• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the abstract interface that implements execution support
11 // for LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_EXECUTION_ENGINE_H
16 #define LLVM_EXECUTION_ENGINE_H
17 
18 #include "llvm/MC/MCCodeGenInfo.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/ValueMap.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/ValueHandle.h"
25 #include "llvm/Support/Mutex.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Target/TargetOptions.h"
28 #include <vector>
29 #include <map>
30 #include <string>
31 
32 namespace llvm {
33 
34 struct GenericValue;
35 class Constant;
36 class ExecutionEngine;
37 class Function;
38 class GlobalVariable;
39 class GlobalValue;
40 class JITEventListener;
41 class JITMemoryManager;
42 class MachineCodeInfo;
43 class Module;
44 class MutexGuard;
45 class TargetData;
46 class Triple;
47 class Type;
48 
49 /// \brief Helper class for helping synchronize access to the global address map
50 /// table.
51 class ExecutionEngineState {
52 public:
53   struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
54     typedef ExecutionEngineState *ExtraData;
55     static sys::Mutex *getMutex(ExecutionEngineState *EES);
56     static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
57     static void onRAUW(ExecutionEngineState *, const GlobalValue *,
58                        const GlobalValue *);
59   };
60 
61   typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
62       GlobalAddressMapTy;
63 
64 private:
65   ExecutionEngine &EE;
66 
67   /// GlobalAddressMap - A mapping between LLVM global values and their
68   /// actualized version...
69   GlobalAddressMapTy GlobalAddressMap;
70 
71   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
72   /// used to convert raw addresses into the LLVM global value that is emitted
73   /// at the address.  This map is not computed unless getGlobalValueAtAddress
74   /// is called at some point.
75   std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
76 
77 public:
78   ExecutionEngineState(ExecutionEngine &EE);
79 
getGlobalAddressMap(const MutexGuard &)80   GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
81     return GlobalAddressMap;
82   }
83 
84   std::map<void*, AssertingVH<const GlobalValue> > &
getGlobalAddressReverseMap(const MutexGuard &)85   getGlobalAddressReverseMap(const MutexGuard &) {
86     return GlobalAddressReverseMap;
87   }
88 
89   /// \brief Erase an entry from the mapping table.
90   ///
91   /// \returns The address that \arg ToUnmap was happed to.
92   void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
93 };
94 
95 /// \brief Abstract interface for implementation execution of LLVM modules,
96 /// designed to support both interpreter and just-in-time (JIT) compiler
97 /// implementations.
98 class ExecutionEngine {
99   /// The state object holding the global address mapping, which must be
100   /// accessed synchronously.
101   //
102   // FIXME: There is no particular need the entire map needs to be
103   // synchronized.  Wouldn't a reader-writer design be better here?
104   ExecutionEngineState EEState;
105 
106   /// The target data for the platform for which execution is being performed.
107   const TargetData *TD;
108 
109   /// Whether lazy JIT compilation is enabled.
110   bool CompilingLazily;
111 
112   /// Whether JIT compilation of external global variables is allowed.
113   bool GVCompilationDisabled;
114 
115   /// Whether the JIT should perform lookups of external symbols (e.g.,
116   /// using dlsym).
117   bool SymbolSearchingDisabled;
118 
119   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
120 
121 protected:
122   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
123   /// optimize for the case where there is only one module.
124   SmallVector<Module*, 1> Modules;
125 
setTargetData(const TargetData * td)126   void setTargetData(const TargetData *td) { TD = td; }
127 
128   /// getMemoryforGV - Allocate memory for a global variable.
129   virtual char *getMemoryForGV(const GlobalVariable *GV);
130 
131   // To avoid having libexecutionengine depend on the JIT and interpreter
132   // libraries, the execution engine implementations set these functions to ctor
133   // pointers at startup time if they are linked in.
134   static ExecutionEngine *(*JITCtor)(
135     Module *M,
136     std::string *ErrorStr,
137     JITMemoryManager *JMM,
138     bool GVsWithCode,
139     TargetMachine *TM);
140   static ExecutionEngine *(*MCJITCtor)(
141     Module *M,
142     std::string *ErrorStr,
143     JITMemoryManager *JMM,
144     bool GVsWithCode,
145     TargetMachine *TM);
146   static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
147 
148   /// LazyFunctionCreator - If an unknown function is needed, this function
149   /// pointer is invoked to create it.  If this returns null, the JIT will
150   /// abort.
151   void *(*LazyFunctionCreator)(const std::string &);
152 
153   /// ExceptionTableRegister - If Exception Handling is set, the JIT will
154   /// register dwarf tables with this function.
155   typedef void (*EERegisterFn)(void*);
156   EERegisterFn ExceptionTableRegister;
157   EERegisterFn ExceptionTableDeregister;
158   /// This maps functions to their exception tables frames.
159   DenseMap<const Function*, void*> AllExceptionTables;
160 
161 
162 public:
163   /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
164   /// JITEmitter classes.  It must be held while changing the internal state of
165   /// any of those classes.
166   sys::Mutex lock;
167 
168   //===--------------------------------------------------------------------===//
169   //  ExecutionEngine Startup
170   //===--------------------------------------------------------------------===//
171 
172   virtual ~ExecutionEngine();
173 
174   /// create - This is the factory method for creating an execution engine which
175   /// is appropriate for the current machine.  This takes ownership of the
176   /// module.
177   ///
178   /// \param GVsWithCode - Allocating globals with code breaks
179   /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
180   /// However, we have clients who depend on this behavior, so we must support
181   /// it.  Eventually, when we're willing to break some backwards compatibility,
182   /// this flag should be flipped to false, so that by default
183   /// freeMachineCodeForFunction works.
184   static ExecutionEngine *create(Module *M,
185                                  bool ForceInterpreter = false,
186                                  std::string *ErrorStr = 0,
187                                  CodeGenOpt::Level OptLevel =
188                                  CodeGenOpt::Default,
189                                  bool GVsWithCode = true);
190 
191   /// createJIT - This is the factory method for creating a JIT for the current
192   /// machine, it does not fall back to the interpreter.  This takes ownership
193   /// of the Module and JITMemoryManager if successful.
194   ///
195   /// Clients should make sure to initialize targets prior to calling this
196   /// function.
197   static ExecutionEngine *createJIT(Module *M,
198                                     std::string *ErrorStr = 0,
199                                     JITMemoryManager *JMM = 0,
200                                     CodeGenOpt::Level OptLevel =
201                                     CodeGenOpt::Default,
202                                     bool GVsWithCode = true,
203                                     Reloc::Model RM = Reloc::Default,
204                                     CodeModel::Model CMM =
205                                     CodeModel::JITDefault);
206 
207   /// addModule - Add a Module to the list of modules that we can JIT from.
208   /// Note that this takes ownership of the Module: when the ExecutionEngine is
209   /// destroyed, it destroys the Module as well.
addModule(Module * M)210   virtual void addModule(Module *M) {
211     Modules.push_back(M);
212   }
213 
214   //===--------------------------------------------------------------------===//
215 
getTargetData()216   const TargetData *getTargetData() const { return TD; }
217 
218   /// removeModule - Remove a Module from the list of modules.  Returns true if
219   /// M is found.
220   virtual bool removeModule(Module *M);
221 
222   /// FindFunctionNamed - Search all of the active modules to find the one that
223   /// defines FnName.  This is very slow operation and shouldn't be used for
224   /// general code.
225   Function *FindFunctionNamed(const char *FnName);
226 
227   /// runFunction - Execute the specified function with the specified arguments,
228   /// and return the result.
229   virtual GenericValue runFunction(Function *F,
230                                 const std::vector<GenericValue> &ArgValues) = 0;
231 
232   /// getPointerToNamedFunction - This method returns the address of the
233   /// specified function by using the dlsym function call.  As such it is only
234   /// useful for resolving library symbols, not code generated symbols.
235   ///
236   /// If AbortOnFailure is false and no function with the given name is
237   /// found, this function silently returns a null pointer. Otherwise,
238   /// it prints a message to stderr and aborts.
239   ///
240   virtual void *getPointerToNamedFunction(const std::string &Name,
241                                           bool AbortOnFailure = true) = 0;
242 
243   /// mapSectionAddress - map a section to its target address space value.
244   /// Map the address of a JIT section as returned from the memory manager
245   /// to the address in the target process as the running code will see it.
246   /// This is the address which will be used for relocation resolution.
mapSectionAddress(void * LocalAddress,uint64_t TargetAddress)247   virtual void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress) {
248     llvm_unreachable("Re-mapping of section addresses not supported with this "
249                      "EE!");
250   }
251 
252   /// runStaticConstructorsDestructors - This method is used to execute all of
253   /// the static constructors or destructors for a program.
254   ///
255   /// \param isDtors - Run the destructors instead of constructors.
256   void runStaticConstructorsDestructors(bool isDtors);
257 
258   /// runStaticConstructorsDestructors - This method is used to execute all of
259   /// the static constructors or destructors for a particular module.
260   ///
261   /// \param isDtors - Run the destructors instead of constructors.
262   void runStaticConstructorsDestructors(Module *module, bool isDtors);
263 
264 
265   /// runFunctionAsMain - This is a helper function which wraps runFunction to
266   /// handle the common task of starting up main with the specified argc, argv,
267   /// and envp parameters.
268   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
269                         const char * const * envp);
270 
271 
272   /// addGlobalMapping - Tell the execution engine that the specified global is
273   /// at the specified location.  This is used internally as functions are JIT'd
274   /// and as global variables are laid out in memory.  It can and should also be
275   /// used by clients of the EE that want to have an LLVM global overlay
276   /// existing data in memory.  Mappings are automatically removed when their
277   /// GlobalValue is destroyed.
278   void addGlobalMapping(const GlobalValue *GV, void *Addr);
279 
280   /// clearAllGlobalMappings - Clear all global mappings and start over again,
281   /// for use in dynamic compilation scenarios to move globals.
282   void clearAllGlobalMappings();
283 
284   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
285   /// particular module, because it has been removed from the JIT.
286   void clearGlobalMappingsFromModule(Module *M);
287 
288   /// updateGlobalMapping - Replace an existing mapping for GV with a new
289   /// address.  This updates both maps as required.  If "Addr" is null, the
290   /// entry for the global is removed from the mappings.  This returns the old
291   /// value of the pointer, or null if it was not in the map.
292   void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
293 
294   /// getPointerToGlobalIfAvailable - This returns the address of the specified
295   /// global value if it is has already been codegen'd, otherwise it returns
296   /// null.
297   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
298 
299   /// getPointerToGlobal - This returns the address of the specified global
300   /// value. This may involve code generation if it's a function.
301   void *getPointerToGlobal(const GlobalValue *GV);
302 
303   /// getPointerToFunction - The different EE's represent function bodies in
304   /// different ways.  They should each implement this to say what a function
305   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
306   /// remove its global mapping and free any machine code.  Be sure no threads
307   /// are running inside F when that happens.
308   virtual void *getPointerToFunction(Function *F) = 0;
309 
310   /// getPointerToBasicBlock - The different EE's represent basic blocks in
311   /// different ways.  Return the representation for a blockaddress of the
312   /// specified block.
313   virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
314 
315   /// getPointerToFunctionOrStub - If the specified function has been
316   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
317   /// a stub to implement lazy compilation if available.  See
318   /// getPointerToFunction for the requirements on destroying F.
getPointerToFunctionOrStub(Function * F)319   virtual void *getPointerToFunctionOrStub(Function *F) {
320     // Default implementation, just codegen the function.
321     return getPointerToFunction(F);
322   }
323 
324   // The JIT overrides a version that actually does this.
325   virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
326 
327   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
328   /// at the specified address.
329   ///
330   const GlobalValue *getGlobalValueAtAddress(void *Addr);
331 
332   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
333   /// Ptr is the address of the memory at which to store Val, cast to
334   /// GenericValue *.  It is not a pointer to a GenericValue containing the
335   /// address at which to store Val.
336   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
337                           Type *Ty);
338 
339   void InitializeMemory(const Constant *Init, void *Addr);
340 
341   /// recompileAndRelinkFunction - This method is used to force a function which
342   /// has already been compiled to be compiled again, possibly after it has been
343   /// modified.  Then the entry to the old copy is overwritten with a branch to
344   /// the new copy.  If there was no old copy, this acts just like
345   /// VM::getPointerToFunction().
346   virtual void *recompileAndRelinkFunction(Function *F) = 0;
347 
348   /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
349   /// corresponding to the machine code emitted to execute this function, useful
350   /// for garbage-collecting generated code.
351   virtual void freeMachineCodeForFunction(Function *F) = 0;
352 
353   /// getOrEmitGlobalVariable - Return the address of the specified global
354   /// variable, possibly emitting it to memory if needed.  This is used by the
355   /// Emitter.
getOrEmitGlobalVariable(const GlobalVariable * GV)356   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
357     return getPointerToGlobal((const GlobalValue *)GV);
358   }
359 
360   /// Registers a listener to be called back on various events within
361   /// the JIT.  See JITEventListener.h for more details.  Does not
362   /// take ownership of the argument.  The argument may be NULL, in
363   /// which case these functions do nothing.
RegisterJITEventListener(JITEventListener *)364   virtual void RegisterJITEventListener(JITEventListener *) {}
UnregisterJITEventListener(JITEventListener *)365   virtual void UnregisterJITEventListener(JITEventListener *) {}
366 
367   /// DisableLazyCompilation - When lazy compilation is off (the default), the
368   /// JIT will eagerly compile every function reachable from the argument to
369   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
370   /// compile the one function and emit stubs to compile the rest when they're
371   /// first called.  If lazy compilation is turned off again while some lazy
372   /// stubs are still around, and one of those stubs is called, the program will
373   /// abort.
374   ///
375   /// In order to safely compile lazily in a threaded program, the user must
376   /// ensure that 1) only one thread at a time can call any particular lazy
377   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
378   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
379   /// lazy stub.  See http://llvm.org/PR5184 for details.
380   void DisableLazyCompilation(bool Disabled = true) {
381     CompilingLazily = !Disabled;
382   }
isCompilingLazily()383   bool isCompilingLazily() const {
384     return CompilingLazily;
385   }
386   // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
387   // Remove this in LLVM 2.8.
isLazyCompilationDisabled()388   bool isLazyCompilationDisabled() const {
389     return !CompilingLazily;
390   }
391 
392   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
393   /// allocate space and populate a GlobalVariable that is not internal to
394   /// the module.
395   void DisableGVCompilation(bool Disabled = true) {
396     GVCompilationDisabled = Disabled;
397   }
isGVCompilationDisabled()398   bool isGVCompilationDisabled() const {
399     return GVCompilationDisabled;
400   }
401 
402   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
403   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
404   /// resolve symbols in a custom way.
405   void DisableSymbolSearching(bool Disabled = true) {
406     SymbolSearchingDisabled = Disabled;
407   }
isSymbolSearchingDisabled()408   bool isSymbolSearchingDisabled() const {
409     return SymbolSearchingDisabled;
410   }
411 
412   /// InstallLazyFunctionCreator - If an unknown function is needed, the
413   /// specified function pointer is invoked to create it.  If it returns null,
414   /// the JIT will abort.
InstallLazyFunctionCreator(void * (* P)(const std::string &))415   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
416     LazyFunctionCreator = P;
417   }
418 
419   /// InstallExceptionTableRegister - The JIT will use the given function
420   /// to register the exception tables it generates.
InstallExceptionTableRegister(EERegisterFn F)421   void InstallExceptionTableRegister(EERegisterFn F) {
422     ExceptionTableRegister = F;
423   }
InstallExceptionTableDeregister(EERegisterFn F)424   void InstallExceptionTableDeregister(EERegisterFn F) {
425     ExceptionTableDeregister = F;
426   }
427 
428   /// RegisterTable - Registers the given pointer as an exception table.  It
429   /// uses the ExceptionTableRegister function.
RegisterTable(const Function * fn,void * res)430   void RegisterTable(const Function *fn, void* res) {
431     if (ExceptionTableRegister) {
432       ExceptionTableRegister(res);
433       AllExceptionTables[fn] = res;
434     }
435   }
436 
437   /// DeregisterTable - Deregisters the exception frame previously registered
438   /// for the given function.
DeregisterTable(const Function * Fn)439   void DeregisterTable(const Function *Fn) {
440     if (ExceptionTableDeregister) {
441       DenseMap<const Function*, void*>::iterator frame =
442         AllExceptionTables.find(Fn);
443       if(frame != AllExceptionTables.end()) {
444         ExceptionTableDeregister(frame->second);
445         AllExceptionTables.erase(frame);
446       }
447     }
448   }
449 
450   /// DeregisterAllTables - Deregisters all previously registered pointers to an
451   /// exception tables.  It uses the ExceptionTableoDeregister function.
452   void DeregisterAllTables();
453 
454 protected:
455   explicit ExecutionEngine(Module *M);
456 
457   void emitGlobals();
458 
459   void EmitGlobalVariable(const GlobalVariable *GV);
460 
461   GenericValue getConstantValue(const Constant *C);
462   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
463                            Type *Ty);
464 };
465 
466 namespace EngineKind {
467   // These are actually bitmasks that get or-ed together.
468   enum Kind {
469     JIT         = 0x1,
470     Interpreter = 0x2
471   };
472   const static Kind Either = (Kind)(JIT | Interpreter);
473 }
474 
475 /// EngineBuilder - Builder class for ExecutionEngines.  Use this by
476 /// stack-allocating a builder, chaining the various set* methods, and
477 /// terminating it with a .create() call.
478 class EngineBuilder {
479 private:
480   Module *M;
481   EngineKind::Kind WhichEngine;
482   std::string *ErrorStr;
483   CodeGenOpt::Level OptLevel;
484   JITMemoryManager *JMM;
485   bool AllocateGVsWithCode;
486   TargetOptions Options;
487   Reloc::Model RelocModel;
488   CodeModel::Model CMModel;
489   std::string MArch;
490   std::string MCPU;
491   SmallVector<std::string, 4> MAttrs;
492   bool UseMCJIT;
493 
494   /// InitEngine - Does the common initialization of default options.
InitEngine()495   void InitEngine() {
496     WhichEngine = EngineKind::Either;
497     ErrorStr = NULL;
498     OptLevel = CodeGenOpt::Default;
499     JMM = NULL;
500     Options = TargetOptions();
501     AllocateGVsWithCode = false;
502     RelocModel = Reloc::Default;
503     CMModel = CodeModel::JITDefault;
504     UseMCJIT = false;
505   }
506 
507 public:
508   /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
509   /// is successful, the created engine takes ownership of the module.
EngineBuilder(Module * m)510   EngineBuilder(Module *m) : M(m) {
511     InitEngine();
512   }
513 
514   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
515   /// or whichever engine works.  This option defaults to EngineKind::Either.
setEngineKind(EngineKind::Kind w)516   EngineBuilder &setEngineKind(EngineKind::Kind w) {
517     WhichEngine = w;
518     return *this;
519   }
520 
521   /// setJITMemoryManager - Sets the memory manager to use.  This allows
522   /// clients to customize their memory allocation policies.  If create() is
523   /// called and is successful, the created engine takes ownership of the
524   /// memory manager.  This option defaults to NULL.
setJITMemoryManager(JITMemoryManager * jmm)525   EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
526     JMM = jmm;
527     return *this;
528   }
529 
530   /// setErrorStr - Set the error string to write to on error.  This option
531   /// defaults to NULL.
setErrorStr(std::string * e)532   EngineBuilder &setErrorStr(std::string *e) {
533     ErrorStr = e;
534     return *this;
535   }
536 
537   /// setOptLevel - Set the optimization level for the JIT.  This option
538   /// defaults to CodeGenOpt::Default.
setOptLevel(CodeGenOpt::Level l)539   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
540     OptLevel = l;
541     return *this;
542   }
543 
544   /// setTargetOptions - Set the target options that the ExecutionEngine
545   /// target is using. Defaults to TargetOptions().
setTargetOptions(const TargetOptions & Opts)546   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
547     Options = Opts;
548     return *this;
549   }
550 
551   /// setRelocationModel - Set the relocation model that the ExecutionEngine
552   /// target is using. Defaults to target specific default "Reloc::Default".
setRelocationModel(Reloc::Model RM)553   EngineBuilder &setRelocationModel(Reloc::Model RM) {
554     RelocModel = RM;
555     return *this;
556   }
557 
558   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
559   /// data is using. Defaults to target specific default
560   /// "CodeModel::JITDefault".
setCodeModel(CodeModel::Model M)561   EngineBuilder &setCodeModel(CodeModel::Model M) {
562     CMModel = M;
563     return *this;
564   }
565 
566   /// setAllocateGVsWithCode - Sets whether global values should be allocated
567   /// into the same buffer as code.  For most applications this should be set
568   /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
569   /// and is probably unsafe and bad for performance.  However, we have clients
570   /// who depend on this behavior, so we must support it.  This option defaults
571   /// to false so that users of the new API can safely use the new memory
572   /// manager and free machine code.
setAllocateGVsWithCode(bool a)573   EngineBuilder &setAllocateGVsWithCode(bool a) {
574     AllocateGVsWithCode = a;
575     return *this;
576   }
577 
578   /// setMArch - Override the architecture set by the Module's triple.
setMArch(StringRef march)579   EngineBuilder &setMArch(StringRef march) {
580     MArch.assign(march.begin(), march.end());
581     return *this;
582   }
583 
584   /// setMCPU - Target a specific cpu type.
setMCPU(StringRef mcpu)585   EngineBuilder &setMCPU(StringRef mcpu) {
586     MCPU.assign(mcpu.begin(), mcpu.end());
587     return *this;
588   }
589 
590   /// setUseMCJIT - Set whether the MC-JIT implementation should be used
591   /// (experimental).
setUseMCJIT(bool Value)592   EngineBuilder &setUseMCJIT(bool Value) {
593     UseMCJIT = Value;
594     return *this;
595   }
596 
597   /// setMAttrs - Set cpu-specific attributes.
598   template<typename StringSequence>
setMAttrs(const StringSequence & mattrs)599   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
600     MAttrs.clear();
601     MAttrs.append(mattrs.begin(), mattrs.end());
602     return *this;
603   }
604 
605   TargetMachine *selectTarget();
606 
607   /// selectTarget - Pick a target either via -march or by guessing the native
608   /// arch.  Add any CPU features specified via -mcpu or -mattr.
609   TargetMachine *selectTarget(const Triple &TargetTriple,
610                               StringRef MArch,
611                               StringRef MCPU,
612                               const SmallVectorImpl<std::string>& MAttrs);
613 
create()614   ExecutionEngine *create() {
615     return create(selectTarget());
616   }
617 
618   ExecutionEngine *create(TargetMachine *TM);
619 };
620 
621 } // End llvm namespace
622 
623 #endif
624