1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the Instruction class, which is the 11 // base class for all of the LLVM instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_INSTRUCTION_H 16 #define LLVM_INSTRUCTION_H 17 18 #include "llvm/User.h" 19 #include "llvm/ADT/ilist_node.h" 20 #include "llvm/Support/DebugLoc.h" 21 22 namespace llvm { 23 24 class LLVMContext; 25 class MDNode; 26 27 template<typename ValueSubClass, typename ItemParentClass> 28 class SymbolTableListTraits; 29 30 class Instruction : public User, public ilist_node<Instruction> { 31 void operator=(const Instruction &); // Do not implement 32 Instruction(const Instruction &); // Do not implement 33 34 BasicBlock *Parent; 35 DebugLoc DbgLoc; // 'dbg' Metadata cache. 36 37 enum { 38 /// HasMetadataBit - This is a bit stored in the SubClassData field which 39 /// indicates whether this instruction has metadata attached to it or not. 40 HasMetadataBit = 1 << 15 41 }; 42 public: 43 // Out of line virtual method, so the vtable, etc has a home. 44 ~Instruction(); 45 46 /// use_back - Specialize the methods defined in Value, as we know that an 47 /// instruction can only be used by other instructions. use_back()48 Instruction *use_back() { return cast<Instruction>(*use_begin());} use_back()49 const Instruction *use_back() const { return cast<Instruction>(*use_begin());} 50 getParent()51 inline const BasicBlock *getParent() const { return Parent; } getParent()52 inline BasicBlock *getParent() { return Parent; } 53 54 /// removeFromParent - This method unlinks 'this' from the containing basic 55 /// block, but does not delete it. 56 /// 57 void removeFromParent(); 58 59 /// eraseFromParent - This method unlinks 'this' from the containing basic 60 /// block and deletes it. 61 /// 62 void eraseFromParent(); 63 64 /// insertBefore - Insert an unlinked instructions into a basic block 65 /// immediately before the specified instruction. 66 void insertBefore(Instruction *InsertPos); 67 68 /// insertAfter - Insert an unlinked instructions into a basic block 69 /// immediately after the specified instruction. 70 void insertAfter(Instruction *InsertPos); 71 72 /// moveBefore - Unlink this instruction from its current basic block and 73 /// insert it into the basic block that MovePos lives in, right before 74 /// MovePos. 75 void moveBefore(Instruction *MovePos); 76 77 //===--------------------------------------------------------------------===// 78 // Subclass classification. 79 //===--------------------------------------------------------------------===// 80 81 /// getOpcode() returns a member of one of the enums like Instruction::Add. getOpcode()82 unsigned getOpcode() const { return getValueID() - InstructionVal; } 83 getOpcodeName()84 const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } isTerminator()85 bool isTerminator() const { return isTerminator(getOpcode()); } isBinaryOp()86 bool isBinaryOp() const { return isBinaryOp(getOpcode()); } isShift()87 bool isShift() { return isShift(getOpcode()); } isCast()88 bool isCast() const { return isCast(getOpcode()); } 89 90 static const char* getOpcodeName(unsigned OpCode); 91 isTerminator(unsigned OpCode)92 static inline bool isTerminator(unsigned OpCode) { 93 return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; 94 } 95 isBinaryOp(unsigned Opcode)96 static inline bool isBinaryOp(unsigned Opcode) { 97 return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; 98 } 99 100 /// @brief Determine if the Opcode is one of the shift instructions. isShift(unsigned Opcode)101 static inline bool isShift(unsigned Opcode) { 102 return Opcode >= Shl && Opcode <= AShr; 103 } 104 105 /// isLogicalShift - Return true if this is a logical shift left or a logical 106 /// shift right. isLogicalShift()107 inline bool isLogicalShift() const { 108 return getOpcode() == Shl || getOpcode() == LShr; 109 } 110 111 /// isArithmeticShift - Return true if this is an arithmetic shift right. isArithmeticShift()112 inline bool isArithmeticShift() const { 113 return getOpcode() == AShr; 114 } 115 116 /// @brief Determine if the OpCode is one of the CastInst instructions. isCast(unsigned OpCode)117 static inline bool isCast(unsigned OpCode) { 118 return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; 119 } 120 121 //===--------------------------------------------------------------------===// 122 // Metadata manipulation. 123 //===--------------------------------------------------------------------===// 124 125 /// hasMetadata() - Return true if this instruction has any metadata attached 126 /// to it. hasMetadata()127 bool hasMetadata() const { 128 return !DbgLoc.isUnknown() || hasMetadataHashEntry(); 129 } 130 131 /// hasMetadataOtherThanDebugLoc - Return true if this instruction has 132 /// metadata attached to it other than a debug location. hasMetadataOtherThanDebugLoc()133 bool hasMetadataOtherThanDebugLoc() const { 134 return hasMetadataHashEntry(); 135 } 136 137 /// getMetadata - Get the metadata of given kind attached to this Instruction. 138 /// If the metadata is not found then return null. getMetadata(unsigned KindID)139 MDNode *getMetadata(unsigned KindID) const { 140 if (!hasMetadata()) return 0; 141 return getMetadataImpl(KindID); 142 } 143 144 /// getMetadata - Get the metadata of given kind attached to this Instruction. 145 /// If the metadata is not found then return null. getMetadata(StringRef Kind)146 MDNode *getMetadata(StringRef Kind) const { 147 if (!hasMetadata()) return 0; 148 return getMetadataImpl(Kind); 149 } 150 151 /// getAllMetadata - Get all metadata attached to this Instruction. The first 152 /// element of each pair returned is the KindID, the second element is the 153 /// metadata value. This list is returned sorted by the KindID. getAllMetadata(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs)154 void getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode*> > &MDs)const{ 155 if (hasMetadata()) 156 getAllMetadataImpl(MDs); 157 } 158 159 /// getAllMetadataOtherThanDebugLoc - This does the same thing as 160 /// getAllMetadata, except that it filters out the debug location. getAllMetadataOtherThanDebugLoc(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs)161 void getAllMetadataOtherThanDebugLoc(SmallVectorImpl<std::pair<unsigned, 162 MDNode*> > &MDs) const { 163 if (hasMetadataOtherThanDebugLoc()) 164 getAllMetadataOtherThanDebugLocImpl(MDs); 165 } 166 167 /// setMetadata - Set the metadata of the specified kind to the specified 168 /// node. This updates/replaces metadata if already present, or removes it if 169 /// Node is null. 170 void setMetadata(unsigned KindID, MDNode *Node); 171 void setMetadata(StringRef Kind, MDNode *Node); 172 173 /// setDebugLoc - Set the debug location information for this instruction. setDebugLoc(const DebugLoc & Loc)174 void setDebugLoc(const DebugLoc &Loc) { DbgLoc = Loc; } 175 176 /// getDebugLoc - Return the debug location for this node as a DebugLoc. getDebugLoc()177 const DebugLoc &getDebugLoc() const { return DbgLoc; } 178 179 private: 180 /// hasMetadataHashEntry - Return true if we have an entry in the on-the-side 181 /// metadata hash. hasMetadataHashEntry()182 bool hasMetadataHashEntry() const { 183 return (getSubclassDataFromValue() & HasMetadataBit) != 0; 184 } 185 186 // These are all implemented in Metadata.cpp. 187 MDNode *getMetadataImpl(unsigned KindID) const; 188 MDNode *getMetadataImpl(StringRef Kind) const; 189 void getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,MDNode*> > &)const; 190 void getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned, 191 MDNode*> > &) const; 192 void clearMetadataHashEntries(); 193 public: 194 //===--------------------------------------------------------------------===// 195 // Predicates and helper methods. 196 //===--------------------------------------------------------------------===// 197 198 199 /// isAssociative - Return true if the instruction is associative: 200 /// 201 /// Associative operators satisfy: x op (y op z) === (x op y) op z 202 /// 203 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. 204 /// isAssociative()205 bool isAssociative() const { return isAssociative(getOpcode()); } 206 static bool isAssociative(unsigned op); 207 208 /// isCommutative - Return true if the instruction is commutative: 209 /// 210 /// Commutative operators satisfy: (x op y) === (y op x) 211 /// 212 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when 213 /// applied to any type. 214 /// isCommutative()215 bool isCommutative() const { return isCommutative(getOpcode()); } 216 static bool isCommutative(unsigned op); 217 218 /// isIdempotent - Return true if the instruction is idempotent: 219 /// 220 /// Idempotent operators satisfy: x op x === x 221 /// 222 /// In LLVM, the And and Or operators are idempotent. 223 /// isIdempotent()224 bool isIdempotent() const { return isIdempotent(getOpcode()); } 225 static bool isIdempotent(unsigned op); 226 227 /// isNilpotent - Return true if the instruction is nilpotent: 228 /// 229 /// Nilpotent operators satisfy: x op x === Id, 230 /// 231 /// where Id is the identity for the operator, i.e. a constant such that 232 /// x op Id === x and Id op x === x for all x. 233 /// 234 /// In LLVM, the Xor operator is nilpotent. 235 /// isNilpotent()236 bool isNilpotent() const { return isNilpotent(getOpcode()); } 237 static bool isNilpotent(unsigned op); 238 239 /// mayWriteToMemory - Return true if this instruction may modify memory. 240 /// 241 bool mayWriteToMemory() const; 242 243 /// mayReadFromMemory - Return true if this instruction may read memory. 244 /// 245 bool mayReadFromMemory() const; 246 247 /// mayReadOrWriteMemory - Return true if this instruction may read or 248 /// write memory. 249 /// mayReadOrWriteMemory()250 bool mayReadOrWriteMemory() const { 251 return mayReadFromMemory() || mayWriteToMemory(); 252 } 253 254 /// mayThrow - Return true if this instruction may throw an exception. 255 /// 256 bool mayThrow() const; 257 258 /// mayHaveSideEffects - Return true if the instruction may have side effects. 259 /// 260 /// Note that this does not consider malloc and alloca to have side 261 /// effects because the newly allocated memory is completely invisible to 262 /// instructions which don't used the returned value. For cases where this 263 /// matters, isSafeToSpeculativelyExecute may be more appropriate. mayHaveSideEffects()264 bool mayHaveSideEffects() const { 265 return mayWriteToMemory() || mayThrow(); 266 } 267 268 /// clone() - Create a copy of 'this' instruction that is identical in all 269 /// ways except the following: 270 /// * The instruction has no parent 271 /// * The instruction has no name 272 /// 273 Instruction *clone() const; 274 275 /// isIdenticalTo - Return true if the specified instruction is exactly 276 /// identical to the current one. This means that all operands match and any 277 /// extra information (e.g. load is volatile) agree. 278 bool isIdenticalTo(const Instruction *I) const; 279 280 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it 281 /// ignores the SubclassOptionalData flags, which specify conditions 282 /// under which the instruction's result is undefined. 283 bool isIdenticalToWhenDefined(const Instruction *I) const; 284 285 /// When checking for operation equivalence (using isSameOperationAs) it is 286 /// sometimes useful to ignore certain attributes. 287 enum OperationEquivalenceFlags { 288 /// Check for equivalence ignoring load/store alignment. 289 CompareIgnoringAlignment = 1<<0, 290 /// Check for equivalence treating a type and a vector of that type 291 /// as equivalent. 292 CompareUsingScalarTypes = 1<<1 293 }; 294 295 /// This function determines if the specified instruction executes the same 296 /// operation as the current one. This means that the opcodes, type, operand 297 /// types and any other factors affecting the operation must be the same. This 298 /// is similar to isIdenticalTo except the operands themselves don't have to 299 /// be identical. 300 /// @returns true if the specified instruction is the same operation as 301 /// the current one. 302 /// @brief Determine if one instruction is the same operation as another. 303 bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const; 304 305 /// isUsedOutsideOfBlock - Return true if there are any uses of this 306 /// instruction in blocks other than the specified block. Note that PHI nodes 307 /// are considered to evaluate their operands in the corresponding predecessor 308 /// block. 309 bool isUsedOutsideOfBlock(const BasicBlock *BB) const; 310 311 312 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const Instruction *)313 static inline bool classof(const Instruction *) { return true; } classof(const Value * V)314 static inline bool classof(const Value *V) { 315 return V->getValueID() >= Value::InstructionVal; 316 } 317 318 //---------------------------------------------------------------------- 319 // Exported enumerations. 320 // 321 enum TermOps { // These terminate basic blocks 322 #define FIRST_TERM_INST(N) TermOpsBegin = N, 323 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, 324 #define LAST_TERM_INST(N) TermOpsEnd = N+1 325 #include "llvm/Instruction.def" 326 }; 327 328 enum BinaryOps { 329 #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, 330 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, 331 #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 332 #include "llvm/Instruction.def" 333 }; 334 335 enum MemoryOps { 336 #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, 337 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, 338 #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 339 #include "llvm/Instruction.def" 340 }; 341 342 enum CastOps { 343 #define FIRST_CAST_INST(N) CastOpsBegin = N, 344 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, 345 #define LAST_CAST_INST(N) CastOpsEnd = N+1 346 #include "llvm/Instruction.def" 347 }; 348 349 enum OtherOps { 350 #define FIRST_OTHER_INST(N) OtherOpsBegin = N, 351 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, 352 #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 353 #include "llvm/Instruction.def" 354 }; 355 private: 356 // Shadow Value::setValueSubclassData with a private forwarding method so that 357 // subclasses cannot accidentally use it. setValueSubclassData(unsigned short D)358 void setValueSubclassData(unsigned short D) { 359 Value::setValueSubclassData(D); 360 } getSubclassDataFromValue()361 unsigned short getSubclassDataFromValue() const { 362 return Value::getSubclassDataFromValue(); 363 } 364 setHasMetadataHashEntry(bool V)365 void setHasMetadataHashEntry(bool V) { 366 setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) | 367 (V ? HasMetadataBit : 0)); 368 } 369 370 friend class SymbolTableListTraits<Instruction, BasicBlock>; 371 void setParent(BasicBlock *P); 372 protected: 373 // Instruction subclasses can stick up to 15 bits of stuff into the 374 // SubclassData field of instruction with these members. 375 376 // Verify that only the low 15 bits are used. setInstructionSubclassData(unsigned short D)377 void setInstructionSubclassData(unsigned short D) { 378 assert((D & HasMetadataBit) == 0 && "Out of range value put into field"); 379 setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D); 380 } 381 getSubclassDataFromInstruction()382 unsigned getSubclassDataFromInstruction() const { 383 return getSubclassDataFromValue() & ~HasMetadataBit; 384 } 385 386 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, 387 Instruction *InsertBefore = 0); 388 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, 389 BasicBlock *InsertAtEnd); 390 virtual Instruction *clone_impl() const = 0; 391 392 }; 393 394 // Instruction* is only 4-byte aligned. 395 template<> 396 class PointerLikeTypeTraits<Instruction*> { 397 typedef Instruction* PT; 398 public: getAsVoidPointer(PT P)399 static inline void *getAsVoidPointer(PT P) { return P; } getFromVoidPointer(void * P)400 static inline PT getFromVoidPointer(void *P) { 401 return static_cast<PT>(P); 402 } 403 enum { NumLowBitsAvailable = 2 }; 404 }; 405 406 } // End llvm namespace 407 408 #endif 409