8623     // It's okay to have a tag decl in the same scope as a typedef
8624     // which hides a tag decl in the same scope.  Finding this
8625     // insanity with a redeclaration lookup can only actually happen
8626     // in C++.
8627     //
8628     // This is also okay for elaborated-type-specifiers, which is
8629     // technically forbidden by the current standard but which is
8630     // okay according to the likely resolution of an open issue;
8631     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8632     if (getLangOpts().CPlusPlus) {
8633       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8634         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8635           TagDecl *Tag = TT->getDecl();
8636           if (Tag->getDeclName() == Name &&
8637               Tag->getDeclContext()->getRedeclContext()
8638                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
8639             PrevDecl = Tag;
8640             Previous.clear();
8641             Previous.addDecl(Tag);
8642             Previous.resolveKind();
8643           }
8644         }
8645       }
8646     }
8647 
8648     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8649       // If this is a use of a previous tag, or if the tag is already declared
8650       // in the same scope (so that the definition/declaration completes or
8651       // rementions the tag), reuse the decl.
8652       if (TUK == TUK_Reference || TUK == TUK_Friend ||
8653           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8654         // Make sure that this wasn't declared as an enum and now used as a
8655         // struct or something similar.
8656         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8657                                           TUK == TUK_Definition, KWLoc,
8658                                           *Name)) {
8659           bool SafeToContinue
8660             = (PrevTagDecl->getTagKind() != TTK_Enum &&
8661                Kind != TTK_Enum);
8662           if (SafeToContinue)
8663             Diag(KWLoc, diag::err_use_with_wrong_tag)
8664               << Name
8665               << FixItHint::CreateReplacement(SourceRange(KWLoc),
8666                                               PrevTagDecl->getKindName());
8667           else
8668             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8669           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8670 
8671           if (SafeToContinue)
8672             Kind = PrevTagDecl->getTagKind();
8673           else {
8674             // Recover by making this an anonymous redefinition.
8675             Name = 0;
8676             Previous.clear();
8677             Invalid = true;
8678           }
8679         }
8680 
8681         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8682           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8683 
8684           // If this is an elaborated-type-specifier for a scoped enumeration,
8685           // the 'class' keyword is not necessary and not permitted.
8686           if (TUK == TUK_Reference || TUK == TUK_Friend) {
8687             if (ScopedEnum)
8688               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8689                 << PrevEnum->isScoped()
8690                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8691             return PrevTagDecl;
8692           }
8693 
8694           QualType EnumUnderlyingTy;
8695           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8696             EnumUnderlyingTy = TI->getType();
8697           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8698             EnumUnderlyingTy = QualType(T, 0);
8699 
8700           // All conflicts with previous declarations are recovered by
8701           // returning the previous declaration, unless this is a definition,
8702           // in which case we want the caller to bail out.
8703           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8704                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
8705             return TUK == TUK_Declaration ? PrevTagDecl : 0;
8706         }
8707 
8708         if (!Invalid) {
8709           // If this is a use, just return the declaration we found.
8710 
8711           // FIXME: In the future, return a variant or some other clue
8712           // for the consumer of this Decl to know it doesn't own it.
8713           // For our current ASTs this shouldn't be a problem, but will
8714           // need to be changed with DeclGroups.
8715           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8716                getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8717             return PrevTagDecl;
8718 
8719           // Diagnose attempts to redefine a tag.
8720           if (TUK == TUK_Definition) {
8721             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8722               // If we're defining a specialization and the previous definition
8723               // is from an implicit instantiation, don't emit an error
8724               // here; we'll catch this in the general case below.
8725               bool IsExplicitSpecializationAfterInstantiation = false;
8726               if (isExplicitSpecialization) {
8727                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8728                   IsExplicitSpecializationAfterInstantiation =
8729                     RD->getTemplateSpecializationKind() !=
8730                     TSK_ExplicitSpecialization;
8731                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8732                   IsExplicitSpecializationAfterInstantiation =
8733                     ED->getTemplateSpecializationKind() !=
8734                     TSK_ExplicitSpecialization;
8735               }
8736 
8737               if (!IsExplicitSpecializationAfterInstantiation) {
8738                 // A redeclaration in function prototype scope in C isn't
8739                 // visible elsewhere, so merely issue a warning.
8740                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8741                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8742                 else
8743                   Diag(NameLoc, diag::err_redefinition) << Name;
8744                 Diag(Def->getLocation(), diag::note_previous_definition);
8745                 // If this is a redefinition, recover by making this
8746                 // struct be anonymous, which will make any later
8747                 // references get the previous definition.
8748                 Name = 0;
8749                 Previous.clear();
8750                 Invalid = true;
8751               }
8752             } else {
8753               // If the type is currently being defined, complain
8754               // about a nested redefinition.
8755               const TagType *Tag
8756                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8757               if (Tag->isBeingDefined()) {
8758                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
8759                 Diag(PrevTagDecl->getLocation(),
8760                      diag::note_previous_definition);
8761                 Name = 0;
8762                 Previous.clear();
8763                 Invalid = true;
8764               }
8765             }
8766 
8767             // Okay, this is definition of a previously declared or referenced
8768             // tag PrevDecl. We're going to create a new Decl for it.
8769           }
8770         }
8771         // If we get here we have (another) forward declaration or we
8772         // have a definition.  Just create a new decl.
8773 
8774       } else {
8775         // If we get here, this is a definition of a new tag type in a nested
8776         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8777         // new decl/type.  We set PrevDecl to NULL so that the entities
8778         // have distinct types.
8779         Previous.clear();
8780       }
8781       // If we get here, we're going to create a new Decl. If PrevDecl
8782       // is non-NULL, it's a definition of the tag declared by
8783       // PrevDecl. If it's NULL, we have a new definition.
8784 
8785 
8786     // Otherwise, PrevDecl is not a tag, but was found with tag
8787     // lookup.  This is only actually possible in C++, where a few
8788     // things like templates still live in the tag namespace.
8789     } else {
8790       // Use a better diagnostic if an elaborated-type-specifier
8791       // found the wrong kind of type on the first
8792       // (non-redeclaration) lookup.
8793       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8794           !Previous.isForRedeclaration()) {
8795         unsigned Kind = 0;
8796         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8797         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8798         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8799         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8800         Diag(PrevDecl->getLocation(), diag::note_declared_at);
8801         Invalid = true;
8802 
8803       // Otherwise, only diagnose if the declaration is in scope.
8804       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8805                                 isExplicitSpecialization)) {
8806         // do nothing
8807 
8808       // Diagnose implicit declarations introduced by elaborated types.
8809       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8810         unsigned Kind = 0;
8811         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8812         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8813         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8814         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8815         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8816         Invalid = true;
8817 
8818       // Otherwise it's a declaration.  Call out a particularly common
8819       // case here.
8820       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8821         unsigned Kind = 0;
8822         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8823         Diag(NameLoc, diag::err_tag_definition_of_typedef)
8824           << Name << Kind << TND->getUnderlyingType();
8825         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8826         Invalid = true;
8827 
8828       // Otherwise, diagnose.
8829       } else {
8830         // The tag name clashes with something else in the target scope,
8831         // issue an error and recover by making this tag be anonymous.
8832         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8833         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8834         Name = 0;
8835         Invalid = true;
8836       }
8837 
8838       // The existing declaration isn't relevant to us; we're in a
8839       // new scope, so clear out the previous declaration.
8840       Previous.clear();
8841     }
8842   }
8843 
8844 CreateNewDecl:
8845 
8846   TagDecl *PrevDecl = 0;
8847   if (Previous.isSingleResult())
8848     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8849 
8850   // If there is an identifier, use the location of the identifier as the
8851   // location of the decl, otherwise use the location of the struct/union
8852   // keyword.
8853   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8854 
8855   // Otherwise, create a new declaration. If there is a previous
8856   // declaration of the same entity, the two will be linked via
8857   // PrevDecl.
8858   TagDecl *New;
8859 
8860   bool IsForwardReference = false;
8861   if (Kind == TTK_Enum) {
8862     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8863     // enum X { A, B, C } D;    D should chain to X.
8864     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8865                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8866                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8867     // If this is an undefined enum, warn.
8868     if (TUK != TUK_Definition && !Invalid) {
8869       TagDecl *Def;
8870       if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8871         // C++0x: 7.2p2: opaque-enum-declaration.
8872         // Conflicts are diagnosed above. Do nothing.
8873       }
8874       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8875         Diag(Loc, diag::ext_forward_ref_enum_def)
8876           << New;
8877         Diag(Def->getLocation(), diag::note_previous_definition);
8878       } else {
8879         unsigned DiagID = diag::ext_forward_ref_enum;
8880         if (getLangOpts().MicrosoftMode)
8881           DiagID = diag::ext_ms_forward_ref_enum;
8882         else if (getLangOpts().CPlusPlus)
8883           DiagID = diag::err_forward_ref_enum;
8884         Diag(Loc, DiagID);
8885 
8886         // If this is a forward-declared reference to an enumeration, make a
8887         // note of it; we won't actually be introducing the declaration into
8888         // the declaration context.
8889         if (TUK == TUK_Reference)
8890           IsForwardReference = true;
8891       }
8892     }
8893 
8894     if (EnumUnderlying) {
8895       EnumDecl *ED = cast<EnumDecl>(New);
8896       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8897         ED->setIntegerTypeSourceInfo(TI);
8898       else
8899         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8900       ED->setPromotionType(ED->getIntegerType());
8901     }
8902 
8903   } else {
8904     // struct/union/class
8905 
8906     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8907     // struct X { int A; } D;    D should chain to X.
8908     if (getLangOpts().CPlusPlus) {
8909       // FIXME: Look for a way to use RecordDecl for simple structs.
8910       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8911                                   cast_or_null<CXXRecordDecl>(PrevDecl));
8912 
8913       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8914         StdBadAlloc = cast<CXXRecordDecl>(New);
8915     } else
8916       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8917                                cast_or_null<RecordDecl>(PrevDecl));
8918   }
8919 
8920   // Maybe add qualifier info.
8921   if (SS.isNotEmpty()) {
8922     if (SS.isSet()) {
8923       // If this is either a declaration or a definition, check the
8924       // nested-name-specifier against the current context. We don't do this
8925       // for explicit specializations, because they have similar checking
8926       // (with more specific diagnostics) in the call to
8927       // CheckMemberSpecialization, below.
8928       if (!isExplicitSpecialization &&
8929           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8930           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8931         Invalid = true;
8932 
8933       New->setQualifierInfo(SS.getWithLocInContext(Context));
8934       if (TemplateParameterLists.size() > 0) {
8935         New->setTemplateParameterListsInfo(Context,
8936                                            TemplateParameterLists.size(),
8937                                            TemplateParameterLists.data());
8938       }
8939     }
8940     else
8941       Invalid = true;
8942   }
8943 
8944   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8945     // Add alignment attributes if necessary; these attributes are checked when
8946     // the ASTContext lays out the structure.
8947     //
8948     // It is important for implementing the correct semantics that this
8949     // happen here (in act on tag decl). The #pragma pack stack is
8950     // maintained as a result of parser callbacks which can occur at
8951     // many points during the parsing of a struct declaration (because
8952     // the #pragma tokens are effectively skipped over during the
8953     // parsing of the struct).
8954     if (TUK == TUK_Definition) {
8955       AddAlignmentAttributesForRecord(RD);
8956       AddMsStructLayoutForRecord(RD);
8957     }
8958   }
8959 
8960   if (ModulePrivateLoc.isValid()) {
8961     if (isExplicitSpecialization)
8962       Diag(New->getLocation(), diag::err_module_private_specialization)
8963         << 2
8964         << FixItHint::CreateRemoval(ModulePrivateLoc);
8965     // __module_private__ does not apply to local classes. However, we only
8966     // diagnose this as an error when the declaration specifiers are
8967     // freestanding. Here, we just ignore the __module_private__.
8968     else if (!SearchDC->isFunctionOrMethod())
8969       New->setModulePrivate();
8970   }
8971 
8972   // If this is a specialization of a member class (of a class template),
8973   // check the specialization.
8974   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8975     Invalid = true;
8976 
8977   if (Invalid)
8978     New->setInvalidDecl();
8979 
8980   if (Attr)
8981     ProcessDeclAttributeList(S, New, Attr);
8982 
8983   // If we're declaring or defining a tag in function prototype scope
8984   // in C, note that this type can only be used within the function.
8985   if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8986     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8987 
8988   // Set the lexical context. If the tag has a C++ scope specifier, the
8989   // lexical context will be different from the semantic context.
8990   New->setLexicalDeclContext(CurContext);
8991 
8992   // Mark this as a friend decl if applicable.
8993   // In Microsoft mode, a friend declaration also acts as a forward
8994   // declaration so we always pass true to setObjectOfFriendDecl to make
8995   // the tag name visible.
8996   if (TUK == TUK_Friend)
8997     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8998                                getLangOpts().MicrosoftExt);
8999 
9000   // Set the access specifier.
9001   if (!Invalid && SearchDC->isRecord())
9002     SetMemberAccessSpecifier(New, PrevDecl, AS);
9003 
9004   if (TUK == TUK_Definition)
9005     New->startDefinition();
9006 
9007   // If this has an identifier, add it to the scope stack.
9008   if (TUK == TUK_Friend) {
9009     // We might be replacing an existing declaration in the lookup tables;
9010     // if so, borrow its access specifier.
9011     if (PrevDecl)
9012       New->setAccess(PrevDecl->getAccess());
9013 
9014     DeclContext *DC = New->getDeclContext()->getRedeclContext();
9015     DC->makeDeclVisibleInContext(New);
9016     if (Name) // can be null along some error paths
9017       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9018         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9019   } else if (Name) {
9020     S = getNonFieldDeclScope(S);
9021     PushOnScopeChains(New, S, !IsForwardReference);
9022     if (IsForwardReference)
9023       SearchDC->makeDeclVisibleInContext(New);
9024 
9025   } else {
9026     CurContext->addDecl(New);
9027   }
9028 
9029   // If this is the C FILE type, notify the AST context.
9030   if (IdentifierInfo *II = New->getIdentifier())
9031     if (!New->isInvalidDecl() &&
9032         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9033         II->isStr("FILE"))
9034       Context.setFILEDecl(New);
9035 
9036   // If we were in function prototype scope (and not in C++ mode), add this
9037   // tag to the list of decls to inject into the function definition scope.
9038   if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9039       InFunctionDeclarator && Name)
9040     DeclsInPrototypeScope.push_back(New);
9041 
9042   if (PrevDecl)
9043     mergeDeclAttributes(New, PrevDecl);
9044 
9045   // If there's a #pragma GCC visibility in scope, set the visibility of this
9046   // record.
9047   AddPushedVisibilityAttribute(New);
9048 
9049   OwnedDecl = true;
9050   return New;
9051 }
9052 
ActOnTagStartDefinition(Scope * S,Decl * TagD)9053 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9054   AdjustDeclIfTemplate(TagD);
9055   TagDecl *Tag = cast<TagDecl>(TagD);
9056 
9057   // Enter the tag context.
9058   PushDeclContext(S, Tag);
9059 
9060   ActOnDocumentableDecl(TagD);
9061 
9062   // If there's a #pragma GCC visibility in scope, set the visibility of this
9063   // record.
9064   AddPushedVisibilityAttribute(Tag);
9065 }
9066 
ActOnObjCContainerStartDefinition(Decl * IDecl)9067 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9068   assert(isa<ObjCContainerDecl>(IDecl) &&
9069          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9070   DeclContext *OCD = cast<DeclContext>(IDecl);
9071   assert(getContainingDC(OCD) == CurContext &&
9072       "The next DeclContext should be lexically contained in the current one.");
9073   CurContext = OCD;
9074   return IDecl;
9075 }
9076 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,SourceLocation LBraceLoc)9077 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9078                                            SourceLocation FinalLoc,
9079                                            SourceLocation LBraceLoc) {
9080   AdjustDeclIfTemplate(TagD);
9081   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9082 
9083   FieldCollector->StartClass();
9084 
9085   if (!Record->getIdentifier())
9086     return;
9087 
9088   if (FinalLoc.isValid())
9089     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9090 
9091   // C++ [class]p2:
9092   //   [...] The class-name is also inserted into the scope of the
9093   //   class itself; this is known as the injected-class-name. For
9094   //   purposes of access checking, the injected-class-name is treated
9095   //   as if it were a public member name.
9096   CXXRecordDecl *InjectedClassName
9097     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9098                             Record->getLocStart(), Record->getLocation(),
9099                             Record->getIdentifier(),
9100                             /*PrevDecl=*/0,
9101                             /*DelayTypeCreation=*/true);
9102   Context.getTypeDeclType(InjectedClassName, Record);
9103   InjectedClassName->setImplicit();
9104   InjectedClassName->setAccess(AS_public);
9105   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9106       InjectedClassName->setDescribedClassTemplate(Template);
9107   PushOnScopeChains(InjectedClassName, S);
9108   assert(InjectedClassName->isInjectedClassName() &&
9109          "Broken injected-class-name");
9110 }
9111 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)9112 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9113                                     SourceLocation RBraceLoc) {
9114   AdjustDeclIfTemplate(TagD);
9115   TagDecl *Tag = cast<TagDecl>(TagD);
9116   Tag->setRBraceLoc(RBraceLoc);
9117 
9118   // Make sure we "complete" the definition even it is invalid.
9119   if (Tag->isBeingDefined()) {
9120     assert(Tag->isInvalidDecl() && "We should already have completed it");
9121     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9122       RD->completeDefinition();
9123   }
9124 
9125   if (isa<CXXRecordDecl>(Tag))
9126     FieldCollector->FinishClass();
9127 
9128   // Exit this scope of this tag's definition.
9129   PopDeclContext();
9130 
9131   // Notify the consumer that we've defined a tag.
9132   Consumer.HandleTagDeclDefinition(Tag);
9133 }
9134 
ActOnObjCContainerFinishDefinition()9135 void Sema::ActOnObjCContainerFinishDefinition() {
9136   // Exit this scope of this interface definition.
9137   PopDeclContext();
9138 }
9139 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)9140 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9141   assert(DC == CurContext && "Mismatch of container contexts");
9142   OriginalLexicalContext = DC;
9143   ActOnObjCContainerFinishDefinition();
9144 }
9145 
ActOnObjCReenterContainerContext(DeclContext * DC)9146 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9147   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9148   OriginalLexicalContext = 0;
9149 }
9150 
ActOnTagDefinitionError(Scope * S,Decl * TagD)9151 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9152   AdjustDeclIfTemplate(TagD);
9153   TagDecl *Tag = cast<TagDecl>(TagD);
9154   Tag->setInvalidDecl();
9155 
9156   // Make sure we "complete" the definition even it is invalid.
9157   if (Tag->isBeingDefined()) {
9158     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9159       RD->completeDefinition();
9160   }
9161 
9162   // We're undoing ActOnTagStartDefinition here, not
9163   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9164   // the FieldCollector.
9165 
9166   PopDeclContext();
9167 }
9168 
9169 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,Expr * BitWidth,bool * ZeroWidth)9170 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9171                                 IdentifierInfo *FieldName,
9172                                 QualType FieldTy, Expr *BitWidth,
9173                                 bool *ZeroWidth) {
9174   // Default to true; that shouldn't confuse checks for emptiness
9175   if (ZeroWidth)
9176     *ZeroWidth = true;
9177 
9178   // C99 6.7.2.1p4 - verify the field type.
9179   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9180   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9181     // Handle incomplete types with specific error.
9182     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9183       return ExprError();
9184     if (FieldName)
9185       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9186         << FieldName << FieldTy << BitWidth->getSourceRange();
9187     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9188       << FieldTy << BitWidth->getSourceRange();
9189   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9190                                              UPPC_BitFieldWidth))
9191     return ExprError();
9192 
9193   // If the bit-width is type- or value-dependent, don't try to check
9194   // it now.
9195   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9196     return Owned(BitWidth);
9197 
9198   llvm::APSInt Value;
9199   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9200   if (ICE.isInvalid())
9201     return ICE;
9202   BitWidth = ICE.take();
9203 
9204   if (Value != 0 && ZeroWidth)
9205     *ZeroWidth = false;
9206 
9207   // Zero-width bitfield is ok for anonymous field.
9208   if (Value == 0 && FieldName)
9209     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9210 
9211   if (Value.isSigned() && Value.isNegative()) {
9212     if (FieldName)
9213       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9214                << FieldName << Value.toString(10);
9215     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9216       << Value.toString(10);
9217   }
9218 
9219   if (!FieldTy->isDependentType()) {
9220     uint64_t TypeSize = Context.getTypeSize(FieldTy);
9221     if (Value.getZExtValue() > TypeSize) {
9222       if (!getLangOpts().CPlusPlus) {
9223         if (FieldName)
9224           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9225             << FieldName << (unsigned)Value.getZExtValue()
9226             << (unsigned)TypeSize;
9227 
9228         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9229           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9230       }
9231 
9232       if (FieldName)
9233         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9234           << FieldName << (unsigned)Value.getZExtValue()
9235           << (unsigned)TypeSize;
9236       else
9237         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9238           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9239     }
9240   }
9241 
9242   return Owned(BitWidth);
9243 }
9244 
9245 /// ActOnField - Each field of a C struct/union is passed into this in order
9246 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)9247 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9248                        Declarator &D, Expr *BitfieldWidth) {
9249   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9250                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9251                                /*InitStyle=*/ICIS_NoInit, AS_public);
9252   return Res;
9253 }
9254 
9255 /// HandleField - Analyze a field of a C struct or a C++ data member.
9256 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)9257 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9258                              SourceLocation DeclStart,
9259                              Declarator &D, Expr *BitWidth,
9260                              InClassInitStyle InitStyle,
9261                              AccessSpecifier AS) {
9262   IdentifierInfo *II = D.getIdentifier();
9263   SourceLocation Loc = DeclStart;
9264   if (II) Loc = D.getIdentifierLoc();
9265 
9266   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9267   QualType T = TInfo->getType();
9268   if (getLangOpts().CPlusPlus) {
9269     CheckExtraCXXDefaultArguments(D);
9270 
9271     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9272                                         UPPC_DataMemberType)) {
9273       D.setInvalidType();
9274       T = Context.IntTy;
9275       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9276     }
9277   }
9278 
9279   DiagnoseFunctionSpecifiers(D);
9280 
9281   if (D.getDeclSpec().isThreadSpecified())
9282     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9283   if (D.getDeclSpec().isConstexprSpecified())
9284     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9285       << 2;
9286 
9287   // Check to see if this name was declared as a member previously
9288   NamedDecl *PrevDecl = 0;
9289   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9290   LookupName(Previous, S);
9291   switch (Previous.getResultKind()) {
9292     case LookupResult::Found:
9293     case LookupResult::FoundUnresolvedValue:
9294       PrevDecl = Previous.getAsSingle<NamedDecl>();
9295       break;
9296 
9297     case LookupResult::FoundOverloaded:
9298       PrevDecl = Previous.getRepresentativeDecl();
9299       break;
9300 
9301     case LookupResult::NotFound:
9302     case LookupResult::NotFoundInCurrentInstantiation:
9303     case LookupResult::Ambiguous:
9304       break;
9305   }
9306   Previous.suppressDiagnostics();
9307 
9308   if (PrevDecl && PrevDecl->isTemplateParameter()) {
9309     // Maybe we will complain about the shadowed template parameter.
9310     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9311     // Just pretend that we didn't see the previous declaration.
9312     PrevDecl = 0;
9313   }
9314 
9315   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9316     PrevDecl = 0;
9317 
9318   bool Mutable
9319     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9320   SourceLocation TSSL = D.getLocStart();
9321   FieldDecl *NewFD
9322     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9323                      TSSL, AS, PrevDecl, &D);
9324 
9325   if (NewFD->isInvalidDecl())
9326     Record->setInvalidDecl();
9327 
9328   if (D.getDeclSpec().isModulePrivateSpecified())
9329     NewFD->setModulePrivate();
9330 
9331   if (NewFD->isInvalidDecl() && PrevDecl) {
9332     // Don't introduce NewFD into scope; there's already something
9333     // with the same name in the same scope.
9334   } else if (II) {
9335     PushOnScopeChains(NewFD, S);
9336   } else
9337     Record->addDecl(NewFD);
9338 
9339   return NewFD;
9340 }
9341 
9342 /// \brief Build a new FieldDecl and check its well-formedness.
9343 ///
9344 /// This routine builds a new FieldDecl given the fields name, type,
9345 /// record, etc. \p PrevDecl should refer to any previous declaration
9346 /// with the same name and in the same scope as the field to be
9347 /// created.
9348 ///
9349 /// \returns a new FieldDecl.
9350 ///
9351 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)9352 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9353                                 TypeSourceInfo *TInfo,
9354                                 RecordDecl *Record, SourceLocation Loc,
9355                                 bool Mutable, Expr *BitWidth,
9356                                 InClassInitStyle InitStyle,
9357                                 SourceLocation TSSL,
9358                                 AccessSpecifier AS, NamedDecl *PrevDecl,
9359                                 Declarator *D) {
9360   IdentifierInfo *II = Name.getAsIdentifierInfo();
9361   bool InvalidDecl = false;
9362   if (D) InvalidDecl = D->isInvalidType();
9363 
9364   // If we receive a broken type, recover by assuming 'int' and
9365   // marking this declaration as invalid.
9366   if (T.isNull()) {
9367     InvalidDecl = true;
9368     T = Context.IntTy;
9369   }
9370 
9371   QualType EltTy = Context.getBaseElementType(T);
9372   if (!EltTy->isDependentType()) {
9373     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9374       // Fields of incomplete type force their record to be invalid.
9375       Record->setInvalidDecl();
9376       InvalidDecl = true;
9377     } else {
9378       NamedDecl *Def;
9379       EltTy->isIncompleteType(&Def);
9380       if (Def && Def->isInvalidDecl()) {
9381         Record->setInvalidDecl();
9382         InvalidDecl = true;
9383       }
9384     }
9385   }
9386 
9387   // C99 6.7.2.1p8: A member of a structure or union may have any type other
9388   // than a variably modified type.
9389   if (!InvalidDecl && T->isVariablyModifiedType()) {
9390     bool SizeIsNegative;
9391     llvm::APSInt Oversized;
9392     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9393                                                            SizeIsNegative,
9394                                                            Oversized);
9395     if (!FixedTy.isNull()) {
9396       Diag(Loc, diag::warn_illegal_constant_array_size);
9397       T = FixedTy;
9398     } else {
9399       if (SizeIsNegative)
9400         Diag(Loc, diag::err_typecheck_negative_array_size);
9401       else if (Oversized.getBoolValue())
9402         Diag(Loc, diag::err_array_too_large)
9403           << Oversized.toString(10);
9404       else
9405         Diag(Loc, diag::err_typecheck_field_variable_size);
9406       InvalidDecl = true;
9407     }
9408   }
9409 
9410   // Fields can not have abstract class types
9411   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9412                                              diag::err_abstract_type_in_decl,
9413                                              AbstractFieldType))
9414     InvalidDecl = true;
9415 
9416   bool ZeroWidth = false;
9417   // If this is declared as a bit-field, check the bit-field.
9418   if (!InvalidDecl && BitWidth) {
9419     BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9420     if (!BitWidth) {
9421       InvalidDecl = true;
9422       BitWidth = 0;
9423       ZeroWidth = false;
9424     }
9425   }
9426 
9427   // Check that 'mutable' is consistent with the type of the declaration.
9428   if (!InvalidDecl && Mutable) {
9429     unsigned DiagID = 0;
9430     if (T->isReferenceType())
9431       DiagID = diag::err_mutable_reference;
9432     else if (T.isConstQualified())
9433       DiagID = diag::err_mutable_const;
9434 
9435     if (DiagID) {
9436       SourceLocation ErrLoc = Loc;
9437       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9438         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9439       Diag(ErrLoc, DiagID);
9440       Mutable = false;
9441       InvalidDecl = true;
9442     }
9443   }
9444 
9445   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9446                                        BitWidth, Mutable, InitStyle);
9447   if (InvalidDecl)
9448     NewFD->setInvalidDecl();
9449 
9450   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9451     Diag(Loc, diag::err_duplicate_member) << II;
9452     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9453     NewFD->setInvalidDecl();
9454   }
9455 
9456   if (!InvalidDecl && getLangOpts().CPlusPlus) {
9457     if (Record->isUnion()) {
9458       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9459         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9460         if (RDecl->getDefinition()) {
9461           // C++ [class.union]p1: An object of a class with a non-trivial
9462           // constructor, a non-trivial copy constructor, a non-trivial
9463           // destructor, or a non-trivial copy assignment operator
9464           // cannot be a member of a union, nor can an array of such
9465           // objects.
9466           if (CheckNontrivialField(NewFD))
9467             NewFD->setInvalidDecl();
9468         }
9469       }
9470 
9471       // C++ [class.union]p1: If a union contains a member of reference type,
9472       // the program is ill-formed.
9473       if (EltTy->isReferenceType()) {
9474         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9475           << NewFD->getDeclName() << EltTy;
9476         NewFD->setInvalidDecl();
9477       }
9478     }
9479   }
9480 
9481   // FIXME: We need to pass in the attributes given an AST
9482   // representation, not a parser representation.
9483   if (D)
9484     // FIXME: What to pass instead of TUScope?
9485     ProcessDeclAttributes(TUScope, NewFD, *D);
9486 
9487   // In auto-retain/release, infer strong retension for fields of
9488   // retainable type.
9489   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9490     NewFD->setInvalidDecl();
9491 
9492   if (T.isObjCGCWeak())
9493     Diag(Loc, diag::warn_attribute_weak_on_field);
9494 
9495   NewFD->setAccess(AS);
9496   return NewFD;
9497 }
9498 
CheckNontrivialField(FieldDecl * FD)9499 bool Sema::CheckNontrivialField(FieldDecl *FD) {
9500   assert(FD);
9501   assert(getLangOpts().CPlusPlus && "valid check only for C++");
9502 
9503   if (FD->isInvalidDecl())
9504     return true;
9505 
9506   QualType EltTy = Context.getBaseElementType(FD->getType());
9507   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9508     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9509     if (RDecl->getDefinition()) {
9510       // We check for copy constructors before constructors
9511       // because otherwise we'll never get complaints about
9512       // copy constructors.
9513 
9514       CXXSpecialMember member = CXXInvalid;
9515       if (!RDecl->hasTrivialCopyConstructor())
9516         member = CXXCopyConstructor;
9517       else if (!RDecl->hasTrivialDefaultConstructor())
9518         member = CXXDefaultConstructor;
9519       else if (!RDecl->hasTrivialCopyAssignment())
9520         member = CXXCopyAssignment;
9521       else if (!RDecl->hasTrivialDestructor())
9522         member = CXXDestructor;
9523 
9524       if (member != CXXInvalid) {
9525         if (!getLangOpts().CPlusPlus0x &&
9526             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9527           // Objective-C++ ARC: it is an error to have a non-trivial field of
9528           // a union. However, system headers in Objective-C programs
9529           // occasionally have Objective-C lifetime objects within unions,
9530           // and rather than cause the program to fail, we make those
9531           // members unavailable.
9532           SourceLocation Loc = FD->getLocation();
9533           if (getSourceManager().isInSystemHeader(Loc)) {
9534             if (!FD->hasAttr<UnavailableAttr>())
9535               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9536                                   "this system field has retaining ownership"));
9537             return false;
9538           }
9539         }
9540 
9541         Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9542                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9543                diag::err_illegal_union_or_anon_struct_member)
9544           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9545         DiagnoseNontrivial(RT, member);
9546         return !getLangOpts().CPlusPlus0x;
9547       }
9548     }
9549   }
9550 
9551   return false;
9552 }
9553 
9554 /// If the given constructor is user-declared, produce a diagnostic explaining
9555 /// that it makes the class non-trivial.
diagnoseNonTrivialUserDeclaredCtor(Sema & S,QualType QT,CXXConstructorDecl * CD,Sema::CXXSpecialMember CSM)9556 static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
9557                                                CXXConstructorDecl *CD,
9558                                                Sema::CXXSpecialMember CSM) {
9559   if (CD->isImplicit())
9560     return false;
9561 
9562   SourceLocation CtorLoc = CD->getLocation();
9563   S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9564   return true;
9565 }
9566 
9567 /// DiagnoseNontrivial - Given that a class has a non-trivial
9568 /// special member, figure out why.
DiagnoseNontrivial(const RecordType * T,CXXSpecialMember member)9569 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9570   QualType QT(T, 0U);
9571   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9572 
9573   // Check whether the member was user-declared.
9574   switch (member) {
9575   case CXXInvalid:
9576     break;
9577 
9578   case CXXDefaultConstructor:
9579     if (RD->hasUserDeclaredConstructor()) {
9580       typedef CXXRecordDecl::ctor_iterator ctor_iter;
9581       for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9582         if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
9583           return;
9584 
9585       // No user-delcared constructors; look for constructor templates.
9586       typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9587           tmpl_iter;
9588       for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9589            TI != TE; ++TI) {
9590         CXXConstructorDecl *CD =
9591             dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9592         if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
9593           return;
9594       }
9595     }
9596     break;
9597 
9598   case CXXCopyConstructor:
9599     if (RD->hasUserDeclaredCopyConstructor()) {
9600       SourceLocation CtorLoc =
9601         RD->getCopyConstructor(0)->getLocation();
9602       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9603       return;
9604     }
9605     break;
9606 
9607   case CXXMoveConstructor:
9608     if (RD->hasUserDeclaredMoveConstructor()) {
9609       SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9610       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9611       return;
9612     }
9613     break;
9614 
9615   case CXXCopyAssignment:
9616     if (RD->hasUserDeclaredCopyAssignment()) {
9617       SourceLocation AssignLoc =
9618         RD->getCopyAssignmentOperator(0)->getLocation();
9619       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9620       return;
9621     }
9622     break;
9623 
9624   case CXXMoveAssignment:
9625     if (RD->hasUserDeclaredMoveAssignment()) {
9626       SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9627       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9628       return;
9629     }
9630     break;
9631 
9632   case CXXDestructor:
9633     if (RD->hasUserDeclaredDestructor()) {
9634       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9635       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9636       return;
9637     }
9638     break;
9639   }
9640 
9641   typedef CXXRecordDecl::base_class_iterator base_iter;
9642 
9643   // Virtual bases and members inhibit trivial copying/construction,
9644   // but not trivial destruction.
9645   if (member != CXXDestructor) {
9646     // Check for virtual bases.  vbases includes indirect virtual bases,
9647     // so we just iterate through the direct bases.
9648     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9649       if (bi->isVirtual()) {
9650         SourceLocation BaseLoc = bi->getLocStart();
9651         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9652         return;
9653       }
9654 
9655     // Check for virtual methods.
9656     typedef CXXRecordDecl::method_iterator meth_iter;
9657     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9658          ++mi) {
9659       if (mi->isVirtual()) {
9660         SourceLocation MLoc = mi->getLocStart();
9661         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9662         return;
9663       }
9664     }
9665   }
9666 
9667   bool (CXXRecordDecl::*hasTrivial)() const;
9668   switch (member) {
9669   case CXXDefaultConstructor:
9670     hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9671   case CXXCopyConstructor:
9672     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9673   case CXXCopyAssignment:
9674     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9675   case CXXDestructor:
9676     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9677   default:
9678     llvm_unreachable("unexpected special member");
9679   }
9680 
9681   // Check for nontrivial bases (and recurse).
9682   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9683     const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9684     assert(BaseRT && "Don't know how to handle dependent bases");
9685     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9686     if (!(BaseRecTy->*hasTrivial)()) {
9687       SourceLocation BaseLoc = bi->getLocStart();
9688       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9689       DiagnoseNontrivial(BaseRT, member);
9690       return;
9691     }
9692   }
9693 
9694   // Check for nontrivial members (and recurse).
9695   typedef RecordDecl::field_iterator field_iter;
9696   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9697        ++fi) {
9698     QualType EltTy = Context.getBaseElementType(fi->getType());
9699     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9700       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9701 
9702       if (!(EltRD->*hasTrivial)()) {
9703         SourceLocation FLoc = fi->getLocation();
9704         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9705         DiagnoseNontrivial(EltRT, member);
9706         return;
9707       }
9708     }
9709 
9710     if (EltTy->isObjCLifetimeType()) {
9711       switch (EltTy.getObjCLifetime()) {
9712       case Qualifiers::OCL_None:
9713       case Qualifiers::OCL_ExplicitNone:
9714         break;
9715 
9716       case Qualifiers::OCL_Autoreleasing:
9717       case Qualifiers::OCL_Weak:
9718       case Qualifiers::OCL_Strong:
9719         Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9720           << QT << EltTy.getObjCLifetime();
9721         return;
9722       }
9723     }
9724   }
9725 
9726   llvm_unreachable("found no explanation for non-trivial member");
9727 }
9728 
9729 /// TranslateIvarVisibility - Translate visibility from a token ID to an
9730 ///  AST enum value.
9731 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)9732 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9733   switch (ivarVisibility) {
9734   default: llvm_unreachable("Unknown visitibility kind");
9735   case tok::objc_private: return ObjCIvarDecl::Private;
9736   case tok::objc_public: return ObjCIvarDecl::Public;
9737   case tok::objc_protected: return ObjCIvarDecl::Protected;
9738   case tok::objc_package: return ObjCIvarDecl::Package;
9739   }
9740 }
9741 
9742 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
9743 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)9744 Decl *Sema::ActOnIvar(Scope *S,
9745                                 SourceLocation DeclStart,
9746                                 Declarator &D, Expr *BitfieldWidth,
9747                                 tok::ObjCKeywordKind Visibility) {
9748 
9749   IdentifierInfo *II = D.getIdentifier();
9750   Expr *BitWidth = (Expr*)BitfieldWidth;
9751   SourceLocation Loc = DeclStart;
9752   if (II) Loc = D.getIdentifierLoc();
9753 
9754   // FIXME: Unnamed fields can be handled in various different ways, for
9755   // example, unnamed unions inject all members into the struct namespace!
9756 
9757   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9758   QualType T = TInfo->getType();
9759 
9760   if (BitWidth) {
9761     // 6.7.2.1p3, 6.7.2.1p4
9762     BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9763     if (!BitWidth)
9764       D.setInvalidType();
9765   } else {
9766     // Not a bitfield.
9767 
9768     // validate II.
9769 
9770   }
9771   if (T->isReferenceType()) {
9772     Diag(Loc, diag::err_ivar_reference_type);
9773     D.setInvalidType();
9774   }
9775   // C99 6.7.2.1p8: A member of a structure or union may have any type other
9776   // than a variably modified type.
9777   else if (T->isVariablyModifiedType()) {
9778     Diag(Loc, diag::err_typecheck_ivar_variable_size);
9779     D.setInvalidType();
9780   }
9781 
9782   // Get the visibility (access control) for this ivar.
9783   ObjCIvarDecl::AccessControl ac =
9784     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9785                                         : ObjCIvarDecl::None;
9786   // Must set ivar's DeclContext to its enclosing interface.
9787   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9788   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9789     return 0;
9790   ObjCContainerDecl *EnclosingContext;
9791   if (ObjCImplementationDecl *IMPDecl =
9792       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9793     if (LangOpts.ObjCRuntime.isFragile()) {
9794     // Case of ivar declared in an implementation. Context is that of its class.
9795       EnclosingContext = IMPDecl->getClassInterface();
9796       assert(EnclosingContext && "Implementation has no class interface!");
9797     }
9798     else
9799       EnclosingContext = EnclosingDecl;
9800   } else {
9801     if (ObjCCategoryDecl *CDecl =
9802         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9803       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9804         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9805         return 0;
9806       }
9807     }
9808     EnclosingContext = EnclosingDecl;
9809   }
9810 
9811   // Construct the decl.
9812   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9813                                              DeclStart, Loc, II, T,
9814                                              TInfo, ac, (Expr *)BitfieldWidth);
9815 
9816   if (II) {
9817     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9818                                            ForRedeclaration);
9819     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9820         && !isa<TagDecl>(PrevDecl)) {
9821       Diag(Loc, diag::err_duplicate_member) << II;
9822       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9823       NewID->setInvalidDecl();
9824     }
9825   }
9826 
9827   // Process attributes attached to the ivar.
9828   ProcessDeclAttributes(S, NewID, D);
9829 
9830   if (D.isInvalidType())
9831     NewID->setInvalidDecl();
9832 
9833   // In ARC, infer 'retaining' for ivars of retainable type.
9834   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9835     NewID->setInvalidDecl();
9836 
9837   if (D.getDeclSpec().isModulePrivateSpecified())
9838     NewID->setModulePrivate();
9839 
9840   if (II) {
9841     // FIXME: When interfaces are DeclContexts, we'll need to add
9842     // these to the interface.
9843     S->AddDecl(NewID);
9844     IdResolver.AddDecl(NewID);
9845   }
9846 
9847   if (LangOpts.ObjCRuntime.isNonFragile() &&
9848       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9849     Diag(Loc, diag::warn_ivars_in_interface);
9850 
9851   return NewID;
9852 }
9853 
9854 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9855 /// class and class extensions. For every class @interface and class
9856 /// extension @interface, if the last ivar is a bitfield of any type,
9857 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)9858 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9859                              SmallVectorImpl<Decl *> &AllIvarDecls) {
9860   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9861     return;
9862 
9863   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9864   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9865 
9866   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9867     return;
9868   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9869   if (!ID) {
9870     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9871       if (!CD->IsClassExtension())
9872         return;
9873     }
9874     // No need to add this to end of @implementation.
9875     else
9876       return;
9877   }
9878   // All conditions are met. Add a new bitfield to the tail end of ivars.
9879   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9880   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9881 
9882   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9883                               DeclLoc, DeclLoc, 0,
9884                               Context.CharTy,
9885                               Context.getTrivialTypeSourceInfo(Context.CharTy,
9886                                                                DeclLoc),
9887                               ObjCIvarDecl::Private, BW,
9888                               true);
9889   AllIvarDecls.push_back(Ivar);
9890 }
9891 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,llvm::ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)9892 void Sema::ActOnFields(Scope* S,
9893                        SourceLocation RecLoc, Decl *EnclosingDecl,
9894                        llvm::ArrayRef<Decl *> Fields,
9895                        SourceLocation LBrac, SourceLocation RBrac,
9896                        AttributeList *Attr) {
9897   assert(EnclosingDecl && "missing record or interface decl");
9898 
9899   // If this is an Objective-C @implementation or category and we have
9900   // new fields here we should reset the layout of the interface since
9901   // it will now change.
9902   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9903     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9904     switch (DC->getKind()) {
9905     default: break;
9906     case Decl::ObjCCategory:
9907       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9908       break;
9909     case Decl::ObjCImplementation:
9910       Context.
9911         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9912       break;
9913     }
9914   }
9915 
9916   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9917 
9918   // Start counting up the number of named members; make sure to include
9919   // members of anonymous structs and unions in the total.
9920   unsigned NumNamedMembers = 0;
9921   if (Record) {
9922     for (RecordDecl::decl_iterator i = Record->decls_begin(),
9923                                    e = Record->decls_end(); i != e; i++) {
9924       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9925         if (IFD->getDeclName())
9926           ++NumNamedMembers;
9927     }
9928   }
9929 
9930   // Verify that all the fields are okay.
9931   SmallVector<FieldDecl*, 32> RecFields;
9932 
9933   bool ARCErrReported = false;
9934   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9935        i != end; ++i) {
9936     FieldDecl *FD = cast<FieldDecl>(*i);
9937 
9938     // Get the type for the field.
9939     const Type *FDTy = FD->getType().getTypePtr();
9940 
9941     if (!FD->isAnonymousStructOrUnion()) {
9942       // Remember all fields written by the user.
9943       RecFields.push_back(FD);
9944     }
9945 
9946     // If the field is already invalid for some reason, don't emit more
9947     // diagnostics about it.
9948     if (FD->isInvalidDecl()) {
9949       EnclosingDecl->setInvalidDecl();
9950       continue;
9951     }
9952 
9953     // C99 6.7.2.1p2:
9954     //   A structure or union shall not contain a member with
9955     //   incomplete or function type (hence, a structure shall not
9956     //   contain an instance of itself, but may contain a pointer to
9957     //   an instance of itself), except that the last member of a
9958     //   structure with more than one named member may have incomplete
9959     //   array type; such a structure (and any union containing,
9960     //   possibly recursively, a member that is such a structure)
9961     //   shall not be a member of a structure or an element of an
9962     //   array.
9963     if (FDTy->isFunctionType()) {
9964       // Field declared as a function.
9965       Diag(FD->getLocation(), diag::err_field_declared_as_function)
9966         << FD->getDeclName();
9967       FD->setInvalidDecl();
9968       EnclosingDecl->setInvalidDecl();
9969       continue;
9970     } else if (FDTy->isIncompleteArrayType() && Record &&
9971                ((i + 1 == Fields.end() && !Record->isUnion()) ||
9972                 ((getLangOpts().MicrosoftExt ||
9973                   getLangOpts().CPlusPlus) &&
9974                  (i + 1 == Fields.end() || Record->isUnion())))) {
9975       // Flexible array member.
9976       // Microsoft and g++ is more permissive regarding flexible array.
9977       // It will accept flexible array in union and also
9978       // as the sole element of a struct/class.
9979       if (getLangOpts().MicrosoftExt) {
9980         if (Record->isUnion())
9981           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9982             << FD->getDeclName();
9983         else if (Fields.size() == 1)
9984           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9985             << FD->getDeclName() << Record->getTagKind();
9986       } else if (getLangOpts().CPlusPlus) {
9987         if (Record->isUnion())
9988           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9989             << FD->getDeclName();
9990         else if (Fields.size() == 1)
9991           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9992             << FD->getDeclName() << Record->getTagKind();
9993       } else if (!getLangOpts().C99) {
9994       if (Record->isUnion())
9995         Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9996           << FD->getDeclName();
9997       else
9998         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9999           << FD->getDeclName() << Record->getTagKind();
10000       } else if (NumNamedMembers < 1) {
10001         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10002           << FD->getDeclName();
10003         FD->setInvalidDecl();
10004         EnclosingDecl->setInvalidDecl();
10005         continue;
10006       }
10007       if (!FD->getType()->isDependentType() &&
10008           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10009         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10010           << FD->getDeclName() << FD->getType();
10011         FD->setInvalidDecl();
10012         EnclosingDecl->setInvalidDecl();
10013         continue;
10014       }
10015       // Okay, we have a legal flexible array member at the end of the struct.
10016       if (Record)
10017         Record->setHasFlexibleArrayMember(true);
10018     } else if (!FDTy->isDependentType() &&
10019                RequireCompleteType(FD->getLocation(), FD->getType(),
10020                                    diag::err_field_incomplete)) {
10021       // Incomplete type
10022       FD->setInvalidDecl();
10023       EnclosingDecl->setInvalidDecl();
10024       continue;
10025     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10026       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10027         // If this is a member of a union, then entire union becomes "flexible".
10028         if (Record && Record->isUnion()) {
10029           Record->setHasFlexibleArrayMember(true);
10030         } else {
10031           // If this is a struct/class and this is not the last element, reject
10032           // it.  Note that GCC supports variable sized arrays in the middle of
10033           // structures.
10034           if (i + 1 != Fields.end())
10035             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10036               << FD->getDeclName() << FD->getType();
10037           else {
10038             // We support flexible arrays at the end of structs in
10039             // other structs as an extension.
10040             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10041               << FD->getDeclName();
10042             if (Record)
10043               Record->setHasFlexibleArrayMember(true);
10044           }
10045         }
10046       }
10047       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10048           RequireNonAbstractType(FD->getLocation(), FD->getType(),
10049                                  diag::err_abstract_type_in_decl,
10050                                  AbstractIvarType)) {
10051         // Ivars can not have abstract class types
10052         FD->setInvalidDecl();
10053       }
10054       if (Record && FDTTy->getDecl()->hasObjectMember())
10055         Record->setHasObjectMember(true);
10056     } else if (FDTy->isObjCObjectType()) {
10057       /// A field cannot be an Objective-c object
10058       Diag(FD->getLocation(), diag::err_statically_allocated_object)
10059         << FixItHint::CreateInsertion(FD->getLocation(), "*");
10060       QualType T = Context.getObjCObjectPointerType(FD->getType());
10061       FD->setType(T);
10062     } else if (!getLangOpts().CPlusPlus) {
10063       if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10064         // It's an error in ARC if a field has lifetime.
10065         // We don't want to report this in a system header, though,
10066         // so we just make the field unavailable.
10067         // FIXME: that's really not sufficient; we need to make the type
10068         // itself invalid to, say, initialize or copy.
10069         QualType T = FD->getType();
10070         Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10071         if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10072           SourceLocation loc = FD->getLocation();
10073           if (getSourceManager().isInSystemHeader(loc)) {
10074             if (!FD->hasAttr<UnavailableAttr>()) {
10075               FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10076                                 "this system field has retaining ownership"));
10077             }
10078           } else {
10079             Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10080               << T->isBlockPointerType();
10081           }
10082           ARCErrReported = true;
10083         }
10084       }
10085       else if (getLangOpts().ObjC1 &&
10086                getLangOpts().getGC() != LangOptions::NonGC &&
10087                Record && !Record->hasObjectMember()) {
10088         if (FD->getType()->isObjCObjectPointerType() ||
10089             FD->getType().isObjCGCStrong())
10090           Record->setHasObjectMember(true);
10091         else if (Context.getAsArrayType(FD->getType())) {
10092           QualType BaseType = Context.getBaseElementType(FD->getType());
10093           if (BaseType->isRecordType() &&
10094               BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10095             Record->setHasObjectMember(true);
10096           else if (BaseType->isObjCObjectPointerType() ||
10097                    BaseType.isObjCGCStrong())
10098                  Record->setHasObjectMember(true);
10099         }
10100       }
10101     }
10102     // Keep track of the number of named members.
10103     if (FD->getIdentifier())
10104       ++NumNamedMembers;
10105   }
10106 
10107   // Okay, we successfully defined 'Record'.
10108   if (Record) {
10109     bool Completed = false;
10110     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10111       if (!CXXRecord->isInvalidDecl()) {
10112         // Set access bits correctly on the directly-declared conversions.
10113         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10114         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10115              I != E; ++I)
10116           Convs->setAccess(I, (*I)->getAccess());
10117 
10118         if (!CXXRecord->isDependentType()) {
10119           // Objective-C Automatic Reference Counting:
10120           //   If a class has a non-static data member of Objective-C pointer
10121           //   type (or array thereof), it is a non-POD type and its
10122           //   default constructor (if any), copy constructor, copy assignment
10123           //   operator, and destructor are non-trivial.
10124           //
10125           // This rule is also handled by CXXRecordDecl::completeDefinition().
10126           // However, here we check whether this particular class is only
10127           // non-POD because of the presence of an Objective-C pointer member.
10128           // If so, objects of this type cannot be shared between code compiled
10129           // with ARC and code compiled with manual retain/release.
10130           if (getLangOpts().ObjCAutoRefCount &&
10131               CXXRecord->hasObjectMember() &&
10132               CXXRecord->getLinkage() == ExternalLinkage) {
10133             if (CXXRecord->isPOD()) {
10134               Diag(CXXRecord->getLocation(),
10135                    diag::warn_arc_non_pod_class_with_object_member)
10136                << CXXRecord;
10137             } else {
10138               // FIXME: Fix-Its would be nice here, but finding a good location
10139               // for them is going to be tricky.
10140               if (CXXRecord->hasTrivialCopyConstructor())
10141                 Diag(CXXRecord->getLocation(),
10142                      diag::warn_arc_trivial_member_function_with_object_member)
10143                   << CXXRecord << 0;
10144               if (CXXRecord->hasTrivialCopyAssignment())
10145                 Diag(CXXRecord->getLocation(),
10146                      diag::warn_arc_trivial_member_function_with_object_member)
10147                 << CXXRecord << 1;
10148               if (CXXRecord->hasTrivialDestructor())
10149                 Diag(CXXRecord->getLocation(),
10150                      diag::warn_arc_trivial_member_function_with_object_member)
10151                 << CXXRecord << 2;
10152             }
10153           }
10154 
10155           // Adjust user-defined destructor exception spec.
10156           if (getLangOpts().CPlusPlus0x &&
10157               CXXRecord->hasUserDeclaredDestructor())
10158             AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10159 
10160           // Add any implicitly-declared members to this class.
10161           AddImplicitlyDeclaredMembersToClass(CXXRecord);
10162 
10163           // If we have virtual base classes, we may end up finding multiple
10164           // final overriders for a given virtual function. Check for this
10165           // problem now.
10166           if (CXXRecord->getNumVBases()) {
10167             CXXFinalOverriderMap FinalOverriders;
10168             CXXRecord->getFinalOverriders(FinalOverriders);
10169 
10170             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10171                                              MEnd = FinalOverriders.end();
10172                  M != MEnd; ++M) {
10173               for (OverridingMethods::iterator SO = M->second.begin(),
10174                                             SOEnd = M->second.end();
10175                    SO != SOEnd; ++SO) {
10176                 assert(SO->second.size() > 0 &&
10177                        "Virtual function without overridding functions?");
10178                 if (SO->second.size() == 1)
10179                   continue;
10180 
10181                 // C++ [class.virtual]p2:
10182                 //   In a derived class, if a virtual member function of a base
10183                 //   class subobject has more than one final overrider the
10184                 //   program is ill-formed.
10185                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10186                   << (const NamedDecl *)M->first << Record;
10187                 Diag(M->first->getLocation(),
10188                      diag::note_overridden_virtual_function);
10189                 for (OverridingMethods::overriding_iterator
10190                           OM = SO->second.begin(),
10191                        OMEnd = SO->second.end();
10192                      OM != OMEnd; ++OM)
10193                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
10194                     << (const NamedDecl *)M->first << OM->Method->getParent();
10195 
10196                 Record->setInvalidDecl();
10197               }
10198             }
10199             CXXRecord->completeDefinition(&FinalOverriders);
10200             Completed = true;
10201           }
10202         }
10203       }
10204     }
10205 
10206     if (!Completed)
10207       Record->completeDefinition();
10208 
10209   } else {
10210     ObjCIvarDecl **ClsFields =
10211       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10212     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10213       ID->setEndOfDefinitionLoc(RBrac);
10214       // Add ivar's to class's DeclContext.
10215       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10216         ClsFields[i]->setLexicalDeclContext(ID);
10217         ID->addDecl(ClsFields[i]);
10218       }
10219       // Must enforce the rule that ivars in the base classes may not be
10220       // duplicates.
10221       if (ID->getSuperClass())
10222         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10223     } else if (ObjCImplementationDecl *IMPDecl =
10224                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10225       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10226       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10227         // Ivar declared in @implementation never belongs to the implementation.
10228         // Only it is in implementation's lexical context.
10229         ClsFields[I]->setLexicalDeclContext(IMPDecl);
10230       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10231       IMPDecl->setIvarLBraceLoc(LBrac);
10232       IMPDecl->setIvarRBraceLoc(RBrac);
10233     } else if (ObjCCategoryDecl *CDecl =
10234                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10235       // case of ivars in class extension; all other cases have been
10236       // reported as errors elsewhere.
10237       // FIXME. Class extension does not have a LocEnd field.
10238       // CDecl->setLocEnd(RBrac);
10239       // Add ivar's to class extension's DeclContext.
10240       // Diagnose redeclaration of private ivars.
10241       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10242       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10243         if (IDecl) {
10244           if (const ObjCIvarDecl *ClsIvar =
10245               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10246             Diag(ClsFields[i]->getLocation(),
10247                  diag::err_duplicate_ivar_declaration);
10248             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10249             continue;
10250           }
10251           for (const ObjCCategoryDecl *ClsExtDecl =
10252                 IDecl->getFirstClassExtension();
10253                ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10254             if (const ObjCIvarDecl *ClsExtIvar =
10255                 ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10256               Diag(ClsFields[i]->getLocation(),
10257                    diag::err_duplicate_ivar_declaration);
10258               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10259               continue;
10260             }
10261           }
10262         }
10263         ClsFields[i]->setLexicalDeclContext(CDecl);
10264         CDecl->addDecl(ClsFields[i]);
10265       }
10266       CDecl->setIvarLBraceLoc(LBrac);
10267       CDecl->setIvarRBraceLoc(RBrac);
10268     }
10269   }
10270 
10271   if (Attr)
10272     ProcessDeclAttributeList(S, Record, Attr);
10273 }
10274 
10275 /// \brief Determine whether the given integral value is representable within
10276 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)10277 static bool isRepresentableIntegerValue(ASTContext &Context,
10278                                         llvm::APSInt &Value,
10279                                         QualType T) {
10280   assert(T->isIntegralType(Context) && "Integral type required!");
10281   unsigned BitWidth = Context.getIntWidth(T);
10282 
10283   if (Value.isUnsigned() || Value.isNonNegative()) {
10284     if (T->isSignedIntegerOrEnumerationType())
10285       --BitWidth;
10286     return Value.getActiveBits() <= BitWidth;
10287   }
10288   return Value.getMinSignedBits() <= BitWidth;
10289 }
10290 
10291 // \brief Given an integral type, return the next larger integral type
10292 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)10293 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10294   // FIXME: Int128/UInt128 support, which also needs to be introduced into
10295   // enum checking below.
10296   assert(T->isIntegralType(Context) && "Integral type required!");
10297   const unsigned NumTypes = 4;
10298   QualType SignedIntegralTypes[NumTypes] = {
10299     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10300   };
10301   QualType UnsignedIntegralTypes[NumTypes] = {
10302     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10303     Context.UnsignedLongLongTy
10304   };
10305 
10306   unsigned BitWidth = Context.getTypeSize(T);
10307   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10308                                                         : UnsignedIntegralTypes;
10309   for (unsigned I = 0; I != NumTypes; ++I)
10310     if (Context.getTypeSize(Types[I]) > BitWidth)
10311       return Types[I];
10312 
10313   return QualType();
10314 }
10315 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)10316 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10317                                           EnumConstantDecl *LastEnumConst,
10318                                           SourceLocation IdLoc,
10319                                           IdentifierInfo *Id,
10320                                           Expr *Val) {
10321   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10322   llvm::APSInt EnumVal(IntWidth);
10323   QualType EltTy;
10324 
10325   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10326     Val = 0;
10327 
10328   if (Val)
10329     Val = DefaultLvalueConversion(Val).take();
10330 
10331   if (Val) {
10332     if (Enum->isDependentType() || Val->isTypeDependent())
10333       EltTy = Context.DependentTy;
10334     else {
10335       SourceLocation ExpLoc;
10336       if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10337           !getLangOpts().MicrosoftMode) {
10338         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10339         // constant-expression in the enumerator-definition shall be a converted
10340         // constant expression of the underlying type.
10341         EltTy = Enum->getIntegerType();
10342         ExprResult Converted =
10343           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10344                                            CCEK_Enumerator);
10345         if (Converted.isInvalid())
10346           Val = 0;
10347         else
10348           Val = Converted.take();
10349       } else if (!Val->isValueDependent() &&
10350                  !(Val = VerifyIntegerConstantExpression(Val,
10351                                                          &EnumVal).take())) {
10352         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10353       } else {
10354         if (Enum->isFixed()) {
10355           EltTy = Enum->getIntegerType();
10356 
10357           // In Obj-C and Microsoft mode, require the enumeration value to be
10358           // representable in the underlying type of the enumeration. In C++11,
10359           // we perform a non-narrowing conversion as part of converted constant
10360           // expression checking.
10361           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10362             if (getLangOpts().MicrosoftMode) {
10363               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10364               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10365             } else
10366               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10367           } else
10368             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10369         } else if (getLangOpts().CPlusPlus) {
10370           // C++11 [dcl.enum]p5:
10371           //   If the underlying type is not fixed, the type of each enumerator
10372           //   is the type of its initializing value:
10373           //     - If an initializer is specified for an enumerator, the
10374           //       initializing value has the same type as the expression.
10375           EltTy = Val->getType();
10376         } else {
10377           // C99 6.7.2.2p2:
10378           //   The expression that defines the value of an enumeration constant
10379           //   shall be an integer constant expression that has a value
10380           //   representable as an int.
10381 
10382           // Complain if the value is not representable in an int.
10383           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10384             Diag(IdLoc, diag::ext_enum_value_not_int)
10385               << EnumVal.toString(10) << Val->getSourceRange()
10386               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10387           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10388             // Force the type of the expression to 'int'.
10389             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10390           }
10391           EltTy = Val->getType();
10392         }
10393       }
10394     }
10395   }
10396 
10397   if (!Val) {
10398     if (Enum->isDependentType())
10399       EltTy = Context.DependentTy;
10400     else if (!LastEnumConst) {
10401       // C++0x [dcl.enum]p5:
10402       //   If the underlying type is not fixed, the type of each enumerator
10403       //   is the type of its initializing value:
10404       //     - If no initializer is specified for the first enumerator, the
10405       //       initializing value has an unspecified integral type.
10406       //
10407       // GCC uses 'int' for its unspecified integral type, as does
10408       // C99 6.7.2.2p3.
10409       if (Enum->isFixed()) {
10410         EltTy = Enum->getIntegerType();
10411       }
10412       else {
10413         EltTy = Context.IntTy;
10414       }
10415     } else {
10416       // Assign the last value + 1.
10417       EnumVal = LastEnumConst->getInitVal();
10418       ++EnumVal;
10419       EltTy = LastEnumConst->getType();
10420 
10421       // Check for overflow on increment.
10422       if (EnumVal < LastEnumConst->getInitVal()) {
10423         // C++0x [dcl.enum]p5:
10424         //   If the underlying type is not fixed, the type of each enumerator
10425         //   is the type of its initializing value:
10426         //
10427         //     - Otherwise the type of the initializing value is the same as
10428         //       the type of the initializing value of the preceding enumerator
10429         //       unless the incremented value is not representable in that type,
10430         //       in which case the type is an unspecified integral type
10431         //       sufficient to contain the incremented value. If no such type
10432         //       exists, the program is ill-formed.
10433         QualType T = getNextLargerIntegralType(Context, EltTy);
10434         if (T.isNull() || Enum->isFixed()) {
10435           // There is no integral type larger enough to represent this
10436           // value. Complain, then allow the value to wrap around.
10437           EnumVal = LastEnumConst->getInitVal();
10438           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10439           ++EnumVal;
10440           if (Enum->isFixed())
10441             // When the underlying type is fixed, this is ill-formed.
10442             Diag(IdLoc, diag::err_enumerator_wrapped)
10443               << EnumVal.toString(10)
10444               << EltTy;
10445           else
10446             Diag(IdLoc, diag::warn_enumerator_too_large)
10447               << EnumVal.toString(10);
10448         } else {
10449           EltTy = T;
10450         }
10451 
10452         // Retrieve the last enumerator's value, extent that type to the
10453         // type that is supposed to be large enough to represent the incremented
10454         // value, then increment.
10455         EnumVal = LastEnumConst->getInitVal();
10456         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10457         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10458         ++EnumVal;
10459 
10460         // If we're not in C++, diagnose the overflow of enumerator values,
10461         // which in C99 means that the enumerator value is not representable in
10462         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10463         // permits enumerator values that are representable in some larger
10464         // integral type.
10465         if (!getLangOpts().CPlusPlus && !T.isNull())
10466           Diag(IdLoc, diag::warn_enum_value_overflow);
10467       } else if (!getLangOpts().CPlusPlus &&
10468                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10469         // Enforce C99 6.7.2.2p2 even when we compute the next value.
10470         Diag(IdLoc, diag::ext_enum_value_not_int)
10471           << EnumVal.toString(10) << 1;
10472       }
10473     }
10474   }
10475 
10476   if (!EltTy->isDependentType()) {
10477     // Make the enumerator value match the signedness and size of the
10478     // enumerator's type.
10479     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10480     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10481   }
10482 
10483   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10484                                   Val, EnumVal);
10485 }
10486 
10487 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)10488 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10489                               SourceLocation IdLoc, IdentifierInfo *Id,
10490                               AttributeList *Attr,
10491                               SourceLocation EqualLoc, Expr *Val) {
10492   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10493   EnumConstantDecl *LastEnumConst =
10494     cast_or_null<EnumConstantDecl>(lastEnumConst);
10495 
10496   // The scope passed in may not be a decl scope.  Zip up the scope tree until
10497   // we find one that is.
10498   S = getNonFieldDeclScope(S);
10499 
10500   // Verify that there isn't already something declared with this name in this
10501   // scope.
10502   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10503                                          ForRedeclaration);
10504   if (PrevDecl && PrevDecl->isTemplateParameter()) {
10505     // Maybe we will complain about the shadowed template parameter.
10506     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10507     // Just pretend that we didn't see the previous declaration.
10508     PrevDecl = 0;
10509   }
10510 
10511   if (PrevDecl) {
10512     // When in C++, we may get a TagDecl with the same name; in this case the
10513     // enum constant will 'hide' the tag.
10514     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10515            "Received TagDecl when not in C++!");
10516     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10517       if (isa<EnumConstantDecl>(PrevDecl))
10518         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10519       else
10520         Diag(IdLoc, diag::err_redefinition) << Id;
10521       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10522       return 0;
10523     }
10524   }
10525 
10526   // C++ [class.mem]p15:
10527   // If T is the name of a class, then each of the following shall have a name
10528   // different from T:
10529   // - every enumerator of every member of class T that is an unscoped
10530   // enumerated type
10531   if (CXXRecordDecl *Record
10532                       = dyn_cast<CXXRecordDecl>(
10533                              TheEnumDecl->getDeclContext()->getRedeclContext()))
10534     if (!TheEnumDecl->isScoped() &&
10535         Record->getIdentifier() && Record->getIdentifier() == Id)
10536       Diag(IdLoc, diag::err_member_name_of_class) << Id;
10537 
10538   EnumConstantDecl *New =
10539     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10540 
10541   if (New) {
10542     // Process attributes.
10543     if (Attr) ProcessDeclAttributeList(S, New, Attr);
10544 
10545     // Register this decl in the current scope stack.
10546     New->setAccess(TheEnumDecl->getAccess());
10547     PushOnScopeChains(New, S);
10548   }
10549 
10550   ActOnDocumentableDecl(New);
10551 
10552   return New;
10553 }
10554 
10555 // Emits a warning if every element in the enum is the same value and if
10556 // every element is initialized with a integer or boolean literal.
CheckForUniqueEnumValues(Sema & S,Decl ** Elements,unsigned NumElements,EnumDecl * Enum,QualType EnumType)10557 static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10558                                      unsigned NumElements, EnumDecl *Enum,
10559                                      QualType EnumType) {
10560   if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10561                                  Enum->getLocation()) ==
10562       DiagnosticsEngine::Ignored)
10563     return;
10564 
10565   if (NumElements < 2)
10566     return;
10567 
10568   if (!Enum->getIdentifier())
10569     return;
10570 
10571   llvm::APSInt FirstVal;
10572 
10573   for (unsigned i = 0; i != NumElements; ++i) {
10574     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10575     if (!ECD)
10576       return;
10577 
10578     Expr *InitExpr = ECD->getInitExpr();
10579     if (!InitExpr)
10580       return;
10581     InitExpr = InitExpr->IgnoreImpCasts();
10582     if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10583       return;
10584 
10585     if (i == 0) {
10586       FirstVal = ECD->getInitVal();
10587       continue;
10588     }
10589 
10590     if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
10591       return;
10592   }
10593 
10594   S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10595       << EnumType << FirstVal.toString(10)
10596       << Enum->getSourceRange();
10597 
10598   EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10599                    *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10600 
10601   S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10602     << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10603                                     Next->getName());
10604 }
10605 
10606 // Returns true when the enum initial expression does not trigger the
10607 // duplicate enum warning.  A few common cases are exempted as follows:
10608 // Element2 = Element1
10609 // Element2 = Element1 + 1
10610 // Element2 = Element1 - 1
10611 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)10612 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
10613   Expr *InitExpr = ECD->getInitExpr();
10614   if (!InitExpr)
10615     return true;
10616   InitExpr = InitExpr->IgnoreImpCasts();
10617 
10618   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
10619     if (!BO->isAdditiveOp())
10620       return true;
10621     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
10622     if (!IL)
10623       return true;
10624     if (IL->getValue() != 1)
10625       return true;
10626 
10627     InitExpr = BO->getLHS();
10628   }
10629 
10630   // This checks if the elements are from the same enum.
10631   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
10632   if (!DRE)
10633     return true;
10634 
10635   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
10636   if (!EnumConstant)
10637     return true;
10638 
10639   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
10640       Enum)
10641     return true;
10642 
10643   return false;
10644 }
10645 
10646 struct DupKey {
10647   int64_t val;
10648   bool isTombstoneOrEmptyKey;
DupKeyDupKey10649   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
10650     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
10651 };
10652 
GetDupKey(const llvm::APSInt & Val)10653 static DupKey GetDupKey(const llvm::APSInt& Val) {
10654   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
10655                 false);
10656 }
10657 
10658 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey10659   static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey10660   static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey10661   static unsigned getHashValue(const DupKey Key) {
10662     return (unsigned)(Key.val * 37);
10663   }
isEqualDenseMapInfoDupKey10664   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
10665     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
10666            LHS.val == RHS.val;
10667   }
10668 };
10669 
10670 // Emits a warning when an element is implicitly set a value that
10671 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,Decl ** Elements,unsigned NumElements,EnumDecl * Enum,QualType EnumType)10672 static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
10673                                         unsigned NumElements, EnumDecl *Enum,
10674                                         QualType EnumType) {
10675   if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
10676                                  Enum->getLocation()) ==
10677       DiagnosticsEngine::Ignored)
10678     return;
10679   // Avoid anonymous enums
10680   if (!Enum->getIdentifier())
10681     return;
10682 
10683   // Only check for small enums.
10684   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
10685     return;
10686 
10687   typedef llvm::SmallVector<EnumConstantDecl*, 3> ECDVector;
10688   typedef llvm::SmallVector<ECDVector*, 3> DuplicatesVector;
10689 
10690   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
10691   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
10692           ValueToVectorMap;
10693 
10694   DuplicatesVector DupVector;
10695   ValueToVectorMap EnumMap;
10696 
10697   // Populate the EnumMap with all values represented by enum constants without
10698   // an initialier.
10699   for (unsigned i = 0; i < NumElements; ++i) {
10700     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10701 
10702     // Null EnumConstantDecl means a previous diagnostic has been emitted for
10703     // this constant.  Skip this enum since it may be ill-formed.
10704     if (!ECD) {
10705       return;
10706     }
10707 
10708     if (ECD->getInitExpr())
10709       continue;
10710 
10711     DupKey Key = GetDupKey(ECD->getInitVal());
10712     DeclOrVector &Entry = EnumMap[Key];
10713 
10714     // First time encountering this value.
10715     if (Entry.isNull())
10716       Entry = ECD;
10717   }
10718 
10719   // Create vectors for any values that has duplicates.
10720   for (unsigned i = 0; i < NumElements; ++i) {
10721     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10722     if (!ValidDuplicateEnum(ECD, Enum))
10723       continue;
10724 
10725     DupKey Key = GetDupKey(ECD->getInitVal());
10726 
10727     DeclOrVector& Entry = EnumMap[Key];
10728     if (Entry.isNull())
10729       continue;
10730 
10731     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
10732       // Ensure constants are different.
10733       if (D == ECD)
10734         continue;
10735 
10736       // Create new vector and push values onto it.
10737       ECDVector *Vec = new ECDVector();
10738       Vec->push_back(D);
10739       Vec->push_back(ECD);
10740 
10741       // Update entry to point to the duplicates vector.
10742       Entry = Vec;
10743 
10744       // Store the vector somewhere we can consult later for quick emission of
10745       // diagnostics.
10746       DupVector.push_back(Vec);
10747       continue;
10748     }
10749 
10750     ECDVector *Vec = Entry.get<ECDVector*>();
10751     // Make sure constants are not added more than once.
10752     if (*Vec->begin() == ECD)
10753       continue;
10754 
10755     Vec->push_back(ECD);
10756   }
10757 
10758   // Emit diagnostics.
10759   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
10760                                   DupVectorEnd = DupVector.end();
10761        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
10762     ECDVector *Vec = *DupVectorIter;
10763     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
10764 
10765     // Emit warning for one enum constant.
10766     ECDVector::iterator I = Vec->begin();
10767     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
10768       << (*I)->getName() << (*I)->getInitVal().toString(10)
10769       << (*I)->getSourceRange();
10770     ++I;
10771 
10772     // Emit one note for each of the remaining enum constants with
10773     // the same value.
10774     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
10775       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
10776         << (*I)->getName() << (*I)->getInitVal().toString(10)
10777         << (*I)->getSourceRange();
10778     delete Vec;
10779   }
10780 }
10781 
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,Decl ** Elements,unsigned NumElements,Scope * S,AttributeList * Attr)10782 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10783                          SourceLocation RBraceLoc, Decl *EnumDeclX,
10784                          Decl **Elements, unsigned NumElements,
10785                          Scope *S, AttributeList *Attr) {
10786   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10787   QualType EnumType = Context.getTypeDeclType(Enum);
10788 
10789   if (Attr)
10790     ProcessDeclAttributeList(S, Enum, Attr);
10791 
10792   if (Enum->isDependentType()) {
10793     for (unsigned i = 0; i != NumElements; ++i) {
10794       EnumConstantDecl *ECD =
10795         cast_or_null<EnumConstantDecl>(Elements[i]);
10796       if (!ECD) continue;
10797 
10798       ECD->setType(EnumType);
10799     }
10800 
10801     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10802     return;
10803   }
10804 
10805   // TODO: If the result value doesn't fit in an int, it must be a long or long
10806   // long value.  ISO C does not support this, but GCC does as an extension,
10807   // emit a warning.
10808   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10809   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10810   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10811 
10812   // Verify that all the values are okay, compute the size of the values, and
10813   // reverse the list.
10814   unsigned NumNegativeBits = 0;
10815   unsigned NumPositiveBits = 0;
10816 
10817   // Keep track of whether all elements have type int.
10818   bool AllElementsInt = true;
10819 
10820   for (unsigned i = 0; i != NumElements; ++i) {
10821     EnumConstantDecl *ECD =
10822       cast_or_null<EnumConstantDecl>(Elements[i]);
10823     if (!ECD) continue;  // Already issued a diagnostic.
10824 
10825     const llvm::APSInt &InitVal = ECD->getInitVal();
10826 
10827     // Keep track of the size of positive and negative values.
10828     if (InitVal.isUnsigned() || InitVal.isNonNegative())
10829       NumPositiveBits = std::max(NumPositiveBits,
10830                                  (unsigned)InitVal.getActiveBits());
10831     else
10832       NumNegativeBits = std::max(NumNegativeBits,
10833                                  (unsigned)InitVal.getMinSignedBits());
10834 
10835     // Keep track of whether every enum element has type int (very commmon).
10836     if (AllElementsInt)
10837       AllElementsInt = ECD->getType() == Context.IntTy;
10838   }
10839 
10840   // Figure out the type that should be used for this enum.
10841   QualType BestType;
10842   unsigned BestWidth;
10843 
10844   // C++0x N3000 [conv.prom]p3:
10845   //   An rvalue of an unscoped enumeration type whose underlying
10846   //   type is not fixed can be converted to an rvalue of the first
10847   //   of the following types that can represent all the values of
10848   //   the enumeration: int, unsigned int, long int, unsigned long
10849   //   int, long long int, or unsigned long long int.
10850   // C99 6.4.4.3p2:
10851   //   An identifier declared as an enumeration constant has type int.
10852   // The C99 rule is modified by a gcc extension
10853   QualType BestPromotionType;
10854 
10855   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10856   // -fshort-enums is the equivalent to specifying the packed attribute on all
10857   // enum definitions.
10858   if (LangOpts.ShortEnums)
10859     Packed = true;
10860 
10861   if (Enum->isFixed()) {
10862     BestType = Enum->getIntegerType();
10863     if (BestType->isPromotableIntegerType())
10864       BestPromotionType = Context.getPromotedIntegerType(BestType);
10865     else
10866       BestPromotionType = BestType;
10867     // We don't need to set BestWidth, because BestType is going to be the type
10868     // of the enumerators, but we do anyway because otherwise some compilers
10869     // warn that it might be used uninitialized.
10870     BestWidth = CharWidth;
10871   }
10872   else if (NumNegativeBits) {
10873     // If there is a negative value, figure out the smallest integer type (of
10874     // int/long/longlong) that fits.
10875     // If it's packed, check also if it fits a char or a short.
10876     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10877       BestType = Context.SignedCharTy;
10878       BestWidth = CharWidth;
10879     } else if (Packed && NumNegativeBits <= ShortWidth &&
10880                NumPositiveBits < ShortWidth) {
10881       BestType = Context.ShortTy;
10882       BestWidth = ShortWidth;
10883     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10884       BestType = Context.IntTy;
10885       BestWidth = IntWidth;
10886     } else {
10887       BestWidth = Context.getTargetInfo().getLongWidth();
10888 
10889       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10890         BestType = Context.LongTy;
10891       } else {
10892         BestWidth = Context.getTargetInfo().getLongLongWidth();
10893 
10894         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10895           Diag(Enum->getLocation(), diag::warn_enum_too_large);
10896         BestType = Context.LongLongTy;
10897       }
10898     }
10899     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10900   } else {
10901     // If there is no negative value, figure out the smallest type that fits
10902     // all of the enumerator values.
10903     // If it's packed, check also if it fits a char or a short.
10904     if (Packed && NumPositiveBits <= CharWidth) {
10905       BestType = Context.UnsignedCharTy;
10906       BestPromotionType = Context.IntTy;
10907       BestWidth = CharWidth;
10908     } else if (Packed && NumPositiveBits <= ShortWidth) {
10909       BestType = Context.UnsignedShortTy;
10910       BestPromotionType = Context.IntTy;
10911       BestWidth = ShortWidth;
10912     } else if (NumPositiveBits <= IntWidth) {
10913       BestType = Context.UnsignedIntTy;
10914       BestWidth = IntWidth;
10915       BestPromotionType
10916         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10917                            ? Context.UnsignedIntTy : Context.IntTy;
10918     } else if (NumPositiveBits <=
10919                (BestWidth = Context.getTargetInfo().getLongWidth())) {
10920       BestType = Context.UnsignedLongTy;
10921       BestPromotionType
10922         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10923                            ? Context.UnsignedLongTy : Context.LongTy;
10924     } else {
10925       BestWidth = Context.getTargetInfo().getLongLongWidth();
10926       assert(NumPositiveBits <= BestWidth &&
10927              "How could an initializer get larger than ULL?");
10928       BestType = Context.UnsignedLongLongTy;
10929       BestPromotionType
10930         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10931                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
10932     }
10933   }
10934 
10935   // Loop over all of the enumerator constants, changing their types to match
10936   // the type of the enum if needed.
10937   for (unsigned i = 0; i != NumElements; ++i) {
10938     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10939     if (!ECD) continue;  // Already issued a diagnostic.
10940 
10941     // Standard C says the enumerators have int type, but we allow, as an
10942     // extension, the enumerators to be larger than int size.  If each
10943     // enumerator value fits in an int, type it as an int, otherwise type it the
10944     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10945     // that X has type 'int', not 'unsigned'.
10946 
10947     // Determine whether the value fits into an int.
10948     llvm::APSInt InitVal = ECD->getInitVal();
10949 
10950     // If it fits into an integer type, force it.  Otherwise force it to match
10951     // the enum decl type.
10952     QualType NewTy;
10953     unsigned NewWidth;
10954     bool NewSign;
10955     if (!getLangOpts().CPlusPlus &&
10956         !Enum->isFixed() &&
10957         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10958       NewTy = Context.IntTy;
10959       NewWidth = IntWidth;
10960       NewSign = true;
10961     } else if (ECD->getType() == BestType) {
10962       // Already the right type!
10963       if (getLangOpts().CPlusPlus)
10964         // C++ [dcl.enum]p4: Following the closing brace of an
10965         // enum-specifier, each enumerator has the type of its
10966         // enumeration.
10967         ECD->setType(EnumType);
10968       continue;
10969     } else {
10970       NewTy = BestType;
10971       NewWidth = BestWidth;
10972       NewSign = BestType->isSignedIntegerOrEnumerationType();
10973     }
10974 
10975     // Adjust the APSInt value.
10976     InitVal = InitVal.extOrTrunc(NewWidth);
10977     InitVal.setIsSigned(NewSign);
10978     ECD->setInitVal(InitVal);
10979 
10980     // Adjust the Expr initializer and type.
10981     if (ECD->getInitExpr() &&
10982         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10983       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10984                                                 CK_IntegralCast,
10985                                                 ECD->getInitExpr(),
10986                                                 /*base paths*/ 0,
10987                                                 VK_RValue));
10988     if (getLangOpts().CPlusPlus)
10989       // C++ [dcl.enum]p4: Following the closing brace of an
10990       // enum-specifier, each enumerator has the type of its
10991       // enumeration.
10992       ECD->setType(EnumType);
10993     else
10994       ECD->setType(NewTy);
10995   }
10996 
10997   Enum->completeDefinition(BestType, BestPromotionType,
10998                            NumPositiveBits, NumNegativeBits);
10999 
11000   // If we're declaring a function, ensure this decl isn't forgotten about -
11001   // it needs to go into the function scope.
11002   if (InFunctionDeclarator)
11003     DeclsInPrototypeScope.push_back(Enum);
11004 
11005   CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
11006   CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11007 }
11008 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)11009 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11010                                   SourceLocation StartLoc,
11011                                   SourceLocation EndLoc) {
11012   StringLiteral *AsmString = cast<StringLiteral>(expr);
11013 
11014   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11015                                                    AsmString, StartLoc,
11016                                                    EndLoc);
11017   CurContext->addDecl(New);
11018   return New;
11019 }
11020 
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)11021 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11022                                    SourceLocation ImportLoc,
11023                                    ModuleIdPath Path) {
11024   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11025                                                 Module::AllVisible,
11026                                                 /*IsIncludeDirective=*/false);
11027   if (!Mod)
11028     return true;
11029 
11030   llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
11031   Module *ModCheck = Mod;
11032   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11033     // If we've run out of module parents, just drop the remaining identifiers.
11034     // We need the length to be consistent.
11035     if (!ModCheck)
11036       break;
11037     ModCheck = ModCheck->Parent;
11038 
11039     IdentifierLocs.push_back(Path[I].second);
11040   }
11041 
11042   ImportDecl *Import = ImportDecl::Create(Context,
11043                                           Context.getTranslationUnitDecl(),
11044                                           AtLoc.isValid()? AtLoc : ImportLoc,
11045                                           Mod, IdentifierLocs);
11046   Context.getTranslationUnitDecl()->addDecl(Import);
11047   return Import;
11048 }
11049 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)11050 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11051                                       IdentifierInfo* AliasName,
11052                                       SourceLocation PragmaLoc,
11053                                       SourceLocation NameLoc,
11054                                       SourceLocation AliasNameLoc) {
11055   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11056                                     LookupOrdinaryName);
11057   AsmLabelAttr *Attr =
11058      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11059 
11060   if (PrevDecl)
11061     PrevDecl->addAttr(Attr);
11062   else
11063     (void)ExtnameUndeclaredIdentifiers.insert(
11064       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11065 }
11066 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)11067 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11068                              SourceLocation PragmaLoc,
11069                              SourceLocation NameLoc) {
11070   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11071 
11072   if (PrevDecl) {
11073     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11074   } else {
11075     (void)WeakUndeclaredIdentifiers.insert(
11076       std::pair<IdentifierInfo*,WeakInfo>
11077         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11078   }
11079 }
11080 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)11081 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11082                                 IdentifierInfo* AliasName,
11083                                 SourceLocation PragmaLoc,
11084                                 SourceLocation NameLoc,
11085                                 SourceLocation AliasNameLoc) {
11086   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11087                                     LookupOrdinaryName);
11088   WeakInfo W = WeakInfo(Name, NameLoc);
11089 
11090   if (PrevDecl) {
11091     if (!PrevDecl->hasAttr<AliasAttr>())
11092       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11093         DeclApplyPragmaWeak(TUScope, ND, W);
11094   } else {
11095     (void)WeakUndeclaredIdentifiers.insert(
11096       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11097   }
11098 }
11099 
getObjCDeclContext() const11100 Decl *Sema::getObjCDeclContext() const {
11101   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11102 }
11103 
getCurContextAvailability() const11104 AvailabilityResult Sema::getCurContextAvailability() const {
11105   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11106   return D->getAvailability();
11107 }
11108