1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Scope.h"
16 #include "clang/Sema/ScopeInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/SmallVector.h"
35 using namespace clang;
36 using namespace sema;
37
ActOnExprStmt(FullExprArg expr)38 StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
39 Expr *E = expr.get();
40 if (!E) // FIXME: FullExprArg has no error state?
41 return StmtError();
42
43 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
44 // void expression for its side effects. Conversion to void allows any
45 // operand, even incomplete types.
46
47 // Same thing in for stmt first clause (when expr) and third clause.
48 return Owned(static_cast<Stmt*>(E));
49 }
50
51
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)52 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
53 bool HasLeadingEmptyMacro) {
54 return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
55 }
56
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)57 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
58 SourceLocation EndLoc) {
59 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
60
61 // If we have an invalid decl, just return an error.
62 if (DG.isNull()) return StmtError();
63
64 return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
65 }
66
ActOnForEachDeclStmt(DeclGroupPtrTy dg)67 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
68 DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
69
70 // If we have an invalid decl, just return.
71 if (DG.isNull() || !DG.isSingleDecl()) return;
72 VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
73
74 // suppress any potential 'unused variable' warning.
75 var->setUsed();
76
77 // foreach variables are never actually initialized in the way that
78 // the parser came up with.
79 var->setInit(0);
80
81 // In ARC, we don't need to retain the iteration variable of a fast
82 // enumeration loop. Rather than actually trying to catch that
83 // during declaration processing, we remove the consequences here.
84 if (getLangOpts().ObjCAutoRefCount) {
85 QualType type = var->getType();
86
87 // Only do this if we inferred the lifetime. Inferred lifetime
88 // will show up as a local qualifier because explicit lifetime
89 // should have shown up as an AttributedType instead.
90 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
91 // Add 'const' and mark the variable as pseudo-strong.
92 var->setType(type.withConst());
93 var->setARCPseudoStrong(true);
94 }
95 }
96 }
97
98 /// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
99 ///
100 /// Adding a cast to void (or other expression wrappers) will prevent the
101 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)102 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
103 SourceLocation Loc;
104 bool IsNotEqual, CanAssign;
105
106 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
107 if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
108 return false;
109
110 Loc = Op->getOperatorLoc();
111 IsNotEqual = Op->getOpcode() == BO_NE;
112 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
113 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
114 if (Op->getOperator() != OO_EqualEqual &&
115 Op->getOperator() != OO_ExclaimEqual)
116 return false;
117
118 Loc = Op->getOperatorLoc();
119 IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
120 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
121 } else {
122 // Not a typo-prone comparison.
123 return false;
124 }
125
126 // Suppress warnings when the operator, suspicious as it may be, comes from
127 // a macro expansion.
128 if (Loc.isMacroID())
129 return false;
130
131 S.Diag(Loc, diag::warn_unused_comparison)
132 << (unsigned)IsNotEqual << E->getSourceRange();
133
134 // If the LHS is a plausible entity to assign to, provide a fixit hint to
135 // correct common typos.
136 if (CanAssign) {
137 if (IsNotEqual)
138 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
139 << FixItHint::CreateReplacement(Loc, "|=");
140 else
141 S.Diag(Loc, diag::note_equality_comparison_to_assign)
142 << FixItHint::CreateReplacement(Loc, "=");
143 }
144
145 return true;
146 }
147
DiagnoseUnusedExprResult(const Stmt * S)148 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
149 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
150 return DiagnoseUnusedExprResult(Label->getSubStmt());
151
152 const Expr *E = dyn_cast_or_null<Expr>(S);
153 if (!E)
154 return;
155
156 const Expr *WarnExpr;
157 SourceLocation Loc;
158 SourceRange R1, R2;
159 if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
160 !E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
161 return;
162
163 // If this is a GNU statement expression expanded from a macro, it is probably
164 // unused because it is a function-like macro that can be used as either an
165 // expression or statement. Don't warn, because it is almost certainly a
166 // false positive.
167 if (isa<StmtExpr>(E) && Loc.isMacroID())
168 return;
169
170 // Okay, we have an unused result. Depending on what the base expression is,
171 // we might want to make a more specific diagnostic. Check for one of these
172 // cases now.
173 unsigned DiagID = diag::warn_unused_expr;
174 if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
175 E = Temps->getSubExpr();
176 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
177 E = TempExpr->getSubExpr();
178
179 if (DiagnoseUnusedComparison(*this, E))
180 return;
181
182 E = WarnExpr;
183 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
184 if (E->getType()->isVoidType())
185 return;
186
187 // If the callee has attribute pure, const, or warn_unused_result, warn with
188 // a more specific message to make it clear what is happening.
189 if (const Decl *FD = CE->getCalleeDecl()) {
190 if (FD->getAttr<WarnUnusedResultAttr>()) {
191 Diag(Loc, diag::warn_unused_result) << R1 << R2;
192 return;
193 }
194 if (FD->getAttr<PureAttr>()) {
195 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
196 return;
197 }
198 if (FD->getAttr<ConstAttr>()) {
199 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
200 return;
201 }
202 }
203 } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
204 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
205 Diag(Loc, diag::err_arc_unused_init_message) << R1;
206 return;
207 }
208 const ObjCMethodDecl *MD = ME->getMethodDecl();
209 if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
210 Diag(Loc, diag::warn_unused_result) << R1 << R2;
211 return;
212 }
213 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
214 const Expr *Source = POE->getSyntacticForm();
215 if (isa<ObjCSubscriptRefExpr>(Source))
216 DiagID = diag::warn_unused_container_subscript_expr;
217 else
218 DiagID = diag::warn_unused_property_expr;
219 } else if (const CXXFunctionalCastExpr *FC
220 = dyn_cast<CXXFunctionalCastExpr>(E)) {
221 if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
222 isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
223 return;
224 }
225 // Diagnose "(void*) blah" as a typo for "(void) blah".
226 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
227 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
228 QualType T = TI->getType();
229
230 // We really do want to use the non-canonical type here.
231 if (T == Context.VoidPtrTy) {
232 PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
233
234 Diag(Loc, diag::warn_unused_voidptr)
235 << FixItHint::CreateRemoval(TL.getStarLoc());
236 return;
237 }
238 }
239
240 if (E->isGLValue() && E->getType().isVolatileQualified()) {
241 Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
242 return;
243 }
244
245 DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
246 }
247
ActOnStartOfCompoundStmt()248 void Sema::ActOnStartOfCompoundStmt() {
249 PushCompoundScope();
250 }
251
ActOnFinishOfCompoundStmt()252 void Sema::ActOnFinishOfCompoundStmt() {
253 PopCompoundScope();
254 }
255
getCurCompoundScope() const256 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
257 return getCurFunction()->CompoundScopes.back();
258 }
259
260 StmtResult
ActOnCompoundStmt(SourceLocation L,SourceLocation R,MultiStmtArg elts,bool isStmtExpr)261 Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
262 MultiStmtArg elts, bool isStmtExpr) {
263 unsigned NumElts = elts.size();
264 Stmt **Elts = elts.data();
265 // If we're in C89 mode, check that we don't have any decls after stmts. If
266 // so, emit an extension diagnostic.
267 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
268 // Note that __extension__ can be around a decl.
269 unsigned i = 0;
270 // Skip over all declarations.
271 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
272 /*empty*/;
273
274 // We found the end of the list or a statement. Scan for another declstmt.
275 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
276 /*empty*/;
277
278 if (i != NumElts) {
279 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
280 Diag(D->getLocation(), diag::ext_mixed_decls_code);
281 }
282 }
283 // Warn about unused expressions in statements.
284 for (unsigned i = 0; i != NumElts; ++i) {
285 // Ignore statements that are last in a statement expression.
286 if (isStmtExpr && i == NumElts - 1)
287 continue;
288
289 DiagnoseUnusedExprResult(Elts[i]);
290 }
291
292 // Check for suspicious empty body (null statement) in `for' and `while'
293 // statements. Don't do anything for template instantiations, this just adds
294 // noise.
295 if (NumElts != 0 && !CurrentInstantiationScope &&
296 getCurCompoundScope().HasEmptyLoopBodies) {
297 for (unsigned i = 0; i != NumElts - 1; ++i)
298 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
299 }
300
301 return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
302 }
303
304 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,Expr * LHSVal,SourceLocation DotDotDotLoc,Expr * RHSVal,SourceLocation ColonLoc)305 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
306 SourceLocation DotDotDotLoc, Expr *RHSVal,
307 SourceLocation ColonLoc) {
308 assert((LHSVal != 0) && "missing expression in case statement");
309
310 if (getCurFunction()->SwitchStack.empty()) {
311 Diag(CaseLoc, diag::err_case_not_in_switch);
312 return StmtError();
313 }
314
315 if (!getLangOpts().CPlusPlus0x) {
316 // C99 6.8.4.2p3: The expression shall be an integer constant.
317 // However, GCC allows any evaluatable integer expression.
318 if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
319 LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
320 if (!LHSVal)
321 return StmtError();
322 }
323
324 // GCC extension: The expression shall be an integer constant.
325
326 if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
327 RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
328 // Recover from an error by just forgetting about it.
329 }
330 }
331
332 CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
333 ColonLoc);
334 getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
335 return Owned(CS);
336 }
337
338 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * caseStmt,Stmt * SubStmt)339 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
340 DiagnoseUnusedExprResult(SubStmt);
341
342 CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
343 CS->setSubStmt(SubStmt);
344 }
345
346 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)347 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
348 Stmt *SubStmt, Scope *CurScope) {
349 DiagnoseUnusedExprResult(SubStmt);
350
351 if (getCurFunction()->SwitchStack.empty()) {
352 Diag(DefaultLoc, diag::err_default_not_in_switch);
353 return Owned(SubStmt);
354 }
355
356 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
357 getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
358 return Owned(DS);
359 }
360
361 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)362 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
363 SourceLocation ColonLoc, Stmt *SubStmt) {
364 // If the label was multiply defined, reject it now.
365 if (TheDecl->getStmt()) {
366 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
367 Diag(TheDecl->getLocation(), diag::note_previous_definition);
368 return Owned(SubStmt);
369 }
370
371 // Otherwise, things are good. Fill in the declaration and return it.
372 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
373 TheDecl->setStmt(LS);
374 if (!TheDecl->isGnuLocal())
375 TheDecl->setLocation(IdentLoc);
376 return Owned(LS);
377 }
378
ActOnAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)379 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
380 ArrayRef<const Attr*> Attrs,
381 Stmt *SubStmt) {
382 // Fill in the declaration and return it.
383 AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
384 return Owned(LS);
385 }
386
387 StmtResult
ActOnIfStmt(SourceLocation IfLoc,FullExprArg CondVal,Decl * CondVar,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)388 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
389 Stmt *thenStmt, SourceLocation ElseLoc,
390 Stmt *elseStmt) {
391 ExprResult CondResult(CondVal.release());
392
393 VarDecl *ConditionVar = 0;
394 if (CondVar) {
395 ConditionVar = cast<VarDecl>(CondVar);
396 CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
397 if (CondResult.isInvalid())
398 return StmtError();
399 }
400 Expr *ConditionExpr = CondResult.takeAs<Expr>();
401 if (!ConditionExpr)
402 return StmtError();
403
404 DiagnoseUnusedExprResult(thenStmt);
405
406 if (!elseStmt) {
407 DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
408 diag::warn_empty_if_body);
409 }
410
411 DiagnoseUnusedExprResult(elseStmt);
412
413 return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
414 thenStmt, ElseLoc, elseStmt));
415 }
416
417 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
418 /// the specified width and sign. If an overflow occurs, detect it and emit
419 /// the specified diagnostic.
ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt & Val,unsigned NewWidth,bool NewSign,SourceLocation Loc,unsigned DiagID)420 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
421 unsigned NewWidth, bool NewSign,
422 SourceLocation Loc,
423 unsigned DiagID) {
424 // Perform a conversion to the promoted condition type if needed.
425 if (NewWidth > Val.getBitWidth()) {
426 // If this is an extension, just do it.
427 Val = Val.extend(NewWidth);
428 Val.setIsSigned(NewSign);
429
430 // If the input was signed and negative and the output is
431 // unsigned, don't bother to warn: this is implementation-defined
432 // behavior.
433 // FIXME: Introduce a second, default-ignored warning for this case?
434 } else if (NewWidth < Val.getBitWidth()) {
435 // If this is a truncation, check for overflow.
436 llvm::APSInt ConvVal(Val);
437 ConvVal = ConvVal.trunc(NewWidth);
438 ConvVal.setIsSigned(NewSign);
439 ConvVal = ConvVal.extend(Val.getBitWidth());
440 ConvVal.setIsSigned(Val.isSigned());
441 if (ConvVal != Val)
442 Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
443
444 // Regardless of whether a diagnostic was emitted, really do the
445 // truncation.
446 Val = Val.trunc(NewWidth);
447 Val.setIsSigned(NewSign);
448 } else if (NewSign != Val.isSigned()) {
449 // Convert the sign to match the sign of the condition. This can cause
450 // overflow as well: unsigned(INTMIN)
451 // We don't diagnose this overflow, because it is implementation-defined
452 // behavior.
453 // FIXME: Introduce a second, default-ignored warning for this case?
454 llvm::APSInt OldVal(Val);
455 Val.setIsSigned(NewSign);
456 }
457 }
458
459 namespace {
460 struct CaseCompareFunctor {
operator ()__anon02a8bac50111::CaseCompareFunctor461 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
462 const llvm::APSInt &RHS) {
463 return LHS.first < RHS;
464 }
operator ()__anon02a8bac50111::CaseCompareFunctor465 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
466 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
467 return LHS.first < RHS.first;
468 }
operator ()__anon02a8bac50111::CaseCompareFunctor469 bool operator()(const llvm::APSInt &LHS,
470 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
471 return LHS < RHS.first;
472 }
473 };
474 }
475
476 /// CmpCaseVals - Comparison predicate for sorting case values.
477 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)478 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
479 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
480 if (lhs.first < rhs.first)
481 return true;
482
483 if (lhs.first == rhs.first &&
484 lhs.second->getCaseLoc().getRawEncoding()
485 < rhs.second->getCaseLoc().getRawEncoding())
486 return true;
487 return false;
488 }
489
490 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
491 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)492 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
493 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
494 {
495 return lhs.first < rhs.first;
496 }
497
498 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
499 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)500 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
501 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
502 {
503 return lhs.first == rhs.first;
504 }
505
506 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
507 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(Expr * & expr)508 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
509 if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
510 expr = cleanups->getSubExpr();
511 while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
512 if (impcast->getCastKind() != CK_IntegralCast) break;
513 expr = impcast->getSubExpr();
514 }
515 return expr->getType();
516 }
517
518 StmtResult
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,Expr * Cond,Decl * CondVar)519 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
520 Decl *CondVar) {
521 ExprResult CondResult;
522
523 VarDecl *ConditionVar = 0;
524 if (CondVar) {
525 ConditionVar = cast<VarDecl>(CondVar);
526 CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
527 if (CondResult.isInvalid())
528 return StmtError();
529
530 Cond = CondResult.release();
531 }
532
533 if (!Cond)
534 return StmtError();
535
536 class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
537 Expr *Cond;
538
539 public:
540 SwitchConvertDiagnoser(Expr *Cond)
541 : ICEConvertDiagnoser(false, true), Cond(Cond) { }
542
543 virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
544 QualType T) {
545 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
546 }
547
548 virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
549 QualType T) {
550 return S.Diag(Loc, diag::err_switch_incomplete_class_type)
551 << T << Cond->getSourceRange();
552 }
553
554 virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
555 QualType T,
556 QualType ConvTy) {
557 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
558 }
559
560 virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
561 QualType ConvTy) {
562 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
563 << ConvTy->isEnumeralType() << ConvTy;
564 }
565
566 virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
567 QualType T) {
568 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
569 }
570
571 virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
572 QualType ConvTy) {
573 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
574 << ConvTy->isEnumeralType() << ConvTy;
575 }
576
577 virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
578 QualType T,
579 QualType ConvTy) {
580 return DiagnosticBuilder::getEmpty();
581 }
582 } SwitchDiagnoser(Cond);
583
584 CondResult
585 = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
586 /*AllowScopedEnumerations*/ true);
587 if (CondResult.isInvalid()) return StmtError();
588 Cond = CondResult.take();
589
590 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
591 CondResult = UsualUnaryConversions(Cond);
592 if (CondResult.isInvalid()) return StmtError();
593 Cond = CondResult.take();
594
595 if (!CondVar) {
596 CheckImplicitConversions(Cond, SwitchLoc);
597 CondResult = MaybeCreateExprWithCleanups(Cond);
598 if (CondResult.isInvalid())
599 return StmtError();
600 Cond = CondResult.take();
601 }
602
603 getCurFunction()->setHasBranchIntoScope();
604
605 SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
606 getCurFunction()->SwitchStack.push_back(SS);
607 return Owned(SS);
608 }
609
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)610 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
611 if (Val.getBitWidth() < BitWidth)
612 Val = Val.extend(BitWidth);
613 else if (Val.getBitWidth() > BitWidth)
614 Val = Val.trunc(BitWidth);
615 Val.setIsSigned(IsSigned);
616 }
617
618 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)619 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
620 Stmt *BodyStmt) {
621 SwitchStmt *SS = cast<SwitchStmt>(Switch);
622 assert(SS == getCurFunction()->SwitchStack.back() &&
623 "switch stack missing push/pop!");
624
625 SS->setBody(BodyStmt, SwitchLoc);
626 getCurFunction()->SwitchStack.pop_back();
627
628 Expr *CondExpr = SS->getCond();
629 if (!CondExpr) return StmtError();
630
631 QualType CondType = CondExpr->getType();
632
633 Expr *CondExprBeforePromotion = CondExpr;
634 QualType CondTypeBeforePromotion =
635 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
636
637 // C++ 6.4.2.p2:
638 // Integral promotions are performed (on the switch condition).
639 //
640 // A case value unrepresentable by the original switch condition
641 // type (before the promotion) doesn't make sense, even when it can
642 // be represented by the promoted type. Therefore we need to find
643 // the pre-promotion type of the switch condition.
644 if (!CondExpr->isTypeDependent()) {
645 // We have already converted the expression to an integral or enumeration
646 // type, when we started the switch statement. If we don't have an
647 // appropriate type now, just return an error.
648 if (!CondType->isIntegralOrEnumerationType())
649 return StmtError();
650
651 if (CondExpr->isKnownToHaveBooleanValue()) {
652 // switch(bool_expr) {...} is often a programmer error, e.g.
653 // switch(n && mask) { ... } // Doh - should be "n & mask".
654 // One can always use an if statement instead of switch(bool_expr).
655 Diag(SwitchLoc, diag::warn_bool_switch_condition)
656 << CondExpr->getSourceRange();
657 }
658 }
659
660 // Get the bitwidth of the switched-on value before promotions. We must
661 // convert the integer case values to this width before comparison.
662 bool HasDependentValue
663 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
664 unsigned CondWidth
665 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
666 bool CondIsSigned
667 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
668
669 // Accumulate all of the case values in a vector so that we can sort them
670 // and detect duplicates. This vector contains the APInt for the case after
671 // it has been converted to the condition type.
672 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
673 CaseValsTy CaseVals;
674
675 // Keep track of any GNU case ranges we see. The APSInt is the low value.
676 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
677 CaseRangesTy CaseRanges;
678
679 DefaultStmt *TheDefaultStmt = 0;
680
681 bool CaseListIsErroneous = false;
682
683 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
684 SC = SC->getNextSwitchCase()) {
685
686 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
687 if (TheDefaultStmt) {
688 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
689 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
690
691 // FIXME: Remove the default statement from the switch block so that
692 // we'll return a valid AST. This requires recursing down the AST and
693 // finding it, not something we are set up to do right now. For now,
694 // just lop the entire switch stmt out of the AST.
695 CaseListIsErroneous = true;
696 }
697 TheDefaultStmt = DS;
698
699 } else {
700 CaseStmt *CS = cast<CaseStmt>(SC);
701
702 Expr *Lo = CS->getLHS();
703
704 if (Lo->isTypeDependent() || Lo->isValueDependent()) {
705 HasDependentValue = true;
706 break;
707 }
708
709 llvm::APSInt LoVal;
710
711 if (getLangOpts().CPlusPlus0x) {
712 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
713 // constant expression of the promoted type of the switch condition.
714 ExprResult ConvLo =
715 CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
716 if (ConvLo.isInvalid()) {
717 CaseListIsErroneous = true;
718 continue;
719 }
720 Lo = ConvLo.take();
721 } else {
722 // We already verified that the expression has a i-c-e value (C99
723 // 6.8.4.2p3) - get that value now.
724 LoVal = Lo->EvaluateKnownConstInt(Context);
725
726 // If the LHS is not the same type as the condition, insert an implicit
727 // cast.
728 Lo = DefaultLvalueConversion(Lo).take();
729 Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
730 }
731
732 // Convert the value to the same width/sign as the condition had prior to
733 // integral promotions.
734 //
735 // FIXME: This causes us to reject valid code:
736 // switch ((char)c) { case 256: case 0: return 0; }
737 // Here we claim there is a duplicated condition value, but there is not.
738 ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
739 Lo->getLocStart(),
740 diag::warn_case_value_overflow);
741
742 CS->setLHS(Lo);
743
744 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
745 if (CS->getRHS()) {
746 if (CS->getRHS()->isTypeDependent() ||
747 CS->getRHS()->isValueDependent()) {
748 HasDependentValue = true;
749 break;
750 }
751 CaseRanges.push_back(std::make_pair(LoVal, CS));
752 } else
753 CaseVals.push_back(std::make_pair(LoVal, CS));
754 }
755 }
756
757 if (!HasDependentValue) {
758 // If we don't have a default statement, check whether the
759 // condition is constant.
760 llvm::APSInt ConstantCondValue;
761 bool HasConstantCond = false;
762 if (!HasDependentValue && !TheDefaultStmt) {
763 HasConstantCond
764 = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
765 Expr::SE_AllowSideEffects);
766 assert(!HasConstantCond ||
767 (ConstantCondValue.getBitWidth() == CondWidth &&
768 ConstantCondValue.isSigned() == CondIsSigned));
769 }
770 bool ShouldCheckConstantCond = HasConstantCond;
771
772 // Sort all the scalar case values so we can easily detect duplicates.
773 std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
774
775 if (!CaseVals.empty()) {
776 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
777 if (ShouldCheckConstantCond &&
778 CaseVals[i].first == ConstantCondValue)
779 ShouldCheckConstantCond = false;
780
781 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
782 // If we have a duplicate, report it.
783 // First, determine if either case value has a name
784 StringRef PrevString, CurrString;
785 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
786 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
787 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
788 PrevString = DeclRef->getDecl()->getName();
789 }
790 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
791 CurrString = DeclRef->getDecl()->getName();
792 }
793 llvm::SmallString<16> CaseValStr;
794 CaseVals[i-1].first.toString(CaseValStr);
795
796 if (PrevString == CurrString)
797 Diag(CaseVals[i].second->getLHS()->getLocStart(),
798 diag::err_duplicate_case) <<
799 (PrevString.empty() ? CaseValStr.str() : PrevString);
800 else
801 Diag(CaseVals[i].second->getLHS()->getLocStart(),
802 diag::err_duplicate_case_differing_expr) <<
803 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
804 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
805 CaseValStr;
806
807 Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
808 diag::note_duplicate_case_prev);
809 // FIXME: We really want to remove the bogus case stmt from the
810 // substmt, but we have no way to do this right now.
811 CaseListIsErroneous = true;
812 }
813 }
814 }
815
816 // Detect duplicate case ranges, which usually don't exist at all in
817 // the first place.
818 if (!CaseRanges.empty()) {
819 // Sort all the case ranges by their low value so we can easily detect
820 // overlaps between ranges.
821 std::stable_sort(CaseRanges.begin(), CaseRanges.end());
822
823 // Scan the ranges, computing the high values and removing empty ranges.
824 std::vector<llvm::APSInt> HiVals;
825 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
826 llvm::APSInt &LoVal = CaseRanges[i].first;
827 CaseStmt *CR = CaseRanges[i].second;
828 Expr *Hi = CR->getRHS();
829 llvm::APSInt HiVal;
830
831 if (getLangOpts().CPlusPlus0x) {
832 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
833 // constant expression of the promoted type of the switch condition.
834 ExprResult ConvHi =
835 CheckConvertedConstantExpression(Hi, CondType, HiVal,
836 CCEK_CaseValue);
837 if (ConvHi.isInvalid()) {
838 CaseListIsErroneous = true;
839 continue;
840 }
841 Hi = ConvHi.take();
842 } else {
843 HiVal = Hi->EvaluateKnownConstInt(Context);
844
845 // If the RHS is not the same type as the condition, insert an
846 // implicit cast.
847 Hi = DefaultLvalueConversion(Hi).take();
848 Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
849 }
850
851 // Convert the value to the same width/sign as the condition.
852 ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
853 Hi->getLocStart(),
854 diag::warn_case_value_overflow);
855
856 CR->setRHS(Hi);
857
858 // If the low value is bigger than the high value, the case is empty.
859 if (LoVal > HiVal) {
860 Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
861 << SourceRange(CR->getLHS()->getLocStart(),
862 Hi->getLocEnd());
863 CaseRanges.erase(CaseRanges.begin()+i);
864 --i, --e;
865 continue;
866 }
867
868 if (ShouldCheckConstantCond &&
869 LoVal <= ConstantCondValue &&
870 ConstantCondValue <= HiVal)
871 ShouldCheckConstantCond = false;
872
873 HiVals.push_back(HiVal);
874 }
875
876 // Rescan the ranges, looking for overlap with singleton values and other
877 // ranges. Since the range list is sorted, we only need to compare case
878 // ranges with their neighbors.
879 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
880 llvm::APSInt &CRLo = CaseRanges[i].first;
881 llvm::APSInt &CRHi = HiVals[i];
882 CaseStmt *CR = CaseRanges[i].second;
883
884 // Check to see whether the case range overlaps with any
885 // singleton cases.
886 CaseStmt *OverlapStmt = 0;
887 llvm::APSInt OverlapVal(32);
888
889 // Find the smallest value >= the lower bound. If I is in the
890 // case range, then we have overlap.
891 CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
892 CaseVals.end(), CRLo,
893 CaseCompareFunctor());
894 if (I != CaseVals.end() && I->first < CRHi) {
895 OverlapVal = I->first; // Found overlap with scalar.
896 OverlapStmt = I->second;
897 }
898
899 // Find the smallest value bigger than the upper bound.
900 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
901 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
902 OverlapVal = (I-1)->first; // Found overlap with scalar.
903 OverlapStmt = (I-1)->second;
904 }
905
906 // Check to see if this case stmt overlaps with the subsequent
907 // case range.
908 if (i && CRLo <= HiVals[i-1]) {
909 OverlapVal = HiVals[i-1]; // Found overlap with range.
910 OverlapStmt = CaseRanges[i-1].second;
911 }
912
913 if (OverlapStmt) {
914 // If we have a duplicate, report it.
915 Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
916 << OverlapVal.toString(10);
917 Diag(OverlapStmt->getLHS()->getLocStart(),
918 diag::note_duplicate_case_prev);
919 // FIXME: We really want to remove the bogus case stmt from the
920 // substmt, but we have no way to do this right now.
921 CaseListIsErroneous = true;
922 }
923 }
924 }
925
926 // Complain if we have a constant condition and we didn't find a match.
927 if (!CaseListIsErroneous && ShouldCheckConstantCond) {
928 // TODO: it would be nice if we printed enums as enums, chars as
929 // chars, etc.
930 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
931 << ConstantCondValue.toString(10)
932 << CondExpr->getSourceRange();
933 }
934
935 // Check to see if switch is over an Enum and handles all of its
936 // values. We only issue a warning if there is not 'default:', but
937 // we still do the analysis to preserve this information in the AST
938 // (which can be used by flow-based analyes).
939 //
940 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
941
942 // If switch has default case, then ignore it.
943 if (!CaseListIsErroneous && !HasConstantCond && ET) {
944 const EnumDecl *ED = ET->getDecl();
945 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
946 EnumValsTy;
947 EnumValsTy EnumVals;
948
949 // Gather all enum values, set their type and sort them,
950 // allowing easier comparison with CaseVals.
951 for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
952 EDI != ED->enumerator_end(); ++EDI) {
953 llvm::APSInt Val = EDI->getInitVal();
954 AdjustAPSInt(Val, CondWidth, CondIsSigned);
955 EnumVals.push_back(std::make_pair(Val, *EDI));
956 }
957 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
958 EnumValsTy::iterator EIend =
959 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
960
961 // See which case values aren't in enum.
962 EnumValsTy::const_iterator EI = EnumVals.begin();
963 for (CaseValsTy::const_iterator CI = CaseVals.begin();
964 CI != CaseVals.end(); CI++) {
965 while (EI != EIend && EI->first < CI->first)
966 EI++;
967 if (EI == EIend || EI->first > CI->first)
968 Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
969 << CondTypeBeforePromotion;
970 }
971 // See which of case ranges aren't in enum
972 EI = EnumVals.begin();
973 for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
974 RI != CaseRanges.end() && EI != EIend; RI++) {
975 while (EI != EIend && EI->first < RI->first)
976 EI++;
977
978 if (EI == EIend || EI->first != RI->first) {
979 Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
980 << CondTypeBeforePromotion;
981 }
982
983 llvm::APSInt Hi =
984 RI->second->getRHS()->EvaluateKnownConstInt(Context);
985 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
986 while (EI != EIend && EI->first < Hi)
987 EI++;
988 if (EI == EIend || EI->first != Hi)
989 Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
990 << CondTypeBeforePromotion;
991 }
992
993 // Check which enum vals aren't in switch
994 CaseValsTy::const_iterator CI = CaseVals.begin();
995 CaseRangesTy::const_iterator RI = CaseRanges.begin();
996 bool hasCasesNotInSwitch = false;
997
998 SmallVector<DeclarationName,8> UnhandledNames;
999
1000 for (EI = EnumVals.begin(); EI != EIend; EI++){
1001 // Drop unneeded case values
1002 llvm::APSInt CIVal;
1003 while (CI != CaseVals.end() && CI->first < EI->first)
1004 CI++;
1005
1006 if (CI != CaseVals.end() && CI->first == EI->first)
1007 continue;
1008
1009 // Drop unneeded case ranges
1010 for (; RI != CaseRanges.end(); RI++) {
1011 llvm::APSInt Hi =
1012 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1013 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1014 if (EI->first <= Hi)
1015 break;
1016 }
1017
1018 if (RI == CaseRanges.end() || EI->first < RI->first) {
1019 hasCasesNotInSwitch = true;
1020 UnhandledNames.push_back(EI->second->getDeclName());
1021 }
1022 }
1023
1024 if (TheDefaultStmt && UnhandledNames.empty())
1025 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1026
1027 // Produce a nice diagnostic if multiple values aren't handled.
1028 switch (UnhandledNames.size()) {
1029 case 0: break;
1030 case 1:
1031 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1032 ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1033 << UnhandledNames[0];
1034 break;
1035 case 2:
1036 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1037 ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1038 << UnhandledNames[0] << UnhandledNames[1];
1039 break;
1040 case 3:
1041 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1042 ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1043 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1044 break;
1045 default:
1046 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1047 ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1048 << (unsigned)UnhandledNames.size()
1049 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1050 break;
1051 }
1052
1053 if (!hasCasesNotInSwitch)
1054 SS->setAllEnumCasesCovered();
1055 }
1056 }
1057
1058 DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1059 diag::warn_empty_switch_body);
1060
1061 // FIXME: If the case list was broken is some way, we don't have a good system
1062 // to patch it up. Instead, just return the whole substmt as broken.
1063 if (CaseListIsErroneous)
1064 return StmtError();
1065
1066 return Owned(SS);
1067 }
1068
1069 void
DiagnoseAssignmentEnum(QualType DstType,QualType SrcType,Expr * SrcExpr)1070 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1071 Expr *SrcExpr) {
1072 unsigned DIAG = diag::warn_not_in_enum_assignement;
1073 if (Diags.getDiagnosticLevel(DIAG, SrcExpr->getExprLoc())
1074 == DiagnosticsEngine::Ignored)
1075 return;
1076
1077 if (const EnumType *ET = DstType->getAs<EnumType>())
1078 if (!Context.hasSameType(SrcType, DstType) &&
1079 SrcType->isIntegerType()) {
1080 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1081 SrcExpr->isIntegerConstantExpr(Context)) {
1082 // Get the bitwidth of the enum value before promotions.
1083 unsigned DstWith = Context.getIntWidth(DstType);
1084 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1085
1086 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1087 const EnumDecl *ED = ET->getDecl();
1088 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1089 EnumValsTy;
1090 EnumValsTy EnumVals;
1091
1092 // Gather all enum values, set their type and sort them,
1093 // allowing easier comparison with rhs constant.
1094 for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1095 EDI != ED->enumerator_end(); ++EDI) {
1096 llvm::APSInt Val = EDI->getInitVal();
1097 AdjustAPSInt(Val, DstWith, DstIsSigned);
1098 EnumVals.push_back(std::make_pair(Val, *EDI));
1099 }
1100 if (EnumVals.empty())
1101 return;
1102 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1103 EnumValsTy::iterator EIend =
1104 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1105
1106 // See which case values aren't in enum.
1107 EnumValsTy::const_iterator EI = EnumVals.begin();
1108 while (EI != EIend && EI->first < RhsVal)
1109 EI++;
1110 if (EI == EIend || EI->first != RhsVal) {
1111 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignement)
1112 << DstType;
1113 }
1114 }
1115 }
1116 }
1117
1118 StmtResult
ActOnWhileStmt(SourceLocation WhileLoc,FullExprArg Cond,Decl * CondVar,Stmt * Body)1119 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1120 Decl *CondVar, Stmt *Body) {
1121 ExprResult CondResult(Cond.release());
1122
1123 VarDecl *ConditionVar = 0;
1124 if (CondVar) {
1125 ConditionVar = cast<VarDecl>(CondVar);
1126 CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1127 if (CondResult.isInvalid())
1128 return StmtError();
1129 }
1130 Expr *ConditionExpr = CondResult.take();
1131 if (!ConditionExpr)
1132 return StmtError();
1133
1134 DiagnoseUnusedExprResult(Body);
1135
1136 if (isa<NullStmt>(Body))
1137 getCurCompoundScope().setHasEmptyLoopBodies();
1138
1139 return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1140 Body, WhileLoc));
1141 }
1142
1143 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1144 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1145 SourceLocation WhileLoc, SourceLocation CondLParen,
1146 Expr *Cond, SourceLocation CondRParen) {
1147 assert(Cond && "ActOnDoStmt(): missing expression");
1148
1149 ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1150 if (CondResult.isInvalid() || CondResult.isInvalid())
1151 return StmtError();
1152 Cond = CondResult.take();
1153
1154 CheckImplicitConversions(Cond, DoLoc);
1155 CondResult = MaybeCreateExprWithCleanups(Cond);
1156 if (CondResult.isInvalid())
1157 return StmtError();
1158 Cond = CondResult.take();
1159
1160 DiagnoseUnusedExprResult(Body);
1161
1162 return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1163 }
1164
1165 namespace {
1166 // This visitor will traverse a conditional statement and store all
1167 // the evaluated decls into a vector. Simple is set to true if none
1168 // of the excluded constructs are used.
1169 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1170 llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1171 llvm::SmallVector<SourceRange, 10> &Ranges;
1172 bool Simple;
1173 public:
1174 typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1175
DeclExtractor(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,llvm::SmallVector<SourceRange,10> & Ranges)1176 DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1177 llvm::SmallVector<SourceRange, 10> &Ranges) :
1178 Inherited(S.Context),
1179 Decls(Decls),
1180 Ranges(Ranges),
1181 Simple(true) {}
1182
isSimple()1183 bool isSimple() { return Simple; }
1184
1185 // Replaces the method in EvaluatedExprVisitor.
VisitMemberExpr(MemberExpr * E)1186 void VisitMemberExpr(MemberExpr* E) {
1187 Simple = false;
1188 }
1189
1190 // Any Stmt not whitelisted will cause the condition to be marked complex.
VisitStmt(Stmt * S)1191 void VisitStmt(Stmt *S) {
1192 Simple = false;
1193 }
1194
VisitBinaryOperator(BinaryOperator * E)1195 void VisitBinaryOperator(BinaryOperator *E) {
1196 Visit(E->getLHS());
1197 Visit(E->getRHS());
1198 }
1199
VisitCastExpr(CastExpr * E)1200 void VisitCastExpr(CastExpr *E) {
1201 Visit(E->getSubExpr());
1202 }
1203
VisitUnaryOperator(UnaryOperator * E)1204 void VisitUnaryOperator(UnaryOperator *E) {
1205 // Skip checking conditionals with derefernces.
1206 if (E->getOpcode() == UO_Deref)
1207 Simple = false;
1208 else
1209 Visit(E->getSubExpr());
1210 }
1211
VisitConditionalOperator(ConditionalOperator * E)1212 void VisitConditionalOperator(ConditionalOperator *E) {
1213 Visit(E->getCond());
1214 Visit(E->getTrueExpr());
1215 Visit(E->getFalseExpr());
1216 }
1217
VisitParenExpr(ParenExpr * E)1218 void VisitParenExpr(ParenExpr *E) {
1219 Visit(E->getSubExpr());
1220 }
1221
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)1222 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1223 Visit(E->getOpaqueValue()->getSourceExpr());
1224 Visit(E->getFalseExpr());
1225 }
1226
VisitIntegerLiteral(IntegerLiteral * E)1227 void VisitIntegerLiteral(IntegerLiteral *E) { }
VisitFloatingLiteral(FloatingLiteral * E)1228 void VisitFloatingLiteral(FloatingLiteral *E) { }
VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)1229 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
VisitCharacterLiteral(CharacterLiteral * E)1230 void VisitCharacterLiteral(CharacterLiteral *E) { }
VisitGNUNullExpr(GNUNullExpr * E)1231 void VisitGNUNullExpr(GNUNullExpr *E) { }
VisitImaginaryLiteral(ImaginaryLiteral * E)1232 void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1233
VisitDeclRefExpr(DeclRefExpr * E)1234 void VisitDeclRefExpr(DeclRefExpr *E) {
1235 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1236 if (!VD) return;
1237
1238 Ranges.push_back(E->getSourceRange());
1239
1240 Decls.insert(VD);
1241 }
1242
1243 }; // end class DeclExtractor
1244
1245 // DeclMatcher checks to see if the decls are used in a non-evauluated
1246 // context.
1247 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1248 llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1249 bool FoundDecl;
1250
1251 public:
1252 typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1253
DeclMatcher(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,Stmt * Statement)1254 DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1255 Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1256 if (!Statement) return;
1257
1258 Visit(Statement);
1259 }
1260
VisitReturnStmt(ReturnStmt * S)1261 void VisitReturnStmt(ReturnStmt *S) {
1262 FoundDecl = true;
1263 }
1264
VisitBreakStmt(BreakStmt * S)1265 void VisitBreakStmt(BreakStmt *S) {
1266 FoundDecl = true;
1267 }
1268
VisitGotoStmt(GotoStmt * S)1269 void VisitGotoStmt(GotoStmt *S) {
1270 FoundDecl = true;
1271 }
1272
VisitCastExpr(CastExpr * E)1273 void VisitCastExpr(CastExpr *E) {
1274 if (E->getCastKind() == CK_LValueToRValue)
1275 CheckLValueToRValueCast(E->getSubExpr());
1276 else
1277 Visit(E->getSubExpr());
1278 }
1279
CheckLValueToRValueCast(Expr * E)1280 void CheckLValueToRValueCast(Expr *E) {
1281 E = E->IgnoreParenImpCasts();
1282
1283 if (isa<DeclRefExpr>(E)) {
1284 return;
1285 }
1286
1287 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1288 Visit(CO->getCond());
1289 CheckLValueToRValueCast(CO->getTrueExpr());
1290 CheckLValueToRValueCast(CO->getFalseExpr());
1291 return;
1292 }
1293
1294 if (BinaryConditionalOperator *BCO =
1295 dyn_cast<BinaryConditionalOperator>(E)) {
1296 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1297 CheckLValueToRValueCast(BCO->getFalseExpr());
1298 return;
1299 }
1300
1301 Visit(E);
1302 }
1303
VisitDeclRefExpr(DeclRefExpr * E)1304 void VisitDeclRefExpr(DeclRefExpr *E) {
1305 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1306 if (Decls.count(VD))
1307 FoundDecl = true;
1308 }
1309
FoundDeclInUse()1310 bool FoundDeclInUse() { return FoundDecl; }
1311
1312 }; // end class DeclMatcher
1313
CheckForLoopConditionalStatement(Sema & S,Expr * Second,Expr * Third,Stmt * Body)1314 void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1315 Expr *Third, Stmt *Body) {
1316 // Condition is empty
1317 if (!Second) return;
1318
1319 if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1320 Second->getLocStart())
1321 == DiagnosticsEngine::Ignored)
1322 return;
1323
1324 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1325 llvm::SmallPtrSet<VarDecl*, 8> Decls;
1326 llvm::SmallVector<SourceRange, 10> Ranges;
1327 DeclExtractor DE(S, Decls, Ranges);
1328 DE.Visit(Second);
1329
1330 // Don't analyze complex conditionals.
1331 if (!DE.isSimple()) return;
1332
1333 // No decls found.
1334 if (Decls.size() == 0) return;
1335
1336 // Don't warn on volatile, static, or global variables.
1337 for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1338 E = Decls.end();
1339 I != E; ++I)
1340 if ((*I)->getType().isVolatileQualified() ||
1341 (*I)->hasGlobalStorage()) return;
1342
1343 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1344 DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1345 DeclMatcher(S, Decls, Body).FoundDeclInUse())
1346 return;
1347
1348 // Load decl names into diagnostic.
1349 if (Decls.size() > 4)
1350 PDiag << 0;
1351 else {
1352 PDiag << Decls.size();
1353 for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1354 E = Decls.end();
1355 I != E; ++I)
1356 PDiag << (*I)->getDeclName();
1357 }
1358
1359 // Load SourceRanges into diagnostic if there is room.
1360 // Otherwise, load the SourceRange of the conditional expression.
1361 if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1362 for (llvm::SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1363 E = Ranges.end();
1364 I != E; ++I)
1365 PDiag << *I;
1366 else
1367 PDiag << Second->getSourceRange();
1368
1369 S.Diag(Ranges.begin()->getBegin(), PDiag);
1370 }
1371
1372 } // end namespace
1373
1374 StmtResult
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,FullExprArg second,Decl * secondVar,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1375 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1376 Stmt *First, FullExprArg second, Decl *secondVar,
1377 FullExprArg third,
1378 SourceLocation RParenLoc, Stmt *Body) {
1379 if (!getLangOpts().CPlusPlus) {
1380 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1381 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1382 // declare identifiers for objects having storage class 'auto' or
1383 // 'register'.
1384 for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1385 DI!=DE; ++DI) {
1386 VarDecl *VD = dyn_cast<VarDecl>(*DI);
1387 if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1388 VD = 0;
1389 if (VD == 0)
1390 Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1391 // FIXME: mark decl erroneous!
1392 }
1393 }
1394 }
1395
1396 CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1397
1398 ExprResult SecondResult(second.release());
1399 VarDecl *ConditionVar = 0;
1400 if (secondVar) {
1401 ConditionVar = cast<VarDecl>(secondVar);
1402 SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1403 if (SecondResult.isInvalid())
1404 return StmtError();
1405 }
1406
1407 Expr *Third = third.release().takeAs<Expr>();
1408
1409 DiagnoseUnusedExprResult(First);
1410 DiagnoseUnusedExprResult(Third);
1411 DiagnoseUnusedExprResult(Body);
1412
1413 if (isa<NullStmt>(Body))
1414 getCurCompoundScope().setHasEmptyLoopBodies();
1415
1416 return Owned(new (Context) ForStmt(Context, First,
1417 SecondResult.take(), ConditionVar,
1418 Third, Body, ForLoc, LParenLoc,
1419 RParenLoc));
1420 }
1421
1422 /// In an Objective C collection iteration statement:
1423 /// for (x in y)
1424 /// x can be an arbitrary l-value expression. Bind it up as a
1425 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1426 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1427 // Reduce placeholder expressions here. Note that this rejects the
1428 // use of pseudo-object l-values in this position.
1429 ExprResult result = CheckPlaceholderExpr(E);
1430 if (result.isInvalid()) return StmtError();
1431 E = result.take();
1432
1433 CheckImplicitConversions(E);
1434
1435 result = MaybeCreateExprWithCleanups(E);
1436 if (result.isInvalid()) return StmtError();
1437
1438 return Owned(static_cast<Stmt*>(result.take()));
1439 }
1440
1441 ExprResult
CheckObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1442 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1443 if (!collection)
1444 return ExprError();
1445
1446 // Bail out early if we've got a type-dependent expression.
1447 if (collection->isTypeDependent()) return Owned(collection);
1448
1449 // Perform normal l-value conversion.
1450 ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1451 if (result.isInvalid())
1452 return ExprError();
1453 collection = result.take();
1454
1455 // The operand needs to have object-pointer type.
1456 // TODO: should we do a contextual conversion?
1457 const ObjCObjectPointerType *pointerType =
1458 collection->getType()->getAs<ObjCObjectPointerType>();
1459 if (!pointerType)
1460 return Diag(forLoc, diag::err_collection_expr_type)
1461 << collection->getType() << collection->getSourceRange();
1462
1463 // Check that the operand provides
1464 // - countByEnumeratingWithState:objects:count:
1465 const ObjCObjectType *objectType = pointerType->getObjectType();
1466 ObjCInterfaceDecl *iface = objectType->getInterface();
1467
1468 // If we have a forward-declared type, we can't do this check.
1469 // Under ARC, it is an error not to have a forward-declared class.
1470 if (iface &&
1471 RequireCompleteType(forLoc, QualType(objectType, 0),
1472 getLangOpts().ObjCAutoRefCount
1473 ? diag::err_arc_collection_forward
1474 : 0,
1475 collection)) {
1476 // Otherwise, if we have any useful type information, check that
1477 // the type declares the appropriate method.
1478 } else if (iface || !objectType->qual_empty()) {
1479 IdentifierInfo *selectorIdents[] = {
1480 &Context.Idents.get("countByEnumeratingWithState"),
1481 &Context.Idents.get("objects"),
1482 &Context.Idents.get("count")
1483 };
1484 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1485
1486 ObjCMethodDecl *method = 0;
1487
1488 // If there's an interface, look in both the public and private APIs.
1489 if (iface) {
1490 method = iface->lookupInstanceMethod(selector);
1491 if (!method) method = iface->lookupPrivateMethod(selector);
1492 }
1493
1494 // Also check protocol qualifiers.
1495 if (!method)
1496 method = LookupMethodInQualifiedType(selector, pointerType,
1497 /*instance*/ true);
1498
1499 // If we didn't find it anywhere, give up.
1500 if (!method) {
1501 Diag(forLoc, diag::warn_collection_expr_type)
1502 << collection->getType() << selector << collection->getSourceRange();
1503 }
1504
1505 // TODO: check for an incompatible signature?
1506 }
1507
1508 // Wrap up any cleanups in the expression.
1509 return Owned(MaybeCreateExprWithCleanups(collection));
1510 }
1511
1512 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,Stmt * First,Expr * collection,SourceLocation RParenLoc)1513 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1514 Stmt *First, Expr *collection,
1515 SourceLocation RParenLoc) {
1516
1517 ExprResult CollectionExprResult =
1518 CheckObjCForCollectionOperand(ForLoc, collection);
1519
1520 if (First) {
1521 QualType FirstType;
1522 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1523 if (!DS->isSingleDecl())
1524 return StmtError(Diag((*DS->decl_begin())->getLocation(),
1525 diag::err_toomany_element_decls));
1526
1527 VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1528 FirstType = D->getType();
1529 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1530 // declare identifiers for objects having storage class 'auto' or
1531 // 'register'.
1532 if (!D->hasLocalStorage())
1533 return StmtError(Diag(D->getLocation(),
1534 diag::err_non_variable_decl_in_for));
1535 } else {
1536 Expr *FirstE = cast<Expr>(First);
1537 if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1538 return StmtError(Diag(First->getLocStart(),
1539 diag::err_selector_element_not_lvalue)
1540 << First->getSourceRange());
1541
1542 FirstType = static_cast<Expr*>(First)->getType();
1543 }
1544 if (!FirstType->isDependentType() &&
1545 !FirstType->isObjCObjectPointerType() &&
1546 !FirstType->isBlockPointerType())
1547 return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1548 << FirstType << First->getSourceRange());
1549 }
1550
1551 if (CollectionExprResult.isInvalid())
1552 return StmtError();
1553
1554 return Owned(new (Context) ObjCForCollectionStmt(First,
1555 CollectionExprResult.take(), 0,
1556 ForLoc, RParenLoc));
1557 }
1558
1559 /// Finish building a variable declaration for a for-range statement.
1560 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int diag)1561 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1562 SourceLocation Loc, int diag) {
1563 // Deduce the type for the iterator variable now rather than leaving it to
1564 // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1565 TypeSourceInfo *InitTSI = 0;
1566 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1567 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1568 Sema::DAR_Failed)
1569 SemaRef.Diag(Loc, diag) << Init->getType();
1570 if (!InitTSI) {
1571 Decl->setInvalidDecl();
1572 return true;
1573 }
1574 Decl->setTypeSourceInfo(InitTSI);
1575 Decl->setType(InitTSI->getType());
1576
1577 // In ARC, infer lifetime.
1578 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1579 // we're doing the equivalent of fast iteration.
1580 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1581 SemaRef.inferObjCARCLifetime(Decl))
1582 Decl->setInvalidDecl();
1583
1584 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1585 /*TypeMayContainAuto=*/false);
1586 SemaRef.FinalizeDeclaration(Decl);
1587 SemaRef.CurContext->addHiddenDecl(Decl);
1588 return false;
1589 }
1590
1591 namespace {
1592
1593 /// Produce a note indicating which begin/end function was implicitly called
1594 /// by a C++11 for-range statement. This is often not obvious from the code,
1595 /// nor from the diagnostics produced when analysing the implicit expressions
1596 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,Sema::BeginEndFunction BEF)1597 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1598 Sema::BeginEndFunction BEF) {
1599 CallExpr *CE = dyn_cast<CallExpr>(E);
1600 if (!CE)
1601 return;
1602 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1603 if (!D)
1604 return;
1605 SourceLocation Loc = D->getLocation();
1606
1607 std::string Description;
1608 bool IsTemplate = false;
1609 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1610 Description = SemaRef.getTemplateArgumentBindingsText(
1611 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1612 IsTemplate = true;
1613 }
1614
1615 SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1616 << BEF << IsTemplate << Description << E->getType();
1617 }
1618
1619 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,const char * Name)1620 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1621 QualType Type, const char *Name) {
1622 DeclContext *DC = SemaRef.CurContext;
1623 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1624 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1625 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1626 TInfo, SC_Auto, SC_None);
1627 Decl->setImplicit();
1628 return Decl;
1629 }
1630
1631 }
1632
ObjCEnumerationCollection(Expr * Collection)1633 static bool ObjCEnumerationCollection(Expr *Collection) {
1634 return !Collection->isTypeDependent()
1635 && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1636 }
1637
1638 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1639 ///
1640 /// C++11 [stmt.ranged]:
1641 /// A range-based for statement is equivalent to
1642 ///
1643 /// {
1644 /// auto && __range = range-init;
1645 /// for ( auto __begin = begin-expr,
1646 /// __end = end-expr;
1647 /// __begin != __end;
1648 /// ++__begin ) {
1649 /// for-range-declaration = *__begin;
1650 /// statement
1651 /// }
1652 /// }
1653 ///
1654 /// The body of the loop is not available yet, since it cannot be analysed until
1655 /// we have determined the type of the for-range-declaration.
1656 StmtResult
ActOnCXXForRangeStmt(SourceLocation ForLoc,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc,bool ShouldTryDeref)1657 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1658 Stmt *First, SourceLocation ColonLoc, Expr *Range,
1659 SourceLocation RParenLoc, bool ShouldTryDeref) {
1660 if (!First || !Range)
1661 return StmtError();
1662
1663 if (ObjCEnumerationCollection(Range))
1664 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1665
1666 DeclStmt *DS = dyn_cast<DeclStmt>(First);
1667 assert(DS && "first part of for range not a decl stmt");
1668
1669 if (!DS->isSingleDecl()) {
1670 Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1671 return StmtError();
1672 }
1673 if (DS->getSingleDecl()->isInvalidDecl())
1674 return StmtError();
1675
1676 if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1677 return StmtError();
1678
1679 // Build auto && __range = range-init
1680 SourceLocation RangeLoc = Range->getLocStart();
1681 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1682 Context.getAutoRRefDeductType(),
1683 "__range");
1684 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1685 diag::err_for_range_deduction_failure))
1686 return StmtError();
1687
1688 // Claim the type doesn't contain auto: we've already done the checking.
1689 DeclGroupPtrTy RangeGroup =
1690 BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1691 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1692 if (RangeDecl.isInvalid())
1693 return StmtError();
1694
1695 return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1696 /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1697 RParenLoc, ShouldTryDeref);
1698 }
1699
1700 /// \brief Create the initialization, compare, and increment steps for
1701 /// the range-based for loop expression.
1702 /// This function does not handle array-based for loops,
1703 /// which are created in Sema::BuildCXXForRangeStmt.
1704 ///
1705 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
1706 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1707 /// CandidateSet and BEF are set and some non-success value is returned on
1708 /// failure.
BuildNonArrayForRange(Sema & SemaRef,Scope * S,Expr * BeginRange,Expr * EndRange,QualType RangeType,VarDecl * BeginVar,VarDecl * EndVar,SourceLocation ColonLoc,OverloadCandidateSet * CandidateSet,ExprResult * BeginExpr,ExprResult * EndExpr,Sema::BeginEndFunction * BEF)1709 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1710 Expr *BeginRange, Expr *EndRange,
1711 QualType RangeType,
1712 VarDecl *BeginVar,
1713 VarDecl *EndVar,
1714 SourceLocation ColonLoc,
1715 OverloadCandidateSet *CandidateSet,
1716 ExprResult *BeginExpr,
1717 ExprResult *EndExpr,
1718 Sema::BeginEndFunction *BEF) {
1719 DeclarationNameInfo BeginNameInfo(
1720 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1721 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
1722 ColonLoc);
1723
1724 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
1725 Sema::LookupMemberName);
1726 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
1727
1728 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1729 // - if _RangeT is a class type, the unqualified-ids begin and end are
1730 // looked up in the scope of class _RangeT as if by class member access
1731 // lookup (3.4.5), and if either (or both) finds at least one
1732 // declaration, begin-expr and end-expr are __range.begin() and
1733 // __range.end(), respectively;
1734 SemaRef.LookupQualifiedName(BeginMemberLookup, D);
1735 SemaRef.LookupQualifiedName(EndMemberLookup, D);
1736
1737 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1738 SourceLocation RangeLoc = BeginVar->getLocation();
1739 *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
1740
1741 SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
1742 << RangeLoc << BeginRange->getType() << *BEF;
1743 return Sema::FRS_DiagnosticIssued;
1744 }
1745 } else {
1746 // - otherwise, begin-expr and end-expr are begin(__range) and
1747 // end(__range), respectively, where begin and end are looked up with
1748 // argument-dependent lookup (3.4.2). For the purposes of this name
1749 // lookup, namespace std is an associated namespace.
1750
1751 }
1752
1753 *BEF = Sema::BEF_begin;
1754 Sema::ForRangeStatus RangeStatus =
1755 SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
1756 Sema::BEF_begin, BeginNameInfo,
1757 BeginMemberLookup, CandidateSet,
1758 BeginRange, BeginExpr);
1759
1760 if (RangeStatus != Sema::FRS_Success)
1761 return RangeStatus;
1762 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
1763 diag::err_for_range_iter_deduction_failure)) {
1764 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
1765 return Sema::FRS_DiagnosticIssued;
1766 }
1767
1768 *BEF = Sema::BEF_end;
1769 RangeStatus =
1770 SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
1771 Sema::BEF_end, EndNameInfo,
1772 EndMemberLookup, CandidateSet,
1773 EndRange, EndExpr);
1774 if (RangeStatus != Sema::FRS_Success)
1775 return RangeStatus;
1776 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
1777 diag::err_for_range_iter_deduction_failure)) {
1778 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
1779 return Sema::FRS_DiagnosticIssued;
1780 }
1781 return Sema::FRS_Success;
1782 }
1783
1784 /// Speculatively attempt to dereference an invalid range expression.
1785 /// This function will not emit diagnostics, but returns StmtError if
1786 /// an error occurs.
RebuildForRangeWithDereference(Sema & SemaRef,Scope * S,SourceLocation ForLoc,Stmt * LoopVarDecl,SourceLocation ColonLoc,Expr * Range,SourceLocation RangeLoc,SourceLocation RParenLoc)1787 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
1788 SourceLocation ForLoc,
1789 Stmt *LoopVarDecl,
1790 SourceLocation ColonLoc,
1791 Expr *Range,
1792 SourceLocation RangeLoc,
1793 SourceLocation RParenLoc) {
1794 Sema::SFINAETrap Trap(SemaRef);
1795 ExprResult AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
1796 StmtResult SR =
1797 SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1798 AdjustedRange.get(), RParenLoc, false);
1799 if (Trap.hasErrorOccurred())
1800 return StmtError();
1801 return SR;
1802 }
1803
1804 /// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1805 StmtResult
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc,bool ShouldTryDeref)1806 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1807 Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1808 Expr *Inc, Stmt *LoopVarDecl,
1809 SourceLocation RParenLoc, bool ShouldTryDeref) {
1810 Scope *S = getCurScope();
1811
1812 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1813 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1814 QualType RangeVarType = RangeVar->getType();
1815
1816 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1817 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1818
1819 StmtResult BeginEndDecl = BeginEnd;
1820 ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1821
1822 if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1823 SourceLocation RangeLoc = RangeVar->getLocation();
1824
1825 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1826
1827 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1828 VK_LValue, ColonLoc);
1829 if (BeginRangeRef.isInvalid())
1830 return StmtError();
1831
1832 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1833 VK_LValue, ColonLoc);
1834 if (EndRangeRef.isInvalid())
1835 return StmtError();
1836
1837 QualType AutoType = Context.getAutoDeductType();
1838 Expr *Range = RangeVar->getInit();
1839 if (!Range)
1840 return StmtError();
1841 QualType RangeType = Range->getType();
1842
1843 if (RequireCompleteType(RangeLoc, RangeType,
1844 diag::err_for_range_incomplete_type))
1845 return StmtError();
1846
1847 // Build auto __begin = begin-expr, __end = end-expr.
1848 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1849 "__begin");
1850 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1851 "__end");
1852
1853 // Build begin-expr and end-expr and attach to __begin and __end variables.
1854 ExprResult BeginExpr, EndExpr;
1855 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1856 // - if _RangeT is an array type, begin-expr and end-expr are __range and
1857 // __range + __bound, respectively, where __bound is the array bound. If
1858 // _RangeT is an array of unknown size or an array of incomplete type,
1859 // the program is ill-formed;
1860
1861 // begin-expr is __range.
1862 BeginExpr = BeginRangeRef;
1863 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1864 diag::err_for_range_iter_deduction_failure)) {
1865 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1866 return StmtError();
1867 }
1868
1869 // Find the array bound.
1870 ExprResult BoundExpr;
1871 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1872 BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1873 Context.getPointerDiffType(),
1874 RangeLoc));
1875 else if (const VariableArrayType *VAT =
1876 dyn_cast<VariableArrayType>(UnqAT))
1877 BoundExpr = VAT->getSizeExpr();
1878 else {
1879 // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1880 // UnqAT is not incomplete and Range is not type-dependent.
1881 llvm_unreachable("Unexpected array type in for-range");
1882 }
1883
1884 // end-expr is __range + __bound.
1885 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1886 BoundExpr.get());
1887 if (EndExpr.isInvalid())
1888 return StmtError();
1889 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1890 diag::err_for_range_iter_deduction_failure)) {
1891 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1892 return StmtError();
1893 }
1894 } else {
1895 OverloadCandidateSet CandidateSet(RangeLoc);
1896 Sema::BeginEndFunction BEFFailure;
1897 ForRangeStatus RangeStatus =
1898 BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
1899 EndRangeRef.get(), RangeType,
1900 BeginVar, EndVar, ColonLoc, &CandidateSet,
1901 &BeginExpr, &EndExpr, &BEFFailure);
1902
1903 // If building the range failed, try dereferencing the range expression
1904 // unless a diagnostic was issued or the end function is problematic.
1905 if (ShouldTryDeref && RangeStatus == FRS_NoViableFunction &&
1906 BEFFailure == BEF_begin) {
1907 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
1908 LoopVarDecl, ColonLoc,
1909 Range, RangeLoc,
1910 RParenLoc);
1911 if (!SR.isInvalid()) {
1912 // The attempt to dereference would succeed; return the result of
1913 // recovery.
1914 Diag(RangeLoc, diag::err_for_range_dereference)
1915 << RangeLoc << RangeType
1916 << FixItHint::CreateInsertion(RangeLoc, "*");
1917 return SR;
1918 }
1919 }
1920
1921 // Otherwise, emit diagnostics if we haven't already.
1922 if (RangeStatus == FRS_NoViableFunction) {
1923 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
1924 Diag(Range->getLocStart(), diag::err_for_range_invalid)
1925 << RangeLoc << Range->getType() << BEFFailure;
1926 CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
1927 llvm::makeArrayRef(&Range, /*NumArgs=*/1));
1928 }
1929 // Return an error if no fix was discovered.
1930 if (RangeStatus != FRS_Success)
1931 return StmtError();
1932 }
1933
1934 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
1935 "invalid range expression in for loop");
1936
1937 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
1938 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1939 if (!Context.hasSameType(BeginType, EndType)) {
1940 Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1941 << BeginType << EndType;
1942 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1943 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1944 }
1945
1946 Decl *BeginEndDecls[] = { BeginVar, EndVar };
1947 // Claim the type doesn't contain auto: we've already done the checking.
1948 DeclGroupPtrTy BeginEndGroup =
1949 BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1950 BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1951
1952 const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1953 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1954 VK_LValue, ColonLoc);
1955 if (BeginRef.isInvalid())
1956 return StmtError();
1957
1958 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1959 VK_LValue, ColonLoc);
1960 if (EndRef.isInvalid())
1961 return StmtError();
1962
1963 // Build and check __begin != __end expression.
1964 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1965 BeginRef.get(), EndRef.get());
1966 NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1967 NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1968 if (NotEqExpr.isInvalid()) {
1969 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
1970 << RangeLoc << 0 << BeginRangeRef.get()->getType();
1971 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1972 if (!Context.hasSameType(BeginType, EndType))
1973 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1974 return StmtError();
1975 }
1976
1977 // Build and check ++__begin expression.
1978 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1979 VK_LValue, ColonLoc);
1980 if (BeginRef.isInvalid())
1981 return StmtError();
1982
1983 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1984 IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1985 if (IncrExpr.isInvalid()) {
1986 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
1987 << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
1988 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1989 return StmtError();
1990 }
1991
1992 // Build and check *__begin expression.
1993 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1994 VK_LValue, ColonLoc);
1995 if (BeginRef.isInvalid())
1996 return StmtError();
1997
1998 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1999 if (DerefExpr.isInvalid()) {
2000 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2001 << RangeLoc << 1 << BeginRangeRef.get()->getType();
2002 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2003 return StmtError();
2004 }
2005
2006 // Attach *__begin as initializer for VD.
2007 if (!LoopVar->isInvalidDecl()) {
2008 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2009 /*TypeMayContainAuto=*/true);
2010 if (LoopVar->isInvalidDecl())
2011 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2012 }
2013 } else {
2014 // The range is implicitly used as a placeholder when it is dependent.
2015 RangeVar->setUsed();
2016 }
2017
2018 return Owned(new (Context) CXXForRangeStmt(RangeDS,
2019 cast_or_null<DeclStmt>(BeginEndDecl.get()),
2020 NotEqExpr.take(), IncrExpr.take(),
2021 LoopVarDS, /*Body=*/0, ForLoc,
2022 ColonLoc, RParenLoc));
2023 }
2024
2025 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2026 /// statement.
FinishObjCForCollectionStmt(Stmt * S,Stmt * B)2027 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2028 if (!S || !B)
2029 return StmtError();
2030 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2031
2032 ForStmt->setBody(B);
2033 return S;
2034 }
2035
2036 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2037 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2038 /// body cannot be performed until after the type of the range variable is
2039 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)2040 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2041 if (!S || !B)
2042 return StmtError();
2043
2044 if (isa<ObjCForCollectionStmt>(S))
2045 return FinishObjCForCollectionStmt(S, B);
2046
2047 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2048 ForStmt->setBody(B);
2049
2050 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2051 diag::warn_empty_range_based_for_body);
2052
2053 return S;
2054 }
2055
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)2056 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2057 SourceLocation LabelLoc,
2058 LabelDecl *TheDecl) {
2059 getCurFunction()->setHasBranchIntoScope();
2060 TheDecl->setUsed();
2061 return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2062 }
2063
2064 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)2065 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2066 Expr *E) {
2067 // Convert operand to void*
2068 if (!E->isTypeDependent()) {
2069 QualType ETy = E->getType();
2070 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2071 ExprResult ExprRes = Owned(E);
2072 AssignConvertType ConvTy =
2073 CheckSingleAssignmentConstraints(DestTy, ExprRes);
2074 if (ExprRes.isInvalid())
2075 return StmtError();
2076 E = ExprRes.take();
2077 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2078 return StmtError();
2079 E = MaybeCreateExprWithCleanups(E);
2080 }
2081
2082 getCurFunction()->setHasIndirectGoto();
2083
2084 return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2085 }
2086
2087 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)2088 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2089 Scope *S = CurScope->getContinueParent();
2090 if (!S) {
2091 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2092 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2093 }
2094
2095 return Owned(new (Context) ContinueStmt(ContinueLoc));
2096 }
2097
2098 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)2099 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2100 Scope *S = CurScope->getBreakParent();
2101 if (!S) {
2102 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2103 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2104 }
2105
2106 return Owned(new (Context) BreakStmt(BreakLoc));
2107 }
2108
2109 /// \brief Determine whether the given expression is a candidate for
2110 /// copy elision in either a return statement or a throw expression.
2111 ///
2112 /// \param ReturnType If we're determining the copy elision candidate for
2113 /// a return statement, this is the return type of the function. If we're
2114 /// determining the copy elision candidate for a throw expression, this will
2115 /// be a NULL type.
2116 ///
2117 /// \param E The expression being returned from the function or block, or
2118 /// being thrown.
2119 ///
2120 /// \param AllowFunctionParameter Whether we allow function parameters to
2121 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2122 /// we re-use this logic to determine whether we should try to move as part of
2123 /// a return or throw (which does allow function parameters).
2124 ///
2125 /// \returns The NRVO candidate variable, if the return statement may use the
2126 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,bool AllowFunctionParameter)2127 const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2128 Expr *E,
2129 bool AllowFunctionParameter) {
2130 QualType ExprType = E->getType();
2131 // - in a return statement in a function with ...
2132 // ... a class return type ...
2133 if (!ReturnType.isNull()) {
2134 if (!ReturnType->isRecordType())
2135 return 0;
2136 // ... the same cv-unqualified type as the function return type ...
2137 if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2138 return 0;
2139 }
2140
2141 // ... the expression is the name of a non-volatile automatic object
2142 // (other than a function or catch-clause parameter)) ...
2143 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2144 if (!DR || DR->refersToEnclosingLocal())
2145 return 0;
2146 const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2147 if (!VD)
2148 return 0;
2149
2150 // ...object (other than a function or catch-clause parameter)...
2151 if (VD->getKind() != Decl::Var &&
2152 !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2153 return 0;
2154 if (VD->isExceptionVariable()) return 0;
2155
2156 // ...automatic...
2157 if (!VD->hasLocalStorage()) return 0;
2158
2159 // ...non-volatile...
2160 if (VD->getType().isVolatileQualified()) return 0;
2161 if (VD->getType()->isReferenceType()) return 0;
2162
2163 // __block variables can't be allocated in a way that permits NRVO.
2164 if (VD->hasAttr<BlocksAttr>()) return 0;
2165
2166 // Variables with higher required alignment than their type's ABI
2167 // alignment cannot use NRVO.
2168 if (VD->hasAttr<AlignedAttr>() &&
2169 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2170 return 0;
2171
2172 return VD;
2173 }
2174
2175 /// \brief Perform the initialization of a potentially-movable value, which
2176 /// is the result of return value.
2177 ///
2178 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2179 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2180 /// then falls back to treating them as lvalues if that failed.
2181 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)2182 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2183 const VarDecl *NRVOCandidate,
2184 QualType ResultType,
2185 Expr *Value,
2186 bool AllowNRVO) {
2187 // C++0x [class.copy]p33:
2188 // When the criteria for elision of a copy operation are met or would
2189 // be met save for the fact that the source object is a function
2190 // parameter, and the object to be copied is designated by an lvalue,
2191 // overload resolution to select the constructor for the copy is first
2192 // performed as if the object were designated by an rvalue.
2193 ExprResult Res = ExprError();
2194 if (AllowNRVO &&
2195 (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2196 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2197 Value->getType(), CK_NoOp, Value, VK_XValue);
2198
2199 Expr *InitExpr = &AsRvalue;
2200 InitializationKind Kind
2201 = InitializationKind::CreateCopy(Value->getLocStart(),
2202 Value->getLocStart());
2203 InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2204
2205 // [...] If overload resolution fails, or if the type of the first
2206 // parameter of the selected constructor is not an rvalue reference
2207 // to the object's type (possibly cv-qualified), overload resolution
2208 // is performed again, considering the object as an lvalue.
2209 if (Seq) {
2210 for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2211 StepEnd = Seq.step_end();
2212 Step != StepEnd; ++Step) {
2213 if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2214 continue;
2215
2216 CXXConstructorDecl *Constructor
2217 = cast<CXXConstructorDecl>(Step->Function.Function);
2218
2219 const RValueReferenceType *RRefType
2220 = Constructor->getParamDecl(0)->getType()
2221 ->getAs<RValueReferenceType>();
2222
2223 // If we don't meet the criteria, break out now.
2224 if (!RRefType ||
2225 !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2226 Context.getTypeDeclType(Constructor->getParent())))
2227 break;
2228
2229 // Promote "AsRvalue" to the heap, since we now need this
2230 // expression node to persist.
2231 Value = ImplicitCastExpr::Create(Context, Value->getType(),
2232 CK_NoOp, Value, 0, VK_XValue);
2233
2234 // Complete type-checking the initialization of the return type
2235 // using the constructor we found.
2236 Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2237 }
2238 }
2239 }
2240
2241 // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2242 // above, or overload resolution failed. Either way, we need to try
2243 // (again) now with the return value expression as written.
2244 if (Res.isInvalid())
2245 Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2246
2247 return Res;
2248 }
2249
2250 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2251 /// for capturing scopes.
2252 ///
2253 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2254 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2255 // If this is the first return we've seen, infer the return type.
2256 // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2257 // rules which allows multiple return statements.
2258 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2259 QualType FnRetType = CurCap->ReturnType;
2260
2261 // For blocks/lambdas with implicit return types, we check each return
2262 // statement individually, and deduce the common return type when the block
2263 // or lambda is completed.
2264 if (CurCap->HasImplicitReturnType) {
2265 if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2266 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2267 if (Result.isInvalid())
2268 return StmtError();
2269 RetValExp = Result.take();
2270
2271 if (!RetValExp->isTypeDependent())
2272 FnRetType = RetValExp->getType();
2273 else
2274 FnRetType = CurCap->ReturnType = Context.DependentTy;
2275 } else {
2276 if (RetValExp) {
2277 // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2278 // initializer list, because it is not an expression (even
2279 // though we represent it as one). We still deduce 'void'.
2280 Diag(ReturnLoc, diag::err_lambda_return_init_list)
2281 << RetValExp->getSourceRange();
2282 }
2283
2284 FnRetType = Context.VoidTy;
2285 }
2286
2287 // Although we'll properly infer the type of the block once it's completed,
2288 // make sure we provide a return type now for better error recovery.
2289 if (CurCap->ReturnType.isNull())
2290 CurCap->ReturnType = FnRetType;
2291 }
2292 assert(!FnRetType.isNull());
2293
2294 if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2295 if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2296 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2297 return StmtError();
2298 }
2299 } else {
2300 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2301 if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2302 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2303 return StmtError();
2304 }
2305 }
2306
2307 // Otherwise, verify that this result type matches the previous one. We are
2308 // pickier with blocks than for normal functions because we don't have GCC
2309 // compatibility to worry about here.
2310 const VarDecl *NRVOCandidate = 0;
2311 if (FnRetType->isDependentType()) {
2312 // Delay processing for now. TODO: there are lots of dependent
2313 // types we can conclusively prove aren't void.
2314 } else if (FnRetType->isVoidType()) {
2315 if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2316 !(getLangOpts().CPlusPlus &&
2317 (RetValExp->isTypeDependent() ||
2318 RetValExp->getType()->isVoidType()))) {
2319 if (!getLangOpts().CPlusPlus &&
2320 RetValExp->getType()->isVoidType())
2321 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2322 else {
2323 Diag(ReturnLoc, diag::err_return_block_has_expr);
2324 RetValExp = 0;
2325 }
2326 }
2327 } else if (!RetValExp) {
2328 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2329 } else if (!RetValExp->isTypeDependent()) {
2330 // we have a non-void block with an expression, continue checking
2331
2332 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2333 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2334 // function return.
2335
2336 // In C++ the return statement is handled via a copy initialization.
2337 // the C version of which boils down to CheckSingleAssignmentConstraints.
2338 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2339 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2340 FnRetType,
2341 NRVOCandidate != 0);
2342 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2343 FnRetType, RetValExp);
2344 if (Res.isInvalid()) {
2345 // FIXME: Cleanup temporaries here, anyway?
2346 return StmtError();
2347 }
2348 RetValExp = Res.take();
2349 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2350 }
2351
2352 if (RetValExp) {
2353 CheckImplicitConversions(RetValExp, ReturnLoc);
2354 RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2355 }
2356 ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2357 NRVOCandidate);
2358
2359 // If we need to check for the named return value optimization,
2360 // or if we need to infer the return type,
2361 // save the return statement in our scope for later processing.
2362 if (CurCap->HasImplicitReturnType ||
2363 (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2364 !CurContext->isDependentContext()))
2365 FunctionScopes.back()->Returns.push_back(Result);
2366
2367 return Owned(Result);
2368 }
2369
2370 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2371 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2372 // Check for unexpanded parameter packs.
2373 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2374 return StmtError();
2375
2376 if (isa<CapturingScopeInfo>(getCurFunction()))
2377 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2378
2379 QualType FnRetType;
2380 QualType RelatedRetType;
2381 if (const FunctionDecl *FD = getCurFunctionDecl()) {
2382 FnRetType = FD->getResultType();
2383 if (FD->hasAttr<NoReturnAttr>() ||
2384 FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
2385 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2386 << FD->getDeclName();
2387 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2388 FnRetType = MD->getResultType();
2389 if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2390 // In the implementation of a method with a related return type, the
2391 // type used to type-check the validity of return statements within the
2392 // method body is a pointer to the type of the class being implemented.
2393 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2394 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2395 }
2396 } else // If we don't have a function/method context, bail.
2397 return StmtError();
2398
2399 ReturnStmt *Result = 0;
2400 if (FnRetType->isVoidType()) {
2401 if (RetValExp) {
2402 if (isa<InitListExpr>(RetValExp)) {
2403 // We simply never allow init lists as the return value of void
2404 // functions. This is compatible because this was never allowed before,
2405 // so there's no legacy code to deal with.
2406 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2407 int FunctionKind = 0;
2408 if (isa<ObjCMethodDecl>(CurDecl))
2409 FunctionKind = 1;
2410 else if (isa<CXXConstructorDecl>(CurDecl))
2411 FunctionKind = 2;
2412 else if (isa<CXXDestructorDecl>(CurDecl))
2413 FunctionKind = 3;
2414
2415 Diag(ReturnLoc, diag::err_return_init_list)
2416 << CurDecl->getDeclName() << FunctionKind
2417 << RetValExp->getSourceRange();
2418
2419 // Drop the expression.
2420 RetValExp = 0;
2421 } else if (!RetValExp->isTypeDependent()) {
2422 // C99 6.8.6.4p1 (ext_ since GCC warns)
2423 unsigned D = diag::ext_return_has_expr;
2424 if (RetValExp->getType()->isVoidType())
2425 D = diag::ext_return_has_void_expr;
2426 else {
2427 ExprResult Result = Owned(RetValExp);
2428 Result = IgnoredValueConversions(Result.take());
2429 if (Result.isInvalid())
2430 return StmtError();
2431 RetValExp = Result.take();
2432 RetValExp = ImpCastExprToType(RetValExp,
2433 Context.VoidTy, CK_ToVoid).take();
2434 }
2435
2436 // return (some void expression); is legal in C++.
2437 if (D != diag::ext_return_has_void_expr ||
2438 !getLangOpts().CPlusPlus) {
2439 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2440
2441 int FunctionKind = 0;
2442 if (isa<ObjCMethodDecl>(CurDecl))
2443 FunctionKind = 1;
2444 else if (isa<CXXConstructorDecl>(CurDecl))
2445 FunctionKind = 2;
2446 else if (isa<CXXDestructorDecl>(CurDecl))
2447 FunctionKind = 3;
2448
2449 Diag(ReturnLoc, D)
2450 << CurDecl->getDeclName() << FunctionKind
2451 << RetValExp->getSourceRange();
2452 }
2453 }
2454
2455 if (RetValExp) {
2456 CheckImplicitConversions(RetValExp, ReturnLoc);
2457 RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2458 }
2459 }
2460
2461 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2462 } else if (!RetValExp && !FnRetType->isDependentType()) {
2463 unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4
2464 // C99 6.8.6.4p1 (ext_ since GCC warns)
2465 if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2466
2467 if (FunctionDecl *FD = getCurFunctionDecl())
2468 Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2469 else
2470 Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2471 Result = new (Context) ReturnStmt(ReturnLoc);
2472 } else {
2473 const VarDecl *NRVOCandidate = 0;
2474 if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2475 // we have a non-void function with an expression, continue checking
2476
2477 if (!RelatedRetType.isNull()) {
2478 // If we have a related result type, perform an extra conversion here.
2479 // FIXME: The diagnostics here don't really describe what is happening.
2480 InitializedEntity Entity =
2481 InitializedEntity::InitializeTemporary(RelatedRetType);
2482
2483 ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2484 RetValExp);
2485 if (Res.isInvalid()) {
2486 // FIXME: Cleanup temporaries here, anyway?
2487 return StmtError();
2488 }
2489 RetValExp = Res.takeAs<Expr>();
2490 }
2491
2492 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2493 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2494 // function return.
2495
2496 // In C++ the return statement is handled via a copy initialization,
2497 // the C version of which boils down to CheckSingleAssignmentConstraints.
2498 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2499 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2500 FnRetType,
2501 NRVOCandidate != 0);
2502 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2503 FnRetType, RetValExp);
2504 if (Res.isInvalid()) {
2505 // FIXME: Cleanup temporaries here, anyway?
2506 return StmtError();
2507 }
2508
2509 RetValExp = Res.takeAs<Expr>();
2510 if (RetValExp)
2511 CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2512 }
2513
2514 if (RetValExp) {
2515 CheckImplicitConversions(RetValExp, ReturnLoc);
2516 RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2517 }
2518 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2519 }
2520
2521 // If we need to check for the named return value optimization, save the
2522 // return statement in our scope for later processing.
2523 if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2524 !CurContext->isDependentContext())
2525 FunctionScopes.back()->Returns.push_back(Result);
2526
2527 return Owned(Result);
2528 }
2529
2530 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)2531 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2532 SourceLocation RParen, Decl *Parm,
2533 Stmt *Body) {
2534 VarDecl *Var = cast_or_null<VarDecl>(Parm);
2535 if (Var && Var->isInvalidDecl())
2536 return StmtError();
2537
2538 return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2539 }
2540
2541 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)2542 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2543 return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2544 }
2545
2546 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)2547 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2548 MultiStmtArg CatchStmts, Stmt *Finally) {
2549 if (!getLangOpts().ObjCExceptions)
2550 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2551
2552 getCurFunction()->setHasBranchProtectedScope();
2553 unsigned NumCatchStmts = CatchStmts.size();
2554 return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2555 CatchStmts.data(),
2556 NumCatchStmts,
2557 Finally));
2558 }
2559
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)2560 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2561 if (Throw) {
2562 ExprResult Result = DefaultLvalueConversion(Throw);
2563 if (Result.isInvalid())
2564 return StmtError();
2565
2566 Throw = MaybeCreateExprWithCleanups(Result.take());
2567 QualType ThrowType = Throw->getType();
2568 // Make sure the expression type is an ObjC pointer or "void *".
2569 if (!ThrowType->isDependentType() &&
2570 !ThrowType->isObjCObjectPointerType()) {
2571 const PointerType *PT = ThrowType->getAs<PointerType>();
2572 if (!PT || !PT->getPointeeType()->isVoidType())
2573 return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2574 << Throw->getType() << Throw->getSourceRange());
2575 }
2576 }
2577
2578 return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2579 }
2580
2581 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)2582 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2583 Scope *CurScope) {
2584 if (!getLangOpts().ObjCExceptions)
2585 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2586
2587 if (!Throw) {
2588 // @throw without an expression designates a rethrow (which much occur
2589 // in the context of an @catch clause).
2590 Scope *AtCatchParent = CurScope;
2591 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2592 AtCatchParent = AtCatchParent->getParent();
2593 if (!AtCatchParent)
2594 return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2595 }
2596 return BuildObjCAtThrowStmt(AtLoc, Throw);
2597 }
2598
2599 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)2600 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2601 ExprResult result = DefaultLvalueConversion(operand);
2602 if (result.isInvalid())
2603 return ExprError();
2604 operand = result.take();
2605
2606 // Make sure the expression type is an ObjC pointer or "void *".
2607 QualType type = operand->getType();
2608 if (!type->isDependentType() &&
2609 !type->isObjCObjectPointerType()) {
2610 const PointerType *pointerType = type->getAs<PointerType>();
2611 if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2612 return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2613 << type << operand->getSourceRange();
2614 }
2615
2616 // The operand to @synchronized is a full-expression.
2617 return MaybeCreateExprWithCleanups(operand);
2618 }
2619
2620 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)2621 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2622 Stmt *SyncBody) {
2623 // We can't jump into or indirect-jump out of a @synchronized block.
2624 getCurFunction()->setHasBranchProtectedScope();
2625 return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2626 }
2627
2628 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2629 /// and creates a proper catch handler from them.
2630 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)2631 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2632 Stmt *HandlerBlock) {
2633 // There's nothing to test that ActOnExceptionDecl didn't already test.
2634 return Owned(new (Context) CXXCatchStmt(CatchLoc,
2635 cast_or_null<VarDecl>(ExDecl),
2636 HandlerBlock));
2637 }
2638
2639 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2640 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2641 getCurFunction()->setHasBranchProtectedScope();
2642 return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2643 }
2644
2645 namespace {
2646
2647 class TypeWithHandler {
2648 QualType t;
2649 CXXCatchStmt *stmt;
2650 public:
TypeWithHandler(const QualType & type,CXXCatchStmt * statement)2651 TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2652 : t(type), stmt(statement) {}
2653
2654 // An arbitrary order is fine as long as it places identical
2655 // types next to each other.
operator <(const TypeWithHandler & y) const2656 bool operator<(const TypeWithHandler &y) const {
2657 if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2658 return true;
2659 if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2660 return false;
2661 else
2662 return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2663 }
2664
operator ==(const TypeWithHandler & other) const2665 bool operator==(const TypeWithHandler& other) const {
2666 return t == other.t;
2667 }
2668
getCatchStmt() const2669 CXXCatchStmt *getCatchStmt() const { return stmt; }
getTypeSpecStartLoc() const2670 SourceLocation getTypeSpecStartLoc() const {
2671 return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2672 }
2673 };
2674
2675 }
2676
2677 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2678 /// handlers and creates a try statement from them.
2679 StmtResult
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,MultiStmtArg RawHandlers)2680 Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2681 MultiStmtArg RawHandlers) {
2682 // Don't report an error if 'try' is used in system headers.
2683 if (!getLangOpts().CXXExceptions &&
2684 !getSourceManager().isInSystemHeader(TryLoc))
2685 Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2686
2687 unsigned NumHandlers = RawHandlers.size();
2688 assert(NumHandlers > 0 &&
2689 "The parser shouldn't call this if there are no handlers.");
2690 Stmt **Handlers = RawHandlers.data();
2691
2692 SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2693
2694 for (unsigned i = 0; i < NumHandlers; ++i) {
2695 CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2696 if (!Handler->getExceptionDecl()) {
2697 if (i < NumHandlers - 1)
2698 return StmtError(Diag(Handler->getLocStart(),
2699 diag::err_early_catch_all));
2700
2701 continue;
2702 }
2703
2704 const QualType CaughtType = Handler->getCaughtType();
2705 const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2706 TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2707 }
2708
2709 // Detect handlers for the same type as an earlier one.
2710 if (NumHandlers > 1) {
2711 llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2712
2713 TypeWithHandler prev = TypesWithHandlers[0];
2714 for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2715 TypeWithHandler curr = TypesWithHandlers[i];
2716
2717 if (curr == prev) {
2718 Diag(curr.getTypeSpecStartLoc(),
2719 diag::warn_exception_caught_by_earlier_handler)
2720 << curr.getCatchStmt()->getCaughtType().getAsString();
2721 Diag(prev.getTypeSpecStartLoc(),
2722 diag::note_previous_exception_handler)
2723 << prev.getCatchStmt()->getCaughtType().getAsString();
2724 }
2725
2726 prev = curr;
2727 }
2728 }
2729
2730 getCurFunction()->setHasBranchProtectedScope();
2731
2732 // FIXME: We should detect handlers that cannot catch anything because an
2733 // earlier handler catches a superclass. Need to find a method that is not
2734 // quadratic for this.
2735 // Neither of these are explicitly forbidden, but every compiler detects them
2736 // and warns.
2737
2738 return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2739 Handlers, NumHandlers));
2740 }
2741
2742 StmtResult
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)2743 Sema::ActOnSEHTryBlock(bool IsCXXTry,
2744 SourceLocation TryLoc,
2745 Stmt *TryBlock,
2746 Stmt *Handler) {
2747 assert(TryBlock && Handler);
2748
2749 getCurFunction()->setHasBranchProtectedScope();
2750
2751 return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2752 }
2753
2754 StmtResult
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)2755 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2756 Expr *FilterExpr,
2757 Stmt *Block) {
2758 assert(FilterExpr && Block);
2759
2760 if(!FilterExpr->getType()->isIntegerType()) {
2761 return StmtError(Diag(FilterExpr->getExprLoc(),
2762 diag::err_filter_expression_integral)
2763 << FilterExpr->getType());
2764 }
2765
2766 return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2767 }
2768
2769 StmtResult
ActOnSEHFinallyBlock(SourceLocation Loc,Stmt * Block)2770 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2771 Stmt *Block) {
2772 assert(Block);
2773 return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2774 }
2775
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)2776 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2777 bool IsIfExists,
2778 NestedNameSpecifierLoc QualifierLoc,
2779 DeclarationNameInfo NameInfo,
2780 Stmt *Nested)
2781 {
2782 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2783 QualifierLoc, NameInfo,
2784 cast<CompoundStmt>(Nested));
2785 }
2786
2787
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)2788 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2789 bool IsIfExists,
2790 CXXScopeSpec &SS,
2791 UnqualifiedId &Name,
2792 Stmt *Nested) {
2793 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2794 SS.getWithLocInContext(Context),
2795 GetNameFromUnqualifiedId(Name),
2796 Nested);
2797 }
2798