1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11
12 #include "clang/Sema/SemaInternal.h"
13 #include "clang/Sema/Lookup.h"
14 #include "clang/Sema/Scope.h"
15 #include "clang/Sema/Template.h"
16 #include "clang/Sema/TemplateDeduction.h"
17 #include "TreeTransform.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/TypeVisitor.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/ParsedTemplate.h"
27 #include "clang/Basic/LangOptions.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "llvm/ADT/SmallBitVector.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringExtras.h"
32 using namespace clang;
33 using namespace sema;
34
35 // Exported for use by Parser.
36 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)37 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38 unsigned N) {
39 if (!N) return SourceRange();
40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41 }
42
43 /// \brief Determine whether the declaration found is acceptable as the name
44 /// of a template and, if so, return that template declaration. Otherwise,
45 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)46 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47 NamedDecl *Orig,
48 bool AllowFunctionTemplates) {
49 NamedDecl *D = Orig->getUnderlyingDecl();
50
51 if (isa<TemplateDecl>(D)) {
52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53 return 0;
54
55 return Orig;
56 }
57
58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59 // C++ [temp.local]p1:
60 // Like normal (non-template) classes, class templates have an
61 // injected-class-name (Clause 9). The injected-class-name
62 // can be used with or without a template-argument-list. When
63 // it is used without a template-argument-list, it is
64 // equivalent to the injected-class-name followed by the
65 // template-parameters of the class template enclosed in
66 // <>. When it is used with a template-argument-list, it
67 // refers to the specified class template specialization,
68 // which could be the current specialization or another
69 // specialization.
70 if (Record->isInjectedClassName()) {
71 Record = cast<CXXRecordDecl>(Record->getDeclContext());
72 if (Record->getDescribedClassTemplate())
73 return Record->getDescribedClassTemplate();
74
75 if (ClassTemplateSpecializationDecl *Spec
76 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77 return Spec->getSpecializedTemplate();
78 }
79
80 return 0;
81 }
82
83 return 0;
84 }
85
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)86 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87 bool AllowFunctionTemplates) {
88 // The set of class templates we've already seen.
89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90 LookupResult::Filter filter = R.makeFilter();
91 while (filter.hasNext()) {
92 NamedDecl *Orig = filter.next();
93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94 AllowFunctionTemplates);
95 if (!Repl)
96 filter.erase();
97 else if (Repl != Orig) {
98
99 // C++ [temp.local]p3:
100 // A lookup that finds an injected-class-name (10.2) can result in an
101 // ambiguity in certain cases (for example, if it is found in more than
102 // one base class). If all of the injected-class-names that are found
103 // refer to specializations of the same class template, and if the name
104 // is used as a template-name, the reference refers to the class
105 // template itself and not a specialization thereof, and is not
106 // ambiguous.
107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108 if (!ClassTemplates.insert(ClassTmpl)) {
109 filter.erase();
110 continue;
111 }
112
113 // FIXME: we promote access to public here as a workaround to
114 // the fact that LookupResult doesn't let us remember that we
115 // found this template through a particular injected class name,
116 // which means we end up doing nasty things to the invariants.
117 // Pretending that access is public is *much* safer.
118 filter.replace(Repl, AS_public);
119 }
120 }
121 filter.done();
122 }
123
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)124 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125 bool AllowFunctionTemplates) {
126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128 return true;
129
130 return false;
131 }
132
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)133 TemplateNameKind Sema::isTemplateName(Scope *S,
134 CXXScopeSpec &SS,
135 bool hasTemplateKeyword,
136 UnqualifiedId &Name,
137 ParsedType ObjectTypePtr,
138 bool EnteringContext,
139 TemplateTy &TemplateResult,
140 bool &MemberOfUnknownSpecialization) {
141 assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143 DeclarationName TName;
144 MemberOfUnknownSpecialization = false;
145
146 switch (Name.getKind()) {
147 case UnqualifiedId::IK_Identifier:
148 TName = DeclarationName(Name.Identifier);
149 break;
150
151 case UnqualifiedId::IK_OperatorFunctionId:
152 TName = Context.DeclarationNames.getCXXOperatorName(
153 Name.OperatorFunctionId.Operator);
154 break;
155
156 case UnqualifiedId::IK_LiteralOperatorId:
157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158 break;
159
160 default:
161 return TNK_Non_template;
162 }
163
164 QualType ObjectType = ObjectTypePtr.get();
165
166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168 MemberOfUnknownSpecialization);
169 if (R.empty()) return TNK_Non_template;
170 if (R.isAmbiguous()) {
171 // Suppress diagnostics; we'll redo this lookup later.
172 R.suppressDiagnostics();
173
174 // FIXME: we might have ambiguous templates, in which case we
175 // should at least parse them properly!
176 return TNK_Non_template;
177 }
178
179 TemplateName Template;
180 TemplateNameKind TemplateKind;
181
182 unsigned ResultCount = R.end() - R.begin();
183 if (ResultCount > 1) {
184 // We assume that we'll preserve the qualifier from a function
185 // template name in other ways.
186 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187 TemplateKind = TNK_Function_template;
188
189 // We'll do this lookup again later.
190 R.suppressDiagnostics();
191 } else {
192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194 if (SS.isSet() && !SS.isInvalid()) {
195 NestedNameSpecifier *Qualifier
196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197 Template = Context.getQualifiedTemplateName(Qualifier,
198 hasTemplateKeyword, TD);
199 } else {
200 Template = TemplateName(TD);
201 }
202
203 if (isa<FunctionTemplateDecl>(TD)) {
204 TemplateKind = TNK_Function_template;
205
206 // We'll do this lookup again later.
207 R.suppressDiagnostics();
208 } else {
209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210 isa<TypeAliasTemplateDecl>(TD));
211 TemplateKind = TNK_Type_template;
212 }
213 }
214
215 TemplateResult = TemplateTy::make(Template);
216 return TemplateKind;
217 }
218
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)219 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220 SourceLocation IILoc,
221 Scope *S,
222 const CXXScopeSpec *SS,
223 TemplateTy &SuggestedTemplate,
224 TemplateNameKind &SuggestedKind) {
225 // We can't recover unless there's a dependent scope specifier preceding the
226 // template name.
227 // FIXME: Typo correction?
228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229 computeDeclContext(*SS))
230 return false;
231
232 // The code is missing a 'template' keyword prior to the dependent template
233 // name.
234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235 Diag(IILoc, diag::err_template_kw_missing)
236 << Qualifier << II.getName()
237 << FixItHint::CreateInsertion(IILoc, "template ");
238 SuggestedTemplate
239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240 SuggestedKind = TNK_Dependent_template_name;
241 return true;
242 }
243
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)244 void Sema::LookupTemplateName(LookupResult &Found,
245 Scope *S, CXXScopeSpec &SS,
246 QualType ObjectType,
247 bool EnteringContext,
248 bool &MemberOfUnknownSpecialization) {
249 // Determine where to perform name lookup
250 MemberOfUnknownSpecialization = false;
251 DeclContext *LookupCtx = 0;
252 bool isDependent = false;
253 if (!ObjectType.isNull()) {
254 // This nested-name-specifier occurs in a member access expression, e.g.,
255 // x->B::f, and we are looking into the type of the object.
256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257 LookupCtx = computeDeclContext(ObjectType);
258 isDependent = ObjectType->isDependentType();
259 assert((isDependent || !ObjectType->isIncompleteType()) &&
260 "Caller should have completed object type");
261
262 // Template names cannot appear inside an Objective-C class or object type.
263 if (ObjectType->isObjCObjectOrInterfaceType()) {
264 Found.clear();
265 return;
266 }
267 } else if (SS.isSet()) {
268 // This nested-name-specifier occurs after another nested-name-specifier,
269 // so long into the context associated with the prior nested-name-specifier.
270 LookupCtx = computeDeclContext(SS, EnteringContext);
271 isDependent = isDependentScopeSpecifier(SS);
272
273 // The declaration context must be complete.
274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275 return;
276 }
277
278 bool ObjectTypeSearchedInScope = false;
279 bool AllowFunctionTemplatesInLookup = true;
280 if (LookupCtx) {
281 // Perform "qualified" name lookup into the declaration context we
282 // computed, which is either the type of the base of a member access
283 // expression or the declaration context associated with a prior
284 // nested-name-specifier.
285 LookupQualifiedName(Found, LookupCtx);
286 if (!ObjectType.isNull() && Found.empty()) {
287 // C++ [basic.lookup.classref]p1:
288 // In a class member access expression (5.2.5), if the . or -> token is
289 // immediately followed by an identifier followed by a <, the
290 // identifier must be looked up to determine whether the < is the
291 // beginning of a template argument list (14.2) or a less-than operator.
292 // The identifier is first looked up in the class of the object
293 // expression. If the identifier is not found, it is then looked up in
294 // the context of the entire postfix-expression and shall name a class
295 // or function template.
296 if (S) LookupName(Found, S);
297 ObjectTypeSearchedInScope = true;
298 AllowFunctionTemplatesInLookup = false;
299 }
300 } else if (isDependent && (!S || ObjectType.isNull())) {
301 // We cannot look into a dependent object type or nested nme
302 // specifier.
303 MemberOfUnknownSpecialization = true;
304 return;
305 } else {
306 // Perform unqualified name lookup in the current scope.
307 LookupName(Found, S);
308
309 if (!ObjectType.isNull())
310 AllowFunctionTemplatesInLookup = false;
311 }
312
313 if (Found.empty() && !isDependent) {
314 // If we did not find any names, attempt to correct any typos.
315 DeclarationName Name = Found.getLookupName();
316 Found.clear();
317 // Simple filter callback that, for keywords, only accepts the C++ *_cast
318 CorrectionCandidateCallback FilterCCC;
319 FilterCCC.WantTypeSpecifiers = false;
320 FilterCCC.WantExpressionKeywords = false;
321 FilterCCC.WantRemainingKeywords = false;
322 FilterCCC.WantCXXNamedCasts = true;
323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324 Found.getLookupKind(), S, &SS,
325 FilterCCC, LookupCtx)) {
326 Found.setLookupName(Corrected.getCorrection());
327 if (Corrected.getCorrectionDecl())
328 Found.addDecl(Corrected.getCorrectionDecl());
329 FilterAcceptableTemplateNames(Found);
330 if (!Found.empty()) {
331 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333 if (LookupCtx)
334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337 else
338 Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339 << Name << CorrectedQuotedStr
340 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342 Diag(Template->getLocation(), diag::note_previous_decl)
343 << CorrectedQuotedStr;
344 }
345 } else {
346 Found.setLookupName(Name);
347 }
348 }
349
350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351 if (Found.empty()) {
352 if (isDependent)
353 MemberOfUnknownSpecialization = true;
354 return;
355 }
356
357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358 !(getLangOpts().CPlusPlus0x && !Found.empty())) {
359 // C++03 [basic.lookup.classref]p1:
360 // [...] If the lookup in the class of the object expression finds a
361 // template, the name is also looked up in the context of the entire
362 // postfix-expression and [...]
363 //
364 // Note: C++11 does not perform this second lookup.
365 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366 LookupOrdinaryName);
367 LookupName(FoundOuter, S);
368 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369
370 if (FoundOuter.empty()) {
371 // - if the name is not found, the name found in the class of the
372 // object expression is used, otherwise
373 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374 FoundOuter.isAmbiguous()) {
375 // - if the name is found in the context of the entire
376 // postfix-expression and does not name a class template, the name
377 // found in the class of the object expression is used, otherwise
378 FoundOuter.clear();
379 } else if (!Found.isSuppressingDiagnostics()) {
380 // - if the name found is a class template, it must refer to the same
381 // entity as the one found in the class of the object expression,
382 // otherwise the program is ill-formed.
383 if (!Found.isSingleResult() ||
384 Found.getFoundDecl()->getCanonicalDecl()
385 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386 Diag(Found.getNameLoc(),
387 diag::ext_nested_name_member_ref_lookup_ambiguous)
388 << Found.getLookupName()
389 << ObjectType;
390 Diag(Found.getRepresentativeDecl()->getLocation(),
391 diag::note_ambig_member_ref_object_type)
392 << ObjectType;
393 Diag(FoundOuter.getFoundDecl()->getLocation(),
394 diag::note_ambig_member_ref_scope);
395
396 // Recover by taking the template that we found in the object
397 // expression's type.
398 }
399 }
400 }
401 }
402
403 /// ActOnDependentIdExpression - Handle a dependent id-expression that
404 /// was just parsed. This is only possible with an explicit scope
405 /// specifier naming a dependent type.
406 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)407 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408 SourceLocation TemplateKWLoc,
409 const DeclarationNameInfo &NameInfo,
410 bool isAddressOfOperand,
411 const TemplateArgumentListInfo *TemplateArgs) {
412 DeclContext *DC = getFunctionLevelDeclContext();
413
414 if (!isAddressOfOperand &&
415 isa<CXXMethodDecl>(DC) &&
416 cast<CXXMethodDecl>(DC)->isInstance()) {
417 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418
419 // Since the 'this' expression is synthesized, we don't need to
420 // perform the double-lookup check.
421 NamedDecl *FirstQualifierInScope = 0;
422
423 return Owned(CXXDependentScopeMemberExpr::Create(Context,
424 /*This*/ 0, ThisType,
425 /*IsArrow*/ true,
426 /*Op*/ SourceLocation(),
427 SS.getWithLocInContext(Context),
428 TemplateKWLoc,
429 FirstQualifierInScope,
430 NameInfo,
431 TemplateArgs));
432 }
433
434 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
435 }
436
437 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)438 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
439 SourceLocation TemplateKWLoc,
440 const DeclarationNameInfo &NameInfo,
441 const TemplateArgumentListInfo *TemplateArgs) {
442 return Owned(DependentScopeDeclRefExpr::Create(Context,
443 SS.getWithLocInContext(Context),
444 TemplateKWLoc,
445 NameInfo,
446 TemplateArgs));
447 }
448
449 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
450 /// that the template parameter 'PrevDecl' is being shadowed by a new
451 /// declaration at location Loc. Returns true to indicate that this is
452 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)453 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
454 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
455
456 // Microsoft Visual C++ permits template parameters to be shadowed.
457 if (getLangOpts().MicrosoftExt)
458 return;
459
460 // C++ [temp.local]p4:
461 // A template-parameter shall not be redeclared within its
462 // scope (including nested scopes).
463 Diag(Loc, diag::err_template_param_shadow)
464 << cast<NamedDecl>(PrevDecl)->getDeclName();
465 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
466 return;
467 }
468
469 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
470 /// the parameter D to reference the templated declaration and return a pointer
471 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)472 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
473 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
474 D = Temp->getTemplatedDecl();
475 return Temp;
476 }
477 return 0;
478 }
479
getTemplatePackExpansion(SourceLocation EllipsisLoc) const480 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
481 SourceLocation EllipsisLoc) const {
482 assert(Kind == Template &&
483 "Only template template arguments can be pack expansions here");
484 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
485 "Template template argument pack expansion without packs");
486 ParsedTemplateArgument Result(*this);
487 Result.EllipsisLoc = EllipsisLoc;
488 return Result;
489 }
490
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)491 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
492 const ParsedTemplateArgument &Arg) {
493
494 switch (Arg.getKind()) {
495 case ParsedTemplateArgument::Type: {
496 TypeSourceInfo *DI;
497 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
498 if (!DI)
499 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
500 return TemplateArgumentLoc(TemplateArgument(T), DI);
501 }
502
503 case ParsedTemplateArgument::NonType: {
504 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
505 return TemplateArgumentLoc(TemplateArgument(E), E);
506 }
507
508 case ParsedTemplateArgument::Template: {
509 TemplateName Template = Arg.getAsTemplate().get();
510 TemplateArgument TArg;
511 if (Arg.getEllipsisLoc().isValid())
512 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
513 else
514 TArg = Template;
515 return TemplateArgumentLoc(TArg,
516 Arg.getScopeSpec().getWithLocInContext(
517 SemaRef.Context),
518 Arg.getLocation(),
519 Arg.getEllipsisLoc());
520 }
521 }
522
523 llvm_unreachable("Unhandled parsed template argument");
524 }
525
526 /// \brief Translates template arguments as provided by the parser
527 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)528 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
529 TemplateArgumentListInfo &TemplateArgs) {
530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
531 TemplateArgs.addArgument(translateTemplateArgument(*this,
532 TemplateArgsIn[I]));
533 }
534
535 /// ActOnTypeParameter - Called when a C++ template type parameter
536 /// (e.g., "typename T") has been parsed. Typename specifies whether
537 /// the keyword "typename" was used to declare the type parameter
538 /// (otherwise, "class" was used), and KeyLoc is the location of the
539 /// "class" or "typename" keyword. ParamName is the name of the
540 /// parameter (NULL indicates an unnamed template parameter) and
541 /// ParamNameLoc is the location of the parameter name (if any).
542 /// If the type parameter has a default argument, it will be added
543 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,bool Ellipsis,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)544 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
545 SourceLocation EllipsisLoc,
546 SourceLocation KeyLoc,
547 IdentifierInfo *ParamName,
548 SourceLocation ParamNameLoc,
549 unsigned Depth, unsigned Position,
550 SourceLocation EqualLoc,
551 ParsedType DefaultArg) {
552 assert(S->isTemplateParamScope() &&
553 "Template type parameter not in template parameter scope!");
554 bool Invalid = false;
555
556 if (ParamName) {
557 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
558 LookupOrdinaryName,
559 ForRedeclaration);
560 if (PrevDecl && PrevDecl->isTemplateParameter()) {
561 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
562 PrevDecl = 0;
563 }
564 }
565
566 SourceLocation Loc = ParamNameLoc;
567 if (!ParamName)
568 Loc = KeyLoc;
569
570 TemplateTypeParmDecl *Param
571 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
572 KeyLoc, Loc, Depth, Position, ParamName,
573 Typename, Ellipsis);
574 Param->setAccess(AS_public);
575 if (Invalid)
576 Param->setInvalidDecl();
577
578 if (ParamName) {
579 // Add the template parameter into the current scope.
580 S->AddDecl(Param);
581 IdResolver.AddDecl(Param);
582 }
583
584 // C++0x [temp.param]p9:
585 // A default template-argument may be specified for any kind of
586 // template-parameter that is not a template parameter pack.
587 if (DefaultArg && Ellipsis) {
588 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
589 DefaultArg = ParsedType();
590 }
591
592 // Handle the default argument, if provided.
593 if (DefaultArg) {
594 TypeSourceInfo *DefaultTInfo;
595 GetTypeFromParser(DefaultArg, &DefaultTInfo);
596
597 assert(DefaultTInfo && "expected source information for type");
598
599 // Check for unexpanded parameter packs.
600 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
601 UPPC_DefaultArgument))
602 return Param;
603
604 // Check the template argument itself.
605 if (CheckTemplateArgument(Param, DefaultTInfo)) {
606 Param->setInvalidDecl();
607 return Param;
608 }
609
610 Param->setDefaultArgument(DefaultTInfo, false);
611 }
612
613 return Param;
614 }
615
616 /// \brief Check that the type of a non-type template parameter is
617 /// well-formed.
618 ///
619 /// \returns the (possibly-promoted) parameter type if valid;
620 /// otherwise, produces a diagnostic and returns a NULL type.
621 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)622 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
623 // We don't allow variably-modified types as the type of non-type template
624 // parameters.
625 if (T->isVariablyModifiedType()) {
626 Diag(Loc, diag::err_variably_modified_nontype_template_param)
627 << T;
628 return QualType();
629 }
630
631 // C++ [temp.param]p4:
632 //
633 // A non-type template-parameter shall have one of the following
634 // (optionally cv-qualified) types:
635 //
636 // -- integral or enumeration type,
637 if (T->isIntegralOrEnumerationType() ||
638 // -- pointer to object or pointer to function,
639 T->isPointerType() ||
640 // -- reference to object or reference to function,
641 T->isReferenceType() ||
642 // -- pointer to member,
643 T->isMemberPointerType() ||
644 // -- std::nullptr_t.
645 T->isNullPtrType() ||
646 // If T is a dependent type, we can't do the check now, so we
647 // assume that it is well-formed.
648 T->isDependentType()) {
649 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
650 // are ignored when determining its type.
651 return T.getUnqualifiedType();
652 }
653
654 // C++ [temp.param]p8:
655 //
656 // A non-type template-parameter of type "array of T" or
657 // "function returning T" is adjusted to be of type "pointer to
658 // T" or "pointer to function returning T", respectively.
659 else if (T->isArrayType())
660 // FIXME: Keep the type prior to promotion?
661 return Context.getArrayDecayedType(T);
662 else if (T->isFunctionType())
663 // FIXME: Keep the type prior to promotion?
664 return Context.getPointerType(T);
665
666 Diag(Loc, diag::err_template_nontype_parm_bad_type)
667 << T;
668
669 return QualType();
670 }
671
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)672 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
673 unsigned Depth,
674 unsigned Position,
675 SourceLocation EqualLoc,
676 Expr *Default) {
677 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
678 QualType T = TInfo->getType();
679
680 assert(S->isTemplateParamScope() &&
681 "Non-type template parameter not in template parameter scope!");
682 bool Invalid = false;
683
684 IdentifierInfo *ParamName = D.getIdentifier();
685 if (ParamName) {
686 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
687 LookupOrdinaryName,
688 ForRedeclaration);
689 if (PrevDecl && PrevDecl->isTemplateParameter()) {
690 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
691 PrevDecl = 0;
692 }
693 }
694
695 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
696 if (T.isNull()) {
697 T = Context.IntTy; // Recover with an 'int' type.
698 Invalid = true;
699 }
700
701 bool IsParameterPack = D.hasEllipsis();
702 NonTypeTemplateParmDecl *Param
703 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
704 D.getLocStart(),
705 D.getIdentifierLoc(),
706 Depth, Position, ParamName, T,
707 IsParameterPack, TInfo);
708 Param->setAccess(AS_public);
709
710 if (Invalid)
711 Param->setInvalidDecl();
712
713 if (D.getIdentifier()) {
714 // Add the template parameter into the current scope.
715 S->AddDecl(Param);
716 IdResolver.AddDecl(Param);
717 }
718
719 // C++0x [temp.param]p9:
720 // A default template-argument may be specified for any kind of
721 // template-parameter that is not a template parameter pack.
722 if (Default && IsParameterPack) {
723 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
724 Default = 0;
725 }
726
727 // Check the well-formedness of the default template argument, if provided.
728 if (Default) {
729 // Check for unexpanded parameter packs.
730 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
731 return Param;
732
733 TemplateArgument Converted;
734 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
735 if (DefaultRes.isInvalid()) {
736 Param->setInvalidDecl();
737 return Param;
738 }
739 Default = DefaultRes.take();
740
741 Param->setDefaultArgument(Default, false);
742 }
743
744 return Param;
745 }
746
747 /// ActOnTemplateTemplateParameter - Called when a C++ template template
748 /// parameter (e.g. T in template <template \<typename> class T> class array)
749 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)750 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
751 SourceLocation TmpLoc,
752 TemplateParameterList *Params,
753 SourceLocation EllipsisLoc,
754 IdentifierInfo *Name,
755 SourceLocation NameLoc,
756 unsigned Depth,
757 unsigned Position,
758 SourceLocation EqualLoc,
759 ParsedTemplateArgument Default) {
760 assert(S->isTemplateParamScope() &&
761 "Template template parameter not in template parameter scope!");
762
763 // Construct the parameter object.
764 bool IsParameterPack = EllipsisLoc.isValid();
765 TemplateTemplateParmDecl *Param =
766 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
767 NameLoc.isInvalid()? TmpLoc : NameLoc,
768 Depth, Position, IsParameterPack,
769 Name, Params);
770 Param->setAccess(AS_public);
771
772 // If the template template parameter has a name, then link the identifier
773 // into the scope and lookup mechanisms.
774 if (Name) {
775 S->AddDecl(Param);
776 IdResolver.AddDecl(Param);
777 }
778
779 if (Params->size() == 0) {
780 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
781 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
782 Param->setInvalidDecl();
783 }
784
785 // C++0x [temp.param]p9:
786 // A default template-argument may be specified for any kind of
787 // template-parameter that is not a template parameter pack.
788 if (IsParameterPack && !Default.isInvalid()) {
789 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
790 Default = ParsedTemplateArgument();
791 }
792
793 if (!Default.isInvalid()) {
794 // Check only that we have a template template argument. We don't want to
795 // try to check well-formedness now, because our template template parameter
796 // might have dependent types in its template parameters, which we wouldn't
797 // be able to match now.
798 //
799 // If none of the template template parameter's template arguments mention
800 // other template parameters, we could actually perform more checking here.
801 // However, it isn't worth doing.
802 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
803 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
804 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
805 << DefaultArg.getSourceRange();
806 return Param;
807 }
808
809 // Check for unexpanded parameter packs.
810 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
811 DefaultArg.getArgument().getAsTemplate(),
812 UPPC_DefaultArgument))
813 return Param;
814
815 Param->setDefaultArgument(DefaultArg, false);
816 }
817
818 return Param;
819 }
820
821 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
822 /// contains the template parameters in Params/NumParams.
823 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)824 Sema::ActOnTemplateParameterList(unsigned Depth,
825 SourceLocation ExportLoc,
826 SourceLocation TemplateLoc,
827 SourceLocation LAngleLoc,
828 Decl **Params, unsigned NumParams,
829 SourceLocation RAngleLoc) {
830 if (ExportLoc.isValid())
831 Diag(ExportLoc, diag::warn_template_export_unsupported);
832
833 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
834 (NamedDecl**)Params, NumParams,
835 RAngleLoc);
836 }
837
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)838 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
839 if (SS.isSet())
840 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
841 }
842
843 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists)844 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
845 SourceLocation KWLoc, CXXScopeSpec &SS,
846 IdentifierInfo *Name, SourceLocation NameLoc,
847 AttributeList *Attr,
848 TemplateParameterList *TemplateParams,
849 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
850 unsigned NumOuterTemplateParamLists,
851 TemplateParameterList** OuterTemplateParamLists) {
852 assert(TemplateParams && TemplateParams->size() > 0 &&
853 "No template parameters");
854 assert(TUK != TUK_Reference && "Can only declare or define class templates");
855 bool Invalid = false;
856
857 // Check that we can declare a template here.
858 if (CheckTemplateDeclScope(S, TemplateParams))
859 return true;
860
861 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
862 assert(Kind != TTK_Enum && "can't build template of enumerated type");
863
864 // There is no such thing as an unnamed class template.
865 if (!Name) {
866 Diag(KWLoc, diag::err_template_unnamed_class);
867 return true;
868 }
869
870 // Find any previous declaration with this name. For a friend with no
871 // scope explicitly specified, we only look for tag declarations (per
872 // C++11 [basic.lookup.elab]p2).
873 DeclContext *SemanticContext;
874 LookupResult Previous(*this, Name, NameLoc,
875 (SS.isEmpty() && TUK == TUK_Friend)
876 ? LookupTagName : LookupOrdinaryName,
877 ForRedeclaration);
878 if (SS.isNotEmpty() && !SS.isInvalid()) {
879 SemanticContext = computeDeclContext(SS, true);
880 if (!SemanticContext) {
881 // FIXME: Horrible, horrible hack! We can't currently represent this
882 // in the AST, and historically we have just ignored such friend
883 // class templates, so don't complain here.
884 if (TUK != TUK_Friend)
885 Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
886 << SS.getScopeRep() << SS.getRange();
887 return true;
888 }
889
890 if (RequireCompleteDeclContext(SS, SemanticContext))
891 return true;
892
893 // If we're adding a template to a dependent context, we may need to
894 // rebuilding some of the types used within the template parameter list,
895 // now that we know what the current instantiation is.
896 if (SemanticContext->isDependentContext()) {
897 ContextRAII SavedContext(*this, SemanticContext);
898 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
899 Invalid = true;
900 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
901 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
902
903 LookupQualifiedName(Previous, SemanticContext);
904 } else {
905 SemanticContext = CurContext;
906 LookupName(Previous, S);
907 }
908
909 if (Previous.isAmbiguous())
910 return true;
911
912 NamedDecl *PrevDecl = 0;
913 if (Previous.begin() != Previous.end())
914 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
915
916 // If there is a previous declaration with the same name, check
917 // whether this is a valid redeclaration.
918 ClassTemplateDecl *PrevClassTemplate
919 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
920
921 // We may have found the injected-class-name of a class template,
922 // class template partial specialization, or class template specialization.
923 // In these cases, grab the template that is being defined or specialized.
924 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
925 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
926 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
927 PrevClassTemplate
928 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
929 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
930 PrevClassTemplate
931 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
932 ->getSpecializedTemplate();
933 }
934 }
935
936 if (TUK == TUK_Friend) {
937 // C++ [namespace.memdef]p3:
938 // [...] When looking for a prior declaration of a class or a function
939 // declared as a friend, and when the name of the friend class or
940 // function is neither a qualified name nor a template-id, scopes outside
941 // the innermost enclosing namespace scope are not considered.
942 if (!SS.isSet()) {
943 DeclContext *OutermostContext = CurContext;
944 while (!OutermostContext->isFileContext())
945 OutermostContext = OutermostContext->getLookupParent();
946
947 if (PrevDecl &&
948 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
949 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
950 SemanticContext = PrevDecl->getDeclContext();
951 } else {
952 // Declarations in outer scopes don't matter. However, the outermost
953 // context we computed is the semantic context for our new
954 // declaration.
955 PrevDecl = PrevClassTemplate = 0;
956 SemanticContext = OutermostContext;
957
958 // Check that the chosen semantic context doesn't already contain a
959 // declaration of this name as a non-tag type.
960 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
961 ForRedeclaration);
962 DeclContext *LookupContext = SemanticContext;
963 while (LookupContext->isTransparentContext())
964 LookupContext = LookupContext->getLookupParent();
965 LookupQualifiedName(Previous, LookupContext);
966
967 if (Previous.isAmbiguous())
968 return true;
969
970 if (Previous.begin() != Previous.end())
971 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
972 }
973 }
974 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
975 PrevDecl = PrevClassTemplate = 0;
976
977 if (PrevClassTemplate) {
978 // Ensure that the template parameter lists are compatible. Skip this check
979 // for a friend in a dependent context: the template parameter list itself
980 // could be dependent.
981 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
982 !TemplateParameterListsAreEqual(TemplateParams,
983 PrevClassTemplate->getTemplateParameters(),
984 /*Complain=*/true,
985 TPL_TemplateMatch))
986 return true;
987
988 // C++ [temp.class]p4:
989 // In a redeclaration, partial specialization, explicit
990 // specialization or explicit instantiation of a class template,
991 // the class-key shall agree in kind with the original class
992 // template declaration (7.1.5.3).
993 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
994 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
995 TUK == TUK_Definition, KWLoc, *Name)) {
996 Diag(KWLoc, diag::err_use_with_wrong_tag)
997 << Name
998 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
999 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1000 Kind = PrevRecordDecl->getTagKind();
1001 }
1002
1003 // Check for redefinition of this class template.
1004 if (TUK == TUK_Definition) {
1005 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1006 Diag(NameLoc, diag::err_redefinition) << Name;
1007 Diag(Def->getLocation(), diag::note_previous_definition);
1008 // FIXME: Would it make sense to try to "forget" the previous
1009 // definition, as part of error recovery?
1010 return true;
1011 }
1012 }
1013 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1014 // Maybe we will complain about the shadowed template parameter.
1015 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1016 // Just pretend that we didn't see the previous declaration.
1017 PrevDecl = 0;
1018 } else if (PrevDecl) {
1019 // C++ [temp]p5:
1020 // A class template shall not have the same name as any other
1021 // template, class, function, object, enumeration, enumerator,
1022 // namespace, or type in the same scope (3.3), except as specified
1023 // in (14.5.4).
1024 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1025 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1026 return true;
1027 }
1028
1029 // Check the template parameter list of this declaration, possibly
1030 // merging in the template parameter list from the previous class
1031 // template declaration. Skip this check for a friend in a dependent
1032 // context, because the template parameter list might be dependent.
1033 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1034 CheckTemplateParameterList(TemplateParams,
1035 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1036 (SS.isSet() && SemanticContext &&
1037 SemanticContext->isRecord() &&
1038 SemanticContext->isDependentContext())
1039 ? TPC_ClassTemplateMember
1040 : TPC_ClassTemplate))
1041 Invalid = true;
1042
1043 if (SS.isSet()) {
1044 // If the name of the template was qualified, we must be defining the
1045 // template out-of-line.
1046 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1047 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1048 : diag::err_member_def_does_not_match)
1049 << Name << SemanticContext << SS.getRange();
1050 Invalid = true;
1051 }
1052 }
1053
1054 CXXRecordDecl *NewClass =
1055 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1056 PrevClassTemplate?
1057 PrevClassTemplate->getTemplatedDecl() : 0,
1058 /*DelayTypeCreation=*/true);
1059 SetNestedNameSpecifier(NewClass, SS);
1060 if (NumOuterTemplateParamLists > 0)
1061 NewClass->setTemplateParameterListsInfo(Context,
1062 NumOuterTemplateParamLists,
1063 OuterTemplateParamLists);
1064
1065 // Add alignment attributes if necessary; these attributes are checked when
1066 // the ASTContext lays out the structure.
1067 if (TUK == TUK_Definition) {
1068 AddAlignmentAttributesForRecord(NewClass);
1069 AddMsStructLayoutForRecord(NewClass);
1070 }
1071
1072 ClassTemplateDecl *NewTemplate
1073 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1074 DeclarationName(Name), TemplateParams,
1075 NewClass, PrevClassTemplate);
1076 NewClass->setDescribedClassTemplate(NewTemplate);
1077
1078 if (ModulePrivateLoc.isValid())
1079 NewTemplate->setModulePrivate();
1080
1081 // Build the type for the class template declaration now.
1082 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1083 T = Context.getInjectedClassNameType(NewClass, T);
1084 assert(T->isDependentType() && "Class template type is not dependent?");
1085 (void)T;
1086
1087 // If we are providing an explicit specialization of a member that is a
1088 // class template, make a note of that.
1089 if (PrevClassTemplate &&
1090 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1091 PrevClassTemplate->setMemberSpecialization();
1092
1093 // Set the access specifier.
1094 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1095 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1096
1097 // Set the lexical context of these templates
1098 NewClass->setLexicalDeclContext(CurContext);
1099 NewTemplate->setLexicalDeclContext(CurContext);
1100
1101 if (TUK == TUK_Definition)
1102 NewClass->startDefinition();
1103
1104 if (Attr)
1105 ProcessDeclAttributeList(S, NewClass, Attr);
1106
1107 if (PrevClassTemplate)
1108 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1109
1110 AddPushedVisibilityAttribute(NewClass);
1111
1112 if (TUK != TUK_Friend)
1113 PushOnScopeChains(NewTemplate, S);
1114 else {
1115 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1116 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1117 NewClass->setAccess(PrevClassTemplate->getAccess());
1118 }
1119
1120 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1121 PrevClassTemplate != NULL);
1122
1123 // Friend templates are visible in fairly strange ways.
1124 if (!CurContext->isDependentContext()) {
1125 DeclContext *DC = SemanticContext->getRedeclContext();
1126 DC->makeDeclVisibleInContext(NewTemplate);
1127 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1128 PushOnScopeChains(NewTemplate, EnclosingScope,
1129 /* AddToContext = */ false);
1130 }
1131
1132 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1133 NewClass->getLocation(),
1134 NewTemplate,
1135 /*FIXME:*/NewClass->getLocation());
1136 Friend->setAccess(AS_public);
1137 CurContext->addDecl(Friend);
1138 }
1139
1140 if (Invalid) {
1141 NewTemplate->setInvalidDecl();
1142 NewClass->setInvalidDecl();
1143 }
1144
1145 ActOnDocumentableDecl(NewTemplate);
1146
1147 return NewTemplate;
1148 }
1149
1150 /// \brief Diagnose the presence of a default template argument on a
1151 /// template parameter, which is ill-formed in certain contexts.
1152 ///
1153 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1154 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1155 Sema::TemplateParamListContext TPC,
1156 SourceLocation ParamLoc,
1157 SourceRange DefArgRange) {
1158 switch (TPC) {
1159 case Sema::TPC_ClassTemplate:
1160 case Sema::TPC_TypeAliasTemplate:
1161 return false;
1162
1163 case Sema::TPC_FunctionTemplate:
1164 case Sema::TPC_FriendFunctionTemplateDefinition:
1165 // C++ [temp.param]p9:
1166 // A default template-argument shall not be specified in a
1167 // function template declaration or a function template
1168 // definition [...]
1169 // If a friend function template declaration specifies a default
1170 // template-argument, that declaration shall be a definition and shall be
1171 // the only declaration of the function template in the translation unit.
1172 // (C++98/03 doesn't have this wording; see DR226).
1173 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1174 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1175 : diag::ext_template_parameter_default_in_function_template)
1176 << DefArgRange;
1177 return false;
1178
1179 case Sema::TPC_ClassTemplateMember:
1180 // C++0x [temp.param]p9:
1181 // A default template-argument shall not be specified in the
1182 // template-parameter-lists of the definition of a member of a
1183 // class template that appears outside of the member's class.
1184 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1185 << DefArgRange;
1186 return true;
1187
1188 case Sema::TPC_FriendFunctionTemplate:
1189 // C++ [temp.param]p9:
1190 // A default template-argument shall not be specified in a
1191 // friend template declaration.
1192 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1193 << DefArgRange;
1194 return true;
1195
1196 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1197 // for friend function templates if there is only a single
1198 // declaration (and it is a definition). Strange!
1199 }
1200
1201 llvm_unreachable("Invalid TemplateParamListContext!");
1202 }
1203
1204 /// \brief Check for unexpanded parameter packs within the template parameters
1205 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1206 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1207 TemplateTemplateParmDecl *TTP) {
1208 // A template template parameter which is a parameter pack is also a pack
1209 // expansion.
1210 if (TTP->isParameterPack())
1211 return false;
1212
1213 TemplateParameterList *Params = TTP->getTemplateParameters();
1214 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1215 NamedDecl *P = Params->getParam(I);
1216 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1217 if (!NTTP->isParameterPack() &&
1218 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1219 NTTP->getTypeSourceInfo(),
1220 Sema::UPPC_NonTypeTemplateParameterType))
1221 return true;
1222
1223 continue;
1224 }
1225
1226 if (TemplateTemplateParmDecl *InnerTTP
1227 = dyn_cast<TemplateTemplateParmDecl>(P))
1228 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1229 return true;
1230 }
1231
1232 return false;
1233 }
1234
1235 /// \brief Checks the validity of a template parameter list, possibly
1236 /// considering the template parameter list from a previous
1237 /// declaration.
1238 ///
1239 /// If an "old" template parameter list is provided, it must be
1240 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1241 /// template parameter list.
1242 ///
1243 /// \param NewParams Template parameter list for a new template
1244 /// declaration. This template parameter list will be updated with any
1245 /// default arguments that are carried through from the previous
1246 /// template parameter list.
1247 ///
1248 /// \param OldParams If provided, template parameter list from a
1249 /// previous declaration of the same template. Default template
1250 /// arguments will be merged from the old template parameter list to
1251 /// the new template parameter list.
1252 ///
1253 /// \param TPC Describes the context in which we are checking the given
1254 /// template parameter list.
1255 ///
1256 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1257 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1258 TemplateParameterList *OldParams,
1259 TemplateParamListContext TPC) {
1260 bool Invalid = false;
1261
1262 // C++ [temp.param]p10:
1263 // The set of default template-arguments available for use with a
1264 // template declaration or definition is obtained by merging the
1265 // default arguments from the definition (if in scope) and all
1266 // declarations in scope in the same way default function
1267 // arguments are (8.3.6).
1268 bool SawDefaultArgument = false;
1269 SourceLocation PreviousDefaultArgLoc;
1270
1271 // Dummy initialization to avoid warnings.
1272 TemplateParameterList::iterator OldParam = NewParams->end();
1273 if (OldParams)
1274 OldParam = OldParams->begin();
1275
1276 bool RemoveDefaultArguments = false;
1277 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1278 NewParamEnd = NewParams->end();
1279 NewParam != NewParamEnd; ++NewParam) {
1280 // Variables used to diagnose redundant default arguments
1281 bool RedundantDefaultArg = false;
1282 SourceLocation OldDefaultLoc;
1283 SourceLocation NewDefaultLoc;
1284
1285 // Variable used to diagnose missing default arguments
1286 bool MissingDefaultArg = false;
1287
1288 // Variable used to diagnose non-final parameter packs
1289 bool SawParameterPack = false;
1290
1291 if (TemplateTypeParmDecl *NewTypeParm
1292 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1293 // Check the presence of a default argument here.
1294 if (NewTypeParm->hasDefaultArgument() &&
1295 DiagnoseDefaultTemplateArgument(*this, TPC,
1296 NewTypeParm->getLocation(),
1297 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1298 .getSourceRange()))
1299 NewTypeParm->removeDefaultArgument();
1300
1301 // Merge default arguments for template type parameters.
1302 TemplateTypeParmDecl *OldTypeParm
1303 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1304
1305 if (NewTypeParm->isParameterPack()) {
1306 assert(!NewTypeParm->hasDefaultArgument() &&
1307 "Parameter packs can't have a default argument!");
1308 SawParameterPack = true;
1309 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1310 NewTypeParm->hasDefaultArgument()) {
1311 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1312 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1313 SawDefaultArgument = true;
1314 RedundantDefaultArg = true;
1315 PreviousDefaultArgLoc = NewDefaultLoc;
1316 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1317 // Merge the default argument from the old declaration to the
1318 // new declaration.
1319 SawDefaultArgument = true;
1320 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1321 true);
1322 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1323 } else if (NewTypeParm->hasDefaultArgument()) {
1324 SawDefaultArgument = true;
1325 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1326 } else if (SawDefaultArgument)
1327 MissingDefaultArg = true;
1328 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1329 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1330 // Check for unexpanded parameter packs.
1331 if (!NewNonTypeParm->isParameterPack() &&
1332 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1333 NewNonTypeParm->getTypeSourceInfo(),
1334 UPPC_NonTypeTemplateParameterType)) {
1335 Invalid = true;
1336 continue;
1337 }
1338
1339 // Check the presence of a default argument here.
1340 if (NewNonTypeParm->hasDefaultArgument() &&
1341 DiagnoseDefaultTemplateArgument(*this, TPC,
1342 NewNonTypeParm->getLocation(),
1343 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1344 NewNonTypeParm->removeDefaultArgument();
1345 }
1346
1347 // Merge default arguments for non-type template parameters
1348 NonTypeTemplateParmDecl *OldNonTypeParm
1349 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1350 if (NewNonTypeParm->isParameterPack()) {
1351 assert(!NewNonTypeParm->hasDefaultArgument() &&
1352 "Parameter packs can't have a default argument!");
1353 if (!NewNonTypeParm->isPackExpansion())
1354 SawParameterPack = true;
1355 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1356 NewNonTypeParm->hasDefaultArgument()) {
1357 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1358 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1359 SawDefaultArgument = true;
1360 RedundantDefaultArg = true;
1361 PreviousDefaultArgLoc = NewDefaultLoc;
1362 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1363 // Merge the default argument from the old declaration to the
1364 // new declaration.
1365 SawDefaultArgument = true;
1366 // FIXME: We need to create a new kind of "default argument"
1367 // expression that points to a previous non-type template
1368 // parameter.
1369 NewNonTypeParm->setDefaultArgument(
1370 OldNonTypeParm->getDefaultArgument(),
1371 /*Inherited=*/ true);
1372 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1373 } else if (NewNonTypeParm->hasDefaultArgument()) {
1374 SawDefaultArgument = true;
1375 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1376 } else if (SawDefaultArgument)
1377 MissingDefaultArg = true;
1378 } else {
1379 TemplateTemplateParmDecl *NewTemplateParm
1380 = cast<TemplateTemplateParmDecl>(*NewParam);
1381
1382 // Check for unexpanded parameter packs, recursively.
1383 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1384 Invalid = true;
1385 continue;
1386 }
1387
1388 // Check the presence of a default argument here.
1389 if (NewTemplateParm->hasDefaultArgument() &&
1390 DiagnoseDefaultTemplateArgument(*this, TPC,
1391 NewTemplateParm->getLocation(),
1392 NewTemplateParm->getDefaultArgument().getSourceRange()))
1393 NewTemplateParm->removeDefaultArgument();
1394
1395 // Merge default arguments for template template parameters
1396 TemplateTemplateParmDecl *OldTemplateParm
1397 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1398 if (NewTemplateParm->isParameterPack()) {
1399 assert(!NewTemplateParm->hasDefaultArgument() &&
1400 "Parameter packs can't have a default argument!");
1401 if (!NewTemplateParm->isPackExpansion())
1402 SawParameterPack = true;
1403 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1404 NewTemplateParm->hasDefaultArgument()) {
1405 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1406 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1407 SawDefaultArgument = true;
1408 RedundantDefaultArg = true;
1409 PreviousDefaultArgLoc = NewDefaultLoc;
1410 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1411 // Merge the default argument from the old declaration to the
1412 // new declaration.
1413 SawDefaultArgument = true;
1414 // FIXME: We need to create a new kind of "default argument" expression
1415 // that points to a previous template template parameter.
1416 NewTemplateParm->setDefaultArgument(
1417 OldTemplateParm->getDefaultArgument(),
1418 /*Inherited=*/ true);
1419 PreviousDefaultArgLoc
1420 = OldTemplateParm->getDefaultArgument().getLocation();
1421 } else if (NewTemplateParm->hasDefaultArgument()) {
1422 SawDefaultArgument = true;
1423 PreviousDefaultArgLoc
1424 = NewTemplateParm->getDefaultArgument().getLocation();
1425 } else if (SawDefaultArgument)
1426 MissingDefaultArg = true;
1427 }
1428
1429 // C++11 [temp.param]p11:
1430 // If a template parameter of a primary class template or alias template
1431 // is a template parameter pack, it shall be the last template parameter.
1432 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1433 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1434 Diag((*NewParam)->getLocation(),
1435 diag::err_template_param_pack_must_be_last_template_parameter);
1436 Invalid = true;
1437 }
1438
1439 if (RedundantDefaultArg) {
1440 // C++ [temp.param]p12:
1441 // A template-parameter shall not be given default arguments
1442 // by two different declarations in the same scope.
1443 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1444 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1445 Invalid = true;
1446 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1447 // C++ [temp.param]p11:
1448 // If a template-parameter of a class template has a default
1449 // template-argument, each subsequent template-parameter shall either
1450 // have a default template-argument supplied or be a template parameter
1451 // pack.
1452 Diag((*NewParam)->getLocation(),
1453 diag::err_template_param_default_arg_missing);
1454 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1455 Invalid = true;
1456 RemoveDefaultArguments = true;
1457 }
1458
1459 // If we have an old template parameter list that we're merging
1460 // in, move on to the next parameter.
1461 if (OldParams)
1462 ++OldParam;
1463 }
1464
1465 // We were missing some default arguments at the end of the list, so remove
1466 // all of the default arguments.
1467 if (RemoveDefaultArguments) {
1468 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1469 NewParamEnd = NewParams->end();
1470 NewParam != NewParamEnd; ++NewParam) {
1471 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1472 TTP->removeDefaultArgument();
1473 else if (NonTypeTemplateParmDecl *NTTP
1474 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1475 NTTP->removeDefaultArgument();
1476 else
1477 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1478 }
1479 }
1480
1481 return Invalid;
1482 }
1483
1484 namespace {
1485
1486 /// A class which looks for a use of a certain level of template
1487 /// parameter.
1488 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1489 typedef RecursiveASTVisitor<DependencyChecker> super;
1490
1491 unsigned Depth;
1492 bool Match;
1493
DependencyChecker__anon7f9b27390111::DependencyChecker1494 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1495 NamedDecl *ND = Params->getParam(0);
1496 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1497 Depth = PD->getDepth();
1498 } else if (NonTypeTemplateParmDecl *PD =
1499 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1500 Depth = PD->getDepth();
1501 } else {
1502 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1503 }
1504 }
1505
Matches__anon7f9b27390111::DependencyChecker1506 bool Matches(unsigned ParmDepth) {
1507 if (ParmDepth >= Depth) {
1508 Match = true;
1509 return true;
1510 }
1511 return false;
1512 }
1513
VisitTemplateTypeParmType__anon7f9b27390111::DependencyChecker1514 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1515 return !Matches(T->getDepth());
1516 }
1517
TraverseTemplateName__anon7f9b27390111::DependencyChecker1518 bool TraverseTemplateName(TemplateName N) {
1519 if (TemplateTemplateParmDecl *PD =
1520 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1521 if (Matches(PD->getDepth())) return false;
1522 return super::TraverseTemplateName(N);
1523 }
1524
VisitDeclRefExpr__anon7f9b27390111::DependencyChecker1525 bool VisitDeclRefExpr(DeclRefExpr *E) {
1526 if (NonTypeTemplateParmDecl *PD =
1527 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1528 if (PD->getDepth() == Depth) {
1529 Match = true;
1530 return false;
1531 }
1532 }
1533 return super::VisitDeclRefExpr(E);
1534 }
1535
TraverseInjectedClassNameType__anon7f9b27390111::DependencyChecker1536 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1537 return TraverseType(T->getInjectedSpecializationType());
1538 }
1539 };
1540 }
1541
1542 /// Determines whether a given type depends on the given parameter
1543 /// list.
1544 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1545 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1546 DependencyChecker Checker(Params);
1547 Checker.TraverseType(T);
1548 return Checker.Match;
1549 }
1550
1551 // Find the source range corresponding to the named type in the given
1552 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1553 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1554 QualType T,
1555 const CXXScopeSpec &SS) {
1556 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1557 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1558 if (const Type *CurType = NNS->getAsType()) {
1559 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1560 return NNSLoc.getTypeLoc().getSourceRange();
1561 } else
1562 break;
1563
1564 NNSLoc = NNSLoc.getPrefix();
1565 }
1566
1567 return SourceRange();
1568 }
1569
1570 /// \brief Match the given template parameter lists to the given scope
1571 /// specifier, returning the template parameter list that applies to the
1572 /// name.
1573 ///
1574 /// \param DeclStartLoc the start of the declaration that has a scope
1575 /// specifier or a template parameter list.
1576 ///
1577 /// \param DeclLoc The location of the declaration itself.
1578 ///
1579 /// \param SS the scope specifier that will be matched to the given template
1580 /// parameter lists. This scope specifier precedes a qualified name that is
1581 /// being declared.
1582 ///
1583 /// \param ParamLists the template parameter lists, from the outermost to the
1584 /// innermost template parameter lists.
1585 ///
1586 /// \param NumParamLists the number of template parameter lists in ParamLists.
1587 ///
1588 /// \param IsFriend Whether to apply the slightly different rules for
1589 /// matching template parameters to scope specifiers in friend
1590 /// declarations.
1591 ///
1592 /// \param IsExplicitSpecialization will be set true if the entity being
1593 /// declared is an explicit specialization, false otherwise.
1594 ///
1595 /// \returns the template parameter list, if any, that corresponds to the
1596 /// name that is preceded by the scope specifier @p SS. This template
1597 /// parameter list may have template parameters (if we're declaring a
1598 /// template) or may have no template parameters (if we're declaring a
1599 /// template specialization), or may be NULL (if what we're declaring isn't
1600 /// itself a template).
1601 TemplateParameterList *
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateParameterList ** ParamLists,unsigned NumParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1602 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1603 SourceLocation DeclLoc,
1604 const CXXScopeSpec &SS,
1605 TemplateParameterList **ParamLists,
1606 unsigned NumParamLists,
1607 bool IsFriend,
1608 bool &IsExplicitSpecialization,
1609 bool &Invalid) {
1610 IsExplicitSpecialization = false;
1611 Invalid = false;
1612
1613 // The sequence of nested types to which we will match up the template
1614 // parameter lists. We first build this list by starting with the type named
1615 // by the nested-name-specifier and walking out until we run out of types.
1616 SmallVector<QualType, 4> NestedTypes;
1617 QualType T;
1618 if (SS.getScopeRep()) {
1619 if (CXXRecordDecl *Record
1620 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1621 T = Context.getTypeDeclType(Record);
1622 else
1623 T = QualType(SS.getScopeRep()->getAsType(), 0);
1624 }
1625
1626 // If we found an explicit specialization that prevents us from needing
1627 // 'template<>' headers, this will be set to the location of that
1628 // explicit specialization.
1629 SourceLocation ExplicitSpecLoc;
1630
1631 while (!T.isNull()) {
1632 NestedTypes.push_back(T);
1633
1634 // Retrieve the parent of a record type.
1635 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1636 // If this type is an explicit specialization, we're done.
1637 if (ClassTemplateSpecializationDecl *Spec
1638 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1639 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1640 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1641 ExplicitSpecLoc = Spec->getLocation();
1642 break;
1643 }
1644 } else if (Record->getTemplateSpecializationKind()
1645 == TSK_ExplicitSpecialization) {
1646 ExplicitSpecLoc = Record->getLocation();
1647 break;
1648 }
1649
1650 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1651 T = Context.getTypeDeclType(Parent);
1652 else
1653 T = QualType();
1654 continue;
1655 }
1656
1657 if (const TemplateSpecializationType *TST
1658 = T->getAs<TemplateSpecializationType>()) {
1659 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1660 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1661 T = Context.getTypeDeclType(Parent);
1662 else
1663 T = QualType();
1664 continue;
1665 }
1666 }
1667
1668 // Look one step prior in a dependent template specialization type.
1669 if (const DependentTemplateSpecializationType *DependentTST
1670 = T->getAs<DependentTemplateSpecializationType>()) {
1671 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1672 T = QualType(NNS->getAsType(), 0);
1673 else
1674 T = QualType();
1675 continue;
1676 }
1677
1678 // Look one step prior in a dependent name type.
1679 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1680 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1681 T = QualType(NNS->getAsType(), 0);
1682 else
1683 T = QualType();
1684 continue;
1685 }
1686
1687 // Retrieve the parent of an enumeration type.
1688 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1689 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1690 // check here.
1691 EnumDecl *Enum = EnumT->getDecl();
1692
1693 // Get to the parent type.
1694 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1695 T = Context.getTypeDeclType(Parent);
1696 else
1697 T = QualType();
1698 continue;
1699 }
1700
1701 T = QualType();
1702 }
1703 // Reverse the nested types list, since we want to traverse from the outermost
1704 // to the innermost while checking template-parameter-lists.
1705 std::reverse(NestedTypes.begin(), NestedTypes.end());
1706
1707 // C++0x [temp.expl.spec]p17:
1708 // A member or a member template may be nested within many
1709 // enclosing class templates. In an explicit specialization for
1710 // such a member, the member declaration shall be preceded by a
1711 // template<> for each enclosing class template that is
1712 // explicitly specialized.
1713 bool SawNonEmptyTemplateParameterList = false;
1714 unsigned ParamIdx = 0;
1715 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1716 ++TypeIdx) {
1717 T = NestedTypes[TypeIdx];
1718
1719 // Whether we expect a 'template<>' header.
1720 bool NeedEmptyTemplateHeader = false;
1721
1722 // Whether we expect a template header with parameters.
1723 bool NeedNonemptyTemplateHeader = false;
1724
1725 // For a dependent type, the set of template parameters that we
1726 // expect to see.
1727 TemplateParameterList *ExpectedTemplateParams = 0;
1728
1729 // C++0x [temp.expl.spec]p15:
1730 // A member or a member template may be nested within many enclosing
1731 // class templates. In an explicit specialization for such a member, the
1732 // member declaration shall be preceded by a template<> for each
1733 // enclosing class template that is explicitly specialized.
1734 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1735 if (ClassTemplatePartialSpecializationDecl *Partial
1736 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1737 ExpectedTemplateParams = Partial->getTemplateParameters();
1738 NeedNonemptyTemplateHeader = true;
1739 } else if (Record->isDependentType()) {
1740 if (Record->getDescribedClassTemplate()) {
1741 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1742 ->getTemplateParameters();
1743 NeedNonemptyTemplateHeader = true;
1744 }
1745 } else if (ClassTemplateSpecializationDecl *Spec
1746 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1747 // C++0x [temp.expl.spec]p4:
1748 // Members of an explicitly specialized class template are defined
1749 // in the same manner as members of normal classes, and not using
1750 // the template<> syntax.
1751 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1752 NeedEmptyTemplateHeader = true;
1753 else
1754 continue;
1755 } else if (Record->getTemplateSpecializationKind()) {
1756 if (Record->getTemplateSpecializationKind()
1757 != TSK_ExplicitSpecialization &&
1758 TypeIdx == NumTypes - 1)
1759 IsExplicitSpecialization = true;
1760
1761 continue;
1762 }
1763 } else if (const TemplateSpecializationType *TST
1764 = T->getAs<TemplateSpecializationType>()) {
1765 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1766 ExpectedTemplateParams = Template->getTemplateParameters();
1767 NeedNonemptyTemplateHeader = true;
1768 }
1769 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1770 // FIXME: We actually could/should check the template arguments here
1771 // against the corresponding template parameter list.
1772 NeedNonemptyTemplateHeader = false;
1773 }
1774
1775 // C++ [temp.expl.spec]p16:
1776 // In an explicit specialization declaration for a member of a class
1777 // template or a member template that ap- pears in namespace scope, the
1778 // member template and some of its enclosing class templates may remain
1779 // unspecialized, except that the declaration shall not explicitly
1780 // specialize a class member template if its en- closing class templates
1781 // are not explicitly specialized as well.
1782 if (ParamIdx < NumParamLists) {
1783 if (ParamLists[ParamIdx]->size() == 0) {
1784 if (SawNonEmptyTemplateParameterList) {
1785 Diag(DeclLoc, diag::err_specialize_member_of_template)
1786 << ParamLists[ParamIdx]->getSourceRange();
1787 Invalid = true;
1788 IsExplicitSpecialization = false;
1789 return 0;
1790 }
1791 } else
1792 SawNonEmptyTemplateParameterList = true;
1793 }
1794
1795 if (NeedEmptyTemplateHeader) {
1796 // If we're on the last of the types, and we need a 'template<>' header
1797 // here, then it's an explicit specialization.
1798 if (TypeIdx == NumTypes - 1)
1799 IsExplicitSpecialization = true;
1800
1801 if (ParamIdx < NumParamLists) {
1802 if (ParamLists[ParamIdx]->size() > 0) {
1803 // The header has template parameters when it shouldn't. Complain.
1804 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1805 diag::err_template_param_list_matches_nontemplate)
1806 << T
1807 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1808 ParamLists[ParamIdx]->getRAngleLoc())
1809 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1810 Invalid = true;
1811 return 0;
1812 }
1813
1814 // Consume this template header.
1815 ++ParamIdx;
1816 continue;
1817 }
1818
1819 if (!IsFriend) {
1820 // We don't have a template header, but we should.
1821 SourceLocation ExpectedTemplateLoc;
1822 if (NumParamLists > 0)
1823 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1824 else
1825 ExpectedTemplateLoc = DeclStartLoc;
1826
1827 Diag(DeclLoc, diag::err_template_spec_needs_header)
1828 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1829 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1830 }
1831
1832 continue;
1833 }
1834
1835 if (NeedNonemptyTemplateHeader) {
1836 // In friend declarations we can have template-ids which don't
1837 // depend on the corresponding template parameter lists. But
1838 // assume that empty parameter lists are supposed to match this
1839 // template-id.
1840 if (IsFriend && T->isDependentType()) {
1841 if (ParamIdx < NumParamLists &&
1842 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1843 ExpectedTemplateParams = 0;
1844 else
1845 continue;
1846 }
1847
1848 if (ParamIdx < NumParamLists) {
1849 // Check the template parameter list, if we can.
1850 if (ExpectedTemplateParams &&
1851 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1852 ExpectedTemplateParams,
1853 true, TPL_TemplateMatch))
1854 Invalid = true;
1855
1856 if (!Invalid &&
1857 CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1858 TPC_ClassTemplateMember))
1859 Invalid = true;
1860
1861 ++ParamIdx;
1862 continue;
1863 }
1864
1865 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1866 << T
1867 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1868 Invalid = true;
1869 continue;
1870 }
1871 }
1872
1873 // If there were at least as many template-ids as there were template
1874 // parameter lists, then there are no template parameter lists remaining for
1875 // the declaration itself.
1876 if (ParamIdx >= NumParamLists)
1877 return 0;
1878
1879 // If there were too many template parameter lists, complain about that now.
1880 if (ParamIdx < NumParamLists - 1) {
1881 bool HasAnyExplicitSpecHeader = false;
1882 bool AllExplicitSpecHeaders = true;
1883 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1884 if (ParamLists[I]->size() == 0)
1885 HasAnyExplicitSpecHeader = true;
1886 else
1887 AllExplicitSpecHeaders = false;
1888 }
1889
1890 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1891 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1892 : diag::err_template_spec_extra_headers)
1893 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1894 ParamLists[NumParamLists - 2]->getRAngleLoc());
1895
1896 // If there was a specialization somewhere, such that 'template<>' is
1897 // not required, and there were any 'template<>' headers, note where the
1898 // specialization occurred.
1899 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1900 Diag(ExplicitSpecLoc,
1901 diag::note_explicit_template_spec_does_not_need_header)
1902 << NestedTypes.back();
1903
1904 // We have a template parameter list with no corresponding scope, which
1905 // means that the resulting template declaration can't be instantiated
1906 // properly (we'll end up with dependent nodes when we shouldn't).
1907 if (!AllExplicitSpecHeaders)
1908 Invalid = true;
1909 }
1910
1911 // C++ [temp.expl.spec]p16:
1912 // In an explicit specialization declaration for a member of a class
1913 // template or a member template that ap- pears in namespace scope, the
1914 // member template and some of its enclosing class templates may remain
1915 // unspecialized, except that the declaration shall not explicitly
1916 // specialize a class member template if its en- closing class templates
1917 // are not explicitly specialized as well.
1918 if (ParamLists[NumParamLists - 1]->size() == 0 &&
1919 SawNonEmptyTemplateParameterList) {
1920 Diag(DeclLoc, diag::err_specialize_member_of_template)
1921 << ParamLists[ParamIdx]->getSourceRange();
1922 Invalid = true;
1923 IsExplicitSpecialization = false;
1924 return 0;
1925 }
1926
1927 // Return the last template parameter list, which corresponds to the
1928 // entity being declared.
1929 return ParamLists[NumParamLists - 1];
1930 }
1931
NoteAllFoundTemplates(TemplateName Name)1932 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1933 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1934 Diag(Template->getLocation(), diag::note_template_declared_here)
1935 << (isa<FunctionTemplateDecl>(Template)? 0
1936 : isa<ClassTemplateDecl>(Template)? 1
1937 : isa<TypeAliasTemplateDecl>(Template)? 2
1938 : 3)
1939 << Template->getDeclName();
1940 return;
1941 }
1942
1943 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1944 for (OverloadedTemplateStorage::iterator I = OST->begin(),
1945 IEnd = OST->end();
1946 I != IEnd; ++I)
1947 Diag((*I)->getLocation(), diag::note_template_declared_here)
1948 << 0 << (*I)->getDeclName();
1949
1950 return;
1951 }
1952 }
1953
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)1954 QualType Sema::CheckTemplateIdType(TemplateName Name,
1955 SourceLocation TemplateLoc,
1956 TemplateArgumentListInfo &TemplateArgs) {
1957 DependentTemplateName *DTN
1958 = Name.getUnderlying().getAsDependentTemplateName();
1959 if (DTN && DTN->isIdentifier())
1960 // When building a template-id where the template-name is dependent,
1961 // assume the template is a type template. Either our assumption is
1962 // correct, or the code is ill-formed and will be diagnosed when the
1963 // dependent name is substituted.
1964 return Context.getDependentTemplateSpecializationType(ETK_None,
1965 DTN->getQualifier(),
1966 DTN->getIdentifier(),
1967 TemplateArgs);
1968
1969 TemplateDecl *Template = Name.getAsTemplateDecl();
1970 if (!Template || isa<FunctionTemplateDecl>(Template)) {
1971 // We might have a substituted template template parameter pack. If so,
1972 // build a template specialization type for it.
1973 if (Name.getAsSubstTemplateTemplateParmPack())
1974 return Context.getTemplateSpecializationType(Name, TemplateArgs);
1975
1976 Diag(TemplateLoc, diag::err_template_id_not_a_type)
1977 << Name;
1978 NoteAllFoundTemplates(Name);
1979 return QualType();
1980 }
1981
1982 // Check that the template argument list is well-formed for this
1983 // template.
1984 SmallVector<TemplateArgument, 4> Converted;
1985 bool ExpansionIntoFixedList = false;
1986 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1987 false, Converted, &ExpansionIntoFixedList))
1988 return QualType();
1989
1990 QualType CanonType;
1991
1992 bool InstantiationDependent = false;
1993 TypeAliasTemplateDecl *AliasTemplate = 0;
1994 if (!ExpansionIntoFixedList &&
1995 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1996 // Find the canonical type for this type alias template specialization.
1997 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1998 if (Pattern->isInvalidDecl())
1999 return QualType();
2000
2001 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2002 Converted.data(), Converted.size());
2003
2004 // Only substitute for the innermost template argument list.
2005 MultiLevelTemplateArgumentList TemplateArgLists;
2006 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2007 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2008 for (unsigned I = 0; I < Depth; ++I)
2009 TemplateArgLists.addOuterTemplateArguments(0, 0);
2010
2011 LocalInstantiationScope Scope(*this);
2012 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2013 if (Inst)
2014 return QualType();
2015
2016 CanonType = SubstType(Pattern->getUnderlyingType(),
2017 TemplateArgLists, AliasTemplate->getLocation(),
2018 AliasTemplate->getDeclName());
2019 if (CanonType.isNull())
2020 return QualType();
2021 } else if (Name.isDependent() ||
2022 TemplateSpecializationType::anyDependentTemplateArguments(
2023 TemplateArgs, InstantiationDependent)) {
2024 // This class template specialization is a dependent
2025 // type. Therefore, its canonical type is another class template
2026 // specialization type that contains all of the converted
2027 // arguments in canonical form. This ensures that, e.g., A<T> and
2028 // A<T, T> have identical types when A is declared as:
2029 //
2030 // template<typename T, typename U = T> struct A;
2031 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2032 CanonType = Context.getTemplateSpecializationType(CanonName,
2033 Converted.data(),
2034 Converted.size());
2035
2036 // FIXME: CanonType is not actually the canonical type, and unfortunately
2037 // it is a TemplateSpecializationType that we will never use again.
2038 // In the future, we need to teach getTemplateSpecializationType to only
2039 // build the canonical type and return that to us.
2040 CanonType = Context.getCanonicalType(CanonType);
2041
2042 // This might work out to be a current instantiation, in which
2043 // case the canonical type needs to be the InjectedClassNameType.
2044 //
2045 // TODO: in theory this could be a simple hashtable lookup; most
2046 // changes to CurContext don't change the set of current
2047 // instantiations.
2048 if (isa<ClassTemplateDecl>(Template)) {
2049 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2050 // If we get out to a namespace, we're done.
2051 if (Ctx->isFileContext()) break;
2052
2053 // If this isn't a record, keep looking.
2054 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2055 if (!Record) continue;
2056
2057 // Look for one of the two cases with InjectedClassNameTypes
2058 // and check whether it's the same template.
2059 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2060 !Record->getDescribedClassTemplate())
2061 continue;
2062
2063 // Fetch the injected class name type and check whether its
2064 // injected type is equal to the type we just built.
2065 QualType ICNT = Context.getTypeDeclType(Record);
2066 QualType Injected = cast<InjectedClassNameType>(ICNT)
2067 ->getInjectedSpecializationType();
2068
2069 if (CanonType != Injected->getCanonicalTypeInternal())
2070 continue;
2071
2072 // If so, the canonical type of this TST is the injected
2073 // class name type of the record we just found.
2074 assert(ICNT.isCanonical());
2075 CanonType = ICNT;
2076 break;
2077 }
2078 }
2079 } else if (ClassTemplateDecl *ClassTemplate
2080 = dyn_cast<ClassTemplateDecl>(Template)) {
2081 // Find the class template specialization declaration that
2082 // corresponds to these arguments.
2083 void *InsertPos = 0;
2084 ClassTemplateSpecializationDecl *Decl
2085 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2086 InsertPos);
2087 if (!Decl) {
2088 // This is the first time we have referenced this class template
2089 // specialization. Create the canonical declaration and add it to
2090 // the set of specializations.
2091 Decl = ClassTemplateSpecializationDecl::Create(Context,
2092 ClassTemplate->getTemplatedDecl()->getTagKind(),
2093 ClassTemplate->getDeclContext(),
2094 ClassTemplate->getTemplatedDecl()->getLocStart(),
2095 ClassTemplate->getLocation(),
2096 ClassTemplate,
2097 Converted.data(),
2098 Converted.size(), 0);
2099 ClassTemplate->AddSpecialization(Decl, InsertPos);
2100 if (ClassTemplate->isOutOfLine())
2101 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2102 }
2103
2104 CanonType = Context.getTypeDeclType(Decl);
2105 assert(isa<RecordType>(CanonType) &&
2106 "type of non-dependent specialization is not a RecordType");
2107 }
2108
2109 // Build the fully-sugared type for this class template
2110 // specialization, which refers back to the class template
2111 // specialization we created or found.
2112 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2113 }
2114
2115 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2116 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2117 TemplateTy TemplateD, SourceLocation TemplateLoc,
2118 SourceLocation LAngleLoc,
2119 ASTTemplateArgsPtr TemplateArgsIn,
2120 SourceLocation RAngleLoc,
2121 bool IsCtorOrDtorName) {
2122 if (SS.isInvalid())
2123 return true;
2124
2125 TemplateName Template = TemplateD.getAsVal<TemplateName>();
2126
2127 // Translate the parser's template argument list in our AST format.
2128 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2129 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2130
2131 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2132 QualType T
2133 = Context.getDependentTemplateSpecializationType(ETK_None,
2134 DTN->getQualifier(),
2135 DTN->getIdentifier(),
2136 TemplateArgs);
2137 // Build type-source information.
2138 TypeLocBuilder TLB;
2139 DependentTemplateSpecializationTypeLoc SpecTL
2140 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2141 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2142 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2143 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2144 SpecTL.setTemplateNameLoc(TemplateLoc);
2145 SpecTL.setLAngleLoc(LAngleLoc);
2146 SpecTL.setRAngleLoc(RAngleLoc);
2147 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2148 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2149 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2150 }
2151
2152 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2153
2154 if (Result.isNull())
2155 return true;
2156
2157 // Build type-source information.
2158 TypeLocBuilder TLB;
2159 TemplateSpecializationTypeLoc SpecTL
2160 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2161 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2162 SpecTL.setTemplateNameLoc(TemplateLoc);
2163 SpecTL.setLAngleLoc(LAngleLoc);
2164 SpecTL.setRAngleLoc(RAngleLoc);
2165 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2166 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2167
2168 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2169 // constructor or destructor name (in such a case, the scope specifier
2170 // will be attached to the enclosing Decl or Expr node).
2171 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2172 // Create an elaborated-type-specifier containing the nested-name-specifier.
2173 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2174 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2175 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2176 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2177 }
2178
2179 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2180 }
2181
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2182 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2183 TypeSpecifierType TagSpec,
2184 SourceLocation TagLoc,
2185 CXXScopeSpec &SS,
2186 SourceLocation TemplateKWLoc,
2187 TemplateTy TemplateD,
2188 SourceLocation TemplateLoc,
2189 SourceLocation LAngleLoc,
2190 ASTTemplateArgsPtr TemplateArgsIn,
2191 SourceLocation RAngleLoc) {
2192 TemplateName Template = TemplateD.getAsVal<TemplateName>();
2193
2194 // Translate the parser's template argument list in our AST format.
2195 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2196 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2197
2198 // Determine the tag kind
2199 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2200 ElaboratedTypeKeyword Keyword
2201 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2202
2203 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2204 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2205 DTN->getQualifier(),
2206 DTN->getIdentifier(),
2207 TemplateArgs);
2208
2209 // Build type-source information.
2210 TypeLocBuilder TLB;
2211 DependentTemplateSpecializationTypeLoc SpecTL
2212 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2213 SpecTL.setElaboratedKeywordLoc(TagLoc);
2214 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2215 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2216 SpecTL.setTemplateNameLoc(TemplateLoc);
2217 SpecTL.setLAngleLoc(LAngleLoc);
2218 SpecTL.setRAngleLoc(RAngleLoc);
2219 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2220 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2221 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2222 }
2223
2224 if (TypeAliasTemplateDecl *TAT =
2225 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2226 // C++0x [dcl.type.elab]p2:
2227 // If the identifier resolves to a typedef-name or the simple-template-id
2228 // resolves to an alias template specialization, the
2229 // elaborated-type-specifier is ill-formed.
2230 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2231 Diag(TAT->getLocation(), diag::note_declared_at);
2232 }
2233
2234 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2235 if (Result.isNull())
2236 return TypeResult(true);
2237
2238 // Check the tag kind
2239 if (const RecordType *RT = Result->getAs<RecordType>()) {
2240 RecordDecl *D = RT->getDecl();
2241
2242 IdentifierInfo *Id = D->getIdentifier();
2243 assert(Id && "templated class must have an identifier");
2244
2245 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2246 TagLoc, *Id)) {
2247 Diag(TagLoc, diag::err_use_with_wrong_tag)
2248 << Result
2249 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2250 Diag(D->getLocation(), diag::note_previous_use);
2251 }
2252 }
2253
2254 // Provide source-location information for the template specialization.
2255 TypeLocBuilder TLB;
2256 TemplateSpecializationTypeLoc SpecTL
2257 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2258 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2259 SpecTL.setTemplateNameLoc(TemplateLoc);
2260 SpecTL.setLAngleLoc(LAngleLoc);
2261 SpecTL.setRAngleLoc(RAngleLoc);
2262 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2263 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2264
2265 // Construct an elaborated type containing the nested-name-specifier (if any)
2266 // and tag keyword.
2267 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2268 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2269 ElabTL.setElaboratedKeywordLoc(TagLoc);
2270 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2271 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2272 }
2273
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2274 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2275 SourceLocation TemplateKWLoc,
2276 LookupResult &R,
2277 bool RequiresADL,
2278 const TemplateArgumentListInfo *TemplateArgs) {
2279 // FIXME: Can we do any checking at this point? I guess we could check the
2280 // template arguments that we have against the template name, if the template
2281 // name refers to a single template. That's not a terribly common case,
2282 // though.
2283 // foo<int> could identify a single function unambiguously
2284 // This approach does NOT work, since f<int>(1);
2285 // gets resolved prior to resorting to overload resolution
2286 // i.e., template<class T> void f(double);
2287 // vs template<class T, class U> void f(U);
2288
2289 // These should be filtered out by our callers.
2290 assert(!R.empty() && "empty lookup results when building templateid");
2291 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2292
2293 // We don't want lookup warnings at this point.
2294 R.suppressDiagnostics();
2295
2296 UnresolvedLookupExpr *ULE
2297 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2298 SS.getWithLocInContext(Context),
2299 TemplateKWLoc,
2300 R.getLookupNameInfo(),
2301 RequiresADL, TemplateArgs,
2302 R.begin(), R.end());
2303
2304 return Owned(ULE);
2305 }
2306
2307 // We actually only call this from template instantiation.
2308 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2309 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2310 SourceLocation TemplateKWLoc,
2311 const DeclarationNameInfo &NameInfo,
2312 const TemplateArgumentListInfo *TemplateArgs) {
2313 assert(TemplateArgs || TemplateKWLoc.isValid());
2314 DeclContext *DC;
2315 if (!(DC = computeDeclContext(SS, false)) ||
2316 DC->isDependentContext() ||
2317 RequireCompleteDeclContext(SS, DC))
2318 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2319
2320 bool MemberOfUnknownSpecialization;
2321 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2322 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2323 MemberOfUnknownSpecialization);
2324
2325 if (R.isAmbiguous())
2326 return ExprError();
2327
2328 if (R.empty()) {
2329 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2330 << NameInfo.getName() << SS.getRange();
2331 return ExprError();
2332 }
2333
2334 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2335 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2336 << (NestedNameSpecifier*) SS.getScopeRep()
2337 << NameInfo.getName() << SS.getRange();
2338 Diag(Temp->getLocation(), diag::note_referenced_class_template);
2339 return ExprError();
2340 }
2341
2342 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2343 }
2344
2345 /// \brief Form a dependent template name.
2346 ///
2347 /// This action forms a dependent template name given the template
2348 /// name and its (presumably dependent) scope specifier. For
2349 /// example, given "MetaFun::template apply", the scope specifier \p
2350 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2351 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2352 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2353 CXXScopeSpec &SS,
2354 SourceLocation TemplateKWLoc,
2355 UnqualifiedId &Name,
2356 ParsedType ObjectType,
2357 bool EnteringContext,
2358 TemplateTy &Result) {
2359 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2360 Diag(TemplateKWLoc,
2361 getLangOpts().CPlusPlus0x ?
2362 diag::warn_cxx98_compat_template_outside_of_template :
2363 diag::ext_template_outside_of_template)
2364 << FixItHint::CreateRemoval(TemplateKWLoc);
2365
2366 DeclContext *LookupCtx = 0;
2367 if (SS.isSet())
2368 LookupCtx = computeDeclContext(SS, EnteringContext);
2369 if (!LookupCtx && ObjectType)
2370 LookupCtx = computeDeclContext(ObjectType.get());
2371 if (LookupCtx) {
2372 // C++0x [temp.names]p5:
2373 // If a name prefixed by the keyword template is not the name of
2374 // a template, the program is ill-formed. [Note: the keyword
2375 // template may not be applied to non-template members of class
2376 // templates. -end note ] [ Note: as is the case with the
2377 // typename prefix, the template prefix is allowed in cases
2378 // where it is not strictly necessary; i.e., when the
2379 // nested-name-specifier or the expression on the left of the ->
2380 // or . is not dependent on a template-parameter, or the use
2381 // does not appear in the scope of a template. -end note]
2382 //
2383 // Note: C++03 was more strict here, because it banned the use of
2384 // the "template" keyword prior to a template-name that was not a
2385 // dependent name. C++ DR468 relaxed this requirement (the
2386 // "template" keyword is now permitted). We follow the C++0x
2387 // rules, even in C++03 mode with a warning, retroactively applying the DR.
2388 bool MemberOfUnknownSpecialization;
2389 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2390 ObjectType, EnteringContext, Result,
2391 MemberOfUnknownSpecialization);
2392 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2393 isa<CXXRecordDecl>(LookupCtx) &&
2394 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2395 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2396 // This is a dependent template. Handle it below.
2397 } else if (TNK == TNK_Non_template) {
2398 Diag(Name.getLocStart(),
2399 diag::err_template_kw_refers_to_non_template)
2400 << GetNameFromUnqualifiedId(Name).getName()
2401 << Name.getSourceRange()
2402 << TemplateKWLoc;
2403 return TNK_Non_template;
2404 } else {
2405 // We found something; return it.
2406 return TNK;
2407 }
2408 }
2409
2410 NestedNameSpecifier *Qualifier
2411 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2412
2413 switch (Name.getKind()) {
2414 case UnqualifiedId::IK_Identifier:
2415 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2416 Name.Identifier));
2417 return TNK_Dependent_template_name;
2418
2419 case UnqualifiedId::IK_OperatorFunctionId:
2420 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2421 Name.OperatorFunctionId.Operator));
2422 return TNK_Dependent_template_name;
2423
2424 case UnqualifiedId::IK_LiteralOperatorId:
2425 llvm_unreachable(
2426 "We don't support these; Parse shouldn't have allowed propagation");
2427
2428 default:
2429 break;
2430 }
2431
2432 Diag(Name.getLocStart(),
2433 diag::err_template_kw_refers_to_non_template)
2434 << GetNameFromUnqualifiedId(Name).getName()
2435 << Name.getSourceRange()
2436 << TemplateKWLoc;
2437 return TNK_Non_template;
2438 }
2439
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,const TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)2440 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2441 const TemplateArgumentLoc &AL,
2442 SmallVectorImpl<TemplateArgument> &Converted) {
2443 const TemplateArgument &Arg = AL.getArgument();
2444
2445 // Check template type parameter.
2446 switch(Arg.getKind()) {
2447 case TemplateArgument::Type:
2448 // C++ [temp.arg.type]p1:
2449 // A template-argument for a template-parameter which is a
2450 // type shall be a type-id.
2451 break;
2452 case TemplateArgument::Template: {
2453 // We have a template type parameter but the template argument
2454 // is a template without any arguments.
2455 SourceRange SR = AL.getSourceRange();
2456 TemplateName Name = Arg.getAsTemplate();
2457 Diag(SR.getBegin(), diag::err_template_missing_args)
2458 << Name << SR;
2459 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2460 Diag(Decl->getLocation(), diag::note_template_decl_here);
2461
2462 return true;
2463 }
2464 case TemplateArgument::Expression: {
2465 // We have a template type parameter but the template argument is an
2466 // expression; see if maybe it is missing the "typename" keyword.
2467 CXXScopeSpec SS;
2468 DeclarationNameInfo NameInfo;
2469
2470 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2471 SS.Adopt(ArgExpr->getQualifierLoc());
2472 NameInfo = ArgExpr->getNameInfo();
2473 } else if (DependentScopeDeclRefExpr *ArgExpr =
2474 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2475 SS.Adopt(ArgExpr->getQualifierLoc());
2476 NameInfo = ArgExpr->getNameInfo();
2477 } else if (CXXDependentScopeMemberExpr *ArgExpr =
2478 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2479 if (ArgExpr->isImplicitAccess()) {
2480 SS.Adopt(ArgExpr->getQualifierLoc());
2481 NameInfo = ArgExpr->getMemberNameInfo();
2482 }
2483 }
2484
2485 if (NameInfo.getName().isIdentifier()) {
2486 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2487 LookupParsedName(Result, CurScope, &SS);
2488
2489 if (Result.getAsSingle<TypeDecl>() ||
2490 Result.getResultKind() ==
2491 LookupResult::NotFoundInCurrentInstantiation) {
2492 // FIXME: Add a FixIt and fix up the template argument for recovery.
2493 SourceLocation Loc = AL.getSourceRange().getBegin();
2494 Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2495 Diag(Param->getLocation(), diag::note_template_param_here);
2496 return true;
2497 }
2498 }
2499 // fallthrough
2500 }
2501 default: {
2502 // We have a template type parameter but the template argument
2503 // is not a type.
2504 SourceRange SR = AL.getSourceRange();
2505 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2506 Diag(Param->getLocation(), diag::note_template_param_here);
2507
2508 return true;
2509 }
2510 }
2511
2512 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2513 return true;
2514
2515 // Add the converted template type argument.
2516 QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2517
2518 // Objective-C ARC:
2519 // If an explicitly-specified template argument type is a lifetime type
2520 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2521 if (getLangOpts().ObjCAutoRefCount &&
2522 ArgType->isObjCLifetimeType() &&
2523 !ArgType.getObjCLifetime()) {
2524 Qualifiers Qs;
2525 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2526 ArgType = Context.getQualifiedType(ArgType, Qs);
2527 }
2528
2529 Converted.push_back(TemplateArgument(ArgType));
2530 return false;
2531 }
2532
2533 /// \brief Substitute template arguments into the default template argument for
2534 /// the given template type parameter.
2535 ///
2536 /// \param SemaRef the semantic analysis object for which we are performing
2537 /// the substitution.
2538 ///
2539 /// \param Template the template that we are synthesizing template arguments
2540 /// for.
2541 ///
2542 /// \param TemplateLoc the location of the template name that started the
2543 /// template-id we are checking.
2544 ///
2545 /// \param RAngleLoc the location of the right angle bracket ('>') that
2546 /// terminates the template-id.
2547 ///
2548 /// \param Param the template template parameter whose default we are
2549 /// substituting into.
2550 ///
2551 /// \param Converted the list of template arguments provided for template
2552 /// parameters that precede \p Param in the template parameter list.
2553 /// \returns the substituted template argument, or NULL if an error occurred.
2554 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)2555 SubstDefaultTemplateArgument(Sema &SemaRef,
2556 TemplateDecl *Template,
2557 SourceLocation TemplateLoc,
2558 SourceLocation RAngleLoc,
2559 TemplateTypeParmDecl *Param,
2560 SmallVectorImpl<TemplateArgument> &Converted) {
2561 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2562
2563 // If the argument type is dependent, instantiate it now based
2564 // on the previously-computed template arguments.
2565 if (ArgType->getType()->isDependentType()) {
2566 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2567 Converted.data(), Converted.size());
2568
2569 MultiLevelTemplateArgumentList AllTemplateArgs
2570 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2571
2572 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2573 Template, Converted,
2574 SourceRange(TemplateLoc, RAngleLoc));
2575 if (Inst)
2576 return 0;
2577
2578 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2579 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2580 Param->getDefaultArgumentLoc(),
2581 Param->getDeclName());
2582 }
2583
2584 return ArgType;
2585 }
2586
2587 /// \brief Substitute template arguments into the default template argument for
2588 /// the given non-type template parameter.
2589 ///
2590 /// \param SemaRef the semantic analysis object for which we are performing
2591 /// the substitution.
2592 ///
2593 /// \param Template the template that we are synthesizing template arguments
2594 /// for.
2595 ///
2596 /// \param TemplateLoc the location of the template name that started the
2597 /// template-id we are checking.
2598 ///
2599 /// \param RAngleLoc the location of the right angle bracket ('>') that
2600 /// terminates the template-id.
2601 ///
2602 /// \param Param the non-type template parameter whose default we are
2603 /// substituting into.
2604 ///
2605 /// \param Converted the list of template arguments provided for template
2606 /// parameters that precede \p Param in the template parameter list.
2607 ///
2608 /// \returns the substituted template argument, or NULL if an error occurred.
2609 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)2610 SubstDefaultTemplateArgument(Sema &SemaRef,
2611 TemplateDecl *Template,
2612 SourceLocation TemplateLoc,
2613 SourceLocation RAngleLoc,
2614 NonTypeTemplateParmDecl *Param,
2615 SmallVectorImpl<TemplateArgument> &Converted) {
2616 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2617 Converted.data(), Converted.size());
2618
2619 MultiLevelTemplateArgumentList AllTemplateArgs
2620 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2621
2622 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2623 Template, Converted,
2624 SourceRange(TemplateLoc, RAngleLoc));
2625 if (Inst)
2626 return ExprError();
2627
2628 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2629 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
2630 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2631 }
2632
2633 /// \brief Substitute template arguments into the default template argument for
2634 /// the given template template parameter.
2635 ///
2636 /// \param SemaRef the semantic analysis object for which we are performing
2637 /// the substitution.
2638 ///
2639 /// \param Template the template that we are synthesizing template arguments
2640 /// for.
2641 ///
2642 /// \param TemplateLoc the location of the template name that started the
2643 /// template-id we are checking.
2644 ///
2645 /// \param RAngleLoc the location of the right angle bracket ('>') that
2646 /// terminates the template-id.
2647 ///
2648 /// \param Param the template template parameter whose default we are
2649 /// substituting into.
2650 ///
2651 /// \param Converted the list of template arguments provided for template
2652 /// parameters that precede \p Param in the template parameter list.
2653 ///
2654 /// \param QualifierLoc Will be set to the nested-name-specifier (with
2655 /// source-location information) that precedes the template name.
2656 ///
2657 /// \returns the substituted template argument, or NULL if an error occurred.
2658 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)2659 SubstDefaultTemplateArgument(Sema &SemaRef,
2660 TemplateDecl *Template,
2661 SourceLocation TemplateLoc,
2662 SourceLocation RAngleLoc,
2663 TemplateTemplateParmDecl *Param,
2664 SmallVectorImpl<TemplateArgument> &Converted,
2665 NestedNameSpecifierLoc &QualifierLoc) {
2666 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2667 Converted.data(), Converted.size());
2668
2669 MultiLevelTemplateArgumentList AllTemplateArgs
2670 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2671
2672 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2673 Template, Converted,
2674 SourceRange(TemplateLoc, RAngleLoc));
2675 if (Inst)
2676 return TemplateName();
2677
2678 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2679 // Substitute into the nested-name-specifier first,
2680 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2681 if (QualifierLoc) {
2682 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2683 AllTemplateArgs);
2684 if (!QualifierLoc)
2685 return TemplateName();
2686 }
2687
2688 return SemaRef.SubstTemplateName(QualifierLoc,
2689 Param->getDefaultArgument().getArgument().getAsTemplate(),
2690 Param->getDefaultArgument().getTemplateNameLoc(),
2691 AllTemplateArgs);
2692 }
2693
2694 /// \brief If the given template parameter has a default template
2695 /// argument, substitute into that default template argument and
2696 /// return the corresponding template argument.
2697 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted)2698 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2699 SourceLocation TemplateLoc,
2700 SourceLocation RAngleLoc,
2701 Decl *Param,
2702 SmallVectorImpl<TemplateArgument> &Converted) {
2703 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2704 if (!TypeParm->hasDefaultArgument())
2705 return TemplateArgumentLoc();
2706
2707 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2708 TemplateLoc,
2709 RAngleLoc,
2710 TypeParm,
2711 Converted);
2712 if (DI)
2713 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2714
2715 return TemplateArgumentLoc();
2716 }
2717
2718 if (NonTypeTemplateParmDecl *NonTypeParm
2719 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2720 if (!NonTypeParm->hasDefaultArgument())
2721 return TemplateArgumentLoc();
2722
2723 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2724 TemplateLoc,
2725 RAngleLoc,
2726 NonTypeParm,
2727 Converted);
2728 if (Arg.isInvalid())
2729 return TemplateArgumentLoc();
2730
2731 Expr *ArgE = Arg.takeAs<Expr>();
2732 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2733 }
2734
2735 TemplateTemplateParmDecl *TempTempParm
2736 = cast<TemplateTemplateParmDecl>(Param);
2737 if (!TempTempParm->hasDefaultArgument())
2738 return TemplateArgumentLoc();
2739
2740
2741 NestedNameSpecifierLoc QualifierLoc;
2742 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2743 TemplateLoc,
2744 RAngleLoc,
2745 TempTempParm,
2746 Converted,
2747 QualifierLoc);
2748 if (TName.isNull())
2749 return TemplateArgumentLoc();
2750
2751 return TemplateArgumentLoc(TemplateArgument(TName),
2752 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2753 TempTempParm->getDefaultArgument().getTemplateNameLoc());
2754 }
2755
2756 /// \brief Check that the given template argument corresponds to the given
2757 /// template parameter.
2758 ///
2759 /// \param Param The template parameter against which the argument will be
2760 /// checked.
2761 ///
2762 /// \param Arg The template argument.
2763 ///
2764 /// \param Template The template in which the template argument resides.
2765 ///
2766 /// \param TemplateLoc The location of the template name for the template
2767 /// whose argument list we're matching.
2768 ///
2769 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
2770 /// the template argument list.
2771 ///
2772 /// \param ArgumentPackIndex The index into the argument pack where this
2773 /// argument will be placed. Only valid if the parameter is a parameter pack.
2774 ///
2775 /// \param Converted The checked, converted argument will be added to the
2776 /// end of this small vector.
2777 ///
2778 /// \param CTAK Describes how we arrived at this particular template argument:
2779 /// explicitly written, deduced, etc.
2780 ///
2781 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,const TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)2782 bool Sema::CheckTemplateArgument(NamedDecl *Param,
2783 const TemplateArgumentLoc &Arg,
2784 NamedDecl *Template,
2785 SourceLocation TemplateLoc,
2786 SourceLocation RAngleLoc,
2787 unsigned ArgumentPackIndex,
2788 SmallVectorImpl<TemplateArgument> &Converted,
2789 CheckTemplateArgumentKind CTAK) {
2790 // Check template type parameters.
2791 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2792 return CheckTemplateTypeArgument(TTP, Arg, Converted);
2793
2794 // Check non-type template parameters.
2795 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2796 // Do substitution on the type of the non-type template parameter
2797 // with the template arguments we've seen thus far. But if the
2798 // template has a dependent context then we cannot substitute yet.
2799 QualType NTTPType = NTTP->getType();
2800 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2801 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2802
2803 if (NTTPType->isDependentType() &&
2804 !isa<TemplateTemplateParmDecl>(Template) &&
2805 !Template->getDeclContext()->isDependentContext()) {
2806 // Do substitution on the type of the non-type template parameter.
2807 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2808 NTTP, Converted,
2809 SourceRange(TemplateLoc, RAngleLoc));
2810 if (Inst)
2811 return true;
2812
2813 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2814 Converted.data(), Converted.size());
2815 NTTPType = SubstType(NTTPType,
2816 MultiLevelTemplateArgumentList(TemplateArgs),
2817 NTTP->getLocation(),
2818 NTTP->getDeclName());
2819 // If that worked, check the non-type template parameter type
2820 // for validity.
2821 if (!NTTPType.isNull())
2822 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2823 NTTP->getLocation());
2824 if (NTTPType.isNull())
2825 return true;
2826 }
2827
2828 switch (Arg.getArgument().getKind()) {
2829 case TemplateArgument::Null:
2830 llvm_unreachable("Should never see a NULL template argument here");
2831
2832 case TemplateArgument::Expression: {
2833 TemplateArgument Result;
2834 ExprResult Res =
2835 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2836 Result, CTAK);
2837 if (Res.isInvalid())
2838 return true;
2839
2840 Converted.push_back(Result);
2841 break;
2842 }
2843
2844 case TemplateArgument::Declaration:
2845 case TemplateArgument::Integral:
2846 // We've already checked this template argument, so just copy
2847 // it to the list of converted arguments.
2848 Converted.push_back(Arg.getArgument());
2849 break;
2850
2851 case TemplateArgument::Template:
2852 case TemplateArgument::TemplateExpansion:
2853 // We were given a template template argument. It may not be ill-formed;
2854 // see below.
2855 if (DependentTemplateName *DTN
2856 = Arg.getArgument().getAsTemplateOrTemplatePattern()
2857 .getAsDependentTemplateName()) {
2858 // We have a template argument such as \c T::template X, which we
2859 // parsed as a template template argument. However, since we now
2860 // know that we need a non-type template argument, convert this
2861 // template name into an expression.
2862
2863 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2864 Arg.getTemplateNameLoc());
2865
2866 CXXScopeSpec SS;
2867 SS.Adopt(Arg.getTemplateQualifierLoc());
2868 // FIXME: the template-template arg was a DependentTemplateName,
2869 // so it was provided with a template keyword. However, its source
2870 // location is not stored in the template argument structure.
2871 SourceLocation TemplateKWLoc;
2872 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2873 SS.getWithLocInContext(Context),
2874 TemplateKWLoc,
2875 NameInfo, 0));
2876
2877 // If we parsed the template argument as a pack expansion, create a
2878 // pack expansion expression.
2879 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2880 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2881 if (E.isInvalid())
2882 return true;
2883 }
2884
2885 TemplateArgument Result;
2886 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2887 if (E.isInvalid())
2888 return true;
2889
2890 Converted.push_back(Result);
2891 break;
2892 }
2893
2894 // We have a template argument that actually does refer to a class
2895 // template, alias template, or template template parameter, and
2896 // therefore cannot be a non-type template argument.
2897 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2898 << Arg.getSourceRange();
2899
2900 Diag(Param->getLocation(), diag::note_template_param_here);
2901 return true;
2902
2903 case TemplateArgument::Type: {
2904 // We have a non-type template parameter but the template
2905 // argument is a type.
2906
2907 // C++ [temp.arg]p2:
2908 // In a template-argument, an ambiguity between a type-id and
2909 // an expression is resolved to a type-id, regardless of the
2910 // form of the corresponding template-parameter.
2911 //
2912 // We warn specifically about this case, since it can be rather
2913 // confusing for users.
2914 QualType T = Arg.getArgument().getAsType();
2915 SourceRange SR = Arg.getSourceRange();
2916 if (T->isFunctionType())
2917 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2918 else
2919 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2920 Diag(Param->getLocation(), diag::note_template_param_here);
2921 return true;
2922 }
2923
2924 case TemplateArgument::Pack:
2925 llvm_unreachable("Caller must expand template argument packs");
2926 }
2927
2928 return false;
2929 }
2930
2931
2932 // Check template template parameters.
2933 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2934
2935 // Substitute into the template parameter list of the template
2936 // template parameter, since previously-supplied template arguments
2937 // may appear within the template template parameter.
2938 {
2939 // Set up a template instantiation context.
2940 LocalInstantiationScope Scope(*this);
2941 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2942 TempParm, Converted,
2943 SourceRange(TemplateLoc, RAngleLoc));
2944 if (Inst)
2945 return true;
2946
2947 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2948 Converted.data(), Converted.size());
2949 TempParm = cast_or_null<TemplateTemplateParmDecl>(
2950 SubstDecl(TempParm, CurContext,
2951 MultiLevelTemplateArgumentList(TemplateArgs)));
2952 if (!TempParm)
2953 return true;
2954 }
2955
2956 switch (Arg.getArgument().getKind()) {
2957 case TemplateArgument::Null:
2958 llvm_unreachable("Should never see a NULL template argument here");
2959
2960 case TemplateArgument::Template:
2961 case TemplateArgument::TemplateExpansion:
2962 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
2963 return true;
2964
2965 Converted.push_back(Arg.getArgument());
2966 break;
2967
2968 case TemplateArgument::Expression:
2969 case TemplateArgument::Type:
2970 // We have a template template parameter but the template
2971 // argument does not refer to a template.
2972 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2973 << getLangOpts().CPlusPlus0x;
2974 return true;
2975
2976 case TemplateArgument::Declaration:
2977 llvm_unreachable("Declaration argument with template template parameter");
2978 case TemplateArgument::Integral:
2979 llvm_unreachable("Integral argument with template template parameter");
2980
2981 case TemplateArgument::Pack:
2982 llvm_unreachable("Caller must expand template argument packs");
2983 }
2984
2985 return false;
2986 }
2987
2988 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2989 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2990 SourceLocation TemplateLoc,
2991 TemplateArgumentListInfo &TemplateArgs) {
2992 TemplateParameterList *Params = Template->getTemplateParameters();
2993 unsigned NumParams = Params->size();
2994 unsigned NumArgs = TemplateArgs.size();
2995
2996 SourceRange Range;
2997 if (NumArgs > NumParams)
2998 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2999 TemplateArgs.getRAngleLoc());
3000 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3001 << (NumArgs > NumParams)
3002 << (isa<ClassTemplateDecl>(Template)? 0 :
3003 isa<FunctionTemplateDecl>(Template)? 1 :
3004 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3005 << Template << Range;
3006 S.Diag(Template->getLocation(), diag::note_template_decl_here)
3007 << Params->getSourceRange();
3008 return true;
3009 }
3010
3011 /// \brief Check whether the template parameter is a pack expansion, and if so,
3012 /// determine the number of parameters produced by that expansion. For instance:
3013 ///
3014 /// \code
3015 /// template<typename ...Ts> struct A {
3016 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3017 /// };
3018 /// \endcode
3019 ///
3020 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3021 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3022 static llvm::Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3023 if (NonTypeTemplateParmDecl *NTTP
3024 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3025 if (NTTP->isExpandedParameterPack())
3026 return NTTP->getNumExpansionTypes();
3027 }
3028
3029 if (TemplateTemplateParmDecl *TTP
3030 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3031 if (TTP->isExpandedParameterPack())
3032 return TTP->getNumExpansionTemplateParameters();
3033 }
3034
3035 return llvm::Optional<unsigned>();
3036 }
3037
3038 /// \brief Check that the given template argument list is well-formed
3039 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted,bool * ExpansionIntoFixedList)3040 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3041 SourceLocation TemplateLoc,
3042 TemplateArgumentListInfo &TemplateArgs,
3043 bool PartialTemplateArgs,
3044 SmallVectorImpl<TemplateArgument> &Converted,
3045 bool *ExpansionIntoFixedList) {
3046 if (ExpansionIntoFixedList)
3047 *ExpansionIntoFixedList = false;
3048
3049 TemplateParameterList *Params = Template->getTemplateParameters();
3050
3051 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3052
3053 // C++ [temp.arg]p1:
3054 // [...] The type and form of each template-argument specified in
3055 // a template-id shall match the type and form specified for the
3056 // corresponding parameter declared by the template in its
3057 // template-parameter-list.
3058 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3059 SmallVector<TemplateArgument, 2> ArgumentPack;
3060 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3061 LocalInstantiationScope InstScope(*this, true);
3062 for (TemplateParameterList::iterator Param = Params->begin(),
3063 ParamEnd = Params->end();
3064 Param != ParamEnd; /* increment in loop */) {
3065 // If we have an expanded parameter pack, make sure we don't have too
3066 // many arguments.
3067 if (llvm::Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3068 if (*Expansions == ArgumentPack.size()) {
3069 // We're done with this parameter pack. Pack up its arguments and add
3070 // them to the list.
3071 if (ArgumentPack.empty())
3072 Converted.push_back(TemplateArgument(0, 0));
3073 else {
3074 Converted.push_back(
3075 TemplateArgument::CreatePackCopy(Context,
3076 ArgumentPack.data(),
3077 ArgumentPack.size()));
3078 ArgumentPack.clear();
3079 }
3080 // This argument is assigned to the next parameter.
3081 ++Param;
3082 continue;
3083 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3084 // Not enough arguments for this parameter pack.
3085 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3086 << false
3087 << (isa<ClassTemplateDecl>(Template)? 0 :
3088 isa<FunctionTemplateDecl>(Template)? 1 :
3089 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3090 << Template;
3091 Diag(Template->getLocation(), diag::note_template_decl_here)
3092 << Params->getSourceRange();
3093 return true;
3094 }
3095 }
3096
3097 if (ArgIdx < NumArgs) {
3098 // Check the template argument we were given.
3099 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3100 TemplateLoc, RAngleLoc,
3101 ArgumentPack.size(), Converted))
3102 return true;
3103
3104 // We're now done with this argument.
3105 ++ArgIdx;
3106
3107 if ((*Param)->isTemplateParameterPack()) {
3108 // The template parameter was a template parameter pack, so take the
3109 // deduced argument and place it on the argument pack. Note that we
3110 // stay on the same template parameter so that we can deduce more
3111 // arguments.
3112 ArgumentPack.push_back(Converted.back());
3113 Converted.pop_back();
3114 } else {
3115 // Move to the next template parameter.
3116 ++Param;
3117 }
3118
3119 // If we just saw a pack expansion, then directly convert the remaining
3120 // arguments, because we don't know what parameters they'll match up
3121 // with.
3122 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3123 bool InFinalParameterPack = Param != ParamEnd &&
3124 Param + 1 == ParamEnd &&
3125 (*Param)->isTemplateParameterPack() &&
3126 !getExpandedPackSize(*Param);
3127
3128 if (!InFinalParameterPack && !ArgumentPack.empty()) {
3129 // If we were part way through filling in an expanded parameter pack,
3130 // fall back to just producing individual arguments.
3131 Converted.insert(Converted.end(),
3132 ArgumentPack.begin(), ArgumentPack.end());
3133 ArgumentPack.clear();
3134 }
3135
3136 while (ArgIdx < NumArgs) {
3137 if (InFinalParameterPack)
3138 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3139 else
3140 Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3141 ++ArgIdx;
3142 }
3143
3144 // Push the argument pack onto the list of converted arguments.
3145 if (InFinalParameterPack) {
3146 if (ArgumentPack.empty())
3147 Converted.push_back(TemplateArgument(0, 0));
3148 else {
3149 Converted.push_back(
3150 TemplateArgument::CreatePackCopy(Context,
3151 ArgumentPack.data(),
3152 ArgumentPack.size()));
3153 ArgumentPack.clear();
3154 }
3155 } else if (ExpansionIntoFixedList) {
3156 // We have expanded a pack into a fixed list.
3157 *ExpansionIntoFixedList = true;
3158 }
3159
3160 return false;
3161 }
3162
3163 continue;
3164 }
3165
3166 // If we're checking a partial template argument list, we're done.
3167 if (PartialTemplateArgs) {
3168 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3169 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3170 ArgumentPack.data(),
3171 ArgumentPack.size()));
3172
3173 return false;
3174 }
3175
3176 // If we have a template parameter pack with no more corresponding
3177 // arguments, just break out now and we'll fill in the argument pack below.
3178 if ((*Param)->isTemplateParameterPack()) {
3179 assert(!getExpandedPackSize(*Param) &&
3180 "Should have dealt with this already");
3181
3182 // A non-expanded parameter pack before the end of the parameter list
3183 // only occurs for an ill-formed template parameter list, unless we've
3184 // got a partial argument list for a function template, so just bail out.
3185 if (Param + 1 != ParamEnd)
3186 return true;
3187
3188 if (ArgumentPack.empty())
3189 Converted.push_back(TemplateArgument(0, 0));
3190 else {
3191 Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3192 ArgumentPack.data(),
3193 ArgumentPack.size()));
3194 ArgumentPack.clear();
3195 }
3196
3197 ++Param;
3198 continue;
3199 }
3200
3201 // Check whether we have a default argument.
3202 TemplateArgumentLoc Arg;
3203
3204 // Retrieve the default template argument from the template
3205 // parameter. For each kind of template parameter, we substitute the
3206 // template arguments provided thus far and any "outer" template arguments
3207 // (when the template parameter was part of a nested template) into
3208 // the default argument.
3209 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3210 if (!TTP->hasDefaultArgument())
3211 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3212 TemplateArgs);
3213
3214 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3215 Template,
3216 TemplateLoc,
3217 RAngleLoc,
3218 TTP,
3219 Converted);
3220 if (!ArgType)
3221 return true;
3222
3223 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3224 ArgType);
3225 } else if (NonTypeTemplateParmDecl *NTTP
3226 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3227 if (!NTTP->hasDefaultArgument())
3228 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3229 TemplateArgs);
3230
3231 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3232 TemplateLoc,
3233 RAngleLoc,
3234 NTTP,
3235 Converted);
3236 if (E.isInvalid())
3237 return true;
3238
3239 Expr *Ex = E.takeAs<Expr>();
3240 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3241 } else {
3242 TemplateTemplateParmDecl *TempParm
3243 = cast<TemplateTemplateParmDecl>(*Param);
3244
3245 if (!TempParm->hasDefaultArgument())
3246 return diagnoseArityMismatch(*this, Template, TemplateLoc,
3247 TemplateArgs);
3248
3249 NestedNameSpecifierLoc QualifierLoc;
3250 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3251 TemplateLoc,
3252 RAngleLoc,
3253 TempParm,
3254 Converted,
3255 QualifierLoc);
3256 if (Name.isNull())
3257 return true;
3258
3259 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3260 TempParm->getDefaultArgument().getTemplateNameLoc());
3261 }
3262
3263 // Introduce an instantiation record that describes where we are using
3264 // the default template argument.
3265 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3266 *Param, Converted,
3267 SourceRange(TemplateLoc, RAngleLoc));
3268 if (Instantiating)
3269 return true;
3270
3271 // Check the default template argument.
3272 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3273 RAngleLoc, 0, Converted))
3274 return true;
3275
3276 // Core issue 150 (assumed resolution): if this is a template template
3277 // parameter, keep track of the default template arguments from the
3278 // template definition.
3279 if (isTemplateTemplateParameter)
3280 TemplateArgs.addArgument(Arg);
3281
3282 // Move to the next template parameter and argument.
3283 ++Param;
3284 ++ArgIdx;
3285 }
3286
3287 // If we have any leftover arguments, then there were too many arguments.
3288 // Complain and fail.
3289 if (ArgIdx < NumArgs)
3290 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3291
3292 return false;
3293 }
3294
3295 namespace {
3296 class UnnamedLocalNoLinkageFinder
3297 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3298 {
3299 Sema &S;
3300 SourceRange SR;
3301
3302 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3303
3304 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)3305 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3306
Visit(QualType T)3307 bool Visit(QualType T) {
3308 return inherited::Visit(T.getTypePtr());
3309 }
3310
3311 #define TYPE(Class, Parent) \
3312 bool Visit##Class##Type(const Class##Type *);
3313 #define ABSTRACT_TYPE(Class, Parent) \
3314 bool Visit##Class##Type(const Class##Type *) { return false; }
3315 #define NON_CANONICAL_TYPE(Class, Parent) \
3316 bool Visit##Class##Type(const Class##Type *) { return false; }
3317 #include "clang/AST/TypeNodes.def"
3318
3319 bool VisitTagDecl(const TagDecl *Tag);
3320 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3321 };
3322 }
3323
VisitBuiltinType(const BuiltinType *)3324 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3325 return false;
3326 }
3327
VisitComplexType(const ComplexType * T)3328 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3329 return Visit(T->getElementType());
3330 }
3331
VisitPointerType(const PointerType * T)3332 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3333 return Visit(T->getPointeeType());
3334 }
3335
VisitBlockPointerType(const BlockPointerType * T)3336 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3337 const BlockPointerType* T) {
3338 return Visit(T->getPointeeType());
3339 }
3340
VisitLValueReferenceType(const LValueReferenceType * T)3341 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3342 const LValueReferenceType* T) {
3343 return Visit(T->getPointeeType());
3344 }
3345
VisitRValueReferenceType(const RValueReferenceType * T)3346 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3347 const RValueReferenceType* T) {
3348 return Visit(T->getPointeeType());
3349 }
3350
VisitMemberPointerType(const MemberPointerType * T)3351 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3352 const MemberPointerType* T) {
3353 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3354 }
3355
VisitConstantArrayType(const ConstantArrayType * T)3356 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3357 const ConstantArrayType* T) {
3358 return Visit(T->getElementType());
3359 }
3360
VisitIncompleteArrayType(const IncompleteArrayType * T)3361 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3362 const IncompleteArrayType* T) {
3363 return Visit(T->getElementType());
3364 }
3365
VisitVariableArrayType(const VariableArrayType * T)3366 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3367 const VariableArrayType* T) {
3368 return Visit(T->getElementType());
3369 }
3370
VisitDependentSizedArrayType(const DependentSizedArrayType * T)3371 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3372 const DependentSizedArrayType* T) {
3373 return Visit(T->getElementType());
3374 }
3375
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)3376 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3377 const DependentSizedExtVectorType* T) {
3378 return Visit(T->getElementType());
3379 }
3380
VisitVectorType(const VectorType * T)3381 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3382 return Visit(T->getElementType());
3383 }
3384
VisitExtVectorType(const ExtVectorType * T)3385 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3386 return Visit(T->getElementType());
3387 }
3388
VisitFunctionProtoType(const FunctionProtoType * T)3389 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3390 const FunctionProtoType* T) {
3391 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3392 AEnd = T->arg_type_end();
3393 A != AEnd; ++A) {
3394 if (Visit(*A))
3395 return true;
3396 }
3397
3398 return Visit(T->getResultType());
3399 }
3400
VisitFunctionNoProtoType(const FunctionNoProtoType * T)3401 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3402 const FunctionNoProtoType* T) {
3403 return Visit(T->getResultType());
3404 }
3405
VisitUnresolvedUsingType(const UnresolvedUsingType *)3406 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3407 const UnresolvedUsingType*) {
3408 return false;
3409 }
3410
VisitTypeOfExprType(const TypeOfExprType *)3411 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3412 return false;
3413 }
3414
VisitTypeOfType(const TypeOfType * T)3415 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3416 return Visit(T->getUnderlyingType());
3417 }
3418
VisitDecltypeType(const DecltypeType *)3419 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3420 return false;
3421 }
3422
VisitUnaryTransformType(const UnaryTransformType *)3423 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3424 const UnaryTransformType*) {
3425 return false;
3426 }
3427
VisitAutoType(const AutoType * T)3428 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3429 return Visit(T->getDeducedType());
3430 }
3431
VisitRecordType(const RecordType * T)3432 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3433 return VisitTagDecl(T->getDecl());
3434 }
3435
VisitEnumType(const EnumType * T)3436 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3437 return VisitTagDecl(T->getDecl());
3438 }
3439
VisitTemplateTypeParmType(const TemplateTypeParmType *)3440 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3441 const TemplateTypeParmType*) {
3442 return false;
3443 }
3444
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)3445 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3446 const SubstTemplateTypeParmPackType *) {
3447 return false;
3448 }
3449
VisitTemplateSpecializationType(const TemplateSpecializationType *)3450 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3451 const TemplateSpecializationType*) {
3452 return false;
3453 }
3454
VisitInjectedClassNameType(const InjectedClassNameType * T)3455 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3456 const InjectedClassNameType* T) {
3457 return VisitTagDecl(T->getDecl());
3458 }
3459
VisitDependentNameType(const DependentNameType * T)3460 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3461 const DependentNameType* T) {
3462 return VisitNestedNameSpecifier(T->getQualifier());
3463 }
3464
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)3465 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3466 const DependentTemplateSpecializationType* T) {
3467 return VisitNestedNameSpecifier(T->getQualifier());
3468 }
3469
VisitPackExpansionType(const PackExpansionType * T)3470 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3471 const PackExpansionType* T) {
3472 return Visit(T->getPattern());
3473 }
3474
VisitObjCObjectType(const ObjCObjectType *)3475 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3476 return false;
3477 }
3478
VisitObjCInterfaceType(const ObjCInterfaceType *)3479 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3480 const ObjCInterfaceType *) {
3481 return false;
3482 }
3483
VisitObjCObjectPointerType(const ObjCObjectPointerType *)3484 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3485 const ObjCObjectPointerType *) {
3486 return false;
3487 }
3488
VisitAtomicType(const AtomicType * T)3489 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3490 return Visit(T->getValueType());
3491 }
3492
VisitTagDecl(const TagDecl * Tag)3493 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3494 if (Tag->getDeclContext()->isFunctionOrMethod()) {
3495 S.Diag(SR.getBegin(),
3496 S.getLangOpts().CPlusPlus0x ?
3497 diag::warn_cxx98_compat_template_arg_local_type :
3498 diag::ext_template_arg_local_type)
3499 << S.Context.getTypeDeclType(Tag) << SR;
3500 return true;
3501 }
3502
3503 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3504 S.Diag(SR.getBegin(),
3505 S.getLangOpts().CPlusPlus0x ?
3506 diag::warn_cxx98_compat_template_arg_unnamed_type :
3507 diag::ext_template_arg_unnamed_type) << SR;
3508 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3509 return true;
3510 }
3511
3512 return false;
3513 }
3514
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)3515 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3516 NestedNameSpecifier *NNS) {
3517 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3518 return true;
3519
3520 switch (NNS->getKind()) {
3521 case NestedNameSpecifier::Identifier:
3522 case NestedNameSpecifier::Namespace:
3523 case NestedNameSpecifier::NamespaceAlias:
3524 case NestedNameSpecifier::Global:
3525 return false;
3526
3527 case NestedNameSpecifier::TypeSpec:
3528 case NestedNameSpecifier::TypeSpecWithTemplate:
3529 return Visit(QualType(NNS->getAsType(), 0));
3530 }
3531 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3532 }
3533
3534
3535 /// \brief Check a template argument against its corresponding
3536 /// template type parameter.
3537 ///
3538 /// This routine implements the semantics of C++ [temp.arg.type]. It
3539 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)3540 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3541 TypeSourceInfo *ArgInfo) {
3542 assert(ArgInfo && "invalid TypeSourceInfo");
3543 QualType Arg = ArgInfo->getType();
3544 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3545
3546 if (Arg->isVariablyModifiedType()) {
3547 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3548 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3549 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3550 }
3551
3552 // C++03 [temp.arg.type]p2:
3553 // A local type, a type with no linkage, an unnamed type or a type
3554 // compounded from any of these types shall not be used as a
3555 // template-argument for a template type-parameter.
3556 //
3557 // C++11 allows these, and even in C++03 we allow them as an extension with
3558 // a warning.
3559 if (LangOpts.CPlusPlus0x ?
3560 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3561 SR.getBegin()) != DiagnosticsEngine::Ignored ||
3562 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3563 SR.getBegin()) != DiagnosticsEngine::Ignored :
3564 Arg->hasUnnamedOrLocalType()) {
3565 UnnamedLocalNoLinkageFinder Finder(*this, SR);
3566 (void)Finder.Visit(Context.getCanonicalType(Arg));
3567 }
3568
3569 return false;
3570 }
3571
3572 enum NullPointerValueKind {
3573 NPV_NotNullPointer,
3574 NPV_NullPointer,
3575 NPV_Error
3576 };
3577
3578 /// \brief Determine whether the given template argument is a null pointer
3579 /// value of the appropriate type.
3580 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)3581 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3582 QualType ParamType, Expr *Arg) {
3583 if (Arg->isValueDependent() || Arg->isTypeDependent())
3584 return NPV_NotNullPointer;
3585
3586 if (!S.getLangOpts().CPlusPlus0x)
3587 return NPV_NotNullPointer;
3588
3589 // Determine whether we have a constant expression.
3590 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
3591 if (ArgRV.isInvalid())
3592 return NPV_Error;
3593 Arg = ArgRV.take();
3594
3595 Expr::EvalResult EvalResult;
3596 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3597 EvalResult.Diag = &Notes;
3598 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3599 EvalResult.HasSideEffects) {
3600 SourceLocation DiagLoc = Arg->getExprLoc();
3601
3602 // If our only note is the usual "invalid subexpression" note, just point
3603 // the caret at its location rather than producing an essentially
3604 // redundant note.
3605 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
3606 diag::note_invalid_subexpr_in_const_expr) {
3607 DiagLoc = Notes[0].first;
3608 Notes.clear();
3609 }
3610
3611 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
3612 << Arg->getType() << Arg->getSourceRange();
3613 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
3614 S.Diag(Notes[I].first, Notes[I].second);
3615
3616 S.Diag(Param->getLocation(), diag::note_template_param_here);
3617 return NPV_Error;
3618 }
3619
3620 // C++11 [temp.arg.nontype]p1:
3621 // - an address constant expression of type std::nullptr_t
3622 if (Arg->getType()->isNullPtrType())
3623 return NPV_NullPointer;
3624
3625 // - a constant expression that evaluates to a null pointer value (4.10); or
3626 // - a constant expression that evaluates to a null member pointer value
3627 // (4.11); or
3628 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3629 (EvalResult.Val.isMemberPointer() &&
3630 !EvalResult.Val.getMemberPointerDecl())) {
3631 // If our expression has an appropriate type, we've succeeded.
3632 bool ObjCLifetimeConversion;
3633 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3634 S.IsQualificationConversion(Arg->getType(), ParamType, false,
3635 ObjCLifetimeConversion))
3636 return NPV_NullPointer;
3637
3638 // The types didn't match, but we know we got a null pointer; complain,
3639 // then recover as if the types were correct.
3640 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3641 << Arg->getType() << ParamType << Arg->getSourceRange();
3642 S.Diag(Param->getLocation(), diag::note_template_param_here);
3643 return NPV_NullPointer;
3644 }
3645
3646 // If we don't have a null pointer value, but we do have a NULL pointer
3647 // constant, suggest a cast to the appropriate type.
3648 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3649 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3650 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3651 << ParamType
3652 << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3653 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3654 ")");
3655 S.Diag(Param->getLocation(), diag::note_template_param_here);
3656 return NPV_NullPointer;
3657 }
3658
3659 // FIXME: If we ever want to support general, address-constant expressions
3660 // as non-type template arguments, we should return the ExprResult here to
3661 // be interpreted by the caller.
3662 return NPV_NotNullPointer;
3663 }
3664
3665 /// \brief Checks whether the given template argument is the address
3666 /// of an object or function according to C++ [temp.arg.nontype]p1.
3667 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)3668 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3669 NonTypeTemplateParmDecl *Param,
3670 QualType ParamType,
3671 Expr *ArgIn,
3672 TemplateArgument &Converted) {
3673 bool Invalid = false;
3674 Expr *Arg = ArgIn;
3675 QualType ArgType = Arg->getType();
3676
3677 // If our parameter has pointer type, check for a null template value.
3678 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3679 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3680 case NPV_NullPointer:
3681 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3682 Converted = TemplateArgument((Decl *)0);
3683 return false;
3684
3685 case NPV_Error:
3686 return true;
3687
3688 case NPV_NotNullPointer:
3689 break;
3690 }
3691 }
3692
3693 // See through any implicit casts we added to fix the type.
3694 Arg = Arg->IgnoreImpCasts();
3695
3696 // C++ [temp.arg.nontype]p1:
3697 //
3698 // A template-argument for a non-type, non-template
3699 // template-parameter shall be one of: [...]
3700 //
3701 // -- the address of an object or function with external
3702 // linkage, including function templates and function
3703 // template-ids but excluding non-static class members,
3704 // expressed as & id-expression where the & is optional if
3705 // the name refers to a function or array, or if the
3706 // corresponding template-parameter is a reference; or
3707
3708 // In C++98/03 mode, give an extension warning on any extra parentheses.
3709 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3710 bool ExtraParens = false;
3711 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3712 if (!Invalid && !ExtraParens) {
3713 S.Diag(Arg->getLocStart(),
3714 S.getLangOpts().CPlusPlus0x ?
3715 diag::warn_cxx98_compat_template_arg_extra_parens :
3716 diag::ext_template_arg_extra_parens)
3717 << Arg->getSourceRange();
3718 ExtraParens = true;
3719 }
3720
3721 Arg = Parens->getSubExpr();
3722 }
3723
3724 while (SubstNonTypeTemplateParmExpr *subst =
3725 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3726 Arg = subst->getReplacement()->IgnoreImpCasts();
3727
3728 bool AddressTaken = false;
3729 SourceLocation AddrOpLoc;
3730 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3731 if (UnOp->getOpcode() == UO_AddrOf) {
3732 Arg = UnOp->getSubExpr();
3733 AddressTaken = true;
3734 AddrOpLoc = UnOp->getOperatorLoc();
3735 }
3736 }
3737
3738 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3739 Converted = TemplateArgument(ArgIn);
3740 return false;
3741 }
3742
3743 while (SubstNonTypeTemplateParmExpr *subst =
3744 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3745 Arg = subst->getReplacement()->IgnoreImpCasts();
3746
3747 // Stop checking the precise nature of the argument if it is value dependent,
3748 // it should be checked when instantiated.
3749 if (Arg->isValueDependent()) {
3750 Converted = TemplateArgument(ArgIn);
3751 return false;
3752 }
3753
3754 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3755 if (!DRE) {
3756 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3757 << Arg->getSourceRange();
3758 S.Diag(Param->getLocation(), diag::note_template_param_here);
3759 return true;
3760 }
3761
3762 if (!isa<ValueDecl>(DRE->getDecl())) {
3763 S.Diag(Arg->getLocStart(),
3764 diag::err_template_arg_not_object_or_func_form)
3765 << Arg->getSourceRange();
3766 S.Diag(Param->getLocation(), diag::note_template_param_here);
3767 return true;
3768 }
3769
3770 NamedDecl *Entity = DRE->getDecl();
3771
3772 // Cannot refer to non-static data members
3773 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3774 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3775 << Field << Arg->getSourceRange();
3776 S.Diag(Param->getLocation(), diag::note_template_param_here);
3777 return true;
3778 }
3779
3780 // Cannot refer to non-static member functions
3781 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3782 if (!Method->isStatic()) {
3783 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3784 << Method << Arg->getSourceRange();
3785 S.Diag(Param->getLocation(), diag::note_template_param_here);
3786 return true;
3787 }
3788 }
3789
3790 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3791 VarDecl *Var = dyn_cast<VarDecl>(Entity);
3792
3793 // A non-type template argument must refer to an object or function.
3794 if (!Func && !Var) {
3795 // We found something, but we don't know specifically what it is.
3796 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3797 << Arg->getSourceRange();
3798 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3799 return true;
3800 }
3801
3802 // Address / reference template args must have external linkage in C++98.
3803 if (Entity->getLinkage() == InternalLinkage) {
3804 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
3805 diag::warn_cxx98_compat_template_arg_object_internal :
3806 diag::ext_template_arg_object_internal)
3807 << !Func << Entity << Arg->getSourceRange();
3808 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3809 << !Func;
3810 } else if (Entity->getLinkage() == NoLinkage) {
3811 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3812 << !Func << Entity << Arg->getSourceRange();
3813 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3814 << !Func;
3815 return true;
3816 }
3817
3818 if (Func) {
3819 // If the template parameter has pointer type, the function decays.
3820 if (ParamType->isPointerType() && !AddressTaken)
3821 ArgType = S.Context.getPointerType(Func->getType());
3822 else if (AddressTaken && ParamType->isReferenceType()) {
3823 // If we originally had an address-of operator, but the
3824 // parameter has reference type, complain and (if things look
3825 // like they will work) drop the address-of operator.
3826 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3827 ParamType.getNonReferenceType())) {
3828 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3829 << ParamType;
3830 S.Diag(Param->getLocation(), diag::note_template_param_here);
3831 return true;
3832 }
3833
3834 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3835 << ParamType
3836 << FixItHint::CreateRemoval(AddrOpLoc);
3837 S.Diag(Param->getLocation(), diag::note_template_param_here);
3838
3839 ArgType = Func->getType();
3840 }
3841 } else {
3842 // A value of reference type is not an object.
3843 if (Var->getType()->isReferenceType()) {
3844 S.Diag(Arg->getLocStart(),
3845 diag::err_template_arg_reference_var)
3846 << Var->getType() << Arg->getSourceRange();
3847 S.Diag(Param->getLocation(), diag::note_template_param_here);
3848 return true;
3849 }
3850
3851 // A template argument must have static storage duration.
3852 // FIXME: Ensure this works for thread_local as well as __thread.
3853 if (Var->isThreadSpecified()) {
3854 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3855 << Arg->getSourceRange();
3856 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3857 return true;
3858 }
3859
3860 // If the template parameter has pointer type, we must have taken
3861 // the address of this object.
3862 if (ParamType->isReferenceType()) {
3863 if (AddressTaken) {
3864 // If we originally had an address-of operator, but the
3865 // parameter has reference type, complain and (if things look
3866 // like they will work) drop the address-of operator.
3867 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3868 ParamType.getNonReferenceType())) {
3869 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3870 << ParamType;
3871 S.Diag(Param->getLocation(), diag::note_template_param_here);
3872 return true;
3873 }
3874
3875 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3876 << ParamType
3877 << FixItHint::CreateRemoval(AddrOpLoc);
3878 S.Diag(Param->getLocation(), diag::note_template_param_here);
3879
3880 ArgType = Var->getType();
3881 }
3882 } else if (!AddressTaken && ParamType->isPointerType()) {
3883 if (Var->getType()->isArrayType()) {
3884 // Array-to-pointer decay.
3885 ArgType = S.Context.getArrayDecayedType(Var->getType());
3886 } else {
3887 // If the template parameter has pointer type but the address of
3888 // this object was not taken, complain and (possibly) recover by
3889 // taking the address of the entity.
3890 ArgType = S.Context.getPointerType(Var->getType());
3891 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3892 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3893 << ParamType;
3894 S.Diag(Param->getLocation(), diag::note_template_param_here);
3895 return true;
3896 }
3897
3898 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3899 << ParamType
3900 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3901
3902 S.Diag(Param->getLocation(), diag::note_template_param_here);
3903 }
3904 }
3905 }
3906
3907 bool ObjCLifetimeConversion;
3908 if (ParamType->isPointerType() &&
3909 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3910 S.IsQualificationConversion(ArgType, ParamType, false,
3911 ObjCLifetimeConversion)) {
3912 // For pointer-to-object types, qualification conversions are
3913 // permitted.
3914 } else {
3915 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3916 if (!ParamRef->getPointeeType()->isFunctionType()) {
3917 // C++ [temp.arg.nontype]p5b3:
3918 // For a non-type template-parameter of type reference to
3919 // object, no conversions apply. The type referred to by the
3920 // reference may be more cv-qualified than the (otherwise
3921 // identical) type of the template- argument. The
3922 // template-parameter is bound directly to the
3923 // template-argument, which shall be an lvalue.
3924
3925 // FIXME: Other qualifiers?
3926 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3927 unsigned ArgQuals = ArgType.getCVRQualifiers();
3928
3929 if ((ParamQuals | ArgQuals) != ParamQuals) {
3930 S.Diag(Arg->getLocStart(),
3931 diag::err_template_arg_ref_bind_ignores_quals)
3932 << ParamType << Arg->getType()
3933 << Arg->getSourceRange();
3934 S.Diag(Param->getLocation(), diag::note_template_param_here);
3935 return true;
3936 }
3937 }
3938 }
3939
3940 // At this point, the template argument refers to an object or
3941 // function with external linkage. We now need to check whether the
3942 // argument and parameter types are compatible.
3943 if (!S.Context.hasSameUnqualifiedType(ArgType,
3944 ParamType.getNonReferenceType())) {
3945 // We can't perform this conversion or binding.
3946 if (ParamType->isReferenceType())
3947 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3948 << ParamType << ArgIn->getType() << Arg->getSourceRange();
3949 else
3950 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3951 << ArgIn->getType() << ParamType << Arg->getSourceRange();
3952 S.Diag(Param->getLocation(), diag::note_template_param_here);
3953 return true;
3954 }
3955 }
3956
3957 // Create the template argument.
3958 Converted = TemplateArgument(Entity->getCanonicalDecl());
3959 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3960 return false;
3961 }
3962
3963 /// \brief Checks whether the given template argument is a pointer to
3964 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)3965 static bool CheckTemplateArgumentPointerToMember(Sema &S,
3966 NonTypeTemplateParmDecl *Param,
3967 QualType ParamType,
3968 Expr *&ResultArg,
3969 TemplateArgument &Converted) {
3970 bool Invalid = false;
3971
3972 // Check for a null pointer value.
3973 Expr *Arg = ResultArg;
3974 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3975 case NPV_Error:
3976 return true;
3977 case NPV_NullPointer:
3978 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3979 Converted = TemplateArgument((Decl *)0);
3980 return false;
3981 case NPV_NotNullPointer:
3982 break;
3983 }
3984
3985 bool ObjCLifetimeConversion;
3986 if (S.IsQualificationConversion(Arg->getType(),
3987 ParamType.getNonReferenceType(),
3988 false, ObjCLifetimeConversion)) {
3989 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3990 Arg->getValueKind()).take();
3991 ResultArg = Arg;
3992 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3993 ParamType.getNonReferenceType())) {
3994 // We can't perform this conversion.
3995 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3996 << Arg->getType() << ParamType << Arg->getSourceRange();
3997 S.Diag(Param->getLocation(), diag::note_template_param_here);
3998 return true;
3999 }
4000
4001 // See through any implicit casts we added to fix the type.
4002 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4003 Arg = Cast->getSubExpr();
4004
4005 // C++ [temp.arg.nontype]p1:
4006 //
4007 // A template-argument for a non-type, non-template
4008 // template-parameter shall be one of: [...]
4009 //
4010 // -- a pointer to member expressed as described in 5.3.1.
4011 DeclRefExpr *DRE = 0;
4012
4013 // In C++98/03 mode, give an extension warning on any extra parentheses.
4014 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4015 bool ExtraParens = false;
4016 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4017 if (!Invalid && !ExtraParens) {
4018 S.Diag(Arg->getLocStart(),
4019 S.getLangOpts().CPlusPlus0x ?
4020 diag::warn_cxx98_compat_template_arg_extra_parens :
4021 diag::ext_template_arg_extra_parens)
4022 << Arg->getSourceRange();
4023 ExtraParens = true;
4024 }
4025
4026 Arg = Parens->getSubExpr();
4027 }
4028
4029 while (SubstNonTypeTemplateParmExpr *subst =
4030 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4031 Arg = subst->getReplacement()->IgnoreImpCasts();
4032
4033 // A pointer-to-member constant written &Class::member.
4034 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4035 if (UnOp->getOpcode() == UO_AddrOf) {
4036 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4037 if (DRE && !DRE->getQualifier())
4038 DRE = 0;
4039 }
4040 }
4041 // A constant of pointer-to-member type.
4042 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4043 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4044 if (VD->getType()->isMemberPointerType()) {
4045 if (isa<NonTypeTemplateParmDecl>(VD) ||
4046 (isa<VarDecl>(VD) &&
4047 S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4048 if (Arg->isTypeDependent() || Arg->isValueDependent())
4049 Converted = TemplateArgument(Arg);
4050 else
4051 Converted = TemplateArgument(VD->getCanonicalDecl());
4052 return Invalid;
4053 }
4054 }
4055 }
4056
4057 DRE = 0;
4058 }
4059
4060 if (!DRE)
4061 return S.Diag(Arg->getLocStart(),
4062 diag::err_template_arg_not_pointer_to_member_form)
4063 << Arg->getSourceRange();
4064
4065 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4066 assert((isa<FieldDecl>(DRE->getDecl()) ||
4067 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4068 "Only non-static member pointers can make it here");
4069
4070 // Okay: this is the address of a non-static member, and therefore
4071 // a member pointer constant.
4072 if (Arg->isTypeDependent() || Arg->isValueDependent())
4073 Converted = TemplateArgument(Arg);
4074 else
4075 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
4076 return Invalid;
4077 }
4078
4079 // We found something else, but we don't know specifically what it is.
4080 S.Diag(Arg->getLocStart(),
4081 diag::err_template_arg_not_pointer_to_member_form)
4082 << Arg->getSourceRange();
4083 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4084 return true;
4085 }
4086
4087 /// \brief Check a template argument against its corresponding
4088 /// non-type template parameter.
4089 ///
4090 /// This routine implements the semantics of C++ [temp.arg.nontype].
4091 /// If an error occurred, it returns ExprError(); otherwise, it
4092 /// returns the converted template argument. \p
4093 /// InstantiatedParamType is the type of the non-type template
4094 /// parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType InstantiatedParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4095 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4096 QualType InstantiatedParamType, Expr *Arg,
4097 TemplateArgument &Converted,
4098 CheckTemplateArgumentKind CTAK) {
4099 SourceLocation StartLoc = Arg->getLocStart();
4100
4101 // If either the parameter has a dependent type or the argument is
4102 // type-dependent, there's nothing we can check now.
4103 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4104 // FIXME: Produce a cloned, canonical expression?
4105 Converted = TemplateArgument(Arg);
4106 return Owned(Arg);
4107 }
4108
4109 // C++ [temp.arg.nontype]p5:
4110 // The following conversions are performed on each expression used
4111 // as a non-type template-argument. If a non-type
4112 // template-argument cannot be converted to the type of the
4113 // corresponding template-parameter then the program is
4114 // ill-formed.
4115 QualType ParamType = InstantiatedParamType;
4116 if (ParamType->isIntegralOrEnumerationType()) {
4117 // C++11:
4118 // -- for a non-type template-parameter of integral or
4119 // enumeration type, conversions permitted in a converted
4120 // constant expression are applied.
4121 //
4122 // C++98:
4123 // -- for a non-type template-parameter of integral or
4124 // enumeration type, integral promotions (4.5) and integral
4125 // conversions (4.7) are applied.
4126
4127 if (CTAK == CTAK_Deduced &&
4128 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4129 // C++ [temp.deduct.type]p17:
4130 // If, in the declaration of a function template with a non-type
4131 // template-parameter, the non-type template-parameter is used
4132 // in an expression in the function parameter-list and, if the
4133 // corresponding template-argument is deduced, the
4134 // template-argument type shall match the type of the
4135 // template-parameter exactly, except that a template-argument
4136 // deduced from an array bound may be of any integral type.
4137 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4138 << Arg->getType().getUnqualifiedType()
4139 << ParamType.getUnqualifiedType();
4140 Diag(Param->getLocation(), diag::note_template_param_here);
4141 return ExprError();
4142 }
4143
4144 if (getLangOpts().CPlusPlus0x) {
4145 // We can't check arbitrary value-dependent arguments.
4146 // FIXME: If there's no viable conversion to the template parameter type,
4147 // we should be able to diagnose that prior to instantiation.
4148 if (Arg->isValueDependent()) {
4149 Converted = TemplateArgument(Arg);
4150 return Owned(Arg);
4151 }
4152
4153 // C++ [temp.arg.nontype]p1:
4154 // A template-argument for a non-type, non-template template-parameter
4155 // shall be one of:
4156 //
4157 // -- for a non-type template-parameter of integral or enumeration
4158 // type, a converted constant expression of the type of the
4159 // template-parameter; or
4160 llvm::APSInt Value;
4161 ExprResult ArgResult =
4162 CheckConvertedConstantExpression(Arg, ParamType, Value,
4163 CCEK_TemplateArg);
4164 if (ArgResult.isInvalid())
4165 return ExprError();
4166
4167 // Widen the argument value to sizeof(parameter type). This is almost
4168 // always a no-op, except when the parameter type is bool. In
4169 // that case, this may extend the argument from 1 bit to 8 bits.
4170 QualType IntegerType = ParamType;
4171 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4172 IntegerType = Enum->getDecl()->getIntegerType();
4173 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4174
4175 Converted = TemplateArgument(Context, Value,
4176 Context.getCanonicalType(ParamType));
4177 return ArgResult;
4178 }
4179
4180 ExprResult ArgResult = DefaultLvalueConversion(Arg);
4181 if (ArgResult.isInvalid())
4182 return ExprError();
4183 Arg = ArgResult.take();
4184
4185 QualType ArgType = Arg->getType();
4186
4187 // C++ [temp.arg.nontype]p1:
4188 // A template-argument for a non-type, non-template
4189 // template-parameter shall be one of:
4190 //
4191 // -- an integral constant-expression of integral or enumeration
4192 // type; or
4193 // -- the name of a non-type template-parameter; or
4194 SourceLocation NonConstantLoc;
4195 llvm::APSInt Value;
4196 if (!ArgType->isIntegralOrEnumerationType()) {
4197 Diag(Arg->getLocStart(),
4198 diag::err_template_arg_not_integral_or_enumeral)
4199 << ArgType << Arg->getSourceRange();
4200 Diag(Param->getLocation(), diag::note_template_param_here);
4201 return ExprError();
4202 } else if (!Arg->isValueDependent()) {
4203 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4204 QualType T;
4205
4206 public:
4207 TmplArgICEDiagnoser(QualType T) : T(T) { }
4208
4209 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4210 SourceRange SR) {
4211 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4212 }
4213 } Diagnoser(ArgType);
4214
4215 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4216 false).take();
4217 if (!Arg)
4218 return ExprError();
4219 }
4220
4221 // From here on out, all we care about are the unqualified forms
4222 // of the parameter and argument types.
4223 ParamType = ParamType.getUnqualifiedType();
4224 ArgType = ArgType.getUnqualifiedType();
4225
4226 // Try to convert the argument to the parameter's type.
4227 if (Context.hasSameType(ParamType, ArgType)) {
4228 // Okay: no conversion necessary
4229 } else if (ParamType->isBooleanType()) {
4230 // This is an integral-to-boolean conversion.
4231 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4232 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4233 !ParamType->isEnumeralType()) {
4234 // This is an integral promotion or conversion.
4235 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4236 } else {
4237 // We can't perform this conversion.
4238 Diag(Arg->getLocStart(),
4239 diag::err_template_arg_not_convertible)
4240 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4241 Diag(Param->getLocation(), diag::note_template_param_here);
4242 return ExprError();
4243 }
4244
4245 // Add the value of this argument to the list of converted
4246 // arguments. We use the bitwidth and signedness of the template
4247 // parameter.
4248 if (Arg->isValueDependent()) {
4249 // The argument is value-dependent. Create a new
4250 // TemplateArgument with the converted expression.
4251 Converted = TemplateArgument(Arg);
4252 return Owned(Arg);
4253 }
4254
4255 QualType IntegerType = Context.getCanonicalType(ParamType);
4256 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4257 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4258
4259 if (ParamType->isBooleanType()) {
4260 // Value must be zero or one.
4261 Value = Value != 0;
4262 unsigned AllowedBits = Context.getTypeSize(IntegerType);
4263 if (Value.getBitWidth() != AllowedBits)
4264 Value = Value.extOrTrunc(AllowedBits);
4265 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4266 } else {
4267 llvm::APSInt OldValue = Value;
4268
4269 // Coerce the template argument's value to the value it will have
4270 // based on the template parameter's type.
4271 unsigned AllowedBits = Context.getTypeSize(IntegerType);
4272 if (Value.getBitWidth() != AllowedBits)
4273 Value = Value.extOrTrunc(AllowedBits);
4274 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4275
4276 // Complain if an unsigned parameter received a negative value.
4277 if (IntegerType->isUnsignedIntegerOrEnumerationType()
4278 && (OldValue.isSigned() && OldValue.isNegative())) {
4279 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4280 << OldValue.toString(10) << Value.toString(10) << Param->getType()
4281 << Arg->getSourceRange();
4282 Diag(Param->getLocation(), diag::note_template_param_here);
4283 }
4284
4285 // Complain if we overflowed the template parameter's type.
4286 unsigned RequiredBits;
4287 if (IntegerType->isUnsignedIntegerOrEnumerationType())
4288 RequiredBits = OldValue.getActiveBits();
4289 else if (OldValue.isUnsigned())
4290 RequiredBits = OldValue.getActiveBits() + 1;
4291 else
4292 RequiredBits = OldValue.getMinSignedBits();
4293 if (RequiredBits > AllowedBits) {
4294 Diag(Arg->getLocStart(),
4295 diag::warn_template_arg_too_large)
4296 << OldValue.toString(10) << Value.toString(10) << Param->getType()
4297 << Arg->getSourceRange();
4298 Diag(Param->getLocation(), diag::note_template_param_here);
4299 }
4300 }
4301
4302 Converted = TemplateArgument(Context, Value,
4303 ParamType->isEnumeralType()
4304 ? Context.getCanonicalType(ParamType)
4305 : IntegerType);
4306 return Owned(Arg);
4307 }
4308
4309 QualType ArgType = Arg->getType();
4310 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4311
4312 // Handle pointer-to-function, reference-to-function, and
4313 // pointer-to-member-function all in (roughly) the same way.
4314 if (// -- For a non-type template-parameter of type pointer to
4315 // function, only the function-to-pointer conversion (4.3) is
4316 // applied. If the template-argument represents a set of
4317 // overloaded functions (or a pointer to such), the matching
4318 // function is selected from the set (13.4).
4319 (ParamType->isPointerType() &&
4320 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4321 // -- For a non-type template-parameter of type reference to
4322 // function, no conversions apply. If the template-argument
4323 // represents a set of overloaded functions, the matching
4324 // function is selected from the set (13.4).
4325 (ParamType->isReferenceType() &&
4326 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4327 // -- For a non-type template-parameter of type pointer to
4328 // member function, no conversions apply. If the
4329 // template-argument represents a set of overloaded member
4330 // functions, the matching member function is selected from
4331 // the set (13.4).
4332 (ParamType->isMemberPointerType() &&
4333 ParamType->getAs<MemberPointerType>()->getPointeeType()
4334 ->isFunctionType())) {
4335
4336 if (Arg->getType() == Context.OverloadTy) {
4337 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4338 true,
4339 FoundResult)) {
4340 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4341 return ExprError();
4342
4343 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4344 ArgType = Arg->getType();
4345 } else
4346 return ExprError();
4347 }
4348
4349 if (!ParamType->isMemberPointerType()) {
4350 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4351 ParamType,
4352 Arg, Converted))
4353 return ExprError();
4354 return Owned(Arg);
4355 }
4356
4357 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4358 Converted))
4359 return ExprError();
4360 return Owned(Arg);
4361 }
4362
4363 if (ParamType->isPointerType()) {
4364 // -- for a non-type template-parameter of type pointer to
4365 // object, qualification conversions (4.4) and the
4366 // array-to-pointer conversion (4.2) are applied.
4367 // C++0x also allows a value of std::nullptr_t.
4368 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4369 "Only object pointers allowed here");
4370
4371 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4372 ParamType,
4373 Arg, Converted))
4374 return ExprError();
4375 return Owned(Arg);
4376 }
4377
4378 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4379 // -- For a non-type template-parameter of type reference to
4380 // object, no conversions apply. The type referred to by the
4381 // reference may be more cv-qualified than the (otherwise
4382 // identical) type of the template-argument. The
4383 // template-parameter is bound directly to the
4384 // template-argument, which must be an lvalue.
4385 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4386 "Only object references allowed here");
4387
4388 if (Arg->getType() == Context.OverloadTy) {
4389 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4390 ParamRefType->getPointeeType(),
4391 true,
4392 FoundResult)) {
4393 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4394 return ExprError();
4395
4396 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4397 ArgType = Arg->getType();
4398 } else
4399 return ExprError();
4400 }
4401
4402 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4403 ParamType,
4404 Arg, Converted))
4405 return ExprError();
4406 return Owned(Arg);
4407 }
4408
4409 // Deal with parameters of type std::nullptr_t.
4410 if (ParamType->isNullPtrType()) {
4411 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4412 Converted = TemplateArgument(Arg);
4413 return Owned(Arg);
4414 }
4415
4416 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4417 case NPV_NotNullPointer:
4418 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4419 << Arg->getType() << ParamType;
4420 Diag(Param->getLocation(), diag::note_template_param_here);
4421 return ExprError();
4422
4423 case NPV_Error:
4424 return ExprError();
4425
4426 case NPV_NullPointer:
4427 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4428 Converted = TemplateArgument((Decl *)0);
4429 return Owned(Arg);
4430 }
4431 }
4432
4433 // -- For a non-type template-parameter of type pointer to data
4434 // member, qualification conversions (4.4) are applied.
4435 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4436
4437 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4438 Converted))
4439 return ExprError();
4440 return Owned(Arg);
4441 }
4442
4443 /// \brief Check a template argument against its corresponding
4444 /// template template parameter.
4445 ///
4446 /// This routine implements the semantics of C++ [temp.arg.template].
4447 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,const TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)4448 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4449 const TemplateArgumentLoc &Arg,
4450 unsigned ArgumentPackIndex) {
4451 TemplateName Name = Arg.getArgument().getAsTemplate();
4452 TemplateDecl *Template = Name.getAsTemplateDecl();
4453 if (!Template) {
4454 // Any dependent template name is fine.
4455 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4456 return false;
4457 }
4458
4459 // C++0x [temp.arg.template]p1:
4460 // A template-argument for a template template-parameter shall be
4461 // the name of a class template or an alias template, expressed as an
4462 // id-expression. When the template-argument names a class template, only
4463 // primary class templates are considered when matching the
4464 // template template argument with the corresponding parameter;
4465 // partial specializations are not considered even if their
4466 // parameter lists match that of the template template parameter.
4467 //
4468 // Note that we also allow template template parameters here, which
4469 // will happen when we are dealing with, e.g., class template
4470 // partial specializations.
4471 if (!isa<ClassTemplateDecl>(Template) &&
4472 !isa<TemplateTemplateParmDecl>(Template) &&
4473 !isa<TypeAliasTemplateDecl>(Template)) {
4474 assert(isa<FunctionTemplateDecl>(Template) &&
4475 "Only function templates are possible here");
4476 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4477 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4478 << Template;
4479 }
4480
4481 TemplateParameterList *Params = Param->getTemplateParameters();
4482 if (Param->isExpandedParameterPack())
4483 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
4484
4485 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4486 Params,
4487 true,
4488 TPL_TemplateTemplateArgumentMatch,
4489 Arg.getLocation());
4490 }
4491
4492 /// \brief Given a non-type template argument that refers to a
4493 /// declaration and the type of its corresponding non-type template
4494 /// parameter, produce an expression that properly refers to that
4495 /// declaration.
4496 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)4497 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4498 QualType ParamType,
4499 SourceLocation Loc) {
4500 assert(Arg.getKind() == TemplateArgument::Declaration &&
4501 "Only declaration template arguments permitted here");
4502
4503 // For a NULL non-type template argument, return nullptr casted to the
4504 // parameter's type.
4505 if (!Arg.getAsDecl()) {
4506 return ImpCastExprToType(
4507 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4508 ParamType,
4509 ParamType->getAs<MemberPointerType>()
4510 ? CK_NullToMemberPointer
4511 : CK_NullToPointer);
4512 }
4513
4514 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4515
4516 if (VD->getDeclContext()->isRecord() &&
4517 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4518 // If the value is a class member, we might have a pointer-to-member.
4519 // Determine whether the non-type template template parameter is of
4520 // pointer-to-member type. If so, we need to build an appropriate
4521 // expression for a pointer-to-member, since a "normal" DeclRefExpr
4522 // would refer to the member itself.
4523 if (ParamType->isMemberPointerType()) {
4524 QualType ClassType
4525 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4526 NestedNameSpecifier *Qualifier
4527 = NestedNameSpecifier::Create(Context, 0, false,
4528 ClassType.getTypePtr());
4529 CXXScopeSpec SS;
4530 SS.MakeTrivial(Context, Qualifier, Loc);
4531
4532 // The actual value-ness of this is unimportant, but for
4533 // internal consistency's sake, references to instance methods
4534 // are r-values.
4535 ExprValueKind VK = VK_LValue;
4536 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4537 VK = VK_RValue;
4538
4539 ExprResult RefExpr = BuildDeclRefExpr(VD,
4540 VD->getType().getNonReferenceType(),
4541 VK,
4542 Loc,
4543 &SS);
4544 if (RefExpr.isInvalid())
4545 return ExprError();
4546
4547 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4548
4549 // We might need to perform a trailing qualification conversion, since
4550 // the element type on the parameter could be more qualified than the
4551 // element type in the expression we constructed.
4552 bool ObjCLifetimeConversion;
4553 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4554 ParamType.getUnqualifiedType(), false,
4555 ObjCLifetimeConversion))
4556 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4557
4558 assert(!RefExpr.isInvalid() &&
4559 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4560 ParamType.getUnqualifiedType()));
4561 return RefExpr;
4562 }
4563 }
4564
4565 QualType T = VD->getType().getNonReferenceType();
4566 if (ParamType->isPointerType()) {
4567 // When the non-type template parameter is a pointer, take the
4568 // address of the declaration.
4569 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4570 if (RefExpr.isInvalid())
4571 return ExprError();
4572
4573 if (T->isFunctionType() || T->isArrayType()) {
4574 // Decay functions and arrays.
4575 RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4576 if (RefExpr.isInvalid())
4577 return ExprError();
4578
4579 return RefExpr;
4580 }
4581
4582 // Take the address of everything else
4583 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4584 }
4585
4586 ExprValueKind VK = VK_RValue;
4587
4588 // If the non-type template parameter has reference type, qualify the
4589 // resulting declaration reference with the extra qualifiers on the
4590 // type that the reference refers to.
4591 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4592 VK = VK_LValue;
4593 T = Context.getQualifiedType(T,
4594 TargetRef->getPointeeType().getQualifiers());
4595 }
4596
4597 return BuildDeclRefExpr(VD, T, VK, Loc);
4598 }
4599
4600 /// \brief Construct a new expression that refers to the given
4601 /// integral template argument with the given source-location
4602 /// information.
4603 ///
4604 /// This routine takes care of the mapping from an integral template
4605 /// argument (which may have any integral type) to the appropriate
4606 /// literal value.
4607 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)4608 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4609 SourceLocation Loc) {
4610 assert(Arg.getKind() == TemplateArgument::Integral &&
4611 "Operation is only valid for integral template arguments");
4612 QualType T = Arg.getIntegralType();
4613 if (T->isAnyCharacterType()) {
4614 CharacterLiteral::CharacterKind Kind;
4615 if (T->isWideCharType())
4616 Kind = CharacterLiteral::Wide;
4617 else if (T->isChar16Type())
4618 Kind = CharacterLiteral::UTF16;
4619 else if (T->isChar32Type())
4620 Kind = CharacterLiteral::UTF32;
4621 else
4622 Kind = CharacterLiteral::Ascii;
4623
4624 return Owned(new (Context) CharacterLiteral(
4625 Arg.getAsIntegral().getZExtValue(),
4626 Kind, T, Loc));
4627 }
4628
4629 if (T->isBooleanType())
4630 return Owned(new (Context) CXXBoolLiteralExpr(
4631 Arg.getAsIntegral().getBoolValue(),
4632 T, Loc));
4633
4634 if (T->isNullPtrType())
4635 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4636
4637 // If this is an enum type that we're instantiating, we need to use an integer
4638 // type the same size as the enumerator. We don't want to build an
4639 // IntegerLiteral with enum type.
4640 QualType BT;
4641 if (const EnumType *ET = T->getAs<EnumType>())
4642 BT = ET->getDecl()->getIntegerType();
4643 else
4644 BT = T;
4645
4646 Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc);
4647 if (T->isEnumeralType()) {
4648 // FIXME: This is a hack. We need a better way to handle substituted
4649 // non-type template parameters.
4650 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4651 Context.getTrivialTypeSourceInfo(T, Loc),
4652 Loc, Loc);
4653 }
4654
4655 return Owned(E);
4656 }
4657
4658 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4659 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4660 bool Complain,
4661 Sema::TemplateParameterListEqualKind Kind,
4662 SourceLocation TemplateArgLoc) {
4663 // Check the actual kind (type, non-type, template).
4664 if (Old->getKind() != New->getKind()) {
4665 if (Complain) {
4666 unsigned NextDiag = diag::err_template_param_different_kind;
4667 if (TemplateArgLoc.isValid()) {
4668 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4669 NextDiag = diag::note_template_param_different_kind;
4670 }
4671 S.Diag(New->getLocation(), NextDiag)
4672 << (Kind != Sema::TPL_TemplateMatch);
4673 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4674 << (Kind != Sema::TPL_TemplateMatch);
4675 }
4676
4677 return false;
4678 }
4679
4680 // Check that both are parameter packs are neither are parameter packs.
4681 // However, if we are matching a template template argument to a
4682 // template template parameter, the template template parameter can have
4683 // a parameter pack where the template template argument does not.
4684 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4685 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4686 Old->isTemplateParameterPack())) {
4687 if (Complain) {
4688 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4689 if (TemplateArgLoc.isValid()) {
4690 S.Diag(TemplateArgLoc,
4691 diag::err_template_arg_template_params_mismatch);
4692 NextDiag = diag::note_template_parameter_pack_non_pack;
4693 }
4694
4695 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4696 : isa<NonTypeTemplateParmDecl>(New)? 1
4697 : 2;
4698 S.Diag(New->getLocation(), NextDiag)
4699 << ParamKind << New->isParameterPack();
4700 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4701 << ParamKind << Old->isParameterPack();
4702 }
4703
4704 return false;
4705 }
4706
4707 // For non-type template parameters, check the type of the parameter.
4708 if (NonTypeTemplateParmDecl *OldNTTP
4709 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4710 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4711
4712 // If we are matching a template template argument to a template
4713 // template parameter and one of the non-type template parameter types
4714 // is dependent, then we must wait until template instantiation time
4715 // to actually compare the arguments.
4716 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4717 (OldNTTP->getType()->isDependentType() ||
4718 NewNTTP->getType()->isDependentType()))
4719 return true;
4720
4721 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4722 if (Complain) {
4723 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4724 if (TemplateArgLoc.isValid()) {
4725 S.Diag(TemplateArgLoc,
4726 diag::err_template_arg_template_params_mismatch);
4727 NextDiag = diag::note_template_nontype_parm_different_type;
4728 }
4729 S.Diag(NewNTTP->getLocation(), NextDiag)
4730 << NewNTTP->getType()
4731 << (Kind != Sema::TPL_TemplateMatch);
4732 S.Diag(OldNTTP->getLocation(),
4733 diag::note_template_nontype_parm_prev_declaration)
4734 << OldNTTP->getType();
4735 }
4736
4737 return false;
4738 }
4739
4740 return true;
4741 }
4742
4743 // For template template parameters, check the template parameter types.
4744 // The template parameter lists of template template
4745 // parameters must agree.
4746 if (TemplateTemplateParmDecl *OldTTP
4747 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4748 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4749 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4750 OldTTP->getTemplateParameters(),
4751 Complain,
4752 (Kind == Sema::TPL_TemplateMatch
4753 ? Sema::TPL_TemplateTemplateParmMatch
4754 : Kind),
4755 TemplateArgLoc);
4756 }
4757
4758 return true;
4759 }
4760
4761 /// \brief Diagnose a known arity mismatch when comparing template argument
4762 /// lists.
4763 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4764 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4765 TemplateParameterList *New,
4766 TemplateParameterList *Old,
4767 Sema::TemplateParameterListEqualKind Kind,
4768 SourceLocation TemplateArgLoc) {
4769 unsigned NextDiag = diag::err_template_param_list_different_arity;
4770 if (TemplateArgLoc.isValid()) {
4771 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4772 NextDiag = diag::note_template_param_list_different_arity;
4773 }
4774 S.Diag(New->getTemplateLoc(), NextDiag)
4775 << (New->size() > Old->size())
4776 << (Kind != Sema::TPL_TemplateMatch)
4777 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4778 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4779 << (Kind != Sema::TPL_TemplateMatch)
4780 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4781 }
4782
4783 /// \brief Determine whether the given template parameter lists are
4784 /// equivalent.
4785 ///
4786 /// \param New The new template parameter list, typically written in the
4787 /// source code as part of a new template declaration.
4788 ///
4789 /// \param Old The old template parameter list, typically found via
4790 /// name lookup of the template declared with this template parameter
4791 /// list.
4792 ///
4793 /// \param Complain If true, this routine will produce a diagnostic if
4794 /// the template parameter lists are not equivalent.
4795 ///
4796 /// \param Kind describes how we are to match the template parameter lists.
4797 ///
4798 /// \param TemplateArgLoc If this source location is valid, then we
4799 /// are actually checking the template parameter list of a template
4800 /// argument (New) against the template parameter list of its
4801 /// corresponding template template parameter (Old). We produce
4802 /// slightly different diagnostics in this scenario.
4803 ///
4804 /// \returns True if the template parameter lists are equal, false
4805 /// otherwise.
4806 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)4807 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4808 TemplateParameterList *Old,
4809 bool Complain,
4810 TemplateParameterListEqualKind Kind,
4811 SourceLocation TemplateArgLoc) {
4812 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4813 if (Complain)
4814 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4815 TemplateArgLoc);
4816
4817 return false;
4818 }
4819
4820 // C++0x [temp.arg.template]p3:
4821 // A template-argument matches a template template-parameter (call it P)
4822 // when each of the template parameters in the template-parameter-list of
4823 // the template-argument's corresponding class template or alias template
4824 // (call it A) matches the corresponding template parameter in the
4825 // template-parameter-list of P. [...]
4826 TemplateParameterList::iterator NewParm = New->begin();
4827 TemplateParameterList::iterator NewParmEnd = New->end();
4828 for (TemplateParameterList::iterator OldParm = Old->begin(),
4829 OldParmEnd = Old->end();
4830 OldParm != OldParmEnd; ++OldParm) {
4831 if (Kind != TPL_TemplateTemplateArgumentMatch ||
4832 !(*OldParm)->isTemplateParameterPack()) {
4833 if (NewParm == NewParmEnd) {
4834 if (Complain)
4835 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4836 TemplateArgLoc);
4837
4838 return false;
4839 }
4840
4841 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4842 Kind, TemplateArgLoc))
4843 return false;
4844
4845 ++NewParm;
4846 continue;
4847 }
4848
4849 // C++0x [temp.arg.template]p3:
4850 // [...] When P's template- parameter-list contains a template parameter
4851 // pack (14.5.3), the template parameter pack will match zero or more
4852 // template parameters or template parameter packs in the
4853 // template-parameter-list of A with the same type and form as the
4854 // template parameter pack in P (ignoring whether those template
4855 // parameters are template parameter packs).
4856 for (; NewParm != NewParmEnd; ++NewParm) {
4857 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4858 Kind, TemplateArgLoc))
4859 return false;
4860 }
4861 }
4862
4863 // Make sure we exhausted all of the arguments.
4864 if (NewParm != NewParmEnd) {
4865 if (Complain)
4866 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4867 TemplateArgLoc);
4868
4869 return false;
4870 }
4871
4872 return true;
4873 }
4874
4875 /// \brief Check whether a template can be declared within this scope.
4876 ///
4877 /// If the template declaration is valid in this scope, returns
4878 /// false. Otherwise, issues a diagnostic and returns true.
4879 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)4880 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4881 if (!S)
4882 return false;
4883
4884 // Find the nearest enclosing declaration scope.
4885 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4886 (S->getFlags() & Scope::TemplateParamScope) != 0)
4887 S = S->getParent();
4888
4889 // C++ [temp]p2:
4890 // A template-declaration can appear only as a namespace scope or
4891 // class scope declaration.
4892 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4893 if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4894 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4895 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4896 << TemplateParams->getSourceRange();
4897
4898 while (Ctx && isa<LinkageSpecDecl>(Ctx))
4899 Ctx = Ctx->getParent();
4900
4901 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4902 return false;
4903
4904 return Diag(TemplateParams->getTemplateLoc(),
4905 diag::err_template_outside_namespace_or_class_scope)
4906 << TemplateParams->getSourceRange();
4907 }
4908
4909 /// \brief Determine what kind of template specialization the given declaration
4910 /// is.
getTemplateSpecializationKind(Decl * D)4911 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4912 if (!D)
4913 return TSK_Undeclared;
4914
4915 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4916 return Record->getTemplateSpecializationKind();
4917 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4918 return Function->getTemplateSpecializationKind();
4919 if (VarDecl *Var = dyn_cast<VarDecl>(D))
4920 return Var->getTemplateSpecializationKind();
4921
4922 return TSK_Undeclared;
4923 }
4924
4925 /// \brief Check whether a specialization is well-formed in the current
4926 /// context.
4927 ///
4928 /// This routine determines whether a template specialization can be declared
4929 /// in the current context (C++ [temp.expl.spec]p2).
4930 ///
4931 /// \param S the semantic analysis object for which this check is being
4932 /// performed.
4933 ///
4934 /// \param Specialized the entity being specialized or instantiated, which
4935 /// may be a kind of template (class template, function template, etc.) or
4936 /// a member of a class template (member function, static data member,
4937 /// member class).
4938 ///
4939 /// \param PrevDecl the previous declaration of this entity, if any.
4940 ///
4941 /// \param Loc the location of the explicit specialization or instantiation of
4942 /// this entity.
4943 ///
4944 /// \param IsPartialSpecialization whether this is a partial specialization of
4945 /// a class template.
4946 ///
4947 /// \returns true if there was an error that we cannot recover from, false
4948 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)4949 static bool CheckTemplateSpecializationScope(Sema &S,
4950 NamedDecl *Specialized,
4951 NamedDecl *PrevDecl,
4952 SourceLocation Loc,
4953 bool IsPartialSpecialization) {
4954 // Keep these "kind" numbers in sync with the %select statements in the
4955 // various diagnostics emitted by this routine.
4956 int EntityKind = 0;
4957 if (isa<ClassTemplateDecl>(Specialized))
4958 EntityKind = IsPartialSpecialization? 1 : 0;
4959 else if (isa<FunctionTemplateDecl>(Specialized))
4960 EntityKind = 2;
4961 else if (isa<CXXMethodDecl>(Specialized))
4962 EntityKind = 3;
4963 else if (isa<VarDecl>(Specialized))
4964 EntityKind = 4;
4965 else if (isa<RecordDecl>(Specialized))
4966 EntityKind = 5;
4967 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4968 EntityKind = 6;
4969 else {
4970 S.Diag(Loc, diag::err_template_spec_unknown_kind)
4971 << S.getLangOpts().CPlusPlus0x;
4972 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4973 return true;
4974 }
4975
4976 // C++ [temp.expl.spec]p2:
4977 // An explicit specialization shall be declared in the namespace
4978 // of which the template is a member, or, for member templates, in
4979 // the namespace of which the enclosing class or enclosing class
4980 // template is a member. An explicit specialization of a member
4981 // function, member class or static data member of a class
4982 // template shall be declared in the namespace of which the class
4983 // template is a member. Such a declaration may also be a
4984 // definition. If the declaration is not a definition, the
4985 // specialization may be defined later in the name- space in which
4986 // the explicit specialization was declared, or in a namespace
4987 // that encloses the one in which the explicit specialization was
4988 // declared.
4989 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4990 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4991 << Specialized;
4992 return true;
4993 }
4994
4995 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4996 if (S.getLangOpts().MicrosoftExt) {
4997 // Do not warn for class scope explicit specialization during
4998 // instantiation, warning was already emitted during pattern
4999 // semantic analysis.
5000 if (!S.ActiveTemplateInstantiations.size())
5001 S.Diag(Loc, diag::ext_function_specialization_in_class)
5002 << Specialized;
5003 } else {
5004 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5005 << Specialized;
5006 return true;
5007 }
5008 }
5009
5010 if (S.CurContext->isRecord() &&
5011 !S.CurContext->Equals(Specialized->getDeclContext())) {
5012 // Make sure that we're specializing in the right record context.
5013 // Otherwise, things can go horribly wrong.
5014 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5015 << Specialized;
5016 return true;
5017 }
5018
5019 // C++ [temp.class.spec]p6:
5020 // A class template partial specialization may be declared or redeclared
5021 // in any namespace scope in which its definition may be defined (14.5.1
5022 // and 14.5.2).
5023 bool ComplainedAboutScope = false;
5024 DeclContext *SpecializedContext
5025 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5026 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5027 if ((!PrevDecl ||
5028 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5029 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5030 // C++ [temp.exp.spec]p2:
5031 // An explicit specialization shall be declared in the namespace of which
5032 // the template is a member, or, for member templates, in the namespace
5033 // of which the enclosing class or enclosing class template is a member.
5034 // An explicit specialization of a member function, member class or
5035 // static data member of a class template shall be declared in the
5036 // namespace of which the class template is a member.
5037 //
5038 // C++0x [temp.expl.spec]p2:
5039 // An explicit specialization shall be declared in a namespace enclosing
5040 // the specialized template.
5041 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5042 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
5043 if (isa<TranslationUnitDecl>(SpecializedContext)) {
5044 assert(!IsCPlusPlus0xExtension &&
5045 "DC encloses TU but isn't in enclosing namespace set");
5046 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5047 << EntityKind << Specialized;
5048 } else if (isa<NamespaceDecl>(SpecializedContext)) {
5049 int Diag;
5050 if (!IsCPlusPlus0xExtension)
5051 Diag = diag::err_template_spec_decl_out_of_scope;
5052 else if (!S.getLangOpts().CPlusPlus0x)
5053 Diag = diag::ext_template_spec_decl_out_of_scope;
5054 else
5055 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5056 S.Diag(Loc, Diag)
5057 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5058 }
5059
5060 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5061 ComplainedAboutScope =
5062 !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
5063 }
5064 }
5065
5066 // Make sure that this redeclaration (or definition) occurs in an enclosing
5067 // namespace.
5068 // Note that HandleDeclarator() performs this check for explicit
5069 // specializations of function templates, static data members, and member
5070 // functions, so we skip the check here for those kinds of entities.
5071 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5072 // Should we refactor that check, so that it occurs later?
5073 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5074 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5075 isa<FunctionDecl>(Specialized))) {
5076 if (isa<TranslationUnitDecl>(SpecializedContext))
5077 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5078 << EntityKind << Specialized;
5079 else if (isa<NamespaceDecl>(SpecializedContext))
5080 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5081 << EntityKind << Specialized
5082 << cast<NamedDecl>(SpecializedContext);
5083
5084 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5085 }
5086
5087 // FIXME: check for specialization-after-instantiation errors and such.
5088
5089 return false;
5090 }
5091
5092 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
5093 /// that checks non-type template partial specialization arguments.
CheckNonTypeClassTemplatePartialSpecializationArgs(Sema & S,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs)5094 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
5095 NonTypeTemplateParmDecl *Param,
5096 const TemplateArgument *Args,
5097 unsigned NumArgs) {
5098 for (unsigned I = 0; I != NumArgs; ++I) {
5099 if (Args[I].getKind() == TemplateArgument::Pack) {
5100 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5101 Args[I].pack_begin(),
5102 Args[I].pack_size()))
5103 return true;
5104
5105 continue;
5106 }
5107
5108 Expr *ArgExpr = Args[I].getAsExpr();
5109 if (!ArgExpr) {
5110 continue;
5111 }
5112
5113 // We can have a pack expansion of any of the bullets below.
5114 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5115 ArgExpr = Expansion->getPattern();
5116
5117 // Strip off any implicit casts we added as part of type checking.
5118 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5119 ArgExpr = ICE->getSubExpr();
5120
5121 // C++ [temp.class.spec]p8:
5122 // A non-type argument is non-specialized if it is the name of a
5123 // non-type parameter. All other non-type arguments are
5124 // specialized.
5125 //
5126 // Below, we check the two conditions that only apply to
5127 // specialized non-type arguments, so skip any non-specialized
5128 // arguments.
5129 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5130 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5131 continue;
5132
5133 // C++ [temp.class.spec]p9:
5134 // Within the argument list of a class template partial
5135 // specialization, the following restrictions apply:
5136 // -- A partially specialized non-type argument expression
5137 // shall not involve a template parameter of the partial
5138 // specialization except when the argument expression is a
5139 // simple identifier.
5140 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5141 S.Diag(ArgExpr->getLocStart(),
5142 diag::err_dependent_non_type_arg_in_partial_spec)
5143 << ArgExpr->getSourceRange();
5144 return true;
5145 }
5146
5147 // -- The type of a template parameter corresponding to a
5148 // specialized non-type argument shall not be dependent on a
5149 // parameter of the specialization.
5150 if (Param->getType()->isDependentType()) {
5151 S.Diag(ArgExpr->getLocStart(),
5152 diag::err_dependent_typed_non_type_arg_in_partial_spec)
5153 << Param->getType()
5154 << ArgExpr->getSourceRange();
5155 S.Diag(Param->getLocation(), diag::note_template_param_here);
5156 return true;
5157 }
5158 }
5159
5160 return false;
5161 }
5162
5163 /// \brief Check the non-type template arguments of a class template
5164 /// partial specialization according to C++ [temp.class.spec]p9.
5165 ///
5166 /// \param TemplateParams the template parameters of the primary class
5167 /// template.
5168 ///
5169 /// \param TemplateArgs the template arguments of the class template
5170 /// partial specialization.
5171 ///
5172 /// \returns true if there was an error, false otherwise.
CheckClassTemplatePartialSpecializationArgs(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<TemplateArgument> & TemplateArgs)5173 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5174 TemplateParameterList *TemplateParams,
5175 SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5176 const TemplateArgument *ArgList = TemplateArgs.data();
5177
5178 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5179 NonTypeTemplateParmDecl *Param
5180 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5181 if (!Param)
5182 continue;
5183
5184 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5185 &ArgList[I], 1))
5186 return true;
5187 }
5188
5189 return false;
5190 }
5191
5192 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists)5193 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5194 TagUseKind TUK,
5195 SourceLocation KWLoc,
5196 SourceLocation ModulePrivateLoc,
5197 CXXScopeSpec &SS,
5198 TemplateTy TemplateD,
5199 SourceLocation TemplateNameLoc,
5200 SourceLocation LAngleLoc,
5201 ASTTemplateArgsPtr TemplateArgsIn,
5202 SourceLocation RAngleLoc,
5203 AttributeList *Attr,
5204 MultiTemplateParamsArg TemplateParameterLists) {
5205 assert(TUK != TUK_Reference && "References are not specializations");
5206
5207 // NOTE: KWLoc is the location of the tag keyword. This will instead
5208 // store the location of the outermost template keyword in the declaration.
5209 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5210 ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5211
5212 // Find the class template we're specializing
5213 TemplateName Name = TemplateD.getAsVal<TemplateName>();
5214 ClassTemplateDecl *ClassTemplate
5215 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5216
5217 if (!ClassTemplate) {
5218 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5219 << (Name.getAsTemplateDecl() &&
5220 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5221 return true;
5222 }
5223
5224 bool isExplicitSpecialization = false;
5225 bool isPartialSpecialization = false;
5226
5227 // Check the validity of the template headers that introduce this
5228 // template.
5229 // FIXME: We probably shouldn't complain about these headers for
5230 // friend declarations.
5231 bool Invalid = false;
5232 TemplateParameterList *TemplateParams
5233 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5234 TemplateNameLoc,
5235 SS,
5236 TemplateParameterLists.data(),
5237 TemplateParameterLists.size(),
5238 TUK == TUK_Friend,
5239 isExplicitSpecialization,
5240 Invalid);
5241 if (Invalid)
5242 return true;
5243
5244 if (TemplateParams && TemplateParams->size() > 0) {
5245 isPartialSpecialization = true;
5246
5247 if (TUK == TUK_Friend) {
5248 Diag(KWLoc, diag::err_partial_specialization_friend)
5249 << SourceRange(LAngleLoc, RAngleLoc);
5250 return true;
5251 }
5252
5253 // C++ [temp.class.spec]p10:
5254 // The template parameter list of a specialization shall not
5255 // contain default template argument values.
5256 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5257 Decl *Param = TemplateParams->getParam(I);
5258 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5259 if (TTP->hasDefaultArgument()) {
5260 Diag(TTP->getDefaultArgumentLoc(),
5261 diag::err_default_arg_in_partial_spec);
5262 TTP->removeDefaultArgument();
5263 }
5264 } else if (NonTypeTemplateParmDecl *NTTP
5265 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5266 if (Expr *DefArg = NTTP->getDefaultArgument()) {
5267 Diag(NTTP->getDefaultArgumentLoc(),
5268 diag::err_default_arg_in_partial_spec)
5269 << DefArg->getSourceRange();
5270 NTTP->removeDefaultArgument();
5271 }
5272 } else {
5273 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5274 if (TTP->hasDefaultArgument()) {
5275 Diag(TTP->getDefaultArgument().getLocation(),
5276 diag::err_default_arg_in_partial_spec)
5277 << TTP->getDefaultArgument().getSourceRange();
5278 TTP->removeDefaultArgument();
5279 }
5280 }
5281 }
5282 } else if (TemplateParams) {
5283 if (TUK == TUK_Friend)
5284 Diag(KWLoc, diag::err_template_spec_friend)
5285 << FixItHint::CreateRemoval(
5286 SourceRange(TemplateParams->getTemplateLoc(),
5287 TemplateParams->getRAngleLoc()))
5288 << SourceRange(LAngleLoc, RAngleLoc);
5289 else
5290 isExplicitSpecialization = true;
5291 } else if (TUK != TUK_Friend) {
5292 Diag(KWLoc, diag::err_template_spec_needs_header)
5293 << FixItHint::CreateInsertion(KWLoc, "template<> ");
5294 isExplicitSpecialization = true;
5295 }
5296
5297 // Check that the specialization uses the same tag kind as the
5298 // original template.
5299 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5300 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5301 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5302 Kind, TUK == TUK_Definition, KWLoc,
5303 *ClassTemplate->getIdentifier())) {
5304 Diag(KWLoc, diag::err_use_with_wrong_tag)
5305 << ClassTemplate
5306 << FixItHint::CreateReplacement(KWLoc,
5307 ClassTemplate->getTemplatedDecl()->getKindName());
5308 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5309 diag::note_previous_use);
5310 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5311 }
5312
5313 // Translate the parser's template argument list in our AST format.
5314 TemplateArgumentListInfo TemplateArgs;
5315 TemplateArgs.setLAngleLoc(LAngleLoc);
5316 TemplateArgs.setRAngleLoc(RAngleLoc);
5317 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5318
5319 // Check for unexpanded parameter packs in any of the template arguments.
5320 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5321 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5322 UPPC_PartialSpecialization))
5323 return true;
5324
5325 // Check that the template argument list is well-formed for this
5326 // template.
5327 SmallVector<TemplateArgument, 4> Converted;
5328 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5329 TemplateArgs, false, Converted))
5330 return true;
5331
5332 // Find the class template (partial) specialization declaration that
5333 // corresponds to these arguments.
5334 if (isPartialSpecialization) {
5335 if (CheckClassTemplatePartialSpecializationArgs(*this,
5336 ClassTemplate->getTemplateParameters(),
5337 Converted))
5338 return true;
5339
5340 bool InstantiationDependent;
5341 if (!Name.isDependent() &&
5342 !TemplateSpecializationType::anyDependentTemplateArguments(
5343 TemplateArgs.getArgumentArray(),
5344 TemplateArgs.size(),
5345 InstantiationDependent)) {
5346 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5347 << ClassTemplate->getDeclName();
5348 isPartialSpecialization = false;
5349 }
5350 }
5351
5352 void *InsertPos = 0;
5353 ClassTemplateSpecializationDecl *PrevDecl = 0;
5354
5355 if (isPartialSpecialization)
5356 // FIXME: Template parameter list matters, too
5357 PrevDecl
5358 = ClassTemplate->findPartialSpecialization(Converted.data(),
5359 Converted.size(),
5360 InsertPos);
5361 else
5362 PrevDecl
5363 = ClassTemplate->findSpecialization(Converted.data(),
5364 Converted.size(), InsertPos);
5365
5366 ClassTemplateSpecializationDecl *Specialization = 0;
5367
5368 // Check whether we can declare a class template specialization in
5369 // the current scope.
5370 if (TUK != TUK_Friend &&
5371 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5372 TemplateNameLoc,
5373 isPartialSpecialization))
5374 return true;
5375
5376 // The canonical type
5377 QualType CanonType;
5378 if (PrevDecl &&
5379 (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5380 TUK == TUK_Friend)) {
5381 // Since the only prior class template specialization with these
5382 // arguments was referenced but not declared, or we're only
5383 // referencing this specialization as a friend, reuse that
5384 // declaration node as our own, updating its source location and
5385 // the list of outer template parameters to reflect our new declaration.
5386 Specialization = PrevDecl;
5387 Specialization->setLocation(TemplateNameLoc);
5388 if (TemplateParameterLists.size() > 0) {
5389 Specialization->setTemplateParameterListsInfo(Context,
5390 TemplateParameterLists.size(),
5391 TemplateParameterLists.data());
5392 }
5393 PrevDecl = 0;
5394 CanonType = Context.getTypeDeclType(Specialization);
5395 } else if (isPartialSpecialization) {
5396 // Build the canonical type that describes the converted template
5397 // arguments of the class template partial specialization.
5398 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5399 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5400 Converted.data(),
5401 Converted.size());
5402
5403 if (Context.hasSameType(CanonType,
5404 ClassTemplate->getInjectedClassNameSpecialization())) {
5405 // C++ [temp.class.spec]p9b3:
5406 //
5407 // -- The argument list of the specialization shall not be identical
5408 // to the implicit argument list of the primary template.
5409 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5410 << (TUK == TUK_Definition)
5411 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5412 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5413 ClassTemplate->getIdentifier(),
5414 TemplateNameLoc,
5415 Attr,
5416 TemplateParams,
5417 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5418 TemplateParameterLists.size() - 1,
5419 TemplateParameterLists.data());
5420 }
5421
5422 // Create a new class template partial specialization declaration node.
5423 ClassTemplatePartialSpecializationDecl *PrevPartial
5424 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5425 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5426 : ClassTemplate->getNextPartialSpecSequenceNumber();
5427 ClassTemplatePartialSpecializationDecl *Partial
5428 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5429 ClassTemplate->getDeclContext(),
5430 KWLoc, TemplateNameLoc,
5431 TemplateParams,
5432 ClassTemplate,
5433 Converted.data(),
5434 Converted.size(),
5435 TemplateArgs,
5436 CanonType,
5437 PrevPartial,
5438 SequenceNumber);
5439 SetNestedNameSpecifier(Partial, SS);
5440 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5441 Partial->setTemplateParameterListsInfo(Context,
5442 TemplateParameterLists.size() - 1,
5443 TemplateParameterLists.data());
5444 }
5445
5446 if (!PrevPartial)
5447 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5448 Specialization = Partial;
5449
5450 // If we are providing an explicit specialization of a member class
5451 // template specialization, make a note of that.
5452 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5453 PrevPartial->setMemberSpecialization();
5454
5455 // Check that all of the template parameters of the class template
5456 // partial specialization are deducible from the template
5457 // arguments. If not, this class template partial specialization
5458 // will never be used.
5459 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5460 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5461 TemplateParams->getDepth(),
5462 DeducibleParams);
5463
5464 if (!DeducibleParams.all()) {
5465 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5466 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5467 << (NumNonDeducible > 1)
5468 << SourceRange(TemplateNameLoc, RAngleLoc);
5469 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5470 if (!DeducibleParams[I]) {
5471 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5472 if (Param->getDeclName())
5473 Diag(Param->getLocation(),
5474 diag::note_partial_spec_unused_parameter)
5475 << Param->getDeclName();
5476 else
5477 Diag(Param->getLocation(),
5478 diag::note_partial_spec_unused_parameter)
5479 << "<anonymous>";
5480 }
5481 }
5482 }
5483 } else {
5484 // Create a new class template specialization declaration node for
5485 // this explicit specialization or friend declaration.
5486 Specialization
5487 = ClassTemplateSpecializationDecl::Create(Context, Kind,
5488 ClassTemplate->getDeclContext(),
5489 KWLoc, TemplateNameLoc,
5490 ClassTemplate,
5491 Converted.data(),
5492 Converted.size(),
5493 PrevDecl);
5494 SetNestedNameSpecifier(Specialization, SS);
5495 if (TemplateParameterLists.size() > 0) {
5496 Specialization->setTemplateParameterListsInfo(Context,
5497 TemplateParameterLists.size(),
5498 TemplateParameterLists.data());
5499 }
5500
5501 if (!PrevDecl)
5502 ClassTemplate->AddSpecialization(Specialization, InsertPos);
5503
5504 CanonType = Context.getTypeDeclType(Specialization);
5505 }
5506
5507 // C++ [temp.expl.spec]p6:
5508 // If a template, a member template or the member of a class template is
5509 // explicitly specialized then that specialization shall be declared
5510 // before the first use of that specialization that would cause an implicit
5511 // instantiation to take place, in every translation unit in which such a
5512 // use occurs; no diagnostic is required.
5513 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5514 bool Okay = false;
5515 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5516 // Is there any previous explicit specialization declaration?
5517 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5518 Okay = true;
5519 break;
5520 }
5521 }
5522
5523 if (!Okay) {
5524 SourceRange Range(TemplateNameLoc, RAngleLoc);
5525 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5526 << Context.getTypeDeclType(Specialization) << Range;
5527
5528 Diag(PrevDecl->getPointOfInstantiation(),
5529 diag::note_instantiation_required_here)
5530 << (PrevDecl->getTemplateSpecializationKind()
5531 != TSK_ImplicitInstantiation);
5532 return true;
5533 }
5534 }
5535
5536 // If this is not a friend, note that this is an explicit specialization.
5537 if (TUK != TUK_Friend)
5538 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5539
5540 // Check that this isn't a redefinition of this specialization.
5541 if (TUK == TUK_Definition) {
5542 if (RecordDecl *Def = Specialization->getDefinition()) {
5543 SourceRange Range(TemplateNameLoc, RAngleLoc);
5544 Diag(TemplateNameLoc, diag::err_redefinition)
5545 << Context.getTypeDeclType(Specialization) << Range;
5546 Diag(Def->getLocation(), diag::note_previous_definition);
5547 Specialization->setInvalidDecl();
5548 return true;
5549 }
5550 }
5551
5552 if (Attr)
5553 ProcessDeclAttributeList(S, Specialization, Attr);
5554
5555 // Add alignment attributes if necessary; these attributes are checked when
5556 // the ASTContext lays out the structure.
5557 if (TUK == TUK_Definition) {
5558 AddAlignmentAttributesForRecord(Specialization);
5559 AddMsStructLayoutForRecord(Specialization);
5560 }
5561
5562 if (ModulePrivateLoc.isValid())
5563 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5564 << (isPartialSpecialization? 1 : 0)
5565 << FixItHint::CreateRemoval(ModulePrivateLoc);
5566
5567 // Build the fully-sugared type for this class template
5568 // specialization as the user wrote in the specialization
5569 // itself. This means that we'll pretty-print the type retrieved
5570 // from the specialization's declaration the way that the user
5571 // actually wrote the specialization, rather than formatting the
5572 // name based on the "canonical" representation used to store the
5573 // template arguments in the specialization.
5574 TypeSourceInfo *WrittenTy
5575 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5576 TemplateArgs, CanonType);
5577 if (TUK != TUK_Friend) {
5578 Specialization->setTypeAsWritten(WrittenTy);
5579 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5580 }
5581
5582 // C++ [temp.expl.spec]p9:
5583 // A template explicit specialization is in the scope of the
5584 // namespace in which the template was defined.
5585 //
5586 // We actually implement this paragraph where we set the semantic
5587 // context (in the creation of the ClassTemplateSpecializationDecl),
5588 // but we also maintain the lexical context where the actual
5589 // definition occurs.
5590 Specialization->setLexicalDeclContext(CurContext);
5591
5592 // We may be starting the definition of this specialization.
5593 if (TUK == TUK_Definition)
5594 Specialization->startDefinition();
5595
5596 if (TUK == TUK_Friend) {
5597 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5598 TemplateNameLoc,
5599 WrittenTy,
5600 /*FIXME:*/KWLoc);
5601 Friend->setAccess(AS_public);
5602 CurContext->addDecl(Friend);
5603 } else {
5604 // Add the specialization into its lexical context, so that it can
5605 // be seen when iterating through the list of declarations in that
5606 // context. However, specializations are not found by name lookup.
5607 CurContext->addDecl(Specialization);
5608 }
5609 return Specialization;
5610 }
5611
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)5612 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5613 MultiTemplateParamsArg TemplateParameterLists,
5614 Declarator &D) {
5615 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
5616 ActOnDocumentableDecl(NewDecl);
5617 return NewDecl;
5618 }
5619
ActOnStartOfFunctionTemplateDef(Scope * FnBodyScope,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)5620 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5621 MultiTemplateParamsArg TemplateParameterLists,
5622 Declarator &D) {
5623 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5624 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5625
5626 if (FTI.hasPrototype) {
5627 // FIXME: Diagnose arguments without names in C.
5628 }
5629
5630 Scope *ParentScope = FnBodyScope->getParent();
5631
5632 D.setFunctionDefinitionKind(FDK_Definition);
5633 Decl *DP = HandleDeclarator(ParentScope, D,
5634 TemplateParameterLists);
5635 if (FunctionTemplateDecl *FunctionTemplate
5636 = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5637 return ActOnStartOfFunctionDef(FnBodyScope,
5638 FunctionTemplate->getTemplatedDecl());
5639 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5640 return ActOnStartOfFunctionDef(FnBodyScope, Function);
5641 return 0;
5642 }
5643
5644 /// \brief Strips various properties off an implicit instantiation
5645 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)5646 static void StripImplicitInstantiation(NamedDecl *D) {
5647 // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5648 D->dropAttrs();
5649
5650 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5651 FD->setInlineSpecified(false);
5652 }
5653 }
5654
5655 /// \brief Compute the diagnostic location for an explicit instantiation
5656 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)5657 static SourceLocation DiagLocForExplicitInstantiation(
5658 NamedDecl* D, SourceLocation PointOfInstantiation) {
5659 // Explicit instantiations following a specialization have no effect and
5660 // hence no PointOfInstantiation. In that case, walk decl backwards
5661 // until a valid name loc is found.
5662 SourceLocation PrevDiagLoc = PointOfInstantiation;
5663 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5664 Prev = Prev->getPreviousDecl()) {
5665 PrevDiagLoc = Prev->getLocation();
5666 }
5667 assert(PrevDiagLoc.isValid() &&
5668 "Explicit instantiation without point of instantiation?");
5669 return PrevDiagLoc;
5670 }
5671
5672 /// \brief Diagnose cases where we have an explicit template specialization
5673 /// before/after an explicit template instantiation, producing diagnostics
5674 /// for those cases where they are required and determining whether the
5675 /// new specialization/instantiation will have any effect.
5676 ///
5677 /// \param NewLoc the location of the new explicit specialization or
5678 /// instantiation.
5679 ///
5680 /// \param NewTSK the kind of the new explicit specialization or instantiation.
5681 ///
5682 /// \param PrevDecl the previous declaration of the entity.
5683 ///
5684 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5685 ///
5686 /// \param PrevPointOfInstantiation if valid, indicates where the previus
5687 /// declaration was instantiated (either implicitly or explicitly).
5688 ///
5689 /// \param HasNoEffect will be set to true to indicate that the new
5690 /// specialization or instantiation has no effect and should be ignored.
5691 ///
5692 /// \returns true if there was an error that should prevent the introduction of
5693 /// the new declaration into the AST, false otherwise.
5694 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)5695 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5696 TemplateSpecializationKind NewTSK,
5697 NamedDecl *PrevDecl,
5698 TemplateSpecializationKind PrevTSK,
5699 SourceLocation PrevPointOfInstantiation,
5700 bool &HasNoEffect) {
5701 HasNoEffect = false;
5702
5703 switch (NewTSK) {
5704 case TSK_Undeclared:
5705 case TSK_ImplicitInstantiation:
5706 llvm_unreachable("Don't check implicit instantiations here");
5707
5708 case TSK_ExplicitSpecialization:
5709 switch (PrevTSK) {
5710 case TSK_Undeclared:
5711 case TSK_ExplicitSpecialization:
5712 // Okay, we're just specializing something that is either already
5713 // explicitly specialized or has merely been mentioned without any
5714 // instantiation.
5715 return false;
5716
5717 case TSK_ImplicitInstantiation:
5718 if (PrevPointOfInstantiation.isInvalid()) {
5719 // The declaration itself has not actually been instantiated, so it is
5720 // still okay to specialize it.
5721 StripImplicitInstantiation(PrevDecl);
5722 return false;
5723 }
5724 // Fall through
5725
5726 case TSK_ExplicitInstantiationDeclaration:
5727 case TSK_ExplicitInstantiationDefinition:
5728 assert((PrevTSK == TSK_ImplicitInstantiation ||
5729 PrevPointOfInstantiation.isValid()) &&
5730 "Explicit instantiation without point of instantiation?");
5731
5732 // C++ [temp.expl.spec]p6:
5733 // If a template, a member template or the member of a class template
5734 // is explicitly specialized then that specialization shall be declared
5735 // before the first use of that specialization that would cause an
5736 // implicit instantiation to take place, in every translation unit in
5737 // which such a use occurs; no diagnostic is required.
5738 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5739 // Is there any previous explicit specialization declaration?
5740 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5741 return false;
5742 }
5743
5744 Diag(NewLoc, diag::err_specialization_after_instantiation)
5745 << PrevDecl;
5746 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5747 << (PrevTSK != TSK_ImplicitInstantiation);
5748
5749 return true;
5750 }
5751
5752 case TSK_ExplicitInstantiationDeclaration:
5753 switch (PrevTSK) {
5754 case TSK_ExplicitInstantiationDeclaration:
5755 // This explicit instantiation declaration is redundant (that's okay).
5756 HasNoEffect = true;
5757 return false;
5758
5759 case TSK_Undeclared:
5760 case TSK_ImplicitInstantiation:
5761 // We're explicitly instantiating something that may have already been
5762 // implicitly instantiated; that's fine.
5763 return false;
5764
5765 case TSK_ExplicitSpecialization:
5766 // C++0x [temp.explicit]p4:
5767 // For a given set of template parameters, if an explicit instantiation
5768 // of a template appears after a declaration of an explicit
5769 // specialization for that template, the explicit instantiation has no
5770 // effect.
5771 HasNoEffect = true;
5772 return false;
5773
5774 case TSK_ExplicitInstantiationDefinition:
5775 // C++0x [temp.explicit]p10:
5776 // If an entity is the subject of both an explicit instantiation
5777 // declaration and an explicit instantiation definition in the same
5778 // translation unit, the definition shall follow the declaration.
5779 Diag(NewLoc,
5780 diag::err_explicit_instantiation_declaration_after_definition);
5781
5782 // Explicit instantiations following a specialization have no effect and
5783 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5784 // until a valid name loc is found.
5785 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5786 diag::note_explicit_instantiation_definition_here);
5787 HasNoEffect = true;
5788 return false;
5789 }
5790
5791 case TSK_ExplicitInstantiationDefinition:
5792 switch (PrevTSK) {
5793 case TSK_Undeclared:
5794 case TSK_ImplicitInstantiation:
5795 // We're explicitly instantiating something that may have already been
5796 // implicitly instantiated; that's fine.
5797 return false;
5798
5799 case TSK_ExplicitSpecialization:
5800 // C++ DR 259, C++0x [temp.explicit]p4:
5801 // For a given set of template parameters, if an explicit
5802 // instantiation of a template appears after a declaration of
5803 // an explicit specialization for that template, the explicit
5804 // instantiation has no effect.
5805 //
5806 // In C++98/03 mode, we only give an extension warning here, because it
5807 // is not harmful to try to explicitly instantiate something that
5808 // has been explicitly specialized.
5809 Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5810 diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5811 diag::ext_explicit_instantiation_after_specialization)
5812 << PrevDecl;
5813 Diag(PrevDecl->getLocation(),
5814 diag::note_previous_template_specialization);
5815 HasNoEffect = true;
5816 return false;
5817
5818 case TSK_ExplicitInstantiationDeclaration:
5819 // We're explicity instantiating a definition for something for which we
5820 // were previously asked to suppress instantiations. That's fine.
5821
5822 // C++0x [temp.explicit]p4:
5823 // For a given set of template parameters, if an explicit instantiation
5824 // of a template appears after a declaration of an explicit
5825 // specialization for that template, the explicit instantiation has no
5826 // effect.
5827 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5828 // Is there any previous explicit specialization declaration?
5829 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5830 HasNoEffect = true;
5831 break;
5832 }
5833 }
5834
5835 return false;
5836
5837 case TSK_ExplicitInstantiationDefinition:
5838 // C++0x [temp.spec]p5:
5839 // For a given template and a given set of template-arguments,
5840 // - an explicit instantiation definition shall appear at most once
5841 // in a program,
5842 Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5843 << PrevDecl;
5844 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5845 diag::note_previous_explicit_instantiation);
5846 HasNoEffect = true;
5847 return false;
5848 }
5849 }
5850
5851 llvm_unreachable("Missing specialization/instantiation case?");
5852 }
5853
5854 /// \brief Perform semantic analysis for the given dependent function
5855 /// template specialization.
5856 ///
5857 /// The only possible way to get a dependent function template specialization
5858 /// is with a friend declaration, like so:
5859 ///
5860 /// \code
5861 /// template \<class T> void foo(T);
5862 /// template \<class T> class A {
5863 /// friend void foo<>(T);
5864 /// };
5865 /// \endcode
5866 ///
5867 /// There really isn't any useful analysis we can do here, so we
5868 /// just store the information.
5869 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)5870 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5871 const TemplateArgumentListInfo &ExplicitTemplateArgs,
5872 LookupResult &Previous) {
5873 // Remove anything from Previous that isn't a function template in
5874 // the correct context.
5875 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5876 LookupResult::Filter F = Previous.makeFilter();
5877 while (F.hasNext()) {
5878 NamedDecl *D = F.next()->getUnderlyingDecl();
5879 if (!isa<FunctionTemplateDecl>(D) ||
5880 !FDLookupContext->InEnclosingNamespaceSetOf(
5881 D->getDeclContext()->getRedeclContext()))
5882 F.erase();
5883 }
5884 F.done();
5885
5886 // Should this be diagnosed here?
5887 if (Previous.empty()) return true;
5888
5889 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5890 ExplicitTemplateArgs);
5891 return false;
5892 }
5893
5894 /// \brief Perform semantic analysis for the given function template
5895 /// specialization.
5896 ///
5897 /// This routine performs all of the semantic analysis required for an
5898 /// explicit function template specialization. On successful completion,
5899 /// the function declaration \p FD will become a function template
5900 /// specialization.
5901 ///
5902 /// \param FD the function declaration, which will be updated to become a
5903 /// function template specialization.
5904 ///
5905 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5906 /// if any. Note that this may be valid info even when 0 arguments are
5907 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5908 /// as it anyway contains info on the angle brackets locations.
5909 ///
5910 /// \param Previous the set of declarations that may be specialized by
5911 /// this function specialization.
5912 bool
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)5913 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5914 TemplateArgumentListInfo *ExplicitTemplateArgs,
5915 LookupResult &Previous) {
5916 // The set of function template specializations that could match this
5917 // explicit function template specialization.
5918 UnresolvedSet<8> Candidates;
5919
5920 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5921 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5922 I != E; ++I) {
5923 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5924 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5925 // Only consider templates found within the same semantic lookup scope as
5926 // FD.
5927 if (!FDLookupContext->InEnclosingNamespaceSetOf(
5928 Ovl->getDeclContext()->getRedeclContext()))
5929 continue;
5930
5931 // C++ [temp.expl.spec]p11:
5932 // A trailing template-argument can be left unspecified in the
5933 // template-id naming an explicit function template specialization
5934 // provided it can be deduced from the function argument type.
5935 // Perform template argument deduction to determine whether we may be
5936 // specializing this template.
5937 // FIXME: It is somewhat wasteful to build
5938 TemplateDeductionInfo Info(Context, FD->getLocation());
5939 FunctionDecl *Specialization = 0;
5940 if (TemplateDeductionResult TDK
5941 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5942 FD->getType(),
5943 Specialization,
5944 Info)) {
5945 // FIXME: Template argument deduction failed; record why it failed, so
5946 // that we can provide nifty diagnostics.
5947 (void)TDK;
5948 continue;
5949 }
5950
5951 // Record this candidate.
5952 Candidates.addDecl(Specialization, I.getAccess());
5953 }
5954 }
5955
5956 // Find the most specialized function template.
5957 UnresolvedSetIterator Result
5958 = getMostSpecialized(Candidates.begin(), Candidates.end(),
5959 TPOC_Other, 0, FD->getLocation(),
5960 PDiag(diag::err_function_template_spec_no_match)
5961 << FD->getDeclName(),
5962 PDiag(diag::err_function_template_spec_ambiguous)
5963 << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5964 PDiag(diag::note_function_template_spec_matched));
5965 if (Result == Candidates.end())
5966 return true;
5967
5968 // Ignore access information; it doesn't figure into redeclaration checking.
5969 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5970
5971 FunctionTemplateSpecializationInfo *SpecInfo
5972 = Specialization->getTemplateSpecializationInfo();
5973 assert(SpecInfo && "Function template specialization info missing?");
5974
5975 // Note: do not overwrite location info if previous template
5976 // specialization kind was explicit.
5977 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5978 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5979 Specialization->setLocation(FD->getLocation());
5980 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5981 // function can differ from the template declaration with respect to
5982 // the constexpr specifier.
5983 Specialization->setConstexpr(FD->isConstexpr());
5984 }
5985
5986 // FIXME: Check if the prior specialization has a point of instantiation.
5987 // If so, we have run afoul of .
5988
5989 // If this is a friend declaration, then we're not really declaring
5990 // an explicit specialization.
5991 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5992
5993 // Check the scope of this explicit specialization.
5994 if (!isFriend &&
5995 CheckTemplateSpecializationScope(*this,
5996 Specialization->getPrimaryTemplate(),
5997 Specialization, FD->getLocation(),
5998 false))
5999 return true;
6000
6001 // C++ [temp.expl.spec]p6:
6002 // If a template, a member template or the member of a class template is
6003 // explicitly specialized then that specialization shall be declared
6004 // before the first use of that specialization that would cause an implicit
6005 // instantiation to take place, in every translation unit in which such a
6006 // use occurs; no diagnostic is required.
6007 bool HasNoEffect = false;
6008 if (!isFriend &&
6009 CheckSpecializationInstantiationRedecl(FD->getLocation(),
6010 TSK_ExplicitSpecialization,
6011 Specialization,
6012 SpecInfo->getTemplateSpecializationKind(),
6013 SpecInfo->getPointOfInstantiation(),
6014 HasNoEffect))
6015 return true;
6016
6017 // Mark the prior declaration as an explicit specialization, so that later
6018 // clients know that this is an explicit specialization.
6019 if (!isFriend) {
6020 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6021 MarkUnusedFileScopedDecl(Specialization);
6022 }
6023
6024 // Turn the given function declaration into a function template
6025 // specialization, with the template arguments from the previous
6026 // specialization.
6027 // Take copies of (semantic and syntactic) template argument lists.
6028 const TemplateArgumentList* TemplArgs = new (Context)
6029 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6030 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6031 TemplArgs, /*InsertPos=*/0,
6032 SpecInfo->getTemplateSpecializationKind(),
6033 ExplicitTemplateArgs);
6034 FD->setStorageClass(Specialization->getStorageClass());
6035
6036 // The "previous declaration" for this function template specialization is
6037 // the prior function template specialization.
6038 Previous.clear();
6039 Previous.addDecl(Specialization);
6040 return false;
6041 }
6042
6043 /// \brief Perform semantic analysis for the given non-template member
6044 /// specialization.
6045 ///
6046 /// This routine performs all of the semantic analysis required for an
6047 /// explicit member function specialization. On successful completion,
6048 /// the function declaration \p FD will become a member function
6049 /// specialization.
6050 ///
6051 /// \param Member the member declaration, which will be updated to become a
6052 /// specialization.
6053 ///
6054 /// \param Previous the set of declarations, one of which may be specialized
6055 /// by this function specialization; the set will be modified to contain the
6056 /// redeclared member.
6057 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6058 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6059 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6060
6061 // Try to find the member we are instantiating.
6062 NamedDecl *Instantiation = 0;
6063 NamedDecl *InstantiatedFrom = 0;
6064 MemberSpecializationInfo *MSInfo = 0;
6065
6066 if (Previous.empty()) {
6067 // Nowhere to look anyway.
6068 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6069 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6070 I != E; ++I) {
6071 NamedDecl *D = (*I)->getUnderlyingDecl();
6072 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6073 if (Context.hasSameType(Function->getType(), Method->getType())) {
6074 Instantiation = Method;
6075 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6076 MSInfo = Method->getMemberSpecializationInfo();
6077 break;
6078 }
6079 }
6080 }
6081 } else if (isa<VarDecl>(Member)) {
6082 VarDecl *PrevVar;
6083 if (Previous.isSingleResult() &&
6084 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6085 if (PrevVar->isStaticDataMember()) {
6086 Instantiation = PrevVar;
6087 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6088 MSInfo = PrevVar->getMemberSpecializationInfo();
6089 }
6090 } else if (isa<RecordDecl>(Member)) {
6091 CXXRecordDecl *PrevRecord;
6092 if (Previous.isSingleResult() &&
6093 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6094 Instantiation = PrevRecord;
6095 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6096 MSInfo = PrevRecord->getMemberSpecializationInfo();
6097 }
6098 } else if (isa<EnumDecl>(Member)) {
6099 EnumDecl *PrevEnum;
6100 if (Previous.isSingleResult() &&
6101 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6102 Instantiation = PrevEnum;
6103 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6104 MSInfo = PrevEnum->getMemberSpecializationInfo();
6105 }
6106 }
6107
6108 if (!Instantiation) {
6109 // There is no previous declaration that matches. Since member
6110 // specializations are always out-of-line, the caller will complain about
6111 // this mismatch later.
6112 return false;
6113 }
6114
6115 // If this is a friend, just bail out here before we start turning
6116 // things into explicit specializations.
6117 if (Member->getFriendObjectKind() != Decl::FOK_None) {
6118 // Preserve instantiation information.
6119 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6120 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6121 cast<CXXMethodDecl>(InstantiatedFrom),
6122 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6123 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6124 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6125 cast<CXXRecordDecl>(InstantiatedFrom),
6126 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6127 }
6128
6129 Previous.clear();
6130 Previous.addDecl(Instantiation);
6131 return false;
6132 }
6133
6134 // Make sure that this is a specialization of a member.
6135 if (!InstantiatedFrom) {
6136 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6137 << Member;
6138 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6139 return true;
6140 }
6141
6142 // C++ [temp.expl.spec]p6:
6143 // If a template, a member template or the member of a class template is
6144 // explicitly specialized then that specialization shall be declared
6145 // before the first use of that specialization that would cause an implicit
6146 // instantiation to take place, in every translation unit in which such a
6147 // use occurs; no diagnostic is required.
6148 assert(MSInfo && "Member specialization info missing?");
6149
6150 bool HasNoEffect = false;
6151 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6152 TSK_ExplicitSpecialization,
6153 Instantiation,
6154 MSInfo->getTemplateSpecializationKind(),
6155 MSInfo->getPointOfInstantiation(),
6156 HasNoEffect))
6157 return true;
6158
6159 // Check the scope of this explicit specialization.
6160 if (CheckTemplateSpecializationScope(*this,
6161 InstantiatedFrom,
6162 Instantiation, Member->getLocation(),
6163 false))
6164 return true;
6165
6166 // Note that this is an explicit instantiation of a member.
6167 // the original declaration to note that it is an explicit specialization
6168 // (if it was previously an implicit instantiation). This latter step
6169 // makes bookkeeping easier.
6170 if (isa<FunctionDecl>(Member)) {
6171 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6172 if (InstantiationFunction->getTemplateSpecializationKind() ==
6173 TSK_ImplicitInstantiation) {
6174 InstantiationFunction->setTemplateSpecializationKind(
6175 TSK_ExplicitSpecialization);
6176 InstantiationFunction->setLocation(Member->getLocation());
6177 }
6178
6179 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6180 cast<CXXMethodDecl>(InstantiatedFrom),
6181 TSK_ExplicitSpecialization);
6182 MarkUnusedFileScopedDecl(InstantiationFunction);
6183 } else if (isa<VarDecl>(Member)) {
6184 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6185 if (InstantiationVar->getTemplateSpecializationKind() ==
6186 TSK_ImplicitInstantiation) {
6187 InstantiationVar->setTemplateSpecializationKind(
6188 TSK_ExplicitSpecialization);
6189 InstantiationVar->setLocation(Member->getLocation());
6190 }
6191
6192 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6193 cast<VarDecl>(InstantiatedFrom),
6194 TSK_ExplicitSpecialization);
6195 MarkUnusedFileScopedDecl(InstantiationVar);
6196 } else if (isa<CXXRecordDecl>(Member)) {
6197 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6198 if (InstantiationClass->getTemplateSpecializationKind() ==
6199 TSK_ImplicitInstantiation) {
6200 InstantiationClass->setTemplateSpecializationKind(
6201 TSK_ExplicitSpecialization);
6202 InstantiationClass->setLocation(Member->getLocation());
6203 }
6204
6205 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6206 cast<CXXRecordDecl>(InstantiatedFrom),
6207 TSK_ExplicitSpecialization);
6208 } else {
6209 assert(isa<EnumDecl>(Member) && "Only member enums remain");
6210 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6211 if (InstantiationEnum->getTemplateSpecializationKind() ==
6212 TSK_ImplicitInstantiation) {
6213 InstantiationEnum->setTemplateSpecializationKind(
6214 TSK_ExplicitSpecialization);
6215 InstantiationEnum->setLocation(Member->getLocation());
6216 }
6217
6218 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6219 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6220 }
6221
6222 // Save the caller the trouble of having to figure out which declaration
6223 // this specialization matches.
6224 Previous.clear();
6225 Previous.addDecl(Instantiation);
6226 return false;
6227 }
6228
6229 /// \brief Check the scope of an explicit instantiation.
6230 ///
6231 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)6232 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6233 SourceLocation InstLoc,
6234 bool WasQualifiedName) {
6235 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6236 DeclContext *CurContext = S.CurContext->getRedeclContext();
6237
6238 if (CurContext->isRecord()) {
6239 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6240 << D;
6241 return true;
6242 }
6243
6244 // C++11 [temp.explicit]p3:
6245 // An explicit instantiation shall appear in an enclosing namespace of its
6246 // template. If the name declared in the explicit instantiation is an
6247 // unqualified name, the explicit instantiation shall appear in the
6248 // namespace where its template is declared or, if that namespace is inline
6249 // (7.3.1), any namespace from its enclosing namespace set.
6250 //
6251 // This is DR275, which we do not retroactively apply to C++98/03.
6252 if (WasQualifiedName) {
6253 if (CurContext->Encloses(OrigContext))
6254 return false;
6255 } else {
6256 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6257 return false;
6258 }
6259
6260 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6261 if (WasQualifiedName)
6262 S.Diag(InstLoc,
6263 S.getLangOpts().CPlusPlus0x?
6264 diag::err_explicit_instantiation_out_of_scope :
6265 diag::warn_explicit_instantiation_out_of_scope_0x)
6266 << D << NS;
6267 else
6268 S.Diag(InstLoc,
6269 S.getLangOpts().CPlusPlus0x?
6270 diag::err_explicit_instantiation_unqualified_wrong_namespace :
6271 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6272 << D << NS;
6273 } else
6274 S.Diag(InstLoc,
6275 S.getLangOpts().CPlusPlus0x?
6276 diag::err_explicit_instantiation_must_be_global :
6277 diag::warn_explicit_instantiation_must_be_global_0x)
6278 << D;
6279 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6280 return false;
6281 }
6282
6283 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)6284 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6285 if (!SS.isSet())
6286 return false;
6287
6288 // C++11 [temp.explicit]p3:
6289 // If the explicit instantiation is for a member function, a member class
6290 // or a static data member of a class template specialization, the name of
6291 // the class template specialization in the qualified-id for the member
6292 // name shall be a simple-template-id.
6293 //
6294 // C++98 has the same restriction, just worded differently.
6295 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6296 NNS; NNS = NNS->getPrefix())
6297 if (const Type *T = NNS->getAsType())
6298 if (isa<TemplateSpecializationType>(T))
6299 return true;
6300
6301 return false;
6302 }
6303
6304 // Explicit instantiation of a class template specialization
6305 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)6306 Sema::ActOnExplicitInstantiation(Scope *S,
6307 SourceLocation ExternLoc,
6308 SourceLocation TemplateLoc,
6309 unsigned TagSpec,
6310 SourceLocation KWLoc,
6311 const CXXScopeSpec &SS,
6312 TemplateTy TemplateD,
6313 SourceLocation TemplateNameLoc,
6314 SourceLocation LAngleLoc,
6315 ASTTemplateArgsPtr TemplateArgsIn,
6316 SourceLocation RAngleLoc,
6317 AttributeList *Attr) {
6318 // Find the class template we're specializing
6319 TemplateName Name = TemplateD.getAsVal<TemplateName>();
6320 ClassTemplateDecl *ClassTemplate
6321 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6322
6323 // Check that the specialization uses the same tag kind as the
6324 // original template.
6325 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6326 assert(Kind != TTK_Enum &&
6327 "Invalid enum tag in class template explicit instantiation!");
6328 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6329 Kind, /*isDefinition*/false, KWLoc,
6330 *ClassTemplate->getIdentifier())) {
6331 Diag(KWLoc, diag::err_use_with_wrong_tag)
6332 << ClassTemplate
6333 << FixItHint::CreateReplacement(KWLoc,
6334 ClassTemplate->getTemplatedDecl()->getKindName());
6335 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6336 diag::note_previous_use);
6337 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6338 }
6339
6340 // C++0x [temp.explicit]p2:
6341 // There are two forms of explicit instantiation: an explicit instantiation
6342 // definition and an explicit instantiation declaration. An explicit
6343 // instantiation declaration begins with the extern keyword. [...]
6344 TemplateSpecializationKind TSK
6345 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6346 : TSK_ExplicitInstantiationDeclaration;
6347
6348 // Translate the parser's template argument list in our AST format.
6349 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6350 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6351
6352 // Check that the template argument list is well-formed for this
6353 // template.
6354 SmallVector<TemplateArgument, 4> Converted;
6355 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6356 TemplateArgs, false, Converted))
6357 return true;
6358
6359 // Find the class template specialization declaration that
6360 // corresponds to these arguments.
6361 void *InsertPos = 0;
6362 ClassTemplateSpecializationDecl *PrevDecl
6363 = ClassTemplate->findSpecialization(Converted.data(),
6364 Converted.size(), InsertPos);
6365
6366 TemplateSpecializationKind PrevDecl_TSK
6367 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6368
6369 // C++0x [temp.explicit]p2:
6370 // [...] An explicit instantiation shall appear in an enclosing
6371 // namespace of its template. [...]
6372 //
6373 // This is C++ DR 275.
6374 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6375 SS.isSet()))
6376 return true;
6377
6378 ClassTemplateSpecializationDecl *Specialization = 0;
6379
6380 bool HasNoEffect = false;
6381 if (PrevDecl) {
6382 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6383 PrevDecl, PrevDecl_TSK,
6384 PrevDecl->getPointOfInstantiation(),
6385 HasNoEffect))
6386 return PrevDecl;
6387
6388 // Even though HasNoEffect == true means that this explicit instantiation
6389 // has no effect on semantics, we go on to put its syntax in the AST.
6390
6391 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6392 PrevDecl_TSK == TSK_Undeclared) {
6393 // Since the only prior class template specialization with these
6394 // arguments was referenced but not declared, reuse that
6395 // declaration node as our own, updating the source location
6396 // for the template name to reflect our new declaration.
6397 // (Other source locations will be updated later.)
6398 Specialization = PrevDecl;
6399 Specialization->setLocation(TemplateNameLoc);
6400 PrevDecl = 0;
6401 }
6402 }
6403
6404 if (!Specialization) {
6405 // Create a new class template specialization declaration node for
6406 // this explicit specialization.
6407 Specialization
6408 = ClassTemplateSpecializationDecl::Create(Context, Kind,
6409 ClassTemplate->getDeclContext(),
6410 KWLoc, TemplateNameLoc,
6411 ClassTemplate,
6412 Converted.data(),
6413 Converted.size(),
6414 PrevDecl);
6415 SetNestedNameSpecifier(Specialization, SS);
6416
6417 if (!HasNoEffect && !PrevDecl) {
6418 // Insert the new specialization.
6419 ClassTemplate->AddSpecialization(Specialization, InsertPos);
6420 }
6421 }
6422
6423 // Build the fully-sugared type for this explicit instantiation as
6424 // the user wrote in the explicit instantiation itself. This means
6425 // that we'll pretty-print the type retrieved from the
6426 // specialization's declaration the way that the user actually wrote
6427 // the explicit instantiation, rather than formatting the name based
6428 // on the "canonical" representation used to store the template
6429 // arguments in the specialization.
6430 TypeSourceInfo *WrittenTy
6431 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6432 TemplateArgs,
6433 Context.getTypeDeclType(Specialization));
6434 Specialization->setTypeAsWritten(WrittenTy);
6435
6436 // Set source locations for keywords.
6437 Specialization->setExternLoc(ExternLoc);
6438 Specialization->setTemplateKeywordLoc(TemplateLoc);
6439
6440 if (Attr)
6441 ProcessDeclAttributeList(S, Specialization, Attr);
6442
6443 // Add the explicit instantiation into its lexical context. However,
6444 // since explicit instantiations are never found by name lookup, we
6445 // just put it into the declaration context directly.
6446 Specialization->setLexicalDeclContext(CurContext);
6447 CurContext->addDecl(Specialization);
6448
6449 // Syntax is now OK, so return if it has no other effect on semantics.
6450 if (HasNoEffect) {
6451 // Set the template specialization kind.
6452 Specialization->setTemplateSpecializationKind(TSK);
6453 return Specialization;
6454 }
6455
6456 // C++ [temp.explicit]p3:
6457 // A definition of a class template or class member template
6458 // shall be in scope at the point of the explicit instantiation of
6459 // the class template or class member template.
6460 //
6461 // This check comes when we actually try to perform the
6462 // instantiation.
6463 ClassTemplateSpecializationDecl *Def
6464 = cast_or_null<ClassTemplateSpecializationDecl>(
6465 Specialization->getDefinition());
6466 if (!Def)
6467 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6468 else if (TSK == TSK_ExplicitInstantiationDefinition) {
6469 MarkVTableUsed(TemplateNameLoc, Specialization, true);
6470 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6471 }
6472
6473 // Instantiate the members of this class template specialization.
6474 Def = cast_or_null<ClassTemplateSpecializationDecl>(
6475 Specialization->getDefinition());
6476 if (Def) {
6477 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6478
6479 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6480 // TSK_ExplicitInstantiationDefinition
6481 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6482 TSK == TSK_ExplicitInstantiationDefinition)
6483 Def->setTemplateSpecializationKind(TSK);
6484
6485 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6486 }
6487
6488 // Set the template specialization kind.
6489 Specialization->setTemplateSpecializationKind(TSK);
6490 return Specialization;
6491 }
6492
6493 // Explicit instantiation of a member class of a class template.
6494 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)6495 Sema::ActOnExplicitInstantiation(Scope *S,
6496 SourceLocation ExternLoc,
6497 SourceLocation TemplateLoc,
6498 unsigned TagSpec,
6499 SourceLocation KWLoc,
6500 CXXScopeSpec &SS,
6501 IdentifierInfo *Name,
6502 SourceLocation NameLoc,
6503 AttributeList *Attr) {
6504
6505 bool Owned = false;
6506 bool IsDependent = false;
6507 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6508 KWLoc, SS, Name, NameLoc, Attr, AS_none,
6509 /*ModulePrivateLoc=*/SourceLocation(),
6510 MultiTemplateParamsArg(), Owned, IsDependent,
6511 SourceLocation(), false, TypeResult());
6512 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6513
6514 if (!TagD)
6515 return true;
6516
6517 TagDecl *Tag = cast<TagDecl>(TagD);
6518 assert(!Tag->isEnum() && "shouldn't see enumerations here");
6519
6520 if (Tag->isInvalidDecl())
6521 return true;
6522
6523 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6524 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6525 if (!Pattern) {
6526 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6527 << Context.getTypeDeclType(Record);
6528 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6529 return true;
6530 }
6531
6532 // C++0x [temp.explicit]p2:
6533 // If the explicit instantiation is for a class or member class, the
6534 // elaborated-type-specifier in the declaration shall include a
6535 // simple-template-id.
6536 //
6537 // C++98 has the same restriction, just worded differently.
6538 if (!ScopeSpecifierHasTemplateId(SS))
6539 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6540 << Record << SS.getRange();
6541
6542 // C++0x [temp.explicit]p2:
6543 // There are two forms of explicit instantiation: an explicit instantiation
6544 // definition and an explicit instantiation declaration. An explicit
6545 // instantiation declaration begins with the extern keyword. [...]
6546 TemplateSpecializationKind TSK
6547 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6548 : TSK_ExplicitInstantiationDeclaration;
6549
6550 // C++0x [temp.explicit]p2:
6551 // [...] An explicit instantiation shall appear in an enclosing
6552 // namespace of its template. [...]
6553 //
6554 // This is C++ DR 275.
6555 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6556
6557 // Verify that it is okay to explicitly instantiate here.
6558 CXXRecordDecl *PrevDecl
6559 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6560 if (!PrevDecl && Record->getDefinition())
6561 PrevDecl = Record;
6562 if (PrevDecl) {
6563 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6564 bool HasNoEffect = false;
6565 assert(MSInfo && "No member specialization information?");
6566 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6567 PrevDecl,
6568 MSInfo->getTemplateSpecializationKind(),
6569 MSInfo->getPointOfInstantiation(),
6570 HasNoEffect))
6571 return true;
6572 if (HasNoEffect)
6573 return TagD;
6574 }
6575
6576 CXXRecordDecl *RecordDef
6577 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6578 if (!RecordDef) {
6579 // C++ [temp.explicit]p3:
6580 // A definition of a member class of a class template shall be in scope
6581 // at the point of an explicit instantiation of the member class.
6582 CXXRecordDecl *Def
6583 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6584 if (!Def) {
6585 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6586 << 0 << Record->getDeclName() << Record->getDeclContext();
6587 Diag(Pattern->getLocation(), diag::note_forward_declaration)
6588 << Pattern;
6589 return true;
6590 } else {
6591 if (InstantiateClass(NameLoc, Record, Def,
6592 getTemplateInstantiationArgs(Record),
6593 TSK))
6594 return true;
6595
6596 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6597 if (!RecordDef)
6598 return true;
6599 }
6600 }
6601
6602 // Instantiate all of the members of the class.
6603 InstantiateClassMembers(NameLoc, RecordDef,
6604 getTemplateInstantiationArgs(Record), TSK);
6605
6606 if (TSK == TSK_ExplicitInstantiationDefinition)
6607 MarkVTableUsed(NameLoc, RecordDef, true);
6608
6609 // FIXME: We don't have any representation for explicit instantiations of
6610 // member classes. Such a representation is not needed for compilation, but it
6611 // should be available for clients that want to see all of the declarations in
6612 // the source code.
6613 return TagD;
6614 }
6615
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)6616 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6617 SourceLocation ExternLoc,
6618 SourceLocation TemplateLoc,
6619 Declarator &D) {
6620 // Explicit instantiations always require a name.
6621 // TODO: check if/when DNInfo should replace Name.
6622 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6623 DeclarationName Name = NameInfo.getName();
6624 if (!Name) {
6625 if (!D.isInvalidType())
6626 Diag(D.getDeclSpec().getLocStart(),
6627 diag::err_explicit_instantiation_requires_name)
6628 << D.getDeclSpec().getSourceRange()
6629 << D.getSourceRange();
6630
6631 return true;
6632 }
6633
6634 // The scope passed in may not be a decl scope. Zip up the scope tree until
6635 // we find one that is.
6636 while ((S->getFlags() & Scope::DeclScope) == 0 ||
6637 (S->getFlags() & Scope::TemplateParamScope) != 0)
6638 S = S->getParent();
6639
6640 // Determine the type of the declaration.
6641 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6642 QualType R = T->getType();
6643 if (R.isNull())
6644 return true;
6645
6646 // C++ [dcl.stc]p1:
6647 // A storage-class-specifier shall not be specified in [...] an explicit
6648 // instantiation (14.7.2) directive.
6649 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6650 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6651 << Name;
6652 return true;
6653 } else if (D.getDeclSpec().getStorageClassSpec()
6654 != DeclSpec::SCS_unspecified) {
6655 // Complain about then remove the storage class specifier.
6656 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6657 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6658
6659 D.getMutableDeclSpec().ClearStorageClassSpecs();
6660 }
6661
6662 // C++0x [temp.explicit]p1:
6663 // [...] An explicit instantiation of a function template shall not use the
6664 // inline or constexpr specifiers.
6665 // Presumably, this also applies to member functions of class templates as
6666 // well.
6667 if (D.getDeclSpec().isInlineSpecified())
6668 Diag(D.getDeclSpec().getInlineSpecLoc(),
6669 getLangOpts().CPlusPlus0x ?
6670 diag::err_explicit_instantiation_inline :
6671 diag::warn_explicit_instantiation_inline_0x)
6672 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6673 if (D.getDeclSpec().isConstexprSpecified())
6674 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6675 // not already specified.
6676 Diag(D.getDeclSpec().getConstexprSpecLoc(),
6677 diag::err_explicit_instantiation_constexpr);
6678
6679 // C++0x [temp.explicit]p2:
6680 // There are two forms of explicit instantiation: an explicit instantiation
6681 // definition and an explicit instantiation declaration. An explicit
6682 // instantiation declaration begins with the extern keyword. [...]
6683 TemplateSpecializationKind TSK
6684 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6685 : TSK_ExplicitInstantiationDeclaration;
6686
6687 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6688 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6689
6690 if (!R->isFunctionType()) {
6691 // C++ [temp.explicit]p1:
6692 // A [...] static data member of a class template can be explicitly
6693 // instantiated from the member definition associated with its class
6694 // template.
6695 if (Previous.isAmbiguous())
6696 return true;
6697
6698 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6699 if (!Prev || !Prev->isStaticDataMember()) {
6700 // We expect to see a data data member here.
6701 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6702 << Name;
6703 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6704 P != PEnd; ++P)
6705 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6706 return true;
6707 }
6708
6709 if (!Prev->getInstantiatedFromStaticDataMember()) {
6710 // FIXME: Check for explicit specialization?
6711 Diag(D.getIdentifierLoc(),
6712 diag::err_explicit_instantiation_data_member_not_instantiated)
6713 << Prev;
6714 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6715 // FIXME: Can we provide a note showing where this was declared?
6716 return true;
6717 }
6718
6719 // C++0x [temp.explicit]p2:
6720 // If the explicit instantiation is for a member function, a member class
6721 // or a static data member of a class template specialization, the name of
6722 // the class template specialization in the qualified-id for the member
6723 // name shall be a simple-template-id.
6724 //
6725 // C++98 has the same restriction, just worded differently.
6726 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6727 Diag(D.getIdentifierLoc(),
6728 diag::ext_explicit_instantiation_without_qualified_id)
6729 << Prev << D.getCXXScopeSpec().getRange();
6730
6731 // Check the scope of this explicit instantiation.
6732 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6733
6734 // Verify that it is okay to explicitly instantiate here.
6735 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6736 assert(MSInfo && "Missing static data member specialization info?");
6737 bool HasNoEffect = false;
6738 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6739 MSInfo->getTemplateSpecializationKind(),
6740 MSInfo->getPointOfInstantiation(),
6741 HasNoEffect))
6742 return true;
6743 if (HasNoEffect)
6744 return (Decl*) 0;
6745
6746 // Instantiate static data member.
6747 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6748 if (TSK == TSK_ExplicitInstantiationDefinition)
6749 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6750
6751 // FIXME: Create an ExplicitInstantiation node?
6752 return (Decl*) 0;
6753 }
6754
6755 // If the declarator is a template-id, translate the parser's template
6756 // argument list into our AST format.
6757 bool HasExplicitTemplateArgs = false;
6758 TemplateArgumentListInfo TemplateArgs;
6759 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6760 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6761 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6762 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6763 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6764 TemplateId->NumArgs);
6765 translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6766 HasExplicitTemplateArgs = true;
6767 }
6768
6769 // C++ [temp.explicit]p1:
6770 // A [...] function [...] can be explicitly instantiated from its template.
6771 // A member function [...] of a class template can be explicitly
6772 // instantiated from the member definition associated with its class
6773 // template.
6774 UnresolvedSet<8> Matches;
6775 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6776 P != PEnd; ++P) {
6777 NamedDecl *Prev = *P;
6778 if (!HasExplicitTemplateArgs) {
6779 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6780 if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6781 Matches.clear();
6782
6783 Matches.addDecl(Method, P.getAccess());
6784 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6785 break;
6786 }
6787 }
6788 }
6789
6790 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6791 if (!FunTmpl)
6792 continue;
6793
6794 TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6795 FunctionDecl *Specialization = 0;
6796 if (TemplateDeductionResult TDK
6797 = DeduceTemplateArguments(FunTmpl,
6798 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6799 R, Specialization, Info)) {
6800 // FIXME: Keep track of almost-matches?
6801 (void)TDK;
6802 continue;
6803 }
6804
6805 Matches.addDecl(Specialization, P.getAccess());
6806 }
6807
6808 // Find the most specialized function template specialization.
6809 UnresolvedSetIterator Result
6810 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6811 D.getIdentifierLoc(),
6812 PDiag(diag::err_explicit_instantiation_not_known) << Name,
6813 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6814 PDiag(diag::note_explicit_instantiation_candidate));
6815
6816 if (Result == Matches.end())
6817 return true;
6818
6819 // Ignore access control bits, we don't need them for redeclaration checking.
6820 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6821
6822 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6823 Diag(D.getIdentifierLoc(),
6824 diag::err_explicit_instantiation_member_function_not_instantiated)
6825 << Specialization
6826 << (Specialization->getTemplateSpecializationKind() ==
6827 TSK_ExplicitSpecialization);
6828 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6829 return true;
6830 }
6831
6832 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6833 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6834 PrevDecl = Specialization;
6835
6836 if (PrevDecl) {
6837 bool HasNoEffect = false;
6838 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6839 PrevDecl,
6840 PrevDecl->getTemplateSpecializationKind(),
6841 PrevDecl->getPointOfInstantiation(),
6842 HasNoEffect))
6843 return true;
6844
6845 // FIXME: We may still want to build some representation of this
6846 // explicit specialization.
6847 if (HasNoEffect)
6848 return (Decl*) 0;
6849 }
6850
6851 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6852 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6853 if (Attr)
6854 ProcessDeclAttributeList(S, Specialization, Attr);
6855
6856 if (TSK == TSK_ExplicitInstantiationDefinition)
6857 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6858
6859 // C++0x [temp.explicit]p2:
6860 // If the explicit instantiation is for a member function, a member class
6861 // or a static data member of a class template specialization, the name of
6862 // the class template specialization in the qualified-id for the member
6863 // name shall be a simple-template-id.
6864 //
6865 // C++98 has the same restriction, just worded differently.
6866 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6867 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6868 D.getCXXScopeSpec().isSet() &&
6869 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6870 Diag(D.getIdentifierLoc(),
6871 diag::ext_explicit_instantiation_without_qualified_id)
6872 << Specialization << D.getCXXScopeSpec().getRange();
6873
6874 CheckExplicitInstantiationScope(*this,
6875 FunTmpl? (NamedDecl *)FunTmpl
6876 : Specialization->getInstantiatedFromMemberFunction(),
6877 D.getIdentifierLoc(),
6878 D.getCXXScopeSpec().isSet());
6879
6880 // FIXME: Create some kind of ExplicitInstantiationDecl here.
6881 return (Decl*) 0;
6882 }
6883
6884 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)6885 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6886 const CXXScopeSpec &SS, IdentifierInfo *Name,
6887 SourceLocation TagLoc, SourceLocation NameLoc) {
6888 // This has to hold, because SS is expected to be defined.
6889 assert(Name && "Expected a name in a dependent tag");
6890
6891 NestedNameSpecifier *NNS
6892 = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6893 if (!NNS)
6894 return true;
6895
6896 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6897
6898 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6899 Diag(NameLoc, diag::err_dependent_tag_decl)
6900 << (TUK == TUK_Definition) << Kind << SS.getRange();
6901 return true;
6902 }
6903
6904 // Create the resulting type.
6905 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6906 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6907
6908 // Create type-source location information for this type.
6909 TypeLocBuilder TLB;
6910 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6911 TL.setElaboratedKeywordLoc(TagLoc);
6912 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6913 TL.setNameLoc(NameLoc);
6914 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6915 }
6916
6917 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)6918 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6919 const CXXScopeSpec &SS, const IdentifierInfo &II,
6920 SourceLocation IdLoc) {
6921 if (SS.isInvalid())
6922 return true;
6923
6924 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6925 Diag(TypenameLoc,
6926 getLangOpts().CPlusPlus0x ?
6927 diag::warn_cxx98_compat_typename_outside_of_template :
6928 diag::ext_typename_outside_of_template)
6929 << FixItHint::CreateRemoval(TypenameLoc);
6930
6931 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6932 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6933 TypenameLoc, QualifierLoc, II, IdLoc);
6934 if (T.isNull())
6935 return true;
6936
6937 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6938 if (isa<DependentNameType>(T)) {
6939 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6940 TL.setElaboratedKeywordLoc(TypenameLoc);
6941 TL.setQualifierLoc(QualifierLoc);
6942 TL.setNameLoc(IdLoc);
6943 } else {
6944 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6945 TL.setElaboratedKeywordLoc(TypenameLoc);
6946 TL.setQualifierLoc(QualifierLoc);
6947 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6948 }
6949
6950 return CreateParsedType(T, TSI);
6951 }
6952
6953 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)6954 Sema::ActOnTypenameType(Scope *S,
6955 SourceLocation TypenameLoc,
6956 const CXXScopeSpec &SS,
6957 SourceLocation TemplateKWLoc,
6958 TemplateTy TemplateIn,
6959 SourceLocation TemplateNameLoc,
6960 SourceLocation LAngleLoc,
6961 ASTTemplateArgsPtr TemplateArgsIn,
6962 SourceLocation RAngleLoc) {
6963 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6964 Diag(TypenameLoc,
6965 getLangOpts().CPlusPlus0x ?
6966 diag::warn_cxx98_compat_typename_outside_of_template :
6967 diag::ext_typename_outside_of_template)
6968 << FixItHint::CreateRemoval(TypenameLoc);
6969
6970 // Translate the parser's template argument list in our AST format.
6971 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6972 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6973
6974 TemplateName Template = TemplateIn.get();
6975 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6976 // Construct a dependent template specialization type.
6977 assert(DTN && "dependent template has non-dependent name?");
6978 assert(DTN->getQualifier()
6979 == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6980 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6981 DTN->getQualifier(),
6982 DTN->getIdentifier(),
6983 TemplateArgs);
6984
6985 // Create source-location information for this type.
6986 TypeLocBuilder Builder;
6987 DependentTemplateSpecializationTypeLoc SpecTL
6988 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6989 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6990 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6991 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6992 SpecTL.setTemplateNameLoc(TemplateNameLoc);
6993 SpecTL.setLAngleLoc(LAngleLoc);
6994 SpecTL.setRAngleLoc(RAngleLoc);
6995 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6996 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6997 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6998 }
6999
7000 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7001 if (T.isNull())
7002 return true;
7003
7004 // Provide source-location information for the template specialization type.
7005 TypeLocBuilder Builder;
7006 TemplateSpecializationTypeLoc SpecTL
7007 = Builder.push<TemplateSpecializationTypeLoc>(T);
7008 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7009 SpecTL.setTemplateNameLoc(TemplateNameLoc);
7010 SpecTL.setLAngleLoc(LAngleLoc);
7011 SpecTL.setRAngleLoc(RAngleLoc);
7012 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7013 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7014
7015 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7016 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7017 TL.setElaboratedKeywordLoc(TypenameLoc);
7018 TL.setQualifierLoc(SS.getWithLocInContext(Context));
7019
7020 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7021 return CreateParsedType(T, TSI);
7022 }
7023
7024
7025 /// Determine whether this failed name lookup should be treated as being
7026 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)7027 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7028 SourceRange &CondRange) {
7029 // We must be looking for a ::type...
7030 if (!II.isStr("type"))
7031 return false;
7032
7033 // ... within an explicitly-written template specialization...
7034 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7035 return false;
7036 TypeLoc EnableIfTy = NNS.getTypeLoc();
7037 TemplateSpecializationTypeLoc *EnableIfTSTLoc =
7038 dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy);
7039 if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0)
7040 return false;
7041 const TemplateSpecializationType *EnableIfTST =
7042 cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr());
7043
7044 // ... which names a complete class template declaration...
7045 const TemplateDecl *EnableIfDecl =
7046 EnableIfTST->getTemplateName().getAsTemplateDecl();
7047 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7048 return false;
7049
7050 // ... called "enable_if".
7051 const IdentifierInfo *EnableIfII =
7052 EnableIfDecl->getDeclName().getAsIdentifierInfo();
7053 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7054 return false;
7055
7056 // Assume the first template argument is the condition.
7057 CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange();
7058 return true;
7059 }
7060
7061 /// \brief Build the type that describes a C++ typename specifier,
7062 /// e.g., "typename T::type".
7063 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)7064 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7065 SourceLocation KeywordLoc,
7066 NestedNameSpecifierLoc QualifierLoc,
7067 const IdentifierInfo &II,
7068 SourceLocation IILoc) {
7069 CXXScopeSpec SS;
7070 SS.Adopt(QualifierLoc);
7071
7072 DeclContext *Ctx = computeDeclContext(SS);
7073 if (!Ctx) {
7074 // If the nested-name-specifier is dependent and couldn't be
7075 // resolved to a type, build a typename type.
7076 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7077 return Context.getDependentNameType(Keyword,
7078 QualifierLoc.getNestedNameSpecifier(),
7079 &II);
7080 }
7081
7082 // If the nested-name-specifier refers to the current instantiation,
7083 // the "typename" keyword itself is superfluous. In C++03, the
7084 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7085 // allows such extraneous "typename" keywords, and we retroactively
7086 // apply this DR to C++03 code with only a warning. In any case we continue.
7087
7088 if (RequireCompleteDeclContext(SS, Ctx))
7089 return QualType();
7090
7091 DeclarationName Name(&II);
7092 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7093 LookupQualifiedName(Result, Ctx);
7094 unsigned DiagID = 0;
7095 Decl *Referenced = 0;
7096 switch (Result.getResultKind()) {
7097 case LookupResult::NotFound: {
7098 // If we're looking up 'type' within a template named 'enable_if', produce
7099 // a more specific diagnostic.
7100 SourceRange CondRange;
7101 if (isEnableIf(QualifierLoc, II, CondRange)) {
7102 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7103 << Ctx << CondRange;
7104 return QualType();
7105 }
7106
7107 DiagID = diag::err_typename_nested_not_found;
7108 break;
7109 }
7110
7111 case LookupResult::FoundUnresolvedValue: {
7112 // We found a using declaration that is a value. Most likely, the using
7113 // declaration itself is meant to have the 'typename' keyword.
7114 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7115 IILoc);
7116 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7117 << Name << Ctx << FullRange;
7118 if (UnresolvedUsingValueDecl *Using
7119 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7120 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7121 Diag(Loc, diag::note_using_value_decl_missing_typename)
7122 << FixItHint::CreateInsertion(Loc, "typename ");
7123 }
7124 }
7125 // Fall through to create a dependent typename type, from which we can recover
7126 // better.
7127
7128 case LookupResult::NotFoundInCurrentInstantiation:
7129 // Okay, it's a member of an unknown instantiation.
7130 return Context.getDependentNameType(Keyword,
7131 QualifierLoc.getNestedNameSpecifier(),
7132 &II);
7133
7134 case LookupResult::Found:
7135 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7136 // We found a type. Build an ElaboratedType, since the
7137 // typename-specifier was just sugar.
7138 return Context.getElaboratedType(ETK_Typename,
7139 QualifierLoc.getNestedNameSpecifier(),
7140 Context.getTypeDeclType(Type));
7141 }
7142
7143 DiagID = diag::err_typename_nested_not_type;
7144 Referenced = Result.getFoundDecl();
7145 break;
7146
7147 case LookupResult::FoundOverloaded:
7148 DiagID = diag::err_typename_nested_not_type;
7149 Referenced = *Result.begin();
7150 break;
7151
7152 case LookupResult::Ambiguous:
7153 return QualType();
7154 }
7155
7156 // If we get here, it's because name lookup did not find a
7157 // type. Emit an appropriate diagnostic and return an error.
7158 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7159 IILoc);
7160 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7161 if (Referenced)
7162 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7163 << Name;
7164 return QualType();
7165 }
7166
7167 namespace {
7168 // See Sema::RebuildTypeInCurrentInstantiation
7169 class CurrentInstantiationRebuilder
7170 : public TreeTransform<CurrentInstantiationRebuilder> {
7171 SourceLocation Loc;
7172 DeclarationName Entity;
7173
7174 public:
7175 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7176
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)7177 CurrentInstantiationRebuilder(Sema &SemaRef,
7178 SourceLocation Loc,
7179 DeclarationName Entity)
7180 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7181 Loc(Loc), Entity(Entity) { }
7182
7183 /// \brief Determine whether the given type \p T has already been
7184 /// transformed.
7185 ///
7186 /// For the purposes of type reconstruction, a type has already been
7187 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)7188 bool AlreadyTransformed(QualType T) {
7189 return T.isNull() || !T->isDependentType();
7190 }
7191
7192 /// \brief Returns the location of the entity whose type is being
7193 /// rebuilt.
getBaseLocation()7194 SourceLocation getBaseLocation() { return Loc; }
7195
7196 /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()7197 DeclarationName getBaseEntity() { return Entity; }
7198
7199 /// \brief Sets the "base" location and entity when that
7200 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)7201 void setBase(SourceLocation Loc, DeclarationName Entity) {
7202 this->Loc = Loc;
7203 this->Entity = Entity;
7204 }
7205
TransformLambdaExpr(LambdaExpr * E)7206 ExprResult TransformLambdaExpr(LambdaExpr *E) {
7207 // Lambdas never need to be transformed.
7208 return E;
7209 }
7210 };
7211 }
7212
7213 /// \brief Rebuilds a type within the context of the current instantiation.
7214 ///
7215 /// The type \p T is part of the type of an out-of-line member definition of
7216 /// a class template (or class template partial specialization) that was parsed
7217 /// and constructed before we entered the scope of the class template (or
7218 /// partial specialization thereof). This routine will rebuild that type now
7219 /// that we have entered the declarator's scope, which may produce different
7220 /// canonical types, e.g.,
7221 ///
7222 /// \code
7223 /// template<typename T>
7224 /// struct X {
7225 /// typedef T* pointer;
7226 /// pointer data();
7227 /// };
7228 ///
7229 /// template<typename T>
7230 /// typename X<T>::pointer X<T>::data() { ... }
7231 /// \endcode
7232 ///
7233 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7234 /// since we do not know that we can look into X<T> when we parsed the type.
7235 /// This function will rebuild the type, performing the lookup of "pointer"
7236 /// in X<T> and returning an ElaboratedType whose canonical type is the same
7237 /// as the canonical type of T*, allowing the return types of the out-of-line
7238 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)7239 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7240 SourceLocation Loc,
7241 DeclarationName Name) {
7242 if (!T || !T->getType()->isDependentType())
7243 return T;
7244
7245 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7246 return Rebuilder.TransformType(T);
7247 }
7248
RebuildExprInCurrentInstantiation(Expr * E)7249 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7250 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7251 DeclarationName());
7252 return Rebuilder.TransformExpr(E);
7253 }
7254
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)7255 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7256 if (SS.isInvalid())
7257 return true;
7258
7259 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7260 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7261 DeclarationName());
7262 NestedNameSpecifierLoc Rebuilt
7263 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7264 if (!Rebuilt)
7265 return true;
7266
7267 SS.Adopt(Rebuilt);
7268 return false;
7269 }
7270
7271 /// \brief Rebuild the template parameters now that we know we're in a current
7272 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)7273 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7274 TemplateParameterList *Params) {
7275 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7276 Decl *Param = Params->getParam(I);
7277
7278 // There is nothing to rebuild in a type parameter.
7279 if (isa<TemplateTypeParmDecl>(Param))
7280 continue;
7281
7282 // Rebuild the template parameter list of a template template parameter.
7283 if (TemplateTemplateParmDecl *TTP
7284 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7285 if (RebuildTemplateParamsInCurrentInstantiation(
7286 TTP->getTemplateParameters()))
7287 return true;
7288
7289 continue;
7290 }
7291
7292 // Rebuild the type of a non-type template parameter.
7293 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7294 TypeSourceInfo *NewTSI
7295 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7296 NTTP->getLocation(),
7297 NTTP->getDeclName());
7298 if (!NewTSI)
7299 return true;
7300
7301 if (NewTSI != NTTP->getTypeSourceInfo()) {
7302 NTTP->setTypeSourceInfo(NewTSI);
7303 NTTP->setType(NewTSI->getType());
7304 }
7305 }
7306
7307 return false;
7308 }
7309
7310 /// \brief Produces a formatted string that describes the binding of
7311 /// template parameters to template arguments.
7312 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)7313 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7314 const TemplateArgumentList &Args) {
7315 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7316 }
7317
7318 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)7319 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7320 const TemplateArgument *Args,
7321 unsigned NumArgs) {
7322 SmallString<128> Str;
7323 llvm::raw_svector_ostream Out(Str);
7324
7325 if (!Params || Params->size() == 0 || NumArgs == 0)
7326 return std::string();
7327
7328 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7329 if (I >= NumArgs)
7330 break;
7331
7332 if (I == 0)
7333 Out << "[with ";
7334 else
7335 Out << ", ";
7336
7337 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7338 Out << Id->getName();
7339 } else {
7340 Out << '$' << I;
7341 }
7342
7343 Out << " = ";
7344 Args[I].print(getPrintingPolicy(), Out);
7345 }
7346
7347 Out << ']';
7348 return Out.str();
7349 }
7350
MarkAsLateParsedTemplate(FunctionDecl * FD,bool Flag)7351 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7352 if (!FD)
7353 return;
7354 FD->setLateTemplateParsed(Flag);
7355 }
7356
IsInsideALocalClassWithinATemplateFunction()7357 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7358 DeclContext *DC = CurContext;
7359
7360 while (DC) {
7361 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7362 const FunctionDecl *FD = RD->isLocalClass();
7363 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7364 } else if (DC->isTranslationUnit() || DC->isNamespace())
7365 return false;
7366
7367 DC = DC->getParent();
7368 }
7369 return false;
7370 }
7371