1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/disk_cache/entry_impl.h"
6
7 #include "base/message_loop.h"
8 #include "base/metrics/histogram.h"
9 #include "base/string_util.h"
10 #include "net/base/io_buffer.h"
11 #include "net/base/net_errors.h"
12 #include "net/disk_cache/backend_impl.h"
13 #include "net/disk_cache/bitmap.h"
14 #include "net/disk_cache/cache_util.h"
15 #include "net/disk_cache/hash.h"
16 #include "net/disk_cache/histogram_macros.h"
17 #include "net/disk_cache/net_log_parameters.h"
18 #include "net/disk_cache/sparse_control.h"
19
20 using base::Time;
21 using base::TimeDelta;
22 using base::TimeTicks;
23
24 namespace {
25
26 // Index for the file used to store the key, if any (files_[kKeyFileIndex]).
27 const int kKeyFileIndex = 3;
28
29 // This class implements FileIOCallback to buffer the callback from a file IO
30 // operation from the actual net class.
31 class SyncCallback: public disk_cache::FileIOCallback {
32 public:
33 // |end_event_type| is the event type to log on completion. Logs nothing on
34 // discard, or when the NetLog is not set to log all events.
SyncCallback(disk_cache::EntryImpl * entry,net::IOBuffer * buffer,net::CompletionCallback * callback,net::NetLog::EventType end_event_type)35 SyncCallback(disk_cache::EntryImpl* entry, net::IOBuffer* buffer,
36 net::CompletionCallback* callback,
37 net::NetLog::EventType end_event_type)
38 : entry_(entry), callback_(callback), buf_(buffer),
39 start_(TimeTicks::Now()), end_event_type_(end_event_type) {
40 entry->AddRef();
41 entry->IncrementIoCount();
42 }
~SyncCallback()43 ~SyncCallback() {}
44
45 virtual void OnFileIOComplete(int bytes_copied);
46 void Discard();
47
48 private:
49 disk_cache::EntryImpl* entry_;
50 net::CompletionCallback* callback_;
51 scoped_refptr<net::IOBuffer> buf_;
52 TimeTicks start_;
53 const net::NetLog::EventType end_event_type_;
54
55 DISALLOW_COPY_AND_ASSIGN(SyncCallback);
56 };
57
OnFileIOComplete(int bytes_copied)58 void SyncCallback::OnFileIOComplete(int bytes_copied) {
59 entry_->DecrementIoCount();
60 if (callback_) {
61 if (entry_->net_log().IsLoggingAllEvents()) {
62 entry_->net_log().EndEvent(
63 end_event_type_,
64 make_scoped_refptr(
65 new disk_cache::ReadWriteCompleteParameters(bytes_copied)));
66 }
67 entry_->ReportIOTime(disk_cache::EntryImpl::kAsyncIO, start_);
68 callback_->Run(bytes_copied);
69 }
70 entry_->Release();
71 delete this;
72 }
73
Discard()74 void SyncCallback::Discard() {
75 callback_ = NULL;
76 buf_ = NULL;
77 OnFileIOComplete(0);
78 }
79
80 const int kMaxBufferSize = 1024 * 1024; // 1 MB.
81
82 } // namespace
83
84 namespace disk_cache {
85
86 // This class handles individual memory buffers that store data before it is
87 // sent to disk. The buffer can start at any offset, but if we try to write to
88 // anywhere in the first 16KB of the file (kMaxBlockSize), we set the offset to
89 // zero. The buffer grows up to a size determined by the backend, to keep the
90 // total memory used under control.
91 class EntryImpl::UserBuffer {
92 public:
UserBuffer(BackendImpl * backend)93 explicit UserBuffer(BackendImpl* backend)
94 : backend_(backend->GetWeakPtr()), offset_(0), grow_allowed_(true) {
95 buffer_.reserve(kMaxBlockSize);
96 }
~UserBuffer()97 ~UserBuffer() {
98 if (backend_)
99 backend_->BufferDeleted(capacity() - kMaxBlockSize);
100 }
101
102 // Returns true if we can handle writing |len| bytes to |offset|.
103 bool PreWrite(int offset, int len);
104
105 // Truncates the buffer to |offset| bytes.
106 void Truncate(int offset);
107
108 // Writes |len| bytes from |buf| at the given |offset|.
109 void Write(int offset, net::IOBuffer* buf, int len);
110
111 // Returns true if we can read |len| bytes from |offset|, given that the
112 // actual file has |eof| bytes stored. Note that the number of bytes to read
113 // may be modified by this method even though it returns false: that means we
114 // should do a smaller read from disk.
115 bool PreRead(int eof, int offset, int* len);
116
117 // Read |len| bytes from |buf| at the given |offset|.
118 int Read(int offset, net::IOBuffer* buf, int len);
119
120 // Prepare this buffer for reuse.
121 void Reset();
122
Data()123 char* Data() { return buffer_.size() ? &buffer_[0] : NULL; }
Size()124 int Size() { return static_cast<int>(buffer_.size()); }
Start()125 int Start() { return offset_; }
End()126 int End() { return offset_ + Size(); }
127
128 private:
capacity()129 int capacity() { return static_cast<int>(buffer_.capacity()); }
130 bool GrowBuffer(int required, int limit);
131
132 base::WeakPtr<BackendImpl> backend_;
133 int offset_;
134 std::vector<char> buffer_;
135 bool grow_allowed_;
136 DISALLOW_COPY_AND_ASSIGN(UserBuffer);
137 };
138
PreWrite(int offset,int len)139 bool EntryImpl::UserBuffer::PreWrite(int offset, int len) {
140 DCHECK_GE(offset, 0);
141 DCHECK_GE(len, 0);
142 DCHECK_GE(offset + len, 0);
143
144 // We don't want to write before our current start.
145 if (offset < offset_)
146 return false;
147
148 // Lets get the common case out of the way.
149 if (offset + len <= capacity())
150 return true;
151
152 // If we are writing to the first 16K (kMaxBlockSize), we want to keep the
153 // buffer offset_ at 0.
154 if (!Size() && offset > kMaxBlockSize)
155 return GrowBuffer(len, kMaxBufferSize);
156
157 int required = offset - offset_ + len;
158 return GrowBuffer(required, kMaxBufferSize * 6 / 5);
159 }
160
Truncate(int offset)161 void EntryImpl::UserBuffer::Truncate(int offset) {
162 DCHECK_GE(offset, 0);
163 DCHECK_GE(offset, offset_);
164 DVLOG(3) << "Buffer truncate at " << offset << " current " << offset_;
165
166 offset -= offset_;
167 if (Size() >= offset)
168 buffer_.resize(offset);
169 }
170
Write(int offset,net::IOBuffer * buf,int len)171 void EntryImpl::UserBuffer::Write(int offset, net::IOBuffer* buf, int len) {
172 DCHECK_GE(offset, 0);
173 DCHECK_GE(len, 0);
174 DCHECK_GE(offset + len, 0);
175 DCHECK_GE(offset, offset_);
176 DVLOG(3) << "Buffer write at " << offset << " current " << offset_;
177
178 if (!Size() && offset > kMaxBlockSize)
179 offset_ = offset;
180
181 offset -= offset_;
182
183 if (offset > Size())
184 buffer_.resize(offset);
185
186 if (!len)
187 return;
188
189 char* buffer = buf->data();
190 int valid_len = Size() - offset;
191 int copy_len = std::min(valid_len, len);
192 if (copy_len) {
193 memcpy(&buffer_[offset], buffer, copy_len);
194 len -= copy_len;
195 buffer += copy_len;
196 }
197 if (!len)
198 return;
199
200 buffer_.insert(buffer_.end(), buffer, buffer + len);
201 }
202
PreRead(int eof,int offset,int * len)203 bool EntryImpl::UserBuffer::PreRead(int eof, int offset, int* len) {
204 DCHECK_GE(offset, 0);
205 DCHECK_GT(*len, 0);
206
207 if (offset < offset_) {
208 // We are reading before this buffer.
209 if (offset >= eof)
210 return true;
211
212 // If the read overlaps with the buffer, change its length so that there is
213 // no overlap.
214 *len = std::min(*len, offset_ - offset);
215 *len = std::min(*len, eof - offset);
216
217 // We should read from disk.
218 return false;
219 }
220
221 if (!Size())
222 return false;
223
224 // See if we can fulfill the first part of the operation.
225 return (offset - offset_ < Size());
226 }
227
Read(int offset,net::IOBuffer * buf,int len)228 int EntryImpl::UserBuffer::Read(int offset, net::IOBuffer* buf, int len) {
229 DCHECK_GE(offset, 0);
230 DCHECK_GT(len, 0);
231 DCHECK(Size() || offset < offset_);
232
233 int clean_bytes = 0;
234 if (offset < offset_) {
235 // We don't have a file so lets fill the first part with 0.
236 clean_bytes = std::min(offset_ - offset, len);
237 memset(buf->data(), 0, clean_bytes);
238 if (len == clean_bytes)
239 return len;
240 offset = offset_;
241 len -= clean_bytes;
242 }
243
244 int start = offset - offset_;
245 int available = Size() - start;
246 DCHECK_GE(start, 0);
247 DCHECK_GE(available, 0);
248 len = std::min(len, available);
249 memcpy(buf->data() + clean_bytes, &buffer_[start], len);
250 return len + clean_bytes;
251 }
252
Reset()253 void EntryImpl::UserBuffer::Reset() {
254 if (!grow_allowed_) {
255 if (backend_)
256 backend_->BufferDeleted(capacity() - kMaxBlockSize);
257 grow_allowed_ = true;
258 std::vector<char> tmp;
259 buffer_.swap(tmp);
260 buffer_.reserve(kMaxBlockSize);
261 }
262 offset_ = 0;
263 buffer_.clear();
264 }
265
GrowBuffer(int required,int limit)266 bool EntryImpl::UserBuffer::GrowBuffer(int required, int limit) {
267 DCHECK_GE(required, 0);
268 int current_size = capacity();
269 if (required <= current_size)
270 return true;
271
272 if (required > limit)
273 return false;
274
275 if (!backend_)
276 return false;
277
278 int to_add = std::max(required - current_size, kMaxBlockSize * 4);
279 to_add = std::max(current_size, to_add);
280 required = std::min(current_size + to_add, limit);
281
282 grow_allowed_ = backend_->IsAllocAllowed(current_size, required);
283 if (!grow_allowed_)
284 return false;
285
286 DVLOG(3) << "Buffer grow to " << required;
287
288 buffer_.reserve(required);
289 return true;
290 }
291
292 // ------------------------------------------------------------------------
293
EntryImpl(BackendImpl * backend,Addr address,bool read_only)294 EntryImpl::EntryImpl(BackendImpl* backend, Addr address, bool read_only)
295 : entry_(NULL, Addr(0)), node_(NULL, Addr(0)), backend_(backend),
296 doomed_(false), read_only_(read_only), dirty_(false) {
297 entry_.LazyInit(backend->File(address), address);
298 for (int i = 0; i < kNumStreams; i++) {
299 unreported_size_[i] = 0;
300 }
301 }
302
DoomImpl()303 void EntryImpl::DoomImpl() {
304 if (doomed_)
305 return;
306
307 SetPointerForInvalidEntry(backend_->GetCurrentEntryId());
308 backend_->InternalDoomEntry(this);
309 }
310
ReadDataImpl(int index,int offset,net::IOBuffer * buf,int buf_len,CompletionCallback * callback)311 int EntryImpl::ReadDataImpl(int index, int offset, net::IOBuffer* buf,
312 int buf_len, CompletionCallback* callback) {
313 if (net_log_.IsLoggingAllEvents()) {
314 net_log_.BeginEvent(
315 net::NetLog::TYPE_ENTRY_READ_DATA,
316 make_scoped_refptr(
317 new ReadWriteDataParameters(index, offset, buf_len, false)));
318 }
319
320 int result = InternalReadData(index, offset, buf, buf_len, callback);
321
322 if (result != net::ERR_IO_PENDING && net_log_.IsLoggingAllEvents()) {
323 net_log_.EndEvent(
324 net::NetLog::TYPE_ENTRY_READ_DATA,
325 make_scoped_refptr(new ReadWriteCompleteParameters(result)));
326 }
327 return result;
328 }
329
WriteDataImpl(int index,int offset,net::IOBuffer * buf,int buf_len,CompletionCallback * callback,bool truncate)330 int EntryImpl::WriteDataImpl(int index, int offset, net::IOBuffer* buf,
331 int buf_len, CompletionCallback* callback,
332 bool truncate) {
333 if (net_log_.IsLoggingAllEvents()) {
334 net_log_.BeginEvent(
335 net::NetLog::TYPE_ENTRY_WRITE_DATA,
336 make_scoped_refptr(
337 new ReadWriteDataParameters(index, offset, buf_len, truncate)));
338 }
339
340 int result = InternalWriteData(index, offset, buf, buf_len, callback,
341 truncate);
342
343 if (result != net::ERR_IO_PENDING && net_log_.IsLoggingAllEvents()) {
344 net_log_.EndEvent(
345 net::NetLog::TYPE_ENTRY_WRITE_DATA,
346 make_scoped_refptr(new ReadWriteCompleteParameters(result)));
347 }
348 return result;
349 }
350
ReadSparseDataImpl(int64 offset,net::IOBuffer * buf,int buf_len,CompletionCallback * callback)351 int EntryImpl::ReadSparseDataImpl(int64 offset, net::IOBuffer* buf, int buf_len,
352 CompletionCallback* callback) {
353 DCHECK(node_.Data()->dirty || read_only_);
354 int result = InitSparseData();
355 if (net::OK != result)
356 return result;
357
358 TimeTicks start = TimeTicks::Now();
359 result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len,
360 callback);
361 ReportIOTime(kSparseRead, start);
362 return result;
363 }
364
WriteSparseDataImpl(int64 offset,net::IOBuffer * buf,int buf_len,CompletionCallback * callback)365 int EntryImpl::WriteSparseDataImpl(int64 offset, net::IOBuffer* buf,
366 int buf_len, CompletionCallback* callback) {
367 DCHECK(node_.Data()->dirty || read_only_);
368 int result = InitSparseData();
369 if (net::OK != result)
370 return result;
371
372 TimeTicks start = TimeTicks::Now();
373 result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf,
374 buf_len, callback);
375 ReportIOTime(kSparseWrite, start);
376 return result;
377 }
378
GetAvailableRangeImpl(int64 offset,int len,int64 * start)379 int EntryImpl::GetAvailableRangeImpl(int64 offset, int len, int64* start) {
380 int result = InitSparseData();
381 if (net::OK != result)
382 return result;
383
384 return sparse_->GetAvailableRange(offset, len, start);
385 }
386
CancelSparseIOImpl()387 void EntryImpl::CancelSparseIOImpl() {
388 if (!sparse_.get())
389 return;
390
391 sparse_->CancelIO();
392 }
393
ReadyForSparseIOImpl(CompletionCallback * callback)394 int EntryImpl::ReadyForSparseIOImpl(CompletionCallback* callback) {
395 DCHECK(sparse_.get());
396 return sparse_->ReadyToUse(callback);
397 }
398
GetHash()399 uint32 EntryImpl::GetHash() {
400 return entry_.Data()->hash;
401 }
402
CreateEntry(Addr node_address,const std::string & key,uint32 hash)403 bool EntryImpl::CreateEntry(Addr node_address, const std::string& key,
404 uint32 hash) {
405 Trace("Create entry In");
406 EntryStore* entry_store = entry_.Data();
407 RankingsNode* node = node_.Data();
408 memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks());
409 memset(node, 0, sizeof(RankingsNode));
410 if (!node_.LazyInit(backend_->File(node_address), node_address))
411 return false;
412
413 entry_store->rankings_node = node_address.value();
414 node->contents = entry_.address().value();
415
416 entry_store->hash = hash;
417 entry_store->creation_time = Time::Now().ToInternalValue();
418 entry_store->key_len = static_cast<int32>(key.size());
419 if (entry_store->key_len > kMaxInternalKeyLength) {
420 Addr address(0);
421 if (!CreateBlock(entry_store->key_len + 1, &address))
422 return false;
423
424 entry_store->long_key = address.value();
425 File* key_file = GetBackingFile(address, kKeyFileIndex);
426 key_ = key;
427
428 size_t offset = 0;
429 if (address.is_block_file())
430 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
431
432 if (!key_file || !key_file->Write(key.data(), key.size(), offset)) {
433 DeleteData(address, kKeyFileIndex);
434 return false;
435 }
436
437 if (address.is_separate_file())
438 key_file->SetLength(key.size() + 1);
439 } else {
440 memcpy(entry_store->key, key.data(), key.size());
441 entry_store->key[key.size()] = '\0';
442 }
443 backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
444 CACHE_UMA(COUNTS, "KeySize", 0, static_cast<int32>(key.size()));
445 node->dirty = backend_->GetCurrentEntryId();
446 Log("Create Entry ");
447 return true;
448 }
449
IsSameEntry(const std::string & key,uint32 hash)450 bool EntryImpl::IsSameEntry(const std::string& key, uint32 hash) {
451 if (entry_.Data()->hash != hash ||
452 static_cast<size_t>(entry_.Data()->key_len) != key.size())
453 return false;
454
455 std::string my_key = GetKey();
456 return key.compare(my_key) ? false : true;
457 }
458
InternalDoom()459 void EntryImpl::InternalDoom() {
460 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM, NULL);
461 DCHECK(node_.HasData());
462 if (!node_.Data()->dirty) {
463 node_.Data()->dirty = backend_->GetCurrentEntryId();
464 node_.Store();
465 }
466 doomed_ = true;
467 }
468
DeleteEntryData(bool everything)469 void EntryImpl::DeleteEntryData(bool everything) {
470 DCHECK(doomed_ || !everything);
471
472 if (GetEntryFlags() & PARENT_ENTRY) {
473 // We have some child entries that must go away.
474 SparseControl::DeleteChildren(this);
475 }
476
477 if (GetDataSize(0))
478 CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0));
479 if (GetDataSize(1))
480 CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1));
481 for (int index = 0; index < kNumStreams; index++) {
482 Addr address(entry_.Data()->data_addr[index]);
483 if (address.is_initialized()) {
484 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
485 unreported_size_[index], 0);
486 entry_.Data()->data_addr[index] = 0;
487 entry_.Data()->data_size[index] = 0;
488 entry_.Store();
489 DeleteData(address, index);
490 }
491 }
492
493 if (!everything)
494 return;
495
496 // Remove all traces of this entry.
497 backend_->RemoveEntry(this);
498
499 // Note that at this point node_ and entry_ are just two blocks of data, and
500 // even if they reference each other, nobody should be referencing them.
501
502 Addr address(entry_.Data()->long_key);
503 DeleteData(address, kKeyFileIndex);
504 backend_->ModifyStorageSize(entry_.Data()->key_len, 0);
505
506 backend_->DeleteBlock(entry_.address(), true);
507
508 if (!LeaveRankingsBehind())
509 backend_->DeleteBlock(node_.address(), true);
510 }
511
GetNextAddress()512 CacheAddr EntryImpl::GetNextAddress() {
513 return entry_.Data()->next;
514 }
515
SetNextAddress(Addr address)516 void EntryImpl::SetNextAddress(Addr address) {
517 DCHECK_NE(address.value(), entry_.address().value());
518 entry_.Data()->next = address.value();
519 bool success = entry_.Store();
520 DCHECK(success);
521 }
522
LoadNodeAddress()523 bool EntryImpl::LoadNodeAddress() {
524 Addr address(entry_.Data()->rankings_node);
525 if (!node_.LazyInit(backend_->File(address), address))
526 return false;
527 return node_.Load();
528 }
529
Update()530 bool EntryImpl::Update() {
531 DCHECK(node_.HasData());
532
533 if (read_only_)
534 return true;
535
536 RankingsNode* rankings = node_.Data();
537 if (!rankings->dirty) {
538 rankings->dirty = backend_->GetCurrentEntryId();
539 if (!node_.Store())
540 return false;
541 }
542 return true;
543 }
544
SetDirtyFlag(int32 current_id)545 void EntryImpl::SetDirtyFlag(int32 current_id) {
546 DCHECK(node_.HasData());
547 // We are checking if the entry is valid or not. If there is a pointer here,
548 // we should not be checking the entry.
549 if (node_.Data()->dummy)
550 dirty_ = true;
551
552 if (node_.Data()->dirty && current_id != node_.Data()->dirty)
553 dirty_ = true;
554
555 if (!current_id)
556 dirty_ = true;
557 }
558
SetPointerForInvalidEntry(int32 new_id)559 void EntryImpl::SetPointerForInvalidEntry(int32 new_id) {
560 node_.Data()->dirty = new_id;
561 node_.Data()->dummy = 0;
562 node_.Store();
563 }
564
LeaveRankingsBehind()565 bool EntryImpl::LeaveRankingsBehind() {
566 return !node_.Data()->contents;
567 }
568
569 // This only includes checks that relate to the first block of the entry (the
570 // first 256 bytes), and values that should be set from the entry creation.
571 // Basically, even if there is something wrong with this entry, we want to see
572 // if it is possible to load the rankings node and delete them together.
SanityCheck()573 bool EntryImpl::SanityCheck() {
574 EntryStore* stored = entry_.Data();
575 if (!stored->rankings_node || stored->key_len <= 0)
576 return false;
577
578 if (stored->reuse_count < 0 || stored->refetch_count < 0)
579 return false;
580
581 Addr rankings_addr(stored->rankings_node);
582 if (!rankings_addr.is_initialized() || rankings_addr.is_separate_file() ||
583 rankings_addr.file_type() != RANKINGS || rankings_addr.num_blocks() != 1)
584 return false;
585
586 Addr next_addr(stored->next);
587 if (next_addr.is_initialized() &&
588 (next_addr.is_separate_file() || next_addr.file_type() != BLOCK_256))
589 return false;
590
591 if (!rankings_addr.SanityCheck() || !next_addr.SanityCheck())
592 return false;
593
594 if (stored->state > ENTRY_DOOMED || stored->state < ENTRY_NORMAL)
595 return false;
596
597 Addr key_addr(stored->long_key);
598 if ((stored->key_len <= kMaxInternalKeyLength && key_addr.is_initialized()) ||
599 (stored->key_len > kMaxInternalKeyLength && !key_addr.is_initialized()))
600 return false;
601
602 if (!key_addr.SanityCheck())
603 return false;
604
605 if (key_addr.is_initialized() &&
606 ((stored->key_len <= kMaxBlockSize && key_addr.is_separate_file()) ||
607 (stored->key_len > kMaxBlockSize && key_addr.is_block_file())))
608 return false;
609
610 int num_blocks = NumBlocksForEntry(stored->key_len);
611 if (entry_.address().num_blocks() != num_blocks)
612 return false;
613
614 return true;
615 }
616
DataSanityCheck()617 bool EntryImpl::DataSanityCheck() {
618 EntryStore* stored = entry_.Data();
619 Addr key_addr(stored->long_key);
620
621 // The key must be NULL terminated.
622 if (!key_addr.is_initialized() && stored->key[stored->key_len])
623 return false;
624
625 if (stored->hash != Hash(GetKey()))
626 return false;
627
628 for (int i = 0; i < kNumStreams; i++) {
629 Addr data_addr(stored->data_addr[i]);
630 int data_size = stored->data_size[i];
631 if (data_size < 0)
632 return false;
633 if (!data_size && data_addr.is_initialized())
634 return false;
635 if (!data_addr.SanityCheck())
636 return false;
637 if (!data_size)
638 continue;
639 if (data_size <= kMaxBlockSize && data_addr.is_separate_file())
640 return false;
641 if (data_size > kMaxBlockSize && data_addr.is_block_file())
642 return false;
643 }
644 return true;
645 }
646
FixForDelete()647 void EntryImpl::FixForDelete() {
648 EntryStore* stored = entry_.Data();
649 Addr key_addr(stored->long_key);
650
651 if (!key_addr.is_initialized())
652 stored->key[stored->key_len] = '\0';
653
654 for (int i = 0; i < kNumStreams; i++) {
655 Addr data_addr(stored->data_addr[i]);
656 int data_size = stored->data_size[i];
657 if (data_addr.is_initialized()) {
658 if ((data_size <= kMaxBlockSize && data_addr.is_separate_file()) ||
659 (data_size > kMaxBlockSize && data_addr.is_block_file()) ||
660 !data_addr.SanityCheck()) {
661 // The address is weird so don't attempt to delete it.
662 stored->data_addr[i] = 0;
663 // In general, trust the stored size as it should be in sync with the
664 // total size tracked by the backend.
665 }
666 }
667 if (data_size < 0)
668 stored->data_size[i] = 0;
669 }
670 entry_.Store();
671 }
672
IncrementIoCount()673 void EntryImpl::IncrementIoCount() {
674 backend_->IncrementIoCount();
675 }
676
DecrementIoCount()677 void EntryImpl::DecrementIoCount() {
678 backend_->DecrementIoCount();
679 }
680
SetTimes(base::Time last_used,base::Time last_modified)681 void EntryImpl::SetTimes(base::Time last_used, base::Time last_modified) {
682 node_.Data()->last_used = last_used.ToInternalValue();
683 node_.Data()->last_modified = last_modified.ToInternalValue();
684 node_.set_modified();
685 }
686
ReportIOTime(Operation op,const base::TimeTicks & start)687 void EntryImpl::ReportIOTime(Operation op, const base::TimeTicks& start) {
688 int group = backend_->GetSizeGroup();
689 switch (op) {
690 case kRead:
691 CACHE_UMA(AGE_MS, "ReadTime", group, start);
692 break;
693 case kWrite:
694 CACHE_UMA(AGE_MS, "WriteTime", group, start);
695 break;
696 case kSparseRead:
697 CACHE_UMA(AGE_MS, "SparseReadTime", 0, start);
698 break;
699 case kSparseWrite:
700 CACHE_UMA(AGE_MS, "SparseWriteTime", 0, start);
701 break;
702 case kAsyncIO:
703 CACHE_UMA(AGE_MS, "AsyncIOTime", group, start);
704 break;
705 default:
706 NOTREACHED();
707 }
708 }
709
BeginLogging(net::NetLog * net_log,bool created)710 void EntryImpl::BeginLogging(net::NetLog* net_log, bool created) {
711 DCHECK(!net_log_.net_log());
712 net_log_ = net::BoundNetLog::Make(
713 net_log, net::NetLog::SOURCE_DISK_CACHE_ENTRY);
714 net_log_.BeginEvent(
715 net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL,
716 make_scoped_refptr(new EntryCreationParameters(GetKey(), created)));
717 }
718
net_log() const719 const net::BoundNetLog& EntryImpl::net_log() const {
720 return net_log_;
721 }
722
723 // static
NumBlocksForEntry(int key_size)724 int EntryImpl::NumBlocksForEntry(int key_size) {
725 // The longest key that can be stored using one block.
726 int key1_len =
727 static_cast<int>(sizeof(EntryStore) - offsetof(EntryStore, key));
728
729 if (key_size < key1_len || key_size > kMaxInternalKeyLength)
730 return 1;
731
732 return ((key_size - key1_len) / 256 + 2);
733 }
734
735 // ------------------------------------------------------------------------
736
Doom()737 void EntryImpl::Doom() {
738 backend_->background_queue()->DoomEntryImpl(this);
739 }
740
Close()741 void EntryImpl::Close() {
742 backend_->background_queue()->CloseEntryImpl(this);
743 }
744
GetKey() const745 std::string EntryImpl::GetKey() const {
746 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
747 int key_len = entry->Data()->key_len;
748 if (key_len <= kMaxInternalKeyLength)
749 return std::string(entry->Data()->key);
750
751 // We keep a copy of the key so that we can always return it, even if the
752 // backend is disabled.
753 if (!key_.empty())
754 return key_;
755
756 Addr address(entry->Data()->long_key);
757 DCHECK(address.is_initialized());
758 size_t offset = 0;
759 if (address.is_block_file())
760 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
761
762 COMPILE_ASSERT(kNumStreams == kKeyFileIndex, invalid_key_index);
763 File* key_file = const_cast<EntryImpl*>(this)->GetBackingFile(address,
764 kKeyFileIndex);
765
766 if (!offset && key_file->GetLength() != static_cast<size_t>(key_len + 1))
767 return std::string();
768
769 if (!key_file ||
770 !key_file->Read(WriteInto(&key_, key_len + 1), key_len + 1, offset))
771 key_.clear();
772 return key_;
773 }
774
GetLastUsed() const775 Time EntryImpl::GetLastUsed() const {
776 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
777 return Time::FromInternalValue(node->Data()->last_used);
778 }
779
GetLastModified() const780 Time EntryImpl::GetLastModified() const {
781 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
782 return Time::FromInternalValue(node->Data()->last_modified);
783 }
784
GetDataSize(int index) const785 int32 EntryImpl::GetDataSize(int index) const {
786 if (index < 0 || index >= kNumStreams)
787 return 0;
788
789 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
790 return entry->Data()->data_size[index];
791 }
792
ReadData(int index,int offset,net::IOBuffer * buf,int buf_len,net::CompletionCallback * callback)793 int EntryImpl::ReadData(int index, int offset, net::IOBuffer* buf, int buf_len,
794 net::CompletionCallback* callback) {
795 if (!callback)
796 return ReadDataImpl(index, offset, buf, buf_len, callback);
797
798 DCHECK(node_.Data()->dirty || read_only_);
799 if (index < 0 || index >= kNumStreams)
800 return net::ERR_INVALID_ARGUMENT;
801
802 int entry_size = entry_.Data()->data_size[index];
803 if (offset >= entry_size || offset < 0 || !buf_len)
804 return 0;
805
806 if (buf_len < 0)
807 return net::ERR_INVALID_ARGUMENT;
808
809 backend_->background_queue()->ReadData(this, index, offset, buf, buf_len,
810 callback);
811 return net::ERR_IO_PENDING;
812 }
813
WriteData(int index,int offset,net::IOBuffer * buf,int buf_len,CompletionCallback * callback,bool truncate)814 int EntryImpl::WriteData(int index, int offset, net::IOBuffer* buf, int buf_len,
815 CompletionCallback* callback, bool truncate) {
816 if (!callback)
817 return WriteDataImpl(index, offset, buf, buf_len, callback, truncate);
818
819 DCHECK(node_.Data()->dirty || read_only_);
820 if (index < 0 || index >= kNumStreams)
821 return net::ERR_INVALID_ARGUMENT;
822
823 if (offset < 0 || buf_len < 0)
824 return net::ERR_INVALID_ARGUMENT;
825
826 backend_->background_queue()->WriteData(this, index, offset, buf, buf_len,
827 truncate, callback);
828 return net::ERR_IO_PENDING;
829 }
830
ReadSparseData(int64 offset,net::IOBuffer * buf,int buf_len,net::CompletionCallback * callback)831 int EntryImpl::ReadSparseData(int64 offset, net::IOBuffer* buf, int buf_len,
832 net::CompletionCallback* callback) {
833 if (!callback)
834 return ReadSparseDataImpl(offset, buf, buf_len, callback);
835
836 backend_->background_queue()->ReadSparseData(this, offset, buf, buf_len,
837 callback);
838 return net::ERR_IO_PENDING;
839 }
840
WriteSparseData(int64 offset,net::IOBuffer * buf,int buf_len,net::CompletionCallback * callback)841 int EntryImpl::WriteSparseData(int64 offset, net::IOBuffer* buf, int buf_len,
842 net::CompletionCallback* callback) {
843 if (!callback)
844 return WriteSparseDataImpl(offset, buf, buf_len, callback);
845
846 backend_->background_queue()->WriteSparseData(this, offset, buf, buf_len,
847 callback);
848 return net::ERR_IO_PENDING;
849 }
850
GetAvailableRange(int64 offset,int len,int64 * start,CompletionCallback * callback)851 int EntryImpl::GetAvailableRange(int64 offset, int len, int64* start,
852 CompletionCallback* callback) {
853 backend_->background_queue()->GetAvailableRange(this, offset, len, start,
854 callback);
855 return net::ERR_IO_PENDING;
856 }
857
CouldBeSparse() const858 bool EntryImpl::CouldBeSparse() const {
859 if (sparse_.get())
860 return true;
861
862 scoped_ptr<SparseControl> sparse;
863 sparse.reset(new SparseControl(const_cast<EntryImpl*>(this)));
864 return sparse->CouldBeSparse();
865 }
866
CancelSparseIO()867 void EntryImpl::CancelSparseIO() {
868 backend_->background_queue()->CancelSparseIO(this);
869 }
870
ReadyForSparseIO(net::CompletionCallback * callback)871 int EntryImpl::ReadyForSparseIO(net::CompletionCallback* callback) {
872 if (!sparse_.get())
873 return net::OK;
874
875 backend_->background_queue()->ReadyForSparseIO(this, callback);
876 return net::ERR_IO_PENDING;
877 }
878
879 // When an entry is deleted from the cache, we clean up all the data associated
880 // with it for two reasons: to simplify the reuse of the block (we know that any
881 // unused block is filled with zeros), and to simplify the handling of write /
882 // read partial information from an entry (don't have to worry about returning
883 // data related to a previous cache entry because the range was not fully
884 // written before).
~EntryImpl()885 EntryImpl::~EntryImpl() {
886 Log("~EntryImpl in");
887
888 // Save the sparse info to disk. This will generate IO for this entry and
889 // maybe for a child entry, so it is important to do it before deleting this
890 // entry.
891 sparse_.reset();
892
893 // Remove this entry from the list of open entries.
894 backend_->OnEntryDestroyBegin(entry_.address());
895
896 if (doomed_) {
897 DeleteEntryData(true);
898 } else {
899 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_CLOSE, NULL);
900 bool ret = true;
901 for (int index = 0; index < kNumStreams; index++) {
902 if (user_buffers_[index].get()) {
903 if (!(ret = Flush(index, 0)))
904 LOG(ERROR) << "Failed to save user data";
905 }
906 if (unreported_size_[index]) {
907 backend_->ModifyStorageSize(
908 entry_.Data()->data_size[index] - unreported_size_[index],
909 entry_.Data()->data_size[index]);
910 }
911 }
912
913 if (!ret) {
914 // There was a failure writing the actual data. Mark the entry as dirty.
915 int current_id = backend_->GetCurrentEntryId();
916 node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1;
917 node_.Store();
918 } else if (node_.HasData() && !dirty_) {
919 node_.Data()->dirty = 0;
920 node_.Store();
921 }
922 }
923
924 Trace("~EntryImpl out 0x%p", reinterpret_cast<void*>(this));
925 net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL, NULL);
926 backend_->OnEntryDestroyEnd();
927 }
928
929 // ------------------------------------------------------------------------
930
InternalReadData(int index,int offset,net::IOBuffer * buf,int buf_len,CompletionCallback * callback)931 int EntryImpl::InternalReadData(int index, int offset, net::IOBuffer* buf,
932 int buf_len, CompletionCallback* callback) {
933 DCHECK(node_.Data()->dirty || read_only_);
934 DVLOG(2) << "Read from " << index << " at " << offset << " : " << buf_len;
935 if (index < 0 || index >= kNumStreams)
936 return net::ERR_INVALID_ARGUMENT;
937
938 int entry_size = entry_.Data()->data_size[index];
939 if (offset >= entry_size || offset < 0 || !buf_len)
940 return 0;
941
942 if (buf_len < 0)
943 return net::ERR_INVALID_ARGUMENT;
944
945 TimeTicks start = TimeTicks::Now();
946
947 if (offset + buf_len > entry_size)
948 buf_len = entry_size - offset;
949
950 UpdateRank(false);
951
952 backend_->OnEvent(Stats::READ_DATA);
953 backend_->OnRead(buf_len);
954
955 Addr address(entry_.Data()->data_addr[index]);
956 int eof = address.is_initialized() ? entry_size : 0;
957 if (user_buffers_[index].get() &&
958 user_buffers_[index]->PreRead(eof, offset, &buf_len)) {
959 // Complete the operation locally.
960 buf_len = user_buffers_[index]->Read(offset, buf, buf_len);
961 ReportIOTime(kRead, start);
962 return buf_len;
963 }
964
965 address.set_value(entry_.Data()->data_addr[index]);
966 DCHECK(address.is_initialized());
967 if (!address.is_initialized())
968 return net::ERR_FAILED;
969
970 File* file = GetBackingFile(address, index);
971 if (!file)
972 return net::ERR_FAILED;
973
974 size_t file_offset = offset;
975 if (address.is_block_file()) {
976 DCHECK_LE(offset + buf_len, kMaxBlockSize);
977 file_offset += address.start_block() * address.BlockSize() +
978 kBlockHeaderSize;
979 }
980
981 SyncCallback* io_callback = NULL;
982 if (callback) {
983 io_callback = new SyncCallback(this, buf, callback,
984 net::NetLog::TYPE_ENTRY_READ_DATA);
985 }
986
987 bool completed;
988 if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) {
989 if (io_callback)
990 io_callback->Discard();
991 return net::ERR_FAILED;
992 }
993
994 if (io_callback && completed)
995 io_callback->Discard();
996
997 ReportIOTime(kRead, start);
998 return (completed || !callback) ? buf_len : net::ERR_IO_PENDING;
999 }
1000
InternalWriteData(int index,int offset,net::IOBuffer * buf,int buf_len,CompletionCallback * callback,bool truncate)1001 int EntryImpl::InternalWriteData(int index, int offset, net::IOBuffer* buf,
1002 int buf_len, CompletionCallback* callback,
1003 bool truncate) {
1004 DCHECK(node_.Data()->dirty || read_only_);
1005 DVLOG(2) << "Write to " << index << " at " << offset << " : " << buf_len;
1006 if (index < 0 || index >= kNumStreams)
1007 return net::ERR_INVALID_ARGUMENT;
1008
1009 if (offset < 0 || buf_len < 0)
1010 return net::ERR_INVALID_ARGUMENT;
1011
1012 int max_file_size = backend_->MaxFileSize();
1013
1014 // offset or buf_len could be negative numbers.
1015 if (offset > max_file_size || buf_len > max_file_size ||
1016 offset + buf_len > max_file_size) {
1017 int size = offset + buf_len;
1018 if (size <= max_file_size)
1019 size = kint32max;
1020 backend_->TooMuchStorageRequested(size);
1021 return net::ERR_FAILED;
1022 }
1023
1024 TimeTicks start = TimeTicks::Now();
1025
1026 // Read the size at this point (it may change inside prepare).
1027 int entry_size = entry_.Data()->data_size[index];
1028 bool extending = entry_size < offset + buf_len;
1029 truncate = truncate && entry_size > offset + buf_len;
1030 Trace("To PrepareTarget 0x%x", entry_.address().value());
1031 if (!PrepareTarget(index, offset, buf_len, truncate))
1032 return net::ERR_FAILED;
1033
1034 Trace("From PrepareTarget 0x%x", entry_.address().value());
1035 if (extending || truncate)
1036 UpdateSize(index, entry_size, offset + buf_len);
1037
1038 UpdateRank(true);
1039
1040 backend_->OnEvent(Stats::WRITE_DATA);
1041 backend_->OnWrite(buf_len);
1042
1043 if (user_buffers_[index].get()) {
1044 // Complete the operation locally.
1045 user_buffers_[index]->Write(offset, buf, buf_len);
1046 ReportIOTime(kWrite, start);
1047 return buf_len;
1048 }
1049
1050 Addr address(entry_.Data()->data_addr[index]);
1051 if (offset + buf_len == 0) {
1052 if (truncate) {
1053 DCHECK(!address.is_initialized());
1054 }
1055 return 0;
1056 }
1057
1058 File* file = GetBackingFile(address, index);
1059 if (!file)
1060 return net::ERR_FAILED;
1061
1062 size_t file_offset = offset;
1063 if (address.is_block_file()) {
1064 DCHECK_LE(offset + buf_len, kMaxBlockSize);
1065 file_offset += address.start_block() * address.BlockSize() +
1066 kBlockHeaderSize;
1067 } else if (truncate || (extending && !buf_len)) {
1068 if (!file->SetLength(offset + buf_len))
1069 return net::ERR_FAILED;
1070 }
1071
1072 if (!buf_len)
1073 return 0;
1074
1075 SyncCallback* io_callback = NULL;
1076 if (callback) {
1077 io_callback = new SyncCallback(this, buf, callback,
1078 net::NetLog::TYPE_ENTRY_WRITE_DATA);
1079 }
1080
1081 bool completed;
1082 if (!file->Write(buf->data(), buf_len, file_offset, io_callback,
1083 &completed)) {
1084 if (io_callback)
1085 io_callback->Discard();
1086 return net::ERR_FAILED;
1087 }
1088
1089 if (io_callback && completed)
1090 io_callback->Discard();
1091
1092 ReportIOTime(kWrite, start);
1093 return (completed || !callback) ? buf_len : net::ERR_IO_PENDING;
1094 }
1095
1096 // ------------------------------------------------------------------------
1097
CreateDataBlock(int index,int size)1098 bool EntryImpl::CreateDataBlock(int index, int size) {
1099 DCHECK(index >= 0 && index < kNumStreams);
1100
1101 Addr address(entry_.Data()->data_addr[index]);
1102 if (!CreateBlock(size, &address))
1103 return false;
1104
1105 entry_.Data()->data_addr[index] = address.value();
1106 entry_.Store();
1107 return true;
1108 }
1109
CreateBlock(int size,Addr * address)1110 bool EntryImpl::CreateBlock(int size, Addr* address) {
1111 DCHECK(!address->is_initialized());
1112
1113 FileType file_type = Addr::RequiredFileType(size);
1114 if (EXTERNAL == file_type) {
1115 if (size > backend_->MaxFileSize())
1116 return false;
1117 if (!backend_->CreateExternalFile(address))
1118 return false;
1119 } else {
1120 int num_blocks = (size + Addr::BlockSizeForFileType(file_type) - 1) /
1121 Addr::BlockSizeForFileType(file_type);
1122
1123 if (!backend_->CreateBlock(file_type, num_blocks, address))
1124 return false;
1125 }
1126 return true;
1127 }
1128
1129 // Note that this method may end up modifying a block file so upon return the
1130 // involved block will be free, and could be reused for something else. If there
1131 // is a crash after that point (and maybe before returning to the caller), the
1132 // entry will be left dirty... and at some point it will be discarded; it is
1133 // important that the entry doesn't keep a reference to this address, or we'll
1134 // end up deleting the contents of |address| once again.
DeleteData(Addr address,int index)1135 void EntryImpl::DeleteData(Addr address, int index) {
1136 if (!address.is_initialized())
1137 return;
1138 if (address.is_separate_file()) {
1139 int failure = !DeleteCacheFile(backend_->GetFileName(address));
1140 CACHE_UMA(COUNTS, "DeleteFailed", 0, failure);
1141 if (failure) {
1142 LOG(ERROR) << "Failed to delete " <<
1143 backend_->GetFileName(address).value() << " from the cache.";
1144 }
1145 if (files_[index])
1146 files_[index] = NULL; // Releases the object.
1147 } else {
1148 backend_->DeleteBlock(address, true);
1149 }
1150 }
1151
UpdateRank(bool modified)1152 void EntryImpl::UpdateRank(bool modified) {
1153 if (!doomed_) {
1154 // Everything is handled by the backend.
1155 backend_->UpdateRank(this, modified);
1156 return;
1157 }
1158
1159 Time current = Time::Now();
1160 node_.Data()->last_used = current.ToInternalValue();
1161
1162 if (modified)
1163 node_.Data()->last_modified = current.ToInternalValue();
1164 }
1165
GetBackingFile(Addr address,int index)1166 File* EntryImpl::GetBackingFile(Addr address, int index) {
1167 File* file;
1168 if (address.is_separate_file())
1169 file = GetExternalFile(address, index);
1170 else
1171 file = backend_->File(address);
1172 return file;
1173 }
1174
GetExternalFile(Addr address,int index)1175 File* EntryImpl::GetExternalFile(Addr address, int index) {
1176 DCHECK(index >= 0 && index <= kKeyFileIndex);
1177 if (!files_[index].get()) {
1178 // For a key file, use mixed mode IO.
1179 scoped_refptr<File> file(new File(kKeyFileIndex == index));
1180 if (file->Init(backend_->GetFileName(address)))
1181 files_[index].swap(file);
1182 }
1183 return files_[index].get();
1184 }
1185
1186 // We keep a memory buffer for everything that ends up stored on a block file
1187 // (because we don't know yet the final data size), and for some of the data
1188 // that end up on external files. This function will initialize that memory
1189 // buffer and / or the files needed to store the data.
1190 //
1191 // In general, a buffer may overlap data already stored on disk, and in that
1192 // case, the contents of the buffer are the most accurate. It may also extend
1193 // the file, but we don't want to read from disk just to keep the buffer up to
1194 // date. This means that as soon as there is a chance to get confused about what
1195 // is the most recent version of some part of a file, we'll flush the buffer and
1196 // reuse it for the new data. Keep in mind that the normal use pattern is quite
1197 // simple (write sequentially from the beginning), so we optimize for handling
1198 // that case.
PrepareTarget(int index,int offset,int buf_len,bool truncate)1199 bool EntryImpl::PrepareTarget(int index, int offset, int buf_len,
1200 bool truncate) {
1201 if (truncate)
1202 return HandleTruncation(index, offset, buf_len);
1203
1204 if (!offset && !buf_len)
1205 return true;
1206
1207 Addr address(entry_.Data()->data_addr[index]);
1208 if (address.is_initialized()) {
1209 if (address.is_block_file() && !MoveToLocalBuffer(index))
1210 return false;
1211
1212 if (!user_buffers_[index].get() && offset < kMaxBlockSize) {
1213 // We are about to create a buffer for the first 16KB, make sure that we
1214 // preserve existing data.
1215 if (!CopyToLocalBuffer(index))
1216 return false;
1217 }
1218 }
1219
1220 if (!user_buffers_[index].get())
1221 user_buffers_[index].reset(new UserBuffer(backend_));
1222
1223 return PrepareBuffer(index, offset, buf_len);
1224 }
1225
1226 // We get to this function with some data already stored. If there is a
1227 // truncation that results on data stored internally, we'll explicitly
1228 // handle the case here.
HandleTruncation(int index,int offset,int buf_len)1229 bool EntryImpl::HandleTruncation(int index, int offset, int buf_len) {
1230 Addr address(entry_.Data()->data_addr[index]);
1231
1232 int current_size = entry_.Data()->data_size[index];
1233 int new_size = offset + buf_len;
1234
1235 if (!new_size) {
1236 // This is by far the most common scenario.
1237 backend_->ModifyStorageSize(current_size - unreported_size_[index], 0);
1238 entry_.Data()->data_addr[index] = 0;
1239 entry_.Data()->data_size[index] = 0;
1240 unreported_size_[index] = 0;
1241 entry_.Store();
1242 DeleteData(address, index);
1243
1244 user_buffers_[index].reset();
1245 return true;
1246 }
1247
1248 // We never postpone truncating a file, if there is one, but we may postpone
1249 // telling the backend about the size reduction.
1250 if (user_buffers_[index].get()) {
1251 DCHECK_GE(current_size, user_buffers_[index]->Start());
1252 if (!address.is_initialized()) {
1253 // There is no overlap between the buffer and disk.
1254 if (new_size > user_buffers_[index]->Start()) {
1255 // Just truncate our buffer.
1256 DCHECK_LT(new_size, user_buffers_[index]->End());
1257 user_buffers_[index]->Truncate(new_size);
1258 return true;
1259 }
1260
1261 // Just discard our buffer.
1262 user_buffers_[index]->Reset();
1263 return PrepareBuffer(index, offset, buf_len);
1264 }
1265
1266 // There is some overlap or we need to extend the file before the
1267 // truncation.
1268 if (offset > user_buffers_[index]->Start())
1269 user_buffers_[index]->Truncate(new_size);
1270 UpdateSize(index, current_size, new_size);
1271 if (!Flush(index, 0))
1272 return false;
1273 user_buffers_[index].reset();
1274 }
1275
1276 // We have data somewhere, and it is not in a buffer.
1277 DCHECK(!user_buffers_[index].get());
1278 DCHECK(address.is_initialized());
1279
1280 if (new_size > kMaxBlockSize)
1281 return true; // Let the operation go directly to disk.
1282
1283 return ImportSeparateFile(index, offset + buf_len);
1284 }
1285
CopyToLocalBuffer(int index)1286 bool EntryImpl::CopyToLocalBuffer(int index) {
1287 Addr address(entry_.Data()->data_addr[index]);
1288 DCHECK(!user_buffers_[index].get());
1289 DCHECK(address.is_initialized());
1290
1291 int len = std::min(entry_.Data()->data_size[index], kMaxBlockSize);
1292 user_buffers_[index].reset(new UserBuffer(backend_));
1293 user_buffers_[index]->Write(len, NULL, 0);
1294
1295 File* file = GetBackingFile(address, index);
1296 int offset = 0;
1297
1298 if (address.is_block_file())
1299 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1300
1301 if (!file ||
1302 !file->Read(user_buffers_[index]->Data(), len, offset, NULL, NULL)) {
1303 user_buffers_[index].reset();
1304 return false;
1305 }
1306 return true;
1307 }
1308
MoveToLocalBuffer(int index)1309 bool EntryImpl::MoveToLocalBuffer(int index) {
1310 if (!CopyToLocalBuffer(index))
1311 return false;
1312
1313 Addr address(entry_.Data()->data_addr[index]);
1314 entry_.Data()->data_addr[index] = 0;
1315 entry_.Store();
1316 DeleteData(address, index);
1317
1318 // If we lose this entry we'll see it as zero sized.
1319 int len = entry_.Data()->data_size[index];
1320 backend_->ModifyStorageSize(len - unreported_size_[index], 0);
1321 unreported_size_[index] = len;
1322 return true;
1323 }
1324
ImportSeparateFile(int index,int new_size)1325 bool EntryImpl::ImportSeparateFile(int index, int new_size) {
1326 if (entry_.Data()->data_size[index] > new_size)
1327 UpdateSize(index, entry_.Data()->data_size[index], new_size);
1328
1329 return MoveToLocalBuffer(index);
1330 }
1331
PrepareBuffer(int index,int offset,int buf_len)1332 bool EntryImpl::PrepareBuffer(int index, int offset, int buf_len) {
1333 DCHECK(user_buffers_[index].get());
1334 if ((user_buffers_[index]->End() && offset > user_buffers_[index]->End()) ||
1335 offset > entry_.Data()->data_size[index]) {
1336 // We are about to extend the buffer or the file (with zeros), so make sure
1337 // that we are not overwriting anything.
1338 Addr address(entry_.Data()->data_addr[index]);
1339 if (address.is_initialized() && address.is_separate_file()) {
1340 if (!Flush(index, 0))
1341 return false;
1342 // There is an actual file already, and we don't want to keep track of
1343 // its length so we let this operation go straight to disk.
1344 // The only case when a buffer is allowed to extend the file (as in fill
1345 // with zeros before the start) is when there is no file yet to extend.
1346 user_buffers_[index].reset();
1347 return true;
1348 }
1349 }
1350
1351 if (!user_buffers_[index]->PreWrite(offset, buf_len)) {
1352 if (!Flush(index, offset + buf_len))
1353 return false;
1354
1355 // Lets try again.
1356 if (offset > user_buffers_[index]->End() ||
1357 !user_buffers_[index]->PreWrite(offset, buf_len)) {
1358 // We cannot complete the operation with a buffer.
1359 DCHECK(!user_buffers_[index]->Size());
1360 DCHECK(!user_buffers_[index]->Start());
1361 user_buffers_[index].reset();
1362 }
1363 }
1364 return true;
1365 }
1366
Flush(int index,int min_len)1367 bool EntryImpl::Flush(int index, int min_len) {
1368 Addr address(entry_.Data()->data_addr[index]);
1369 DCHECK(user_buffers_[index].get());
1370 DCHECK(!address.is_initialized() || address.is_separate_file());
1371 DVLOG(3) << "Flush";
1372
1373 int size = std::max(entry_.Data()->data_size[index], min_len);
1374 if (size && !address.is_initialized() && !CreateDataBlock(index, size))
1375 return false;
1376
1377 if (!entry_.Data()->data_size[index]) {
1378 DCHECK(!user_buffers_[index]->Size());
1379 return true;
1380 }
1381
1382 address.set_value(entry_.Data()->data_addr[index]);
1383
1384 int len = user_buffers_[index]->Size();
1385 int offset = user_buffers_[index]->Start();
1386 if (!len && !offset)
1387 return true;
1388
1389 if (address.is_block_file()) {
1390 DCHECK_EQ(len, entry_.Data()->data_size[index]);
1391 DCHECK(!offset);
1392 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1393 }
1394
1395 File* file = GetBackingFile(address, index);
1396 if (!file)
1397 return false;
1398
1399 if (!file->Write(user_buffers_[index]->Data(), len, offset, NULL, NULL))
1400 return false;
1401 user_buffers_[index]->Reset();
1402
1403 return true;
1404 }
1405
UpdateSize(int index,int old_size,int new_size)1406 void EntryImpl::UpdateSize(int index, int old_size, int new_size) {
1407 if (entry_.Data()->data_size[index] == new_size)
1408 return;
1409
1410 unreported_size_[index] += new_size - old_size;
1411 entry_.Data()->data_size[index] = new_size;
1412 entry_.set_modified();
1413 }
1414
InitSparseData()1415 int EntryImpl::InitSparseData() {
1416 if (sparse_.get())
1417 return net::OK;
1418
1419 // Use a local variable so that sparse_ never goes from 'valid' to NULL.
1420 scoped_ptr<SparseControl> sparse(new SparseControl(this));
1421 int result = sparse->Init();
1422 if (net::OK == result)
1423 sparse_.swap(sparse);
1424
1425 return result;
1426 }
1427
SetEntryFlags(uint32 flags)1428 void EntryImpl::SetEntryFlags(uint32 flags) {
1429 entry_.Data()->flags |= flags;
1430 entry_.set_modified();
1431 }
1432
GetEntryFlags()1433 uint32 EntryImpl::GetEntryFlags() {
1434 return entry_.Data()->flags;
1435 }
1436
GetData(int index,char ** buffer,Addr * address)1437 void EntryImpl::GetData(int index, char** buffer, Addr* address) {
1438 if (user_buffers_[index].get() && user_buffers_[index]->Size() &&
1439 !user_buffers_[index]->Start()) {
1440 // The data is already in memory, just copy it and we're done.
1441 int data_len = entry_.Data()->data_size[index];
1442 if (data_len <= user_buffers_[index]->Size()) {
1443 DCHECK(!user_buffers_[index]->Start());
1444 *buffer = new char[data_len];
1445 memcpy(*buffer, user_buffers_[index]->Data(), data_len);
1446 return;
1447 }
1448 }
1449
1450 // Bad news: we'd have to read the info from disk so instead we'll just tell
1451 // the caller where to read from.
1452 *buffer = NULL;
1453 address->set_value(entry_.Data()->data_addr[index]);
1454 if (address->is_initialized()) {
1455 // Prevent us from deleting the block from the backing store.
1456 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1457 unreported_size_[index], 0);
1458 entry_.Data()->data_addr[index] = 0;
1459 entry_.Data()->data_size[index] = 0;
1460 }
1461 }
1462
Log(const char * msg)1463 void EntryImpl::Log(const char* msg) {
1464 int dirty = 0;
1465 if (node_.HasData()) {
1466 dirty = node_.Data()->dirty;
1467 }
1468
1469 Trace("%s 0x%p 0x%x 0x%x", msg, reinterpret_cast<void*>(this),
1470 entry_.address().value(), node_.address().value());
1471
1472 Trace(" data: 0x%x 0x%x 0x%x", entry_.Data()->data_addr[0],
1473 entry_.Data()->data_addr[1], entry_.Data()->long_key);
1474
1475 Trace(" doomed: %d 0x%x", doomed_, dirty);
1476 }
1477
1478 } // namespace disk_cache
1479