• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * In addition, Sun covenants to all licensees who provide a reciprocal
13  * covenant with respect to their own patents if any, not to sue under
14  * current and future patent claims necessarily infringed by the making,
15  * using, practicing, selling, offering for sale and/or otherwise
16  * disposing of the ECC Code as delivered hereunder (or portions thereof),
17  * provided that such covenant shall not apply:
18  *  1) for code that a licensee deletes from the ECC Code;
19  *  2) separates from the ECC Code; or
20  *  3) for infringements caused by:
21  *       i) the modification of the ECC Code or
22  *      ii) the combination of the ECC Code with other software or
23  *          devices where such combination causes the infringement.
24  *
25  * The software is originally written by Sheueling Chang Shantz and
26  * Douglas Stebila of Sun Microsystems Laboratories.
27  *
28  */
29 
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31  * and may be modified; but after modifications, the above covenant
32  * may no longer apply!  In such cases, the corresponding paragraph
33  * ["In addition, Sun covenants ... causes the infringement."] and
34  * this note can be edited out; but please keep the Sun copyright
35  * notice and attribution. */
36 
37 /* ====================================================================
38  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in
49  *    the documentation and/or other materials provided with the
50  *    distribution.
51  *
52  * 3. All advertising materials mentioning features or use of this
53  *    software must display the following acknowledgment:
54  *    "This product includes software developed by the OpenSSL Project
55  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56  *
57  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58  *    endorse or promote products derived from this software without
59  *    prior written permission. For written permission, please contact
60  *    openssl-core@openssl.org.
61  *
62  * 5. Products derived from this software may not be called "OpenSSL"
63  *    nor may "OpenSSL" appear in their names without prior written
64  *    permission of the OpenSSL Project.
65  *
66  * 6. Redistributions of any form whatsoever must retain the following
67  *    acknowledgment:
68  *    "This product includes software developed by the OpenSSL Project
69  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
75  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82  * OF THE POSSIBILITY OF SUCH DAMAGE.
83  * ====================================================================
84  *
85  * This product includes cryptographic software written by Eric Young
86  * (eay@cryptsoft.com).  This product includes software written by Tim
87  * Hudson (tjh@cryptsoft.com).
88  *
89  */
90 
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96 
97 #ifndef OPENSSL_NO_EC2M
98 
99 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
100 #define MAX_ITERATIONS 50
101 
102 static const BN_ULONG SQR_tb[16] =
103   {     0,     1,     4,     5,    16,    17,    20,    21,
104        64,    65,    68,    69,    80,    81,    84,    85 };
105 /* Platform-specific macros to accelerate squaring. */
106 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
107 #define SQR1(w) \
108     SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
109     SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
110     SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
111     SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
112 #define SQR0(w) \
113     SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
114     SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
115     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
116     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
117 #endif
118 #ifdef THIRTY_TWO_BIT
119 #define SQR1(w) \
120     SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
121     SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
122 #define SQR0(w) \
123     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
124     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
125 #endif
126 
127 #if !defined(OPENSSL_BN_ASM_GF2m)
128 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
129  * result is a polynomial r with degree < 2 * BN_BITS - 1
130  * The caller MUST ensure that the variables have the right amount
131  * of space allocated.
132  */
133 #ifdef THIRTY_TWO_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)134 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
135 	{
136 	register BN_ULONG h, l, s;
137 	BN_ULONG tab[8], top2b = a >> 30;
138 	register BN_ULONG a1, a2, a4;
139 
140 	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
141 
142 	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
143 	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
144 
145 	s = tab[b       & 0x7]; l  = s;
146 	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
147 	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
148 	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
149 	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
150 	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
151 	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
152 	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
153 	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
154 	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
155 	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
156 
157 	/* compensate for the top two bits of a */
158 
159 	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
160 	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
161 
162 	*r1 = h; *r0 = l;
163 	}
164 #endif
165 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167 	{
168 	register BN_ULONG h, l, s;
169 	BN_ULONG tab[16], top3b = a >> 61;
170 	register BN_ULONG a1, a2, a4, a8;
171 
172 	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
173 
174 	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
175 	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
176 	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
177 	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
178 
179 	s = tab[b       & 0xF]; l  = s;
180 	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
181 	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
182 	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
183 	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
184 	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
185 	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
186 	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
187 	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
188 	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
189 	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
190 	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
191 	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
192 	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
193 	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
194 	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
195 
196 	/* compensate for the top three bits of a */
197 
198 	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
199 	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
200 	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
201 
202 	*r1 = h; *r0 = l;
203 	}
204 #endif
205 
206 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
207  * result is a polynomial r with degree < 4 * BN_BITS2 - 1
208  * The caller MUST ensure that the variables have the right amount
209  * of space allocated.
210  */
bn_GF2m_mul_2x2(BN_ULONG * r,const BN_ULONG a1,const BN_ULONG a0,const BN_ULONG b1,const BN_ULONG b0)211 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
212 	{
213 	BN_ULONG m1, m0;
214 	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
215 	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
216 	bn_GF2m_mul_1x1(r+1, r, a0, b0);
217 	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
218 	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
219 	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
220 	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
221 	}
222 #else
223 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
224 #endif
225 
226 /* Add polynomials a and b and store result in r; r could be a or b, a and b
227  * could be equal; r is the bitwise XOR of a and b.
228  */
BN_GF2m_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b)229 int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
230 	{
231 	int i;
232 	const BIGNUM *at, *bt;
233 
234 	bn_check_top(a);
235 	bn_check_top(b);
236 
237 	if (a->top < b->top) { at = b; bt = a; }
238 	else { at = a; bt = b; }
239 
240 	if(bn_wexpand(r, at->top) == NULL)
241 		return 0;
242 
243 	for (i = 0; i < bt->top; i++)
244 		{
245 		r->d[i] = at->d[i] ^ bt->d[i];
246 		}
247 	for (; i < at->top; i++)
248 		{
249 		r->d[i] = at->d[i];
250 		}
251 
252 	r->top = at->top;
253 	bn_correct_top(r);
254 
255 	return 1;
256 	}
257 
258 
259 /* Some functions allow for representation of the irreducible polynomials
260  * as an int[], say p.  The irreducible f(t) is then of the form:
261  *     t^p[0] + t^p[1] + ... + t^p[k]
262  * where m = p[0] > p[1] > ... > p[k] = 0.
263  */
264 
265 
266 /* Performs modular reduction of a and store result in r.  r could be a. */
BN_GF2m_mod_arr(BIGNUM * r,const BIGNUM * a,const int p[])267 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
268 	{
269 	int j, k;
270 	int n, dN, d0, d1;
271 	BN_ULONG zz, *z;
272 
273 	bn_check_top(a);
274 
275 	if (!p[0])
276 		{
277 		/* reduction mod 1 => return 0 */
278 		BN_zero(r);
279 		return 1;
280 		}
281 
282 	/* Since the algorithm does reduction in the r value, if a != r, copy
283 	 * the contents of a into r so we can do reduction in r.
284 	 */
285 	if (a != r)
286 		{
287 		if (!bn_wexpand(r, a->top)) return 0;
288 		for (j = 0; j < a->top; j++)
289 			{
290 			r->d[j] = a->d[j];
291 			}
292 		r->top = a->top;
293 		}
294 	z = r->d;
295 
296 	/* start reduction */
297 	dN = p[0] / BN_BITS2;
298 	for (j = r->top - 1; j > dN;)
299 		{
300 		zz = z[j];
301 		if (z[j] == 0) { j--; continue; }
302 		z[j] = 0;
303 
304 		for (k = 1; p[k] != 0; k++)
305 			{
306 			/* reducing component t^p[k] */
307 			n = p[0] - p[k];
308 			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
309 			n /= BN_BITS2;
310 			z[j-n] ^= (zz>>d0);
311 			if (d0) z[j-n-1] ^= (zz<<d1);
312 			}
313 
314 		/* reducing component t^0 */
315 		n = dN;
316 		d0 = p[0] % BN_BITS2;
317 		d1 = BN_BITS2 - d0;
318 		z[j-n] ^= (zz >> d0);
319 		if (d0) z[j-n-1] ^= (zz << d1);
320 		}
321 
322 	/* final round of reduction */
323 	while (j == dN)
324 		{
325 
326 		d0 = p[0] % BN_BITS2;
327 		zz = z[dN] >> d0;
328 		if (zz == 0) break;
329 		d1 = BN_BITS2 - d0;
330 
331 		/* clear up the top d1 bits */
332 		if (d0)
333 			z[dN] = (z[dN] << d1) >> d1;
334 		else
335 			z[dN] = 0;
336 		z[0] ^= zz; /* reduction t^0 component */
337 
338 		for (k = 1; p[k] != 0; k++)
339 			{
340 			BN_ULONG tmp_ulong;
341 
342 			/* reducing component t^p[k]*/
343 			n = p[k] / BN_BITS2;
344 			d0 = p[k] % BN_BITS2;
345 			d1 = BN_BITS2 - d0;
346 			z[n] ^= (zz << d0);
347 			tmp_ulong = zz >> d1;
348                         if (d0 && tmp_ulong)
349                                 z[n+1] ^= tmp_ulong;
350 			}
351 
352 
353 		}
354 
355 	bn_correct_top(r);
356 	return 1;
357 	}
358 
359 /* Performs modular reduction of a by p and store result in r.  r could be a.
360  *
361  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
362  * function is only provided for convenience; for best performance, use the
363  * BN_GF2m_mod_arr function.
364  */
BN_GF2m_mod(BIGNUM * r,const BIGNUM * a,const BIGNUM * p)365 int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
366 	{
367 	int ret = 0;
368 	int arr[6];
369 	bn_check_top(a);
370 	bn_check_top(p);
371 	ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
372 	if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
373 		{
374 		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
375 		return 0;
376 		}
377 	ret = BN_GF2m_mod_arr(r, a, arr);
378 	bn_check_top(r);
379 	return ret;
380 	}
381 
382 
383 /* Compute the product of two polynomials a and b, reduce modulo p, and store
384  * the result in r.  r could be a or b; a could be b.
385  */
BN_GF2m_mod_mul_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)386 int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
387 	{
388 	int zlen, i, j, k, ret = 0;
389 	BIGNUM *s;
390 	BN_ULONG x1, x0, y1, y0, zz[4];
391 
392 	bn_check_top(a);
393 	bn_check_top(b);
394 
395 	if (a == b)
396 		{
397 		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
398 		}
399 
400 	BN_CTX_start(ctx);
401 	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
402 
403 	zlen = a->top + b->top + 4;
404 	if (!bn_wexpand(s, zlen)) goto err;
405 	s->top = zlen;
406 
407 	for (i = 0; i < zlen; i++) s->d[i] = 0;
408 
409 	for (j = 0; j < b->top; j += 2)
410 		{
411 		y0 = b->d[j];
412 		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
413 		for (i = 0; i < a->top; i += 2)
414 			{
415 			x0 = a->d[i];
416 			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
417 			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
418 			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
419 			}
420 		}
421 
422 	bn_correct_top(s);
423 	if (BN_GF2m_mod_arr(r, s, p))
424 		ret = 1;
425 	bn_check_top(r);
426 
427 err:
428 	BN_CTX_end(ctx);
429 	return ret;
430 	}
431 
432 /* Compute the product of two polynomials a and b, reduce modulo p, and store
433  * the result in r.  r could be a or b; a could equal b.
434  *
435  * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
436  * function is only provided for convenience; for best performance, use the
437  * BN_GF2m_mod_mul_arr function.
438  */
BN_GF2m_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)439 int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
440 	{
441 	int ret = 0;
442 	const int max = BN_num_bits(p) + 1;
443 	int *arr=NULL;
444 	bn_check_top(a);
445 	bn_check_top(b);
446 	bn_check_top(p);
447 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
448 	ret = BN_GF2m_poly2arr(p, arr, max);
449 	if (!ret || ret > max)
450 		{
451 		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
452 		goto err;
453 		}
454 	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
455 	bn_check_top(r);
456 err:
457 	if (arr) OPENSSL_free(arr);
458 	return ret;
459 	}
460 
461 
462 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
BN_GF2m_mod_sqr_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)463 int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
464 	{
465 	int i, ret = 0;
466 	BIGNUM *s;
467 
468 	bn_check_top(a);
469 	BN_CTX_start(ctx);
470 	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
471 	if (!bn_wexpand(s, 2 * a->top)) goto err;
472 
473 	for (i = a->top - 1; i >= 0; i--)
474 		{
475 		s->d[2*i+1] = SQR1(a->d[i]);
476 		s->d[2*i  ] = SQR0(a->d[i]);
477 		}
478 
479 	s->top = 2 * a->top;
480 	bn_correct_top(s);
481 	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
482 	bn_check_top(r);
483 	ret = 1;
484 err:
485 	BN_CTX_end(ctx);
486 	return ret;
487 	}
488 
489 /* Square a, reduce the result mod p, and store it in a.  r could be a.
490  *
491  * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
492  * function is only provided for convenience; for best performance, use the
493  * BN_GF2m_mod_sqr_arr function.
494  */
BN_GF2m_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)495 int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
496 	{
497 	int ret = 0;
498 	const int max = BN_num_bits(p) + 1;
499 	int *arr=NULL;
500 
501 	bn_check_top(a);
502 	bn_check_top(p);
503 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
504 	ret = BN_GF2m_poly2arr(p, arr, max);
505 	if (!ret || ret > max)
506 		{
507 		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
508 		goto err;
509 		}
510 	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
511 	bn_check_top(r);
512 err:
513 	if (arr) OPENSSL_free(arr);
514 	return ret;
515 	}
516 
517 
518 /* Invert a, reduce modulo p, and store the result in r. r could be a.
519  * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
520  *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
521  *     of Elliptic Curve Cryptography Over Binary Fields".
522  */
BN_GF2m_mod_inv(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)523 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
524 	{
525 	BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
526 	int ret = 0;
527 
528 	bn_check_top(a);
529 	bn_check_top(p);
530 
531 	BN_CTX_start(ctx);
532 
533 	if ((b = BN_CTX_get(ctx))==NULL) goto err;
534 	if ((c = BN_CTX_get(ctx))==NULL) goto err;
535 	if ((u = BN_CTX_get(ctx))==NULL) goto err;
536 	if ((v = BN_CTX_get(ctx))==NULL) goto err;
537 
538 	if (!BN_GF2m_mod(u, a, p)) goto err;
539 	if (BN_is_zero(u)) goto err;
540 
541 	if (!BN_copy(v, p)) goto err;
542 #if 0
543 	if (!BN_one(b)) goto err;
544 
545 	while (1)
546 		{
547 		while (!BN_is_odd(u))
548 			{
549 			if (BN_is_zero(u)) goto err;
550 			if (!BN_rshift1(u, u)) goto err;
551 			if (BN_is_odd(b))
552 				{
553 				if (!BN_GF2m_add(b, b, p)) goto err;
554 				}
555 			if (!BN_rshift1(b, b)) goto err;
556 			}
557 
558 		if (BN_abs_is_word(u, 1)) break;
559 
560 		if (BN_num_bits(u) < BN_num_bits(v))
561 			{
562 			tmp = u; u = v; v = tmp;
563 			tmp = b; b = c; c = tmp;
564 			}
565 
566 		if (!BN_GF2m_add(u, u, v)) goto err;
567 		if (!BN_GF2m_add(b, b, c)) goto err;
568 		}
569 #else
570 	{
571 	int i,	ubits = BN_num_bits(u),
572 		vbits = BN_num_bits(v),	/* v is copy of p */
573 		top = p->top;
574 	BN_ULONG *udp,*bdp,*vdp,*cdp;
575 
576 	bn_wexpand(u,top);	udp = u->d;
577 				for (i=u->top;i<top;i++) udp[i] = 0;
578 				u->top = top;
579 	bn_wexpand(b,top);	bdp = b->d;
580 				bdp[0] = 1;
581 				for (i=1;i<top;i++) bdp[i] = 0;
582 				b->top = top;
583 	bn_wexpand(c,top);	cdp = c->d;
584 				for (i=0;i<top;i++) cdp[i] = 0;
585 				c->top = top;
586 	vdp = v->d;	/* It pays off to "cache" *->d pointers, because
587 			 * it allows optimizer to be more aggressive.
588 			 * But we don't have to "cache" p->d, because *p
589 			 * is declared 'const'... */
590 	while (1)
591 		{
592 		while (ubits && !(udp[0]&1))
593 			{
594 			BN_ULONG u0,u1,b0,b1,mask;
595 
596 			u0   = udp[0];
597 			b0   = bdp[0];
598 			mask = (BN_ULONG)0-(b0&1);
599 			b0  ^= p->d[0]&mask;
600 			for (i=0;i<top-1;i++)
601 				{
602 				u1 = udp[i+1];
603 				udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
604 				u0 = u1;
605 				b1 = bdp[i+1]^(p->d[i+1]&mask);
606 				bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
607 				b0 = b1;
608 				}
609 			udp[i] = u0>>1;
610 			bdp[i] = b0>>1;
611 			ubits--;
612 			}
613 
614 		if (ubits<=BN_BITS2 && udp[0]==1) break;
615 
616 		if (ubits<vbits)
617 			{
618 			i = ubits; ubits = vbits; vbits = i;
619 			tmp = u; u = v; v = tmp;
620 			tmp = b; b = c; c = tmp;
621 			udp = vdp; vdp = v->d;
622 			bdp = cdp; cdp = c->d;
623 			}
624 		for(i=0;i<top;i++)
625 			{
626 			udp[i] ^= vdp[i];
627 			bdp[i] ^= cdp[i];
628 			}
629 		if (ubits==vbits)
630 			{
631 			BN_ULONG ul;
632 			int utop = (ubits-1)/BN_BITS2;
633 
634 			while ((ul=udp[utop])==0 && utop) utop--;
635 			ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
636 			}
637 		}
638 	bn_correct_top(b);
639 	}
640 #endif
641 
642 	if (!BN_copy(r, b)) goto err;
643 	bn_check_top(r);
644 	ret = 1;
645 
646 err:
647 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
648         bn_correct_top(c);
649         bn_correct_top(u);
650         bn_correct_top(v);
651 #endif
652   	BN_CTX_end(ctx);
653 	return ret;
654 	}
655 
656 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
657  *
658  * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
659  * function is only provided for convenience; for best performance, use the
660  * BN_GF2m_mod_inv function.
661  */
BN_GF2m_mod_inv_arr(BIGNUM * r,const BIGNUM * xx,const int p[],BN_CTX * ctx)662 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
663 	{
664 	BIGNUM *field;
665 	int ret = 0;
666 
667 	bn_check_top(xx);
668 	BN_CTX_start(ctx);
669 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
670 	if (!BN_GF2m_arr2poly(p, field)) goto err;
671 
672 	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
673 	bn_check_top(r);
674 
675 err:
676 	BN_CTX_end(ctx);
677 	return ret;
678 	}
679 
680 
681 #ifndef OPENSSL_SUN_GF2M_DIV
682 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
683  * or y, x could equal y.
684  */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)685 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
686 	{
687 	BIGNUM *xinv = NULL;
688 	int ret = 0;
689 
690 	bn_check_top(y);
691 	bn_check_top(x);
692 	bn_check_top(p);
693 
694 	BN_CTX_start(ctx);
695 	xinv = BN_CTX_get(ctx);
696 	if (xinv == NULL) goto err;
697 
698 	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
699 	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
700 	bn_check_top(r);
701 	ret = 1;
702 
703 err:
704 	BN_CTX_end(ctx);
705 	return ret;
706 	}
707 #else
708 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
709  * or y, x could equal y.
710  * Uses algorithm Modular_Division_GF(2^m) from
711  *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
712  *     the Great Divide".
713  */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)714 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
715 	{
716 	BIGNUM *a, *b, *u, *v;
717 	int ret = 0;
718 
719 	bn_check_top(y);
720 	bn_check_top(x);
721 	bn_check_top(p);
722 
723 	BN_CTX_start(ctx);
724 
725 	a = BN_CTX_get(ctx);
726 	b = BN_CTX_get(ctx);
727 	u = BN_CTX_get(ctx);
728 	v = BN_CTX_get(ctx);
729 	if (v == NULL) goto err;
730 
731 	/* reduce x and y mod p */
732 	if (!BN_GF2m_mod(u, y, p)) goto err;
733 	if (!BN_GF2m_mod(a, x, p)) goto err;
734 	if (!BN_copy(b, p)) goto err;
735 
736 	while (!BN_is_odd(a))
737 		{
738 		if (!BN_rshift1(a, a)) goto err;
739 		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
740 		if (!BN_rshift1(u, u)) goto err;
741 		}
742 
743 	do
744 		{
745 		if (BN_GF2m_cmp(b, a) > 0)
746 			{
747 			if (!BN_GF2m_add(b, b, a)) goto err;
748 			if (!BN_GF2m_add(v, v, u)) goto err;
749 			do
750 				{
751 				if (!BN_rshift1(b, b)) goto err;
752 				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
753 				if (!BN_rshift1(v, v)) goto err;
754 				} while (!BN_is_odd(b));
755 			}
756 		else if (BN_abs_is_word(a, 1))
757 			break;
758 		else
759 			{
760 			if (!BN_GF2m_add(a, a, b)) goto err;
761 			if (!BN_GF2m_add(u, u, v)) goto err;
762 			do
763 				{
764 				if (!BN_rshift1(a, a)) goto err;
765 				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
766 				if (!BN_rshift1(u, u)) goto err;
767 				} while (!BN_is_odd(a));
768 			}
769 		} while (1);
770 
771 	if (!BN_copy(r, u)) goto err;
772 	bn_check_top(r);
773 	ret = 1;
774 
775 err:
776   	BN_CTX_end(ctx);
777 	return ret;
778 	}
779 #endif
780 
781 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
782  * or yy, xx could equal yy.
783  *
784  * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
785  * function is only provided for convenience; for best performance, use the
786  * BN_GF2m_mod_div function.
787  */
BN_GF2m_mod_div_arr(BIGNUM * r,const BIGNUM * yy,const BIGNUM * xx,const int p[],BN_CTX * ctx)788 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
789 	{
790 	BIGNUM *field;
791 	int ret = 0;
792 
793 	bn_check_top(yy);
794 	bn_check_top(xx);
795 
796 	BN_CTX_start(ctx);
797 	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
798 	if (!BN_GF2m_arr2poly(p, field)) goto err;
799 
800 	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
801 	bn_check_top(r);
802 
803 err:
804 	BN_CTX_end(ctx);
805 	return ret;
806 	}
807 
808 
809 /* Compute the bth power of a, reduce modulo p, and store
810  * the result in r.  r could be a.
811  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
812  */
BN_GF2m_mod_exp_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)813 int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
814 	{
815 	int ret = 0, i, n;
816 	BIGNUM *u;
817 
818 	bn_check_top(a);
819 	bn_check_top(b);
820 
821 	if (BN_is_zero(b))
822 		return(BN_one(r));
823 
824 	if (BN_abs_is_word(b, 1))
825 		return (BN_copy(r, a) != NULL);
826 
827 	BN_CTX_start(ctx);
828 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
829 
830 	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
831 
832 	n = BN_num_bits(b) - 1;
833 	for (i = n - 1; i >= 0; i--)
834 		{
835 		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
836 		if (BN_is_bit_set(b, i))
837 			{
838 			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
839 			}
840 		}
841 	if (!BN_copy(r, u)) goto err;
842 	bn_check_top(r);
843 	ret = 1;
844 err:
845 	BN_CTX_end(ctx);
846 	return ret;
847 	}
848 
849 /* Compute the bth power of a, reduce modulo p, and store
850  * the result in r.  r could be a.
851  *
852  * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
853  * function is only provided for convenience; for best performance, use the
854  * BN_GF2m_mod_exp_arr function.
855  */
BN_GF2m_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)856 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
857 	{
858 	int ret = 0;
859 	const int max = BN_num_bits(p) + 1;
860 	int *arr=NULL;
861 	bn_check_top(a);
862 	bn_check_top(b);
863 	bn_check_top(p);
864 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
865 	ret = BN_GF2m_poly2arr(p, arr, max);
866 	if (!ret || ret > max)
867 		{
868 		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
869 		goto err;
870 		}
871 	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
872 	bn_check_top(r);
873 err:
874 	if (arr) OPENSSL_free(arr);
875 	return ret;
876 	}
877 
878 /* Compute the square root of a, reduce modulo p, and store
879  * the result in r.  r could be a.
880  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
881  */
BN_GF2m_mod_sqrt_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)882 int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
883 	{
884 	int ret = 0;
885 	BIGNUM *u;
886 
887 	bn_check_top(a);
888 
889 	if (!p[0])
890 		{
891 		/* reduction mod 1 => return 0 */
892 		BN_zero(r);
893 		return 1;
894 		}
895 
896 	BN_CTX_start(ctx);
897 	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
898 
899 	if (!BN_set_bit(u, p[0] - 1)) goto err;
900 	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
901 	bn_check_top(r);
902 
903 err:
904 	BN_CTX_end(ctx);
905 	return ret;
906 	}
907 
908 /* Compute the square root of a, reduce modulo p, and store
909  * the result in r.  r could be a.
910  *
911  * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
912  * function is only provided for convenience; for best performance, use the
913  * BN_GF2m_mod_sqrt_arr function.
914  */
BN_GF2m_mod_sqrt(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)915 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
916 	{
917 	int ret = 0;
918 	const int max = BN_num_bits(p) + 1;
919 	int *arr=NULL;
920 	bn_check_top(a);
921 	bn_check_top(p);
922 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
923 	ret = BN_GF2m_poly2arr(p, arr, max);
924 	if (!ret || ret > max)
925 		{
926 		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
927 		goto err;
928 		}
929 	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
930 	bn_check_top(r);
931 err:
932 	if (arr) OPENSSL_free(arr);
933 	return ret;
934 	}
935 
936 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
937  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
938  */
BN_GF2m_mod_solve_quad_arr(BIGNUM * r,const BIGNUM * a_,const int p[],BN_CTX * ctx)939 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
940 	{
941 	int ret = 0, count = 0, j;
942 	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
943 
944 	bn_check_top(a_);
945 
946 	if (!p[0])
947 		{
948 		/* reduction mod 1 => return 0 */
949 		BN_zero(r);
950 		return 1;
951 		}
952 
953 	BN_CTX_start(ctx);
954 	a = BN_CTX_get(ctx);
955 	z = BN_CTX_get(ctx);
956 	w = BN_CTX_get(ctx);
957 	if (w == NULL) goto err;
958 
959 	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
960 
961 	if (BN_is_zero(a))
962 		{
963 		BN_zero(r);
964 		ret = 1;
965 		goto err;
966 		}
967 
968 	if (p[0] & 0x1) /* m is odd */
969 		{
970 		/* compute half-trace of a */
971 		if (!BN_copy(z, a)) goto err;
972 		for (j = 1; j <= (p[0] - 1) / 2; j++)
973 			{
974 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
975 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
976 			if (!BN_GF2m_add(z, z, a)) goto err;
977 			}
978 
979 		}
980 	else /* m is even */
981 		{
982 		rho = BN_CTX_get(ctx);
983 		w2 = BN_CTX_get(ctx);
984 		tmp = BN_CTX_get(ctx);
985 		if (tmp == NULL) goto err;
986 		do
987 			{
988 			if (!BN_rand(rho, p[0], 0, 0)) goto err;
989 			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
990 			BN_zero(z);
991 			if (!BN_copy(w, rho)) goto err;
992 			for (j = 1; j <= p[0] - 1; j++)
993 				{
994 				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
995 				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
996 				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
997 				if (!BN_GF2m_add(z, z, tmp)) goto err;
998 				if (!BN_GF2m_add(w, w2, rho)) goto err;
999 				}
1000 			count++;
1001 			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1002 		if (BN_is_zero(w))
1003 			{
1004 			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
1005 			goto err;
1006 			}
1007 		}
1008 
1009 	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
1010 	if (!BN_GF2m_add(w, z, w)) goto err;
1011 	if (BN_GF2m_cmp(w, a))
1012 		{
1013 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1014 		goto err;
1015 		}
1016 
1017 	if (!BN_copy(r, z)) goto err;
1018 	bn_check_top(r);
1019 
1020 	ret = 1;
1021 
1022 err:
1023 	BN_CTX_end(ctx);
1024 	return ret;
1025 	}
1026 
1027 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
1028  *
1029  * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1030  * function is only provided for convenience; for best performance, use the
1031  * BN_GF2m_mod_solve_quad_arr function.
1032  */
BN_GF2m_mod_solve_quad(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)1033 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1034 	{
1035 	int ret = 0;
1036 	const int max = BN_num_bits(p) + 1;
1037 	int *arr=NULL;
1038 	bn_check_top(a);
1039 	bn_check_top(p);
1040 	if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
1041 						max)) == NULL) goto err;
1042 	ret = BN_GF2m_poly2arr(p, arr, max);
1043 	if (!ret || ret > max)
1044 		{
1045 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1046 		goto err;
1047 		}
1048 	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1049 	bn_check_top(r);
1050 err:
1051 	if (arr) OPENSSL_free(arr);
1052 	return ret;
1053 	}
1054 
1055 /* Convert the bit-string representation of a polynomial
1056  * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1057  * to the bits with non-zero coefficient.  Array is terminated with -1.
1058  * Up to max elements of the array will be filled.  Return value is total
1059  * number of array elements that would be filled if array was large enough.
1060  */
BN_GF2m_poly2arr(const BIGNUM * a,int p[],int max)1061 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1062 	{
1063 	int i, j, k = 0;
1064 	BN_ULONG mask;
1065 
1066 	if (BN_is_zero(a))
1067 		return 0;
1068 
1069 	for (i = a->top - 1; i >= 0; i--)
1070 		{
1071 		if (!a->d[i])
1072 			/* skip word if a->d[i] == 0 */
1073 			continue;
1074 		mask = BN_TBIT;
1075 		for (j = BN_BITS2 - 1; j >= 0; j--)
1076 			{
1077 			if (a->d[i] & mask)
1078 				{
1079 				if (k < max) p[k] = BN_BITS2 * i + j;
1080 				k++;
1081 				}
1082 			mask >>= 1;
1083 			}
1084 		}
1085 
1086 	if (k < max) {
1087 		p[k] = -1;
1088 		k++;
1089 	}
1090 
1091 	return k;
1092 	}
1093 
1094 /* Convert the coefficient array representation of a polynomial to a
1095  * bit-string.  The array must be terminated by -1.
1096  */
BN_GF2m_arr2poly(const int p[],BIGNUM * a)1097 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1098 	{
1099 	int i;
1100 
1101 	bn_check_top(a);
1102 	BN_zero(a);
1103 	for (i = 0; p[i] != -1; i++)
1104 		{
1105 		if (BN_set_bit(a, p[i]) == 0)
1106 			return 0;
1107 		}
1108 	bn_check_top(a);
1109 
1110 	return 1;
1111 	}
1112 
1113 #endif
1114