• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/bn/bn_gcd.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #include "cryptlib.h"
113 #include "bn_lcl.h"
114 
115 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116 
BN_gcd(BIGNUM * r,const BIGNUM * in_a,const BIGNUM * in_b,BN_CTX * ctx)117 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118 	{
119 	BIGNUM *a,*b,*t;
120 	int ret=0;
121 
122 	bn_check_top(in_a);
123 	bn_check_top(in_b);
124 
125 	BN_CTX_start(ctx);
126 	a = BN_CTX_get(ctx);
127 	b = BN_CTX_get(ctx);
128 	if (a == NULL || b == NULL) goto err;
129 
130 	if (BN_copy(a,in_a) == NULL) goto err;
131 	if (BN_copy(b,in_b) == NULL) goto err;
132 	a->neg = 0;
133 	b->neg = 0;
134 
135 	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
136 	t=euclid(a,b);
137 	if (t == NULL) goto err;
138 
139 	if (BN_copy(r,t) == NULL) goto err;
140 	ret=1;
141 err:
142 	BN_CTX_end(ctx);
143 	bn_check_top(r);
144 	return(ret);
145 	}
146 
euclid(BIGNUM * a,BIGNUM * b)147 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
148 	{
149 	BIGNUM *t;
150 	int shifts=0;
151 
152 	bn_check_top(a);
153 	bn_check_top(b);
154 
155 	/* 0 <= b <= a */
156 	while (!BN_is_zero(b))
157 		{
158 		/* 0 < b <= a */
159 
160 		if (BN_is_odd(a))
161 			{
162 			if (BN_is_odd(b))
163 				{
164 				if (!BN_sub(a,a,b)) goto err;
165 				if (!BN_rshift1(a,a)) goto err;
166 				if (BN_cmp(a,b) < 0)
167 					{ t=a; a=b; b=t; }
168 				}
169 			else		/* a odd - b even */
170 				{
171 				if (!BN_rshift1(b,b)) goto err;
172 				if (BN_cmp(a,b) < 0)
173 					{ t=a; a=b; b=t; }
174 				}
175 			}
176 		else			/* a is even */
177 			{
178 			if (BN_is_odd(b))
179 				{
180 				if (!BN_rshift1(a,a)) goto err;
181 				if (BN_cmp(a,b) < 0)
182 					{ t=a; a=b; b=t; }
183 				}
184 			else		/* a even - b even */
185 				{
186 				if (!BN_rshift1(a,a)) goto err;
187 				if (!BN_rshift1(b,b)) goto err;
188 				shifts++;
189 				}
190 			}
191 		/* 0 <= b <= a */
192 		}
193 
194 	if (shifts)
195 		{
196 		if (!BN_lshift(a,a,shifts)) goto err;
197 		}
198 	bn_check_top(a);
199 	return(a);
200 err:
201 	return(NULL);
202 	}
203 
204 
205 /* solves ax == 1 (mod n) */
206 static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
207         const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
BN_mod_inverse(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)208 BIGNUM *BN_mod_inverse(BIGNUM *in,
209 	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
210 	{
211 	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
212 	BIGNUM *ret=NULL;
213 	int sign;
214 
215 	if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0))
216 		{
217 		return BN_mod_inverse_no_branch(in, a, n, ctx);
218 		}
219 
220 	bn_check_top(a);
221 	bn_check_top(n);
222 
223 	BN_CTX_start(ctx);
224 	A = BN_CTX_get(ctx);
225 	B = BN_CTX_get(ctx);
226 	X = BN_CTX_get(ctx);
227 	D = BN_CTX_get(ctx);
228 	M = BN_CTX_get(ctx);
229 	Y = BN_CTX_get(ctx);
230 	T = BN_CTX_get(ctx);
231 	if (T == NULL) goto err;
232 
233 	if (in == NULL)
234 		R=BN_new();
235 	else
236 		R=in;
237 	if (R == NULL) goto err;
238 
239 	BN_one(X);
240 	BN_zero(Y);
241 	if (BN_copy(B,a) == NULL) goto err;
242 	if (BN_copy(A,n) == NULL) goto err;
243 	A->neg = 0;
244 	if (B->neg || (BN_ucmp(B, A) >= 0))
245 		{
246 		if (!BN_nnmod(B, B, A, ctx)) goto err;
247 		}
248 	sign = -1;
249 	/* From  B = a mod |n|,  A = |n|  it follows that
250 	 *
251 	 *      0 <= B < A,
252 	 *     -sign*X*a  ==  B   (mod |n|),
253 	 *      sign*Y*a  ==  A   (mod |n|).
254 	 */
255 
256 	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
257 		{
258 		/* Binary inversion algorithm; requires odd modulus.
259 		 * This is faster than the general algorithm if the modulus
260 		 * is sufficiently small (about 400 .. 500 bits on 32-bit
261 		 * sytems, but much more on 64-bit systems) */
262 		int shift;
263 
264 		while (!BN_is_zero(B))
265 			{
266 			/*
267 			 *      0 < B < |n|,
268 			 *      0 < A <= |n|,
269 			 * (1) -sign*X*a  ==  B   (mod |n|),
270 			 * (2)  sign*Y*a  ==  A   (mod |n|)
271 			 */
272 
273 			/* Now divide  B  by the maximum possible power of two in the integers,
274 			 * and divide  X  by the same value mod |n|.
275 			 * When we're done, (1) still holds. */
276 			shift = 0;
277 			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
278 				{
279 				shift++;
280 
281 				if (BN_is_odd(X))
282 					{
283 					if (!BN_uadd(X, X, n)) goto err;
284 					}
285 				/* now X is even, so we can easily divide it by two */
286 				if (!BN_rshift1(X, X)) goto err;
287 				}
288 			if (shift > 0)
289 				{
290 				if (!BN_rshift(B, B, shift)) goto err;
291 				}
292 
293 
294 			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
295 			shift = 0;
296 			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
297 				{
298 				shift++;
299 
300 				if (BN_is_odd(Y))
301 					{
302 					if (!BN_uadd(Y, Y, n)) goto err;
303 					}
304 				/* now Y is even */
305 				if (!BN_rshift1(Y, Y)) goto err;
306 				}
307 			if (shift > 0)
308 				{
309 				if (!BN_rshift(A, A, shift)) goto err;
310 				}
311 
312 
313 			/* We still have (1) and (2).
314 			 * Both  A  and  B  are odd.
315 			 * The following computations ensure that
316 			 *
317 			 *     0 <= B < |n|,
318 			 *      0 < A < |n|,
319 			 * (1) -sign*X*a  ==  B   (mod |n|),
320 			 * (2)  sign*Y*a  ==  A   (mod |n|),
321 			 *
322 			 * and that either  A  or  B  is even in the next iteration.
323 			 */
324 			if (BN_ucmp(B, A) >= 0)
325 				{
326 				/* -sign*(X + Y)*a == B - A  (mod |n|) */
327 				if (!BN_uadd(X, X, Y)) goto err;
328 				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
329 				 * actually makes the algorithm slower */
330 				if (!BN_usub(B, B, A)) goto err;
331 				}
332 			else
333 				{
334 				/*  sign*(X + Y)*a == A - B  (mod |n|) */
335 				if (!BN_uadd(Y, Y, X)) goto err;
336 				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
337 				if (!BN_usub(A, A, B)) goto err;
338 				}
339 			}
340 		}
341 	else
342 		{
343 		/* general inversion algorithm */
344 
345 		while (!BN_is_zero(B))
346 			{
347 			BIGNUM *tmp;
348 
349 			/*
350 			 *      0 < B < A,
351 			 * (*) -sign*X*a  ==  B   (mod |n|),
352 			 *      sign*Y*a  ==  A   (mod |n|)
353 			 */
354 
355 			/* (D, M) := (A/B, A%B) ... */
356 			if (BN_num_bits(A) == BN_num_bits(B))
357 				{
358 				if (!BN_one(D)) goto err;
359 				if (!BN_sub(M,A,B)) goto err;
360 				}
361 			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
362 				{
363 				/* A/B is 1, 2, or 3 */
364 				if (!BN_lshift1(T,B)) goto err;
365 				if (BN_ucmp(A,T) < 0)
366 					{
367 					/* A < 2*B, so D=1 */
368 					if (!BN_one(D)) goto err;
369 					if (!BN_sub(M,A,B)) goto err;
370 					}
371 				else
372 					{
373 					/* A >= 2*B, so D=2 or D=3 */
374 					if (!BN_sub(M,A,T)) goto err;
375 					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
376 					if (BN_ucmp(A,D) < 0)
377 						{
378 						/* A < 3*B, so D=2 */
379 						if (!BN_set_word(D,2)) goto err;
380 						/* M (= A - 2*B) already has the correct value */
381 						}
382 					else
383 						{
384 						/* only D=3 remains */
385 						if (!BN_set_word(D,3)) goto err;
386 						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
387 						if (!BN_sub(M,M,B)) goto err;
388 						}
389 					}
390 				}
391 			else
392 				{
393 				if (!BN_div(D,M,A,B,ctx)) goto err;
394 				}
395 
396 			/* Now
397 			 *      A = D*B + M;
398 			 * thus we have
399 			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
400 			 */
401 
402 			tmp=A; /* keep the BIGNUM object, the value does not matter */
403 
404 			/* (A, B) := (B, A mod B) ... */
405 			A=B;
406 			B=M;
407 			/* ... so we have  0 <= B < A  again */
408 
409 			/* Since the former  M  is now  B  and the former  B  is now  A,
410 			 * (**) translates into
411 			 *       sign*Y*a  ==  D*A + B    (mod |n|),
412 			 * i.e.
413 			 *       sign*Y*a - D*A  ==  B    (mod |n|).
414 			 * Similarly, (*) translates into
415 			 *      -sign*X*a  ==  A          (mod |n|).
416 			 *
417 			 * Thus,
418 			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
419 			 * i.e.
420 			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
421 			 *
422 			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
423 			 *      -sign*X*a  ==  B   (mod |n|),
424 			 *       sign*Y*a  ==  A   (mod |n|).
425 			 * Note that  X  and  Y  stay non-negative all the time.
426 			 */
427 
428 			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
429 			if (BN_is_one(D))
430 				{
431 				if (!BN_add(tmp,X,Y)) goto err;
432 				}
433 			else
434 				{
435 				if (BN_is_word(D,2))
436 					{
437 					if (!BN_lshift1(tmp,X)) goto err;
438 					}
439 				else if (BN_is_word(D,4))
440 					{
441 					if (!BN_lshift(tmp,X,2)) goto err;
442 					}
443 				else if (D->top == 1)
444 					{
445 					if (!BN_copy(tmp,X)) goto err;
446 					if (!BN_mul_word(tmp,D->d[0])) goto err;
447 					}
448 				else
449 					{
450 					if (!BN_mul(tmp,D,X,ctx)) goto err;
451 					}
452 				if (!BN_add(tmp,tmp,Y)) goto err;
453 				}
454 
455 			M=Y; /* keep the BIGNUM object, the value does not matter */
456 			Y=X;
457 			X=tmp;
458 			sign = -sign;
459 			}
460 		}
461 
462 	/*
463 	 * The while loop (Euclid's algorithm) ends when
464 	 *      A == gcd(a,n);
465 	 * we have
466 	 *       sign*Y*a  ==  A  (mod |n|),
467 	 * where  Y  is non-negative.
468 	 */
469 
470 	if (sign < 0)
471 		{
472 		if (!BN_sub(Y,n,Y)) goto err;
473 		}
474 	/* Now  Y*a  ==  A  (mod |n|).  */
475 
476 
477 	if (BN_is_one(A))
478 		{
479 		/* Y*a == 1  (mod |n|) */
480 		if (!Y->neg && BN_ucmp(Y,n) < 0)
481 			{
482 			if (!BN_copy(R,Y)) goto err;
483 			}
484 		else
485 			{
486 			if (!BN_nnmod(R,Y,n,ctx)) goto err;
487 			}
488 		}
489 	else
490 		{
491 		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
492 		goto err;
493 		}
494 	ret=R;
495 err:
496 	if ((ret == NULL) && (in == NULL)) BN_free(R);
497 	BN_CTX_end(ctx);
498 	bn_check_top(ret);
499 	return(ret);
500 	}
501 
502 
503 /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
504  * It does not contain branches that may leak sensitive information.
505  */
BN_mod_inverse_no_branch(BIGNUM * in,const BIGNUM * a,const BIGNUM * n,BN_CTX * ctx)506 static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
507 	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
508 	{
509 	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
510 	BIGNUM local_A, local_B;
511 	BIGNUM *pA, *pB;
512 	BIGNUM *ret=NULL;
513 	int sign;
514 
515 	bn_check_top(a);
516 	bn_check_top(n);
517 
518 	BN_CTX_start(ctx);
519 	A = BN_CTX_get(ctx);
520 	B = BN_CTX_get(ctx);
521 	X = BN_CTX_get(ctx);
522 	D = BN_CTX_get(ctx);
523 	M = BN_CTX_get(ctx);
524 	Y = BN_CTX_get(ctx);
525 	T = BN_CTX_get(ctx);
526 	if (T == NULL) goto err;
527 
528 	if (in == NULL)
529 		R=BN_new();
530 	else
531 		R=in;
532 	if (R == NULL) goto err;
533 
534 	BN_one(X);
535 	BN_zero(Y);
536 	if (BN_copy(B,a) == NULL) goto err;
537 	if (BN_copy(A,n) == NULL) goto err;
538 	A->neg = 0;
539 
540 	if (B->neg || (BN_ucmp(B, A) >= 0))
541 		{
542 		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
543 	 	 * BN_div_no_branch will be called eventually.
544 	 	 */
545 		pB = &local_B;
546 		BN_with_flags(pB, B, BN_FLG_CONSTTIME);
547 		if (!BN_nnmod(B, pB, A, ctx)) goto err;
548 		}
549 	sign = -1;
550 	/* From  B = a mod |n|,  A = |n|  it follows that
551 	 *
552 	 *      0 <= B < A,
553 	 *     -sign*X*a  ==  B   (mod |n|),
554 	 *      sign*Y*a  ==  A   (mod |n|).
555 	 */
556 
557 	while (!BN_is_zero(B))
558 		{
559 		BIGNUM *tmp;
560 
561 		/*
562 		 *      0 < B < A,
563 		 * (*) -sign*X*a  ==  B   (mod |n|),
564 		 *      sign*Y*a  ==  A   (mod |n|)
565 		 */
566 
567 		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
568 	 	 * BN_div_no_branch will be called eventually.
569 	 	 */
570 		pA = &local_A;
571 		BN_with_flags(pA, A, BN_FLG_CONSTTIME);
572 
573 		/* (D, M) := (A/B, A%B) ... */
574 		if (!BN_div(D,M,pA,B,ctx)) goto err;
575 
576 		/* Now
577 		 *      A = D*B + M;
578 		 * thus we have
579 		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
580 		 */
581 
582 		tmp=A; /* keep the BIGNUM object, the value does not matter */
583 
584 		/* (A, B) := (B, A mod B) ... */
585 		A=B;
586 		B=M;
587 		/* ... so we have  0 <= B < A  again */
588 
589 		/* Since the former  M  is now  B  and the former  B  is now  A,
590 		 * (**) translates into
591 		 *       sign*Y*a  ==  D*A + B    (mod |n|),
592 		 * i.e.
593 		 *       sign*Y*a - D*A  ==  B    (mod |n|).
594 		 * Similarly, (*) translates into
595 		 *      -sign*X*a  ==  A          (mod |n|).
596 		 *
597 		 * Thus,
598 		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
599 		 * i.e.
600 		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
601 		 *
602 		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
603 		 *      -sign*X*a  ==  B   (mod |n|),
604 		 *       sign*Y*a  ==  A   (mod |n|).
605 		 * Note that  X  and  Y  stay non-negative all the time.
606 		 */
607 
608 		if (!BN_mul(tmp,D,X,ctx)) goto err;
609 		if (!BN_add(tmp,tmp,Y)) goto err;
610 
611 		M=Y; /* keep the BIGNUM object, the value does not matter */
612 		Y=X;
613 		X=tmp;
614 		sign = -sign;
615 		}
616 
617 	/*
618 	 * The while loop (Euclid's algorithm) ends when
619 	 *      A == gcd(a,n);
620 	 * we have
621 	 *       sign*Y*a  ==  A  (mod |n|),
622 	 * where  Y  is non-negative.
623 	 */
624 
625 	if (sign < 0)
626 		{
627 		if (!BN_sub(Y,n,Y)) goto err;
628 		}
629 	/* Now  Y*a  ==  A  (mod |n|).  */
630 
631 	if (BN_is_one(A))
632 		{
633 		/* Y*a == 1  (mod |n|) */
634 		if (!Y->neg && BN_ucmp(Y,n) < 0)
635 			{
636 			if (!BN_copy(R,Y)) goto err;
637 			}
638 		else
639 			{
640 			if (!BN_nnmod(R,Y,n,ctx)) goto err;
641 			}
642 		}
643 	else
644 		{
645 		BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
646 		goto err;
647 		}
648 	ret=R;
649 err:
650 	if ((ret == NULL) && (in == NULL)) BN_free(R);
651 	BN_CTX_end(ctx);
652 	bn_check_top(ret);
653 	return(ret);
654 	}
655