1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12 #ifndef EIGEN_TRANSFORM_H
13 #define EIGEN_TRANSFORM_H
14
15 namespace Eigen {
16
17 namespace internal {
18
19 template<typename Transform>
20 struct transform_traits
21 {
22 enum
23 {
24 Dim = Transform::Dim,
25 HDim = Transform::HDim,
26 Mode = Transform::Mode,
27 IsProjective = (int(Mode)==int(Projective))
28 };
29 };
30
31 template< typename TransformType,
32 typename MatrixType,
33 int Case = transform_traits<TransformType>::IsProjective ? 0
34 : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
35 : 2>
36 struct transform_right_product_impl;
37
38 template< typename Other,
39 int Mode,
40 int Options,
41 int Dim,
42 int HDim,
43 int OtherRows=Other::RowsAtCompileTime,
44 int OtherCols=Other::ColsAtCompileTime>
45 struct transform_left_product_impl;
46
47 template< typename Lhs,
48 typename Rhs,
49 bool AnyProjective =
50 transform_traits<Lhs>::IsProjective ||
51 transform_traits<Rhs>::IsProjective>
52 struct transform_transform_product_impl;
53
54 template< typename Other,
55 int Mode,
56 int Options,
57 int Dim,
58 int HDim,
59 int OtherRows=Other::RowsAtCompileTime,
60 int OtherCols=Other::ColsAtCompileTime>
61 struct transform_construct_from_matrix;
62
63 template<typename TransformType> struct transform_take_affine_part;
64
65 } // end namespace internal
66
67 /** \geometry_module \ingroup Geometry_Module
68 *
69 * \class Transform
70 *
71 * \brief Represents an homogeneous transformation in a N dimensional space
72 *
73 * \tparam _Scalar the scalar type, i.e., the type of the coefficients
74 * \tparam _Dim the dimension of the space
75 * \tparam _Mode the type of the transformation. Can be:
76 * - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
77 * where the last row is assumed to be [0 ... 0 1].
78 * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
79 * - #Projective: the transformation is stored as a (Dim+1)^2 matrix
80 * without any assumption.
81 * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
82 * These Options are passed directly to the underlying matrix type.
83 *
84 * The homography is internally represented and stored by a matrix which
85 * is available through the matrix() method. To understand the behavior of
86 * this class you have to think a Transform object as its internal
87 * matrix representation. The chosen convention is right multiply:
88 *
89 * \code v' = T * v \endcode
90 *
91 * Therefore, an affine transformation matrix M is shaped like this:
92 *
93 * \f$ \left( \begin{array}{cc}
94 * linear & translation\\
95 * 0 ... 0 & 1
96 * \end{array} \right) \f$
97 *
98 * Note that for a projective transformation the last row can be anything,
99 * and then the interpretation of different parts might be sightly different.
100 *
101 * However, unlike a plain matrix, the Transform class provides many features
102 * simplifying both its assembly and usage. In particular, it can be composed
103 * with any other transformations (Transform,Translation,RotationBase,Matrix)
104 * and can be directly used to transform implicit homogeneous vectors. All these
105 * operations are handled via the operator*. For the composition of transformations,
106 * its principle consists to first convert the right/left hand sides of the product
107 * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
108 * Of course, internally, operator* tries to perform the minimal number of operations
109 * according to the nature of each terms. Likewise, when applying the transform
110 * to non homogeneous vectors, the latters are automatically promoted to homogeneous
111 * one before doing the matrix product. The convertions to homogeneous representations
112 * are performed as follow:
113 *
114 * \b Translation t (Dim)x(1):
115 * \f$ \left( \begin{array}{cc}
116 * I & t \\
117 * 0\,...\,0 & 1
118 * \end{array} \right) \f$
119 *
120 * \b Rotation R (Dim)x(Dim):
121 * \f$ \left( \begin{array}{cc}
122 * R & 0\\
123 * 0\,...\,0 & 1
124 * \end{array} \right) \f$
125 *
126 * \b Linear \b Matrix L (Dim)x(Dim):
127 * \f$ \left( \begin{array}{cc}
128 * L & 0\\
129 * 0\,...\,0 & 1
130 * \end{array} \right) \f$
131 *
132 * \b Affine \b Matrix A (Dim)x(Dim+1):
133 * \f$ \left( \begin{array}{c}
134 * A\\
135 * 0\,...\,0\,1
136 * \end{array} \right) \f$
137 *
138 * \b Column \b vector v (Dim)x(1):
139 * \f$ \left( \begin{array}{c}
140 * v\\
141 * 1
142 * \end{array} \right) \f$
143 *
144 * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n):
145 * \f$ \left( \begin{array}{ccc}
146 * v_1 & ... & v_n\\
147 * 1 & ... & 1
148 * \end{array} \right) \f$
149 *
150 * The concatenation of a Transform object with any kind of other transformation
151 * always returns a Transform object.
152 *
153 * A little exception to the "as pure matrix product" rule is the case of the
154 * transformation of non homogeneous vectors by an affine transformation. In
155 * that case the last matrix row can be ignored, and the product returns non
156 * homogeneous vectors.
157 *
158 * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
159 * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
160 * The solution is either to use a Dim x Dynamic matrix or explicitly request a
161 * vector transformation by making the vector homogeneous:
162 * \code
163 * m' = T * m.colwise().homogeneous();
164 * \endcode
165 * Note that there is zero overhead.
166 *
167 * Conversion methods from/to Qt's QMatrix and QTransform are available if the
168 * preprocessor token EIGEN_QT_SUPPORT is defined.
169 *
170 * This class can be extended with the help of the plugin mechanism described on the page
171 * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
172 *
173 * \sa class Matrix, class Quaternion
174 */
175 template<typename _Scalar, int _Dim, int _Mode, int _Options>
176 class Transform
177 {
178 public:
179 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
180 enum {
181 Mode = _Mode,
182 Options = _Options,
183 Dim = _Dim, ///< space dimension in which the transformation holds
184 HDim = _Dim+1, ///< size of a respective homogeneous vector
185 Rows = int(Mode)==(AffineCompact) ? Dim : HDim
186 };
187 /** the scalar type of the coefficients */
188 typedef _Scalar Scalar;
189 typedef DenseIndex Index;
190 /** type of the matrix used to represent the transformation */
191 typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
192 /** constified MatrixType */
193 typedef const MatrixType ConstMatrixType;
194 /** type of the matrix used to represent the linear part of the transformation */
195 typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
196 /** type of read/write reference to the linear part of the transformation */
197 typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact)> LinearPart;
198 /** type of read reference to the linear part of the transformation */
199 typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact)> ConstLinearPart;
200 /** type of read/write reference to the affine part of the transformation */
201 typedef typename internal::conditional<int(Mode)==int(AffineCompact),
202 MatrixType&,
203 Block<MatrixType,Dim,HDim> >::type AffinePart;
204 /** type of read reference to the affine part of the transformation */
205 typedef typename internal::conditional<int(Mode)==int(AffineCompact),
206 const MatrixType&,
207 const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
208 /** type of a vector */
209 typedef Matrix<Scalar,Dim,1> VectorType;
210 /** type of a read/write reference to the translation part of the rotation */
211 typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart;
212 /** type of a read reference to the translation part of the rotation */
213 typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart;
214 /** corresponding translation type */
215 typedef Translation<Scalar,Dim> TranslationType;
216
217 // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
218 enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
219 /** The return type of the product between a diagonal matrix and a transform */
220 typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
221
222 protected:
223
224 MatrixType m_matrix;
225
226 public:
227
228 /** Default constructor without initialization of the meaningful coefficients.
229 * If Mode==Affine, then the last row is set to [0 ... 0 1] */
Transform()230 inline Transform()
231 {
232 check_template_params();
233 if (int(Mode)==Affine)
234 makeAffine();
235 }
236
Transform(const Transform & other)237 inline Transform(const Transform& other)
238 {
239 check_template_params();
240 m_matrix = other.m_matrix;
241 }
242
Transform(const TranslationType & t)243 inline explicit Transform(const TranslationType& t)
244 {
245 check_template_params();
246 *this = t;
247 }
Transform(const UniformScaling<Scalar> & s)248 inline explicit Transform(const UniformScaling<Scalar>& s)
249 {
250 check_template_params();
251 *this = s;
252 }
253 template<typename Derived>
Transform(const RotationBase<Derived,Dim> & r)254 inline explicit Transform(const RotationBase<Derived, Dim>& r)
255 {
256 check_template_params();
257 *this = r;
258 }
259
260 inline Transform& operator=(const Transform& other)
261 { m_matrix = other.m_matrix; return *this; }
262
263 typedef internal::transform_take_affine_part<Transform> take_affine_part;
264
265 /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
266 template<typename OtherDerived>
Transform(const EigenBase<OtherDerived> & other)267 inline explicit Transform(const EigenBase<OtherDerived>& other)
268 {
269 EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
270 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
271
272 check_template_params();
273 internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
274 }
275
276 /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
277 template<typename OtherDerived>
278 inline Transform& operator=(const EigenBase<OtherDerived>& other)
279 {
280 EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
281 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
282
283 internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
284 return *this;
285 }
286
287 template<int OtherOptions>
Transform(const Transform<Scalar,Dim,Mode,OtherOptions> & other)288 inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
289 {
290 check_template_params();
291 // only the options change, we can directly copy the matrices
292 m_matrix = other.matrix();
293 }
294
295 template<int OtherMode,int OtherOptions>
Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions> & other)296 inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
297 {
298 check_template_params();
299 // prevent conversions as:
300 // Affine | AffineCompact | Isometry = Projective
301 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
302 YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
303
304 // prevent conversions as:
305 // Isometry = Affine | AffineCompact
306 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
307 YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
308
309 enum { ModeIsAffineCompact = Mode == int(AffineCompact),
310 OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
311 };
312
313 if(ModeIsAffineCompact == OtherModeIsAffineCompact)
314 {
315 // We need the block expression because the code is compiled for all
316 // combinations of transformations and will trigger a compile time error
317 // if one tries to assign the matrices directly
318 m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
319 makeAffine();
320 }
321 else if(OtherModeIsAffineCompact)
322 {
323 typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
324 internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
325 }
326 else
327 {
328 // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
329 // if OtherMode were Projective, the static assert above would already have caught it.
330 // So the only possibility is that OtherMode == Affine
331 linear() = other.linear();
332 translation() = other.translation();
333 }
334 }
335
336 template<typename OtherDerived>
Transform(const ReturnByValue<OtherDerived> & other)337 Transform(const ReturnByValue<OtherDerived>& other)
338 {
339 check_template_params();
340 other.evalTo(*this);
341 }
342
343 template<typename OtherDerived>
344 Transform& operator=(const ReturnByValue<OtherDerived>& other)
345 {
346 other.evalTo(*this);
347 return *this;
348 }
349
350 #ifdef EIGEN_QT_SUPPORT
351 inline Transform(const QMatrix& other);
352 inline Transform& operator=(const QMatrix& other);
353 inline QMatrix toQMatrix(void) const;
354 inline Transform(const QTransform& other);
355 inline Transform& operator=(const QTransform& other);
356 inline QTransform toQTransform(void) const;
357 #endif
358
359 /** shortcut for m_matrix(row,col);
360 * \sa MatrixBase::operator(Index,Index) const */
operator()361 inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
362 /** shortcut for m_matrix(row,col);
363 * \sa MatrixBase::operator(Index,Index) */
operator()364 inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
365
366 /** \returns a read-only expression of the transformation matrix */
matrix()367 inline const MatrixType& matrix() const { return m_matrix; }
368 /** \returns a writable expression of the transformation matrix */
matrix()369 inline MatrixType& matrix() { return m_matrix; }
370
371 /** \returns a read-only expression of the linear part of the transformation */
linear()372 inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
373 /** \returns a writable expression of the linear part of the transformation */
linear()374 inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
375
376 /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
affine()377 inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
378 /** \returns a writable expression of the Dim x HDim affine part of the transformation */
affine()379 inline AffinePart affine() { return take_affine_part::run(m_matrix); }
380
381 /** \returns a read-only expression of the translation vector of the transformation */
translation()382 inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
383 /** \returns a writable expression of the translation vector of the transformation */
translation()384 inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
385
386 /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
387 *
388 * The right hand side \a other might be either:
389 * \li a vector of size Dim,
390 * \li an homogeneous vector of size Dim+1,
391 * \li a set of vectors of size Dim x Dynamic,
392 * \li a set of homogeneous vectors of size Dim+1 x Dynamic,
393 * \li a linear transformation matrix of size Dim x Dim,
394 * \li an affine transformation matrix of size Dim x Dim+1,
395 * \li a transformation matrix of size Dim+1 x Dim+1.
396 */
397 // note: this function is defined here because some compilers cannot find the respective declaration
398 template<typename OtherDerived>
399 EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
400 operator * (const EigenBase<OtherDerived> &other) const
401 { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
402
403 /** \returns the product expression of a transformation matrix \a a times a transform \a b
404 *
405 * The left hand side \a other might be either:
406 * \li a linear transformation matrix of size Dim x Dim,
407 * \li an affine transformation matrix of size Dim x Dim+1,
408 * \li a general transformation matrix of size Dim+1 x Dim+1.
409 */
410 template<typename OtherDerived> friend
411 inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
412 operator * (const EigenBase<OtherDerived> &a, const Transform &b)
413 { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
414
415 /** \returns The product expression of a transform \a a times a diagonal matrix \a b
416 *
417 * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
418 * product results in a Transform of the same type (mode) as the lhs only if the lhs
419 * mode is no isometry. In that case, the returned transform is an affinity.
420 */
421 template<typename DiagonalDerived>
422 inline const TransformTimeDiagonalReturnType
423 operator * (const DiagonalBase<DiagonalDerived> &b) const
424 {
425 TransformTimeDiagonalReturnType res(*this);
426 res.linear() *= b;
427 return res;
428 }
429
430 /** \returns The product expression of a diagonal matrix \a a times a transform \a b
431 *
432 * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
433 * product results in a Transform of the same type (mode) as the lhs only if the lhs
434 * mode is no isometry. In that case, the returned transform is an affinity.
435 */
436 template<typename DiagonalDerived>
437 friend inline TransformTimeDiagonalReturnType
438 operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
439 {
440 TransformTimeDiagonalReturnType res;
441 res.linear().noalias() = a*b.linear();
442 res.translation().noalias() = a*b.translation();
443 if (Mode!=int(AffineCompact))
444 res.matrix().row(Dim) = b.matrix().row(Dim);
445 return res;
446 }
447
448 template<typename OtherDerived>
449 inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
450
451 /** Concatenates two transformations */
452 inline const Transform operator * (const Transform& other) const
453 {
454 return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
455 }
456
457 #ifdef __INTEL_COMPILER
458 private:
459 // this intermediate structure permits to workaround a bug in ICC 11:
460 // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
461 // (const Eigen::Transform<double, 3, 2, 0> &) const"
462 // (the meaning of a name may have changed since the template declaration -- the type of the template is:
463 // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
464 // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
465 //
466 template<int OtherMode,int OtherOptions> struct icc_11_workaround
467 {
468 typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
469 typedef typename ProductType::ResultType ResultType;
470 };
471
472 public:
473 /** Concatenates two different transformations */
474 template<int OtherMode,int OtherOptions>
475 inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
476 operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
477 {
478 typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
479 return ProductType::run(*this,other);
480 }
481 #else
482 /** Concatenates two different transformations */
483 template<int OtherMode,int OtherOptions>
484 inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
485 operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
486 {
487 return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
488 }
489 #endif
490
491 /** \sa MatrixBase::setIdentity() */
setIdentity()492 void setIdentity() { m_matrix.setIdentity(); }
493
494 /**
495 * \brief Returns an identity transformation.
496 * \todo In the future this function should be returning a Transform expression.
497 */
Identity()498 static const Transform Identity()
499 {
500 return Transform(MatrixType::Identity());
501 }
502
503 template<typename OtherDerived>
504 inline Transform& scale(const MatrixBase<OtherDerived> &other);
505
506 template<typename OtherDerived>
507 inline Transform& prescale(const MatrixBase<OtherDerived> &other);
508
509 inline Transform& scale(Scalar s);
510 inline Transform& prescale(Scalar s);
511
512 template<typename OtherDerived>
513 inline Transform& translate(const MatrixBase<OtherDerived> &other);
514
515 template<typename OtherDerived>
516 inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
517
518 template<typename RotationType>
519 inline Transform& rotate(const RotationType& rotation);
520
521 template<typename RotationType>
522 inline Transform& prerotate(const RotationType& rotation);
523
524 Transform& shear(Scalar sx, Scalar sy);
525 Transform& preshear(Scalar sx, Scalar sy);
526
527 inline Transform& operator=(const TranslationType& t);
528 inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
529 inline Transform operator*(const TranslationType& t) const;
530
531 inline Transform& operator=(const UniformScaling<Scalar>& t);
532 inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
533 inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry)> operator*(const UniformScaling<Scalar>& s) const
534 {
535 Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry),Options> res = *this;
536 res.scale(s.factor());
537 return res;
538 }
539
540 inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }
541
542 template<typename Derived>
543 inline Transform& operator=(const RotationBase<Derived,Dim>& r);
544 template<typename Derived>
545 inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
546 template<typename Derived>
547 inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
548
549 const LinearMatrixType rotation() const;
550 template<typename RotationMatrixType, typename ScalingMatrixType>
551 void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
552 template<typename ScalingMatrixType, typename RotationMatrixType>
553 void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
554
555 template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
556 Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
557 const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
558
559 inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
560
561 /** \returns a const pointer to the column major internal matrix */
data()562 const Scalar* data() const { return m_matrix.data(); }
563 /** \returns a non-const pointer to the column major internal matrix */
data()564 Scalar* data() { return m_matrix.data(); }
565
566 /** \returns \c *this with scalar type casted to \a NewScalarType
567 *
568 * Note that if \a NewScalarType is equal to the current scalar type of \c *this
569 * then this function smartly returns a const reference to \c *this.
570 */
571 template<typename NewScalarType>
cast()572 inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
573 { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
574
575 /** Copy constructor with scalar type conversion */
576 template<typename OtherScalarType>
Transform(const Transform<OtherScalarType,Dim,Mode,Options> & other)577 inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
578 {
579 check_template_params();
580 m_matrix = other.matrix().template cast<Scalar>();
581 }
582
583 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
584 * determined by \a prec.
585 *
586 * \sa MatrixBase::isApprox() */
587 bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
588 { return m_matrix.isApprox(other.m_matrix, prec); }
589
590 /** Sets the last row to [0 ... 0 1]
591 */
makeAffine()592 void makeAffine()
593 {
594 if(int(Mode)!=int(AffineCompact))
595 {
596 matrix().template block<1,Dim>(Dim,0).setZero();
597 matrix().coeffRef(Dim,Dim) = Scalar(1);
598 }
599 }
600
601 /** \internal
602 * \returns the Dim x Dim linear part if the transformation is affine,
603 * and the HDim x Dim part for projective transformations.
604 */
linearExt()605 inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
606 { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
607 /** \internal
608 * \returns the Dim x Dim linear part if the transformation is affine,
609 * and the HDim x Dim part for projective transformations.
610 */
linearExt()611 inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
612 { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
613
614 /** \internal
615 * \returns the translation part if the transformation is affine,
616 * and the last column for projective transformations.
617 */
translationExt()618 inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
619 { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
620 /** \internal
621 * \returns the translation part if the transformation is affine,
622 * and the last column for projective transformations.
623 */
translationExt()624 inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
625 { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
626
627
628 #ifdef EIGEN_TRANSFORM_PLUGIN
629 #include EIGEN_TRANSFORM_PLUGIN
630 #endif
631
632 protected:
633 #ifndef EIGEN_PARSED_BY_DOXYGEN
check_template_params()634 static EIGEN_STRONG_INLINE void check_template_params()
635 {
636 EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
637 }
638 #endif
639
640 };
641
642 /** \ingroup Geometry_Module */
643 typedef Transform<float,2,Isometry> Isometry2f;
644 /** \ingroup Geometry_Module */
645 typedef Transform<float,3,Isometry> Isometry3f;
646 /** \ingroup Geometry_Module */
647 typedef Transform<double,2,Isometry> Isometry2d;
648 /** \ingroup Geometry_Module */
649 typedef Transform<double,3,Isometry> Isometry3d;
650
651 /** \ingroup Geometry_Module */
652 typedef Transform<float,2,Affine> Affine2f;
653 /** \ingroup Geometry_Module */
654 typedef Transform<float,3,Affine> Affine3f;
655 /** \ingroup Geometry_Module */
656 typedef Transform<double,2,Affine> Affine2d;
657 /** \ingroup Geometry_Module */
658 typedef Transform<double,3,Affine> Affine3d;
659
660 /** \ingroup Geometry_Module */
661 typedef Transform<float,2,AffineCompact> AffineCompact2f;
662 /** \ingroup Geometry_Module */
663 typedef Transform<float,3,AffineCompact> AffineCompact3f;
664 /** \ingroup Geometry_Module */
665 typedef Transform<double,2,AffineCompact> AffineCompact2d;
666 /** \ingroup Geometry_Module */
667 typedef Transform<double,3,AffineCompact> AffineCompact3d;
668
669 /** \ingroup Geometry_Module */
670 typedef Transform<float,2,Projective> Projective2f;
671 /** \ingroup Geometry_Module */
672 typedef Transform<float,3,Projective> Projective3f;
673 /** \ingroup Geometry_Module */
674 typedef Transform<double,2,Projective> Projective2d;
675 /** \ingroup Geometry_Module */
676 typedef Transform<double,3,Projective> Projective3d;
677
678 /**************************
679 *** Optional QT support ***
680 **************************/
681
682 #ifdef EIGEN_QT_SUPPORT
683 /** Initializes \c *this from a QMatrix assuming the dimension is 2.
684 *
685 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
686 */
687 template<typename Scalar, int Dim, int Mode,int Options>
Transform(const QMatrix & other)688 Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
689 {
690 check_template_params();
691 *this = other;
692 }
693
694 /** Set \c *this from a QMatrix assuming the dimension is 2.
695 *
696 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
697 */
698 template<typename Scalar, int Dim, int Mode,int Options>
699 Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
700 {
701 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
702 m_matrix << other.m11(), other.m21(), other.dx(),
703 other.m12(), other.m22(), other.dy(),
704 0, 0, 1;
705 return *this;
706 }
707
708 /** \returns a QMatrix from \c *this assuming the dimension is 2.
709 *
710 * \warning this conversion might loss data if \c *this is not affine
711 *
712 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
713 */
714 template<typename Scalar, int Dim, int Mode, int Options>
toQMatrix(void)715 QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
716 {
717 check_template_params();
718 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
719 return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
720 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
721 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
722 }
723
724 /** Initializes \c *this from a QTransform assuming the dimension is 2.
725 *
726 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
727 */
728 template<typename Scalar, int Dim, int Mode,int Options>
Transform(const QTransform & other)729 Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
730 {
731 check_template_params();
732 *this = other;
733 }
734
735 /** Set \c *this from a QTransform assuming the dimension is 2.
736 *
737 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
738 */
739 template<typename Scalar, int Dim, int Mode, int Options>
740 Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
741 {
742 check_template_params();
743 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
744 if (Mode == int(AffineCompact))
745 m_matrix << other.m11(), other.m21(), other.dx(),
746 other.m12(), other.m22(), other.dy();
747 else
748 m_matrix << other.m11(), other.m21(), other.dx(),
749 other.m12(), other.m22(), other.dy(),
750 other.m13(), other.m23(), other.m33();
751 return *this;
752 }
753
754 /** \returns a QTransform from \c *this assuming the dimension is 2.
755 *
756 * This function is available only if the token EIGEN_QT_SUPPORT is defined.
757 */
758 template<typename Scalar, int Dim, int Mode, int Options>
toQTransform(void)759 QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
760 {
761 EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
762 if (Mode == int(AffineCompact))
763 return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
764 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
765 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
766 else
767 return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
768 m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
769 m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
770 }
771 #endif
772
773 /*********************
774 *** Procedural API ***
775 *********************/
776
777 /** Applies on the right the non uniform scale transformation represented
778 * by the vector \a other to \c *this and returns a reference to \c *this.
779 * \sa prescale()
780 */
781 template<typename Scalar, int Dim, int Mode, int Options>
782 template<typename OtherDerived>
783 Transform<Scalar,Dim,Mode,Options>&
scale(const MatrixBase<OtherDerived> & other)784 Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
785 {
786 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
787 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
788 linearExt().noalias() = (linearExt() * other.asDiagonal());
789 return *this;
790 }
791
792 /** Applies on the right a uniform scale of a factor \a c to \c *this
793 * and returns a reference to \c *this.
794 * \sa prescale(Scalar)
795 */
796 template<typename Scalar, int Dim, int Mode, int Options>
scale(Scalar s)797 inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(Scalar s)
798 {
799 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
800 linearExt() *= s;
801 return *this;
802 }
803
804 /** Applies on the left the non uniform scale transformation represented
805 * by the vector \a other to \c *this and returns a reference to \c *this.
806 * \sa scale()
807 */
808 template<typename Scalar, int Dim, int Mode, int Options>
809 template<typename OtherDerived>
810 Transform<Scalar,Dim,Mode,Options>&
prescale(const MatrixBase<OtherDerived> & other)811 Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
812 {
813 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
814 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
815 m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
816 return *this;
817 }
818
819 /** Applies on the left a uniform scale of a factor \a c to \c *this
820 * and returns a reference to \c *this.
821 * \sa scale(Scalar)
822 */
823 template<typename Scalar, int Dim, int Mode, int Options>
prescale(Scalar s)824 inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(Scalar s)
825 {
826 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
827 m_matrix.template topRows<Dim>() *= s;
828 return *this;
829 }
830
831 /** Applies on the right the translation matrix represented by the vector \a other
832 * to \c *this and returns a reference to \c *this.
833 * \sa pretranslate()
834 */
835 template<typename Scalar, int Dim, int Mode, int Options>
836 template<typename OtherDerived>
837 Transform<Scalar,Dim,Mode,Options>&
translate(const MatrixBase<OtherDerived> & other)838 Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
839 {
840 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
841 translationExt() += linearExt() * other;
842 return *this;
843 }
844
845 /** Applies on the left the translation matrix represented by the vector \a other
846 * to \c *this and returns a reference to \c *this.
847 * \sa translate()
848 */
849 template<typename Scalar, int Dim, int Mode, int Options>
850 template<typename OtherDerived>
851 Transform<Scalar,Dim,Mode,Options>&
pretranslate(const MatrixBase<OtherDerived> & other)852 Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
853 {
854 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
855 if(int(Mode)==int(Projective))
856 affine() += other * m_matrix.row(Dim);
857 else
858 translation() += other;
859 return *this;
860 }
861
862 /** Applies on the right the rotation represented by the rotation \a rotation
863 * to \c *this and returns a reference to \c *this.
864 *
865 * The template parameter \a RotationType is the type of the rotation which
866 * must be known by internal::toRotationMatrix<>.
867 *
868 * Natively supported types includes:
869 * - any scalar (2D),
870 * - a Dim x Dim matrix expression,
871 * - a Quaternion (3D),
872 * - a AngleAxis (3D)
873 *
874 * This mechanism is easily extendable to support user types such as Euler angles,
875 * or a pair of Quaternion for 4D rotations.
876 *
877 * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
878 */
879 template<typename Scalar, int Dim, int Mode, int Options>
880 template<typename RotationType>
881 Transform<Scalar,Dim,Mode,Options>&
rotate(const RotationType & rotation)882 Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
883 {
884 linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
885 return *this;
886 }
887
888 /** Applies on the left the rotation represented by the rotation \a rotation
889 * to \c *this and returns a reference to \c *this.
890 *
891 * See rotate() for further details.
892 *
893 * \sa rotate()
894 */
895 template<typename Scalar, int Dim, int Mode, int Options>
896 template<typename RotationType>
897 Transform<Scalar,Dim,Mode,Options>&
prerotate(const RotationType & rotation)898 Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
899 {
900 m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
901 * m_matrix.template block<Dim,HDim>(0,0);
902 return *this;
903 }
904
905 /** Applies on the right the shear transformation represented
906 * by the vector \a other to \c *this and returns a reference to \c *this.
907 * \warning 2D only.
908 * \sa preshear()
909 */
910 template<typename Scalar, int Dim, int Mode, int Options>
911 Transform<Scalar,Dim,Mode,Options>&
shear(Scalar sx,Scalar sy)912 Transform<Scalar,Dim,Mode,Options>::shear(Scalar sx, Scalar sy)
913 {
914 EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
915 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
916 VectorType tmp = linear().col(0)*sy + linear().col(1);
917 linear() << linear().col(0) + linear().col(1)*sx, tmp;
918 return *this;
919 }
920
921 /** Applies on the left the shear transformation represented
922 * by the vector \a other to \c *this and returns a reference to \c *this.
923 * \warning 2D only.
924 * \sa shear()
925 */
926 template<typename Scalar, int Dim, int Mode, int Options>
927 Transform<Scalar,Dim,Mode,Options>&
preshear(Scalar sx,Scalar sy)928 Transform<Scalar,Dim,Mode,Options>::preshear(Scalar sx, Scalar sy)
929 {
930 EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
931 EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
932 m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
933 return *this;
934 }
935
936 /******************************************************
937 *** Scaling, Translation and Rotation compatibility ***
938 ******************************************************/
939
940 template<typename Scalar, int Dim, int Mode, int Options>
941 inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
942 {
943 linear().setIdentity();
944 translation() = t.vector();
945 makeAffine();
946 return *this;
947 }
948
949 template<typename Scalar, int Dim, int Mode, int Options>
950 inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
951 {
952 Transform res = *this;
953 res.translate(t.vector());
954 return res;
955 }
956
957 template<typename Scalar, int Dim, int Mode, int Options>
958 inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
959 {
960 m_matrix.setZero();
961 linear().diagonal().fill(s.factor());
962 makeAffine();
963 return *this;
964 }
965
966 template<typename Scalar, int Dim, int Mode, int Options>
967 template<typename Derived>
968 inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
969 {
970 linear() = internal::toRotationMatrix<Scalar,Dim>(r);
971 translation().setZero();
972 makeAffine();
973 return *this;
974 }
975
976 template<typename Scalar, int Dim, int Mode, int Options>
977 template<typename Derived>
978 inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
979 {
980 Transform res = *this;
981 res.rotate(r.derived());
982 return res;
983 }
984
985 /************************
986 *** Special functions ***
987 ************************/
988
989 /** \returns the rotation part of the transformation
990 *
991 *
992 * \svd_module
993 *
994 * \sa computeRotationScaling(), computeScalingRotation(), class SVD
995 */
996 template<typename Scalar, int Dim, int Mode, int Options>
997 const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
rotation()998 Transform<Scalar,Dim,Mode,Options>::rotation() const
999 {
1000 LinearMatrixType result;
1001 computeRotationScaling(&result, (LinearMatrixType*)0);
1002 return result;
1003 }
1004
1005
1006 /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
1007 * not necessarily positive.
1008 *
1009 * If either pointer is zero, the corresponding computation is skipped.
1010 *
1011 *
1012 *
1013 * \svd_module
1014 *
1015 * \sa computeScalingRotation(), rotation(), class SVD
1016 */
1017 template<typename Scalar, int Dim, int Mode, int Options>
1018 template<typename RotationMatrixType, typename ScalingMatrixType>
computeRotationScaling(RotationMatrixType * rotation,ScalingMatrixType * scaling)1019 void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
1020 {
1021 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1022
1023 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
1024 VectorType sv(svd.singularValues());
1025 sv.coeffRef(0) *= x;
1026 if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
1027 if(rotation)
1028 {
1029 LinearMatrixType m(svd.matrixU());
1030 m.col(0) /= x;
1031 rotation->lazyAssign(m * svd.matrixV().adjoint());
1032 }
1033 }
1034
1035 /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
1036 * not necessarily positive.
1037 *
1038 * If either pointer is zero, the corresponding computation is skipped.
1039 *
1040 *
1041 *
1042 * \svd_module
1043 *
1044 * \sa computeRotationScaling(), rotation(), class SVD
1045 */
1046 template<typename Scalar, int Dim, int Mode, int Options>
1047 template<typename ScalingMatrixType, typename RotationMatrixType>
computeScalingRotation(ScalingMatrixType * scaling,RotationMatrixType * rotation)1048 void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
1049 {
1050 JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1051
1052 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
1053 VectorType sv(svd.singularValues());
1054 sv.coeffRef(0) *= x;
1055 if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
1056 if(rotation)
1057 {
1058 LinearMatrixType m(svd.matrixU());
1059 m.col(0) /= x;
1060 rotation->lazyAssign(m * svd.matrixV().adjoint());
1061 }
1062 }
1063
1064 /** Convenient method to set \c *this from a position, orientation and scale
1065 * of a 3D object.
1066 */
1067 template<typename Scalar, int Dim, int Mode, int Options>
1068 template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
1069 Transform<Scalar,Dim,Mode,Options>&
fromPositionOrientationScale(const MatrixBase<PositionDerived> & position,const OrientationType & orientation,const MatrixBase<ScaleDerived> & scale)1070 Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
1071 const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
1072 {
1073 linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
1074 linear() *= scale.asDiagonal();
1075 translation() = position;
1076 makeAffine();
1077 return *this;
1078 }
1079
1080 namespace internal {
1081
1082 // selector needed to avoid taking the inverse of a 3x4 matrix
1083 template<typename TransformType, int Mode=TransformType::Mode>
1084 struct projective_transform_inverse
1085 {
runprojective_transform_inverse1086 static inline void run(const TransformType&, TransformType&)
1087 {}
1088 };
1089
1090 template<typename TransformType>
1091 struct projective_transform_inverse<TransformType, Projective>
1092 {
1093 static inline void run(const TransformType& m, TransformType& res)
1094 {
1095 res.matrix() = m.matrix().inverse();
1096 }
1097 };
1098
1099 } // end namespace internal
1100
1101
1102 /**
1103 *
1104 * \returns the inverse transformation according to some given knowledge
1105 * on \c *this.
1106 *
1107 * \param hint allows to optimize the inversion process when the transformation
1108 * is known to be not a general transformation (optional). The possible values are:
1109 * - #Projective if the transformation is not necessarily affine, i.e., if the
1110 * last row is not guaranteed to be [0 ... 0 1]
1111 * - #Affine if the last row can be assumed to be [0 ... 0 1]
1112 * - #Isometry if the transformation is only a concatenations of translations
1113 * and rotations.
1114 * The default is the template class parameter \c Mode.
1115 *
1116 * \warning unless \a traits is always set to NoShear or NoScaling, this function
1117 * requires the generic inverse method of MatrixBase defined in the LU module. If
1118 * you forget to include this module, then you will get hard to debug linking errors.
1119 *
1120 * \sa MatrixBase::inverse()
1121 */
1122 template<typename Scalar, int Dim, int Mode, int Options>
1123 Transform<Scalar,Dim,Mode,Options>
1124 Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
1125 {
1126 Transform res;
1127 if (hint == Projective)
1128 {
1129 internal::projective_transform_inverse<Transform>::run(*this, res);
1130 }
1131 else
1132 {
1133 if (hint == Isometry)
1134 {
1135 res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
1136 }
1137 else if(hint&Affine)
1138 {
1139 res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
1140 }
1141 else
1142 {
1143 eigen_assert(false && "Invalid transform traits in Transform::Inverse");
1144 }
1145 // translation and remaining parts
1146 res.matrix().template topRightCorner<Dim,1>()
1147 = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
1148 res.makeAffine(); // we do need this, because in the beginning res is uninitialized
1149 }
1150 return res;
1151 }
1152
1153 namespace internal {
1154
1155 /*****************************************************
1156 *** Specializations of take affine part ***
1157 *****************************************************/
1158
1159 template<typename TransformType> struct transform_take_affine_part {
1160 typedef typename TransformType::MatrixType MatrixType;
1161 typedef typename TransformType::AffinePart AffinePart;
1162 typedef typename TransformType::ConstAffinePart ConstAffinePart;
1163 static inline AffinePart run(MatrixType& m)
1164 { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1165 static inline ConstAffinePart run(const MatrixType& m)
1166 { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1167 };
1168
1169 template<typename Scalar, int Dim, int Options>
1170 struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
1171 typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
1172 static inline MatrixType& run(MatrixType& m) { return m; }
1173 static inline const MatrixType& run(const MatrixType& m) { return m; }
1174 };
1175
1176 /*****************************************************
1177 *** Specializations of construct from matrix ***
1178 *****************************************************/
1179
1180 template<typename Other, int Mode, int Options, int Dim, int HDim>
1181 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
1182 {
1183 static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1184 {
1185 transform->linear() = other;
1186 transform->translation().setZero();
1187 transform->makeAffine();
1188 }
1189 };
1190
1191 template<typename Other, int Mode, int Options, int Dim, int HDim>
1192 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
1193 {
1194 static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1195 {
1196 transform->affine() = other;
1197 transform->makeAffine();
1198 }
1199 };
1200
1201 template<typename Other, int Mode, int Options, int Dim, int HDim>
1202 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
1203 {
1204 static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1205 { transform->matrix() = other; }
1206 };
1207
1208 template<typename Other, int Options, int Dim, int HDim>
1209 struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
1210 {
1211 static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
1212 { transform->matrix() = other.template block<Dim,HDim>(0,0); }
1213 };
1214
1215 /**********************************************************
1216 *** Specializations of operator* with rhs EigenBase ***
1217 **********************************************************/
1218
1219 template<int LhsMode,int RhsMode>
1220 struct transform_product_result
1221 {
1222 enum
1223 {
1224 Mode =
1225 (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective :
1226 (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine :
1227 (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
1228 (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective
1229 };
1230 };
1231
1232 template< typename TransformType, typename MatrixType >
1233 struct transform_right_product_impl< TransformType, MatrixType, 0 >
1234 {
1235 typedef typename MatrixType::PlainObject ResultType;
1236
1237 static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1238 {
1239 return T.matrix() * other;
1240 }
1241 };
1242
1243 template< typename TransformType, typename MatrixType >
1244 struct transform_right_product_impl< TransformType, MatrixType, 1 >
1245 {
1246 enum {
1247 Dim = TransformType::Dim,
1248 HDim = TransformType::HDim,
1249 OtherRows = MatrixType::RowsAtCompileTime,
1250 OtherCols = MatrixType::ColsAtCompileTime
1251 };
1252
1253 typedef typename MatrixType::PlainObject ResultType;
1254
1255 static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1256 {
1257 EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1258
1259 typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
1260
1261 ResultType res(other.rows(),other.cols());
1262 TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
1263 res.row(OtherRows-1) = other.row(OtherRows-1);
1264
1265 return res;
1266 }
1267 };
1268
1269 template< typename TransformType, typename MatrixType >
1270 struct transform_right_product_impl< TransformType, MatrixType, 2 >
1271 {
1272 enum {
1273 Dim = TransformType::Dim,
1274 HDim = TransformType::HDim,
1275 OtherRows = MatrixType::RowsAtCompileTime,
1276 OtherCols = MatrixType::ColsAtCompileTime
1277 };
1278
1279 typedef typename MatrixType::PlainObject ResultType;
1280
1281 static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1282 {
1283 EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1284
1285 typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
1286 ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
1287 TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
1288
1289 return res;
1290 }
1291 };
1292
1293 /**********************************************************
1294 *** Specializations of operator* with lhs EigenBase ***
1295 **********************************************************/
1296
1297 // generic HDim x HDim matrix * T => Projective
1298 template<typename Other,int Mode, int Options, int Dim, int HDim>
1299 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
1300 {
1301 typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1302 typedef typename TransformType::MatrixType MatrixType;
1303 typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1304 static ResultType run(const Other& other,const TransformType& tr)
1305 { return ResultType(other * tr.matrix()); }
1306 };
1307
1308 // generic HDim x HDim matrix * AffineCompact => Projective
1309 template<typename Other, int Options, int Dim, int HDim>
1310 struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
1311 {
1312 typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1313 typedef typename TransformType::MatrixType MatrixType;
1314 typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1315 static ResultType run(const Other& other,const TransformType& tr)
1316 {
1317 ResultType res;
1318 res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
1319 res.matrix().col(Dim) += other.col(Dim);
1320 return res;
1321 }
1322 };
1323
1324 // affine matrix * T
1325 template<typename Other,int Mode, int Options, int Dim, int HDim>
1326 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
1327 {
1328 typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1329 typedef typename TransformType::MatrixType MatrixType;
1330 typedef TransformType ResultType;
1331 static ResultType run(const Other& other,const TransformType& tr)
1332 {
1333 ResultType res;
1334 res.affine().noalias() = other * tr.matrix();
1335 res.matrix().row(Dim) = tr.matrix().row(Dim);
1336 return res;
1337 }
1338 };
1339
1340 // affine matrix * AffineCompact
1341 template<typename Other, int Options, int Dim, int HDim>
1342 struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
1343 {
1344 typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1345 typedef typename TransformType::MatrixType MatrixType;
1346 typedef TransformType ResultType;
1347 static ResultType run(const Other& other,const TransformType& tr)
1348 {
1349 ResultType res;
1350 res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
1351 res.translation() += other.col(Dim);
1352 return res;
1353 }
1354 };
1355
1356 // linear matrix * T
1357 template<typename Other,int Mode, int Options, int Dim, int HDim>
1358 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
1359 {
1360 typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1361 typedef typename TransformType::MatrixType MatrixType;
1362 typedef TransformType ResultType;
1363 static ResultType run(const Other& other, const TransformType& tr)
1364 {
1365 TransformType res;
1366 if(Mode!=int(AffineCompact))
1367 res.matrix().row(Dim) = tr.matrix().row(Dim);
1368 res.matrix().template topRows<Dim>().noalias()
1369 = other * tr.matrix().template topRows<Dim>();
1370 return res;
1371 }
1372 };
1373
1374 /**********************************************************
1375 *** Specializations of operator* with another Transform ***
1376 **********************************************************/
1377
1378 template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1379 struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
1380 {
1381 enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
1382 typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1383 typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1384 typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
1385 static ResultType run(const Lhs& lhs, const Rhs& rhs)
1386 {
1387 ResultType res;
1388 res.linear() = lhs.linear() * rhs.linear();
1389 res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
1390 res.makeAffine();
1391 return res;
1392 }
1393 };
1394
1395 template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1396 struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
1397 {
1398 typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1399 typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1400 typedef Transform<Scalar,Dim,Projective> ResultType;
1401 static ResultType run(const Lhs& lhs, const Rhs& rhs)
1402 {
1403 return ResultType( lhs.matrix() * rhs.matrix() );
1404 }
1405 };
1406
1407 template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1408 struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
1409 {
1410 typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
1411 typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
1412 typedef Transform<Scalar,Dim,Projective> ResultType;
1413 static ResultType run(const Lhs& lhs, const Rhs& rhs)
1414 {
1415 ResultType res;
1416 res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
1417 res.matrix().row(Dim) = rhs.matrix().row(Dim);
1418 return res;
1419 }
1420 };
1421
1422 template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1423 struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
1424 {
1425 typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
1426 typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
1427 typedef Transform<Scalar,Dim,Projective> ResultType;
1428 static ResultType run(const Lhs& lhs, const Rhs& rhs)
1429 {
1430 ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
1431 res.matrix().col(Dim) += lhs.matrix().col(Dim);
1432 return res;
1433 }
1434 };
1435
1436 } // end namespace internal
1437
1438 } // end namespace Eigen
1439
1440 #endif // EIGEN_TRANSFORM_H
1441