• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AggressiveAntiDepBreaker class, which
11 // implements register anti-dependence breaking during post-RA
12 // scheduling. It attempts to break all anti-dependencies within a
13 // block.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #define DEBUG_TYPE "post-RA-sched"
18 #include "AggressiveAntiDepBreaker.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/RegisterClassInfo.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetRegisterInfo.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm;
32 
33 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
34 static cl::opt<int>
35 DebugDiv("agg-antidep-debugdiv",
36          cl::desc("Debug control for aggressive anti-dep breaker"),
37          cl::init(0), cl::Hidden);
38 static cl::opt<int>
39 DebugMod("agg-antidep-debugmod",
40          cl::desc("Debug control for aggressive anti-dep breaker"),
41          cl::init(0), cl::Hidden);
42 
AggressiveAntiDepState(const unsigned TargetRegs,MachineBasicBlock * BB)43 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
44                                                MachineBasicBlock *BB) :
45   NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
46   GroupNodeIndices(TargetRegs, 0),
47   KillIndices(TargetRegs, 0),
48   DefIndices(TargetRegs, 0)
49 {
50   const unsigned BBSize = BB->size();
51   for (unsigned i = 0; i < NumTargetRegs; ++i) {
52     // Initialize all registers to be in their own group. Initially we
53     // assign the register to the same-indexed GroupNode.
54     GroupNodeIndices[i] = i;
55     // Initialize the indices to indicate that no registers are live.
56     KillIndices[i] = ~0u;
57     DefIndices[i] = BBSize;
58   }
59 }
60 
GetGroup(unsigned Reg)61 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
62   unsigned Node = GroupNodeIndices[Reg];
63   while (GroupNodes[Node] != Node)
64     Node = GroupNodes[Node];
65 
66   return Node;
67 }
68 
GetGroupRegs(unsigned Group,std::vector<unsigned> & Regs,std::multimap<unsigned,AggressiveAntiDepState::RegisterReference> * RegRefs)69 void AggressiveAntiDepState::GetGroupRegs(
70   unsigned Group,
71   std::vector<unsigned> &Regs,
72   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
73 {
74   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
75     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
76       Regs.push_back(Reg);
77   }
78 }
79 
UnionGroups(unsigned Reg1,unsigned Reg2)80 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2)
81 {
82   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
83   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
84 
85   // find group for each register
86   unsigned Group1 = GetGroup(Reg1);
87   unsigned Group2 = GetGroup(Reg2);
88 
89   // if either group is 0, then that must become the parent
90   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
91   unsigned Other = (Parent == Group1) ? Group2 : Group1;
92   GroupNodes.at(Other) = Parent;
93   return Parent;
94 }
95 
LeaveGroup(unsigned Reg)96 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg)
97 {
98   // Create a new GroupNode for Reg. Reg's existing GroupNode must
99   // stay as is because there could be other GroupNodes referring to
100   // it.
101   unsigned idx = GroupNodes.size();
102   GroupNodes.push_back(idx);
103   GroupNodeIndices[Reg] = idx;
104   return idx;
105 }
106 
IsLive(unsigned Reg)107 bool AggressiveAntiDepState::IsLive(unsigned Reg)
108 {
109   // KillIndex must be defined and DefIndex not defined for a register
110   // to be live.
111   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
112 }
113 
114 
115 
116 AggressiveAntiDepBreaker::
AggressiveAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI,TargetSubtargetInfo::RegClassVector & CriticalPathRCs)117 AggressiveAntiDepBreaker(MachineFunction& MFi,
118                          const RegisterClassInfo &RCI,
119                          TargetSubtargetInfo::RegClassVector& CriticalPathRCs) :
120   AntiDepBreaker(), MF(MFi),
121   MRI(MF.getRegInfo()),
122   TII(MF.getTarget().getInstrInfo()),
123   TRI(MF.getTarget().getRegisterInfo()),
124   RegClassInfo(RCI),
125   State(NULL) {
126   /* Collect a bitset of all registers that are only broken if they
127      are on the critical path. */
128   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
129     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
130     if (CriticalPathSet.none())
131       CriticalPathSet = CPSet;
132     else
133       CriticalPathSet |= CPSet;
134    }
135 
136   DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
137   DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
138              r = CriticalPathSet.find_next(r))
139           dbgs() << " " << TRI->getName(r));
140   DEBUG(dbgs() << '\n');
141 }
142 
~AggressiveAntiDepBreaker()143 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
144   delete State;
145 }
146 
StartBlock(MachineBasicBlock * BB)147 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
148   assert(State == NULL);
149   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
150 
151   bool IsReturnBlock = (!BB->empty() && BB->back().isReturn());
152   std::vector<unsigned> &KillIndices = State->GetKillIndices();
153   std::vector<unsigned> &DefIndices = State->GetDefIndices();
154 
155   // Determine the live-out physregs for this block.
156   if (IsReturnBlock) {
157     // In a return block, examine the function live-out regs.
158     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
159          E = MRI.liveout_end(); I != E; ++I) {
160       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
161         unsigned Reg = *AI;
162         State->UnionGroups(Reg, 0);
163         KillIndices[Reg] = BB->size();
164         DefIndices[Reg] = ~0u;
165       }
166     }
167   }
168 
169   // In a non-return block, examine the live-in regs of all successors.
170   // Note a return block can have successors if the return instruction is
171   // predicated.
172   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
173          SE = BB->succ_end(); SI != SE; ++SI)
174     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
175            E = (*SI)->livein_end(); I != E; ++I) {
176       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
177         unsigned Reg = *AI;
178         State->UnionGroups(Reg, 0);
179         KillIndices[Reg] = BB->size();
180         DefIndices[Reg] = ~0u;
181       }
182     }
183 
184   // Mark live-out callee-saved registers. In a return block this is
185   // all callee-saved registers. In non-return this is any
186   // callee-saved register that is not saved in the prolog.
187   const MachineFrameInfo *MFI = MF.getFrameInfo();
188   BitVector Pristine = MFI->getPristineRegs(BB);
189   for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
190     unsigned Reg = *I;
191     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
192     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
193       unsigned AliasReg = *AI;
194       State->UnionGroups(AliasReg, 0);
195       KillIndices[AliasReg] = BB->size();
196       DefIndices[AliasReg] = ~0u;
197     }
198   }
199 }
200 
FinishBlock()201 void AggressiveAntiDepBreaker::FinishBlock() {
202   delete State;
203   State = NULL;
204 }
205 
Observe(MachineInstr * MI,unsigned Count,unsigned InsertPosIndex)206 void AggressiveAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
207                                        unsigned InsertPosIndex) {
208   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
209 
210   std::set<unsigned> PassthruRegs;
211   GetPassthruRegs(MI, PassthruRegs);
212   PrescanInstruction(MI, Count, PassthruRegs);
213   ScanInstruction(MI, Count);
214 
215   DEBUG(dbgs() << "Observe: ");
216   DEBUG(MI->dump());
217   DEBUG(dbgs() << "\tRegs:");
218 
219   std::vector<unsigned> &DefIndices = State->GetDefIndices();
220   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
221     // If Reg is current live, then mark that it can't be renamed as
222     // we don't know the extent of its live-range anymore (now that it
223     // has been scheduled). If it is not live but was defined in the
224     // previous schedule region, then set its def index to the most
225     // conservative location (i.e. the beginning of the previous
226     // schedule region).
227     if (State->IsLive(Reg)) {
228       DEBUG(if (State->GetGroup(Reg) != 0)
229               dbgs() << " " << TRI->getName(Reg) << "=g" <<
230                 State->GetGroup(Reg) << "->g0(region live-out)");
231       State->UnionGroups(Reg, 0);
232     } else if ((DefIndices[Reg] < InsertPosIndex)
233                && (DefIndices[Reg] >= Count)) {
234       DefIndices[Reg] = Count;
235     }
236   }
237   DEBUG(dbgs() << '\n');
238 }
239 
IsImplicitDefUse(MachineInstr * MI,MachineOperand & MO)240 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr *MI,
241                                                 MachineOperand& MO)
242 {
243   if (!MO.isReg() || !MO.isImplicit())
244     return false;
245 
246   unsigned Reg = MO.getReg();
247   if (Reg == 0)
248     return false;
249 
250   MachineOperand *Op = NULL;
251   if (MO.isDef())
252     Op = MI->findRegisterUseOperand(Reg, true);
253   else
254     Op = MI->findRegisterDefOperand(Reg);
255 
256   return((Op != NULL) && Op->isImplicit());
257 }
258 
GetPassthruRegs(MachineInstr * MI,std::set<unsigned> & PassthruRegs)259 void AggressiveAntiDepBreaker::GetPassthruRegs(MachineInstr *MI,
260                                            std::set<unsigned>& PassthruRegs) {
261   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
262     MachineOperand &MO = MI->getOperand(i);
263     if (!MO.isReg()) continue;
264     if ((MO.isDef() && MI->isRegTiedToUseOperand(i)) ||
265         IsImplicitDefUse(MI, MO)) {
266       const unsigned Reg = MO.getReg();
267       PassthruRegs.insert(Reg);
268       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
269         PassthruRegs.insert(*SubRegs);
270     }
271   }
272 }
273 
274 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
275 /// in SU that we want to consider for breaking.
AntiDepEdges(const SUnit * SU,std::vector<const SDep * > & Edges)276 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) {
277   SmallSet<unsigned, 4> RegSet;
278   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
279        P != PE; ++P) {
280     if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
281       unsigned Reg = P->getReg();
282       if (RegSet.count(Reg) == 0) {
283         Edges.push_back(&*P);
284         RegSet.insert(Reg);
285       }
286     }
287   }
288 }
289 
290 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
291 /// critical path.
CriticalPathStep(const SUnit * SU)292 static const SUnit *CriticalPathStep(const SUnit *SU) {
293   const SDep *Next = 0;
294   unsigned NextDepth = 0;
295   // Find the predecessor edge with the greatest depth.
296   if (SU != 0) {
297     for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
298          P != PE; ++P) {
299       const SUnit *PredSU = P->getSUnit();
300       unsigned PredLatency = P->getLatency();
301       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
302       // In the case of a latency tie, prefer an anti-dependency edge over
303       // other types of edges.
304       if (NextDepth < PredTotalLatency ||
305           (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
306         NextDepth = PredTotalLatency;
307         Next = &*P;
308       }
309     }
310   }
311 
312   return (Next) ? Next->getSUnit() : 0;
313 }
314 
HandleLastUse(unsigned Reg,unsigned KillIdx,const char * tag,const char * header,const char * footer)315 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
316                                              const char *tag,
317                                              const char *header,
318                                              const char *footer) {
319   std::vector<unsigned> &KillIndices = State->GetKillIndices();
320   std::vector<unsigned> &DefIndices = State->GetDefIndices();
321   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
322     RegRefs = State->GetRegRefs();
323 
324   if (!State->IsLive(Reg)) {
325     KillIndices[Reg] = KillIdx;
326     DefIndices[Reg] = ~0u;
327     RegRefs.erase(Reg);
328     State->LeaveGroup(Reg);
329     DEBUG(if (header != NULL) {
330         dbgs() << header << TRI->getName(Reg); header = NULL; });
331     DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
332   }
333   // Repeat for subregisters.
334   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
335     unsigned SubregReg = *SubRegs;
336     if (!State->IsLive(SubregReg)) {
337       KillIndices[SubregReg] = KillIdx;
338       DefIndices[SubregReg] = ~0u;
339       RegRefs.erase(SubregReg);
340       State->LeaveGroup(SubregReg);
341       DEBUG(if (header != NULL) {
342           dbgs() << header << TRI->getName(Reg); header = NULL; });
343       DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" <<
344             State->GetGroup(SubregReg) << tag);
345     }
346   }
347 
348   DEBUG(if ((header == NULL) && (footer != NULL)) dbgs() << footer);
349 }
350 
PrescanInstruction(MachineInstr * MI,unsigned Count,std::set<unsigned> & PassthruRegs)351 void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI,
352                                                   unsigned Count,
353                                              std::set<unsigned>& PassthruRegs) {
354   std::vector<unsigned> &DefIndices = State->GetDefIndices();
355   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
356     RegRefs = State->GetRegRefs();
357 
358   // Handle dead defs by simulating a last-use of the register just
359   // after the def. A dead def can occur because the def is truly
360   // dead, or because only a subregister is live at the def. If we
361   // don't do this the dead def will be incorrectly merged into the
362   // previous def.
363   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
364     MachineOperand &MO = MI->getOperand(i);
365     if (!MO.isReg() || !MO.isDef()) continue;
366     unsigned Reg = MO.getReg();
367     if (Reg == 0) continue;
368 
369     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
370   }
371 
372   DEBUG(dbgs() << "\tDef Groups:");
373   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
374     MachineOperand &MO = MI->getOperand(i);
375     if (!MO.isReg() || !MO.isDef()) continue;
376     unsigned Reg = MO.getReg();
377     if (Reg == 0) continue;
378 
379     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));
380 
381     // If MI's defs have a special allocation requirement, don't allow
382     // any def registers to be changed. Also assume all registers
383     // defined in a call must not be changed (ABI).
384     if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
385         TII->isPredicated(MI)) {
386       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
387       State->UnionGroups(Reg, 0);
388     }
389 
390     // Any aliased that are live at this point are completely or
391     // partially defined here, so group those aliases with Reg.
392     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
393       unsigned AliasReg = *AI;
394       if (State->IsLive(AliasReg)) {
395         State->UnionGroups(Reg, AliasReg);
396         DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
397               TRI->getName(AliasReg) << ")");
398       }
399     }
400 
401     // Note register reference...
402     const TargetRegisterClass *RC = NULL;
403     if (i < MI->getDesc().getNumOperands())
404       RC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
405     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
406     RegRefs.insert(std::make_pair(Reg, RR));
407   }
408 
409   DEBUG(dbgs() << '\n');
410 
411   // Scan the register defs for this instruction and update
412   // live-ranges.
413   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
414     MachineOperand &MO = MI->getOperand(i);
415     if (!MO.isReg() || !MO.isDef()) continue;
416     unsigned Reg = MO.getReg();
417     if (Reg == 0) continue;
418     // Ignore KILLs and passthru registers for liveness...
419     if (MI->isKill() || (PassthruRegs.count(Reg) != 0))
420       continue;
421 
422     // Update def for Reg and aliases.
423     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
424       DefIndices[*AI] = Count;
425   }
426 }
427 
ScanInstruction(MachineInstr * MI,unsigned Count)428 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI,
429                                                unsigned Count) {
430   DEBUG(dbgs() << "\tUse Groups:");
431   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
432     RegRefs = State->GetRegRefs();
433 
434   // If MI's uses have special allocation requirement, don't allow
435   // any use registers to be changed. Also assume all registers
436   // used in a call must not be changed (ABI).
437   // FIXME: The issue with predicated instruction is more complex. We are being
438   // conservatively here because the kill markers cannot be trusted after
439   // if-conversion:
440   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
441   // ...
442   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
443   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
444   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
445   //
446   // The first R6 kill is not really a kill since it's killed by a predicated
447   // instruction which may not be executed. The second R6 def may or may not
448   // re-define R6 so it's not safe to change it since the last R6 use cannot be
449   // changed.
450   bool Special = MI->isCall() ||
451     MI->hasExtraSrcRegAllocReq() ||
452     TII->isPredicated(MI);
453 
454   // Scan the register uses for this instruction and update
455   // live-ranges, groups and RegRefs.
456   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
457     MachineOperand &MO = MI->getOperand(i);
458     if (!MO.isReg() || !MO.isUse()) continue;
459     unsigned Reg = MO.getReg();
460     if (Reg == 0) continue;
461 
462     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
463           State->GetGroup(Reg));
464 
465     // It wasn't previously live but now it is, this is a kill. Forget
466     // the previous live-range information and start a new live-range
467     // for the register.
468     HandleLastUse(Reg, Count, "(last-use)");
469 
470     if (Special) {
471       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
472       State->UnionGroups(Reg, 0);
473     }
474 
475     // Note register reference...
476     const TargetRegisterClass *RC = NULL;
477     if (i < MI->getDesc().getNumOperands())
478       RC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
479     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
480     RegRefs.insert(std::make_pair(Reg, RR));
481   }
482 
483   DEBUG(dbgs() << '\n');
484 
485   // Form a group of all defs and uses of a KILL instruction to ensure
486   // that all registers are renamed as a group.
487   if (MI->isKill()) {
488     DEBUG(dbgs() << "\tKill Group:");
489 
490     unsigned FirstReg = 0;
491     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
492       MachineOperand &MO = MI->getOperand(i);
493       if (!MO.isReg()) continue;
494       unsigned Reg = MO.getReg();
495       if (Reg == 0) continue;
496 
497       if (FirstReg != 0) {
498         DEBUG(dbgs() << "=" << TRI->getName(Reg));
499         State->UnionGroups(FirstReg, Reg);
500       } else {
501         DEBUG(dbgs() << " " << TRI->getName(Reg));
502         FirstReg = Reg;
503       }
504     }
505 
506     DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
507   }
508 }
509 
GetRenameRegisters(unsigned Reg)510 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
511   BitVector BV(TRI->getNumRegs(), false);
512   bool first = true;
513 
514   // Check all references that need rewriting for Reg. For each, use
515   // the corresponding register class to narrow the set of registers
516   // that are appropriate for renaming.
517   std::pair<std::multimap<unsigned,
518                      AggressiveAntiDepState::RegisterReference>::iterator,
519             std::multimap<unsigned,
520                      AggressiveAntiDepState::RegisterReference>::iterator>
521     Range = State->GetRegRefs().equal_range(Reg);
522   for (std::multimap<unsigned,
523        AggressiveAntiDepState::RegisterReference>::iterator Q = Range.first,
524        QE = Range.second; Q != QE; ++Q) {
525     const TargetRegisterClass *RC = Q->second.RC;
526     if (RC == NULL) continue;
527 
528     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
529     if (first) {
530       BV |= RCBV;
531       first = false;
532     } else {
533       BV &= RCBV;
534     }
535 
536     DEBUG(dbgs() << " " << RC->getName());
537   }
538 
539   return BV;
540 }
541 
FindSuitableFreeRegisters(unsigned AntiDepGroupIndex,RenameOrderType & RenameOrder,std::map<unsigned,unsigned> & RenameMap)542 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
543                                 unsigned AntiDepGroupIndex,
544                                 RenameOrderType& RenameOrder,
545                                 std::map<unsigned, unsigned> &RenameMap) {
546   std::vector<unsigned> &KillIndices = State->GetKillIndices();
547   std::vector<unsigned> &DefIndices = State->GetDefIndices();
548   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
549     RegRefs = State->GetRegRefs();
550 
551   // Collect all referenced registers in the same group as
552   // AntiDepReg. These all need to be renamed together if we are to
553   // break the anti-dependence.
554   std::vector<unsigned> Regs;
555   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
556   assert(Regs.size() > 0 && "Empty register group!");
557   if (Regs.size() == 0)
558     return false;
559 
560   // Find the "superest" register in the group. At the same time,
561   // collect the BitVector of registers that can be used to rename
562   // each register.
563   DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
564         << ":\n");
565   std::map<unsigned, BitVector> RenameRegisterMap;
566   unsigned SuperReg = 0;
567   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
568     unsigned Reg = Regs[i];
569     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
570       SuperReg = Reg;
571 
572     // If Reg has any references, then collect possible rename regs
573     if (RegRefs.count(Reg) > 0) {
574       DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":");
575 
576       BitVector BV = GetRenameRegisters(Reg);
577       RenameRegisterMap.insert(std::pair<unsigned, BitVector>(Reg, BV));
578 
579       DEBUG(dbgs() << " ::");
580       DEBUG(for (int r = BV.find_first(); r != -1; r = BV.find_next(r))
581               dbgs() << " " << TRI->getName(r));
582       DEBUG(dbgs() << "\n");
583     }
584   }
585 
586   // All group registers should be a subreg of SuperReg.
587   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
588     unsigned Reg = Regs[i];
589     if (Reg == SuperReg) continue;
590     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
591     assert(IsSub && "Expecting group subregister");
592     if (!IsSub)
593       return false;
594   }
595 
596 #ifndef NDEBUG
597   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
598   if (DebugDiv > 0) {
599     static int renamecnt = 0;
600     if (renamecnt++ % DebugDiv != DebugMod)
601       return false;
602 
603     dbgs() << "*** Performing rename " << TRI->getName(SuperReg) <<
604       " for debug ***\n";
605   }
606 #endif
607 
608   // Check each possible rename register for SuperReg in round-robin
609   // order. If that register is available, and the corresponding
610   // registers are available for the other group subregisters, then we
611   // can use those registers to rename.
612 
613   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
614   // check every use of the register and find the largest register class
615   // that can be used in all of them.
616   const TargetRegisterClass *SuperRC =
617     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
618 
619   ArrayRef<unsigned> Order = RegClassInfo.getOrder(SuperRC);
620   if (Order.empty()) {
621     DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
622     return false;
623   }
624 
625   DEBUG(dbgs() << "\tFind Registers:");
626 
627   if (RenameOrder.count(SuperRC) == 0)
628     RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
629 
630   unsigned OrigR = RenameOrder[SuperRC];
631   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
632   unsigned R = OrigR;
633   do {
634     if (R == 0) R = Order.size();
635     --R;
636     const unsigned NewSuperReg = Order[R];
637     // Don't consider non-allocatable registers
638     if (!RegClassInfo.isAllocatable(NewSuperReg)) continue;
639     // Don't replace a register with itself.
640     if (NewSuperReg == SuperReg) continue;
641 
642     DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':');
643     RenameMap.clear();
644 
645     // For each referenced group register (which must be a SuperReg or
646     // a subregister of SuperReg), find the corresponding subregister
647     // of NewSuperReg and make sure it is free to be renamed.
648     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
649       unsigned Reg = Regs[i];
650       unsigned NewReg = 0;
651       if (Reg == SuperReg) {
652         NewReg = NewSuperReg;
653       } else {
654         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
655         if (NewSubRegIdx != 0)
656           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
657       }
658 
659       DEBUG(dbgs() << " " << TRI->getName(NewReg));
660 
661       // Check if Reg can be renamed to NewReg.
662       BitVector BV = RenameRegisterMap[Reg];
663       if (!BV.test(NewReg)) {
664         DEBUG(dbgs() << "(no rename)");
665         goto next_super_reg;
666       }
667 
668       // If NewReg is dead and NewReg's most recent def is not before
669       // Regs's kill, it's safe to replace Reg with NewReg. We
670       // must also check all aliases of NewReg, because we can't define a
671       // register when any sub or super is already live.
672       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
673         DEBUG(dbgs() << "(live)");
674         goto next_super_reg;
675       } else {
676         bool found = false;
677         for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
678           unsigned AliasReg = *AI;
679           if (State->IsLive(AliasReg) ||
680               (KillIndices[Reg] > DefIndices[AliasReg])) {
681             DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)");
682             found = true;
683             break;
684           }
685         }
686         if (found)
687           goto next_super_reg;
688       }
689 
690       // Record that 'Reg' can be renamed to 'NewReg'.
691       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
692     }
693 
694     // If we fall-out here, then every register in the group can be
695     // renamed, as recorded in RenameMap.
696     RenameOrder.erase(SuperRC);
697     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
698     DEBUG(dbgs() << "]\n");
699     return true;
700 
701   next_super_reg:
702     DEBUG(dbgs() << ']');
703   } while (R != EndR);
704 
705   DEBUG(dbgs() << '\n');
706 
707   // No registers are free and available!
708   return false;
709 }
710 
711 /// BreakAntiDependencies - Identifiy anti-dependencies within the
712 /// ScheduleDAG and break them by renaming registers.
713 ///
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)714 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
715                               const std::vector<SUnit>& SUnits,
716                               MachineBasicBlock::iterator Begin,
717                               MachineBasicBlock::iterator End,
718                               unsigned InsertPosIndex,
719                               DbgValueVector &DbgValues) {
720 
721   std::vector<unsigned> &KillIndices = State->GetKillIndices();
722   std::vector<unsigned> &DefIndices = State->GetDefIndices();
723   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
724     RegRefs = State->GetRegRefs();
725 
726   // The code below assumes that there is at least one instruction,
727   // so just duck out immediately if the block is empty.
728   if (SUnits.empty()) return 0;
729 
730   // For each regclass the next register to use for renaming.
731   RenameOrderType RenameOrder;
732 
733   // ...need a map from MI to SUnit.
734   std::map<MachineInstr *, const SUnit *> MISUnitMap;
735   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
736     const SUnit *SU = &SUnits[i];
737     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
738                                                                SU));
739   }
740 
741   // Track progress along the critical path through the SUnit graph as
742   // we walk the instructions. This is needed for regclasses that only
743   // break critical-path anti-dependencies.
744   const SUnit *CriticalPathSU = 0;
745   MachineInstr *CriticalPathMI = 0;
746   if (CriticalPathSet.any()) {
747     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
748       const SUnit *SU = &SUnits[i];
749       if (!CriticalPathSU ||
750           ((SU->getDepth() + SU->Latency) >
751            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
752         CriticalPathSU = SU;
753       }
754     }
755 
756     CriticalPathMI = CriticalPathSU->getInstr();
757   }
758 
759 #ifndef NDEBUG
760   DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
761   DEBUG(dbgs() << "Available regs:");
762   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
763     if (!State->IsLive(Reg))
764       DEBUG(dbgs() << " " << TRI->getName(Reg));
765   }
766   DEBUG(dbgs() << '\n');
767 #endif
768 
769   // Attempt to break anti-dependence edges. Walk the instructions
770   // from the bottom up, tracking information about liveness as we go
771   // to help determine which registers are available.
772   unsigned Broken = 0;
773   unsigned Count = InsertPosIndex - 1;
774   for (MachineBasicBlock::iterator I = End, E = Begin;
775        I != E; --Count) {
776     MachineInstr *MI = --I;
777 
778     if (MI->isDebugValue())
779       continue;
780 
781     DEBUG(dbgs() << "Anti: ");
782     DEBUG(MI->dump());
783 
784     std::set<unsigned> PassthruRegs;
785     GetPassthruRegs(MI, PassthruRegs);
786 
787     // Process the defs in MI...
788     PrescanInstruction(MI, Count, PassthruRegs);
789 
790     // The dependence edges that represent anti- and output-
791     // dependencies that are candidates for breaking.
792     std::vector<const SDep *> Edges;
793     const SUnit *PathSU = MISUnitMap[MI];
794     AntiDepEdges(PathSU, Edges);
795 
796     // If MI is not on the critical path, then we don't rename
797     // registers in the CriticalPathSet.
798     BitVector *ExcludeRegs = NULL;
799     if (MI == CriticalPathMI) {
800       CriticalPathSU = CriticalPathStep(CriticalPathSU);
801       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : 0;
802     } else {
803       ExcludeRegs = &CriticalPathSet;
804     }
805 
806     // Ignore KILL instructions (they form a group in ScanInstruction
807     // but don't cause any anti-dependence breaking themselves)
808     if (!MI->isKill()) {
809       // Attempt to break each anti-dependency...
810       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
811         const SDep *Edge = Edges[i];
812         SUnit *NextSU = Edge->getSUnit();
813 
814         if ((Edge->getKind() != SDep::Anti) &&
815             (Edge->getKind() != SDep::Output)) continue;
816 
817         unsigned AntiDepReg = Edge->getReg();
818         DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg));
819         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
820 
821         if (!RegClassInfo.isAllocatable(AntiDepReg)) {
822           // Don't break anti-dependencies on non-allocatable registers.
823           DEBUG(dbgs() << " (non-allocatable)\n");
824           continue;
825         } else if ((ExcludeRegs != NULL) && ExcludeRegs->test(AntiDepReg)) {
826           // Don't break anti-dependencies for critical path registers
827           // if not on the critical path
828           DEBUG(dbgs() << " (not critical-path)\n");
829           continue;
830         } else if (PassthruRegs.count(AntiDepReg) != 0) {
831           // If the anti-dep register liveness "passes-thru", then
832           // don't try to change it. It will be changed along with
833           // the use if required to break an earlier antidep.
834           DEBUG(dbgs() << " (passthru)\n");
835           continue;
836         } else {
837           // No anti-dep breaking for implicit deps
838           MachineOperand *AntiDepOp = MI->findRegisterDefOperand(AntiDepReg);
839           assert(AntiDepOp != NULL &&
840                  "Can't find index for defined register operand");
841           if ((AntiDepOp == NULL) || AntiDepOp->isImplicit()) {
842             DEBUG(dbgs() << " (implicit)\n");
843             continue;
844           }
845 
846           // If the SUnit has other dependencies on the SUnit that
847           // it anti-depends on, don't bother breaking the
848           // anti-dependency since those edges would prevent such
849           // units from being scheduled past each other
850           // regardless.
851           //
852           // Also, if there are dependencies on other SUnits with the
853           // same register as the anti-dependency, don't attempt to
854           // break it.
855           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
856                  PE = PathSU->Preds.end(); P != PE; ++P) {
857             if (P->getSUnit() == NextSU ?
858                 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
859                 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
860               AntiDepReg = 0;
861               break;
862             }
863           }
864           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
865                  PE = PathSU->Preds.end(); P != PE; ++P) {
866             if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
867                 (P->getKind() != SDep::Output)) {
868               DEBUG(dbgs() << " (real dependency)\n");
869               AntiDepReg = 0;
870               break;
871             } else if ((P->getSUnit() != NextSU) &&
872                        (P->getKind() == SDep::Data) &&
873                        (P->getReg() == AntiDepReg)) {
874               DEBUG(dbgs() << " (other dependency)\n");
875               AntiDepReg = 0;
876               break;
877             }
878           }
879 
880           if (AntiDepReg == 0) continue;
881         }
882 
883         assert(AntiDepReg != 0);
884         if (AntiDepReg == 0) continue;
885 
886         // Determine AntiDepReg's register group.
887         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
888         if (GroupIndex == 0) {
889           DEBUG(dbgs() << " (zero group)\n");
890           continue;
891         }
892 
893         DEBUG(dbgs() << '\n');
894 
895         // Look for a suitable register to use to break the anti-dependence.
896         std::map<unsigned, unsigned> RenameMap;
897         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
898           DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
899                 << TRI->getName(AntiDepReg) << ":");
900 
901           // Handle each group register...
902           for (std::map<unsigned, unsigned>::iterator
903                  S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
904             unsigned CurrReg = S->first;
905             unsigned NewReg = S->second;
906 
907             DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
908                   TRI->getName(NewReg) << "(" <<
909                   RegRefs.count(CurrReg) << " refs)");
910 
911             // Update the references to the old register CurrReg to
912             // refer to the new register NewReg.
913             std::pair<std::multimap<unsigned,
914                            AggressiveAntiDepState::RegisterReference>::iterator,
915                       std::multimap<unsigned,
916                            AggressiveAntiDepState::RegisterReference>::iterator>
917               Range = RegRefs.equal_range(CurrReg);
918             for (std::multimap<unsigned,
919                  AggressiveAntiDepState::RegisterReference>::iterator
920                    Q = Range.first, QE = Range.second; Q != QE; ++Q) {
921               Q->second.Operand->setReg(NewReg);
922               // If the SU for the instruction being updated has debug
923               // information related to the anti-dependency register, make
924               // sure to update that as well.
925               const SUnit *SU = MISUnitMap[Q->second.Operand->getParent()];
926               if (!SU) continue;
927               for (DbgValueVector::iterator DVI = DbgValues.begin(),
928                      DVE = DbgValues.end(); DVI != DVE; ++DVI)
929                 if (DVI->second == Q->second.Operand->getParent())
930                   UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
931             }
932 
933             // We just went back in time and modified history; the
934             // liveness information for CurrReg is now inconsistent. Set
935             // the state as if it were dead.
936             State->UnionGroups(NewReg, 0);
937             RegRefs.erase(NewReg);
938             DefIndices[NewReg] = DefIndices[CurrReg];
939             KillIndices[NewReg] = KillIndices[CurrReg];
940 
941             State->UnionGroups(CurrReg, 0);
942             RegRefs.erase(CurrReg);
943             DefIndices[CurrReg] = KillIndices[CurrReg];
944             KillIndices[CurrReg] = ~0u;
945             assert(((KillIndices[CurrReg] == ~0u) !=
946                     (DefIndices[CurrReg] == ~0u)) &&
947                    "Kill and Def maps aren't consistent for AntiDepReg!");
948           }
949 
950           ++Broken;
951           DEBUG(dbgs() << '\n');
952         }
953       }
954     }
955 
956     ScanInstruction(MI, Count);
957   }
958 
959   return Broken;
960 }
961