1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective-C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/Scope.h"
17 #include "clang/Sema/ScopeInfo.h"
18 #include "clang/Sema/Initialization.h"
19 #include "clang/Analysis/DomainSpecific/CocoaConventions.h"
20 #include "clang/Edit/Rewriters.h"
21 #include "clang/Edit/Commit.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "clang/Lex/Preprocessor.h"
29
30 using namespace clang;
31 using namespace sema;
32 using llvm::makeArrayRef;
33
ParseObjCStringLiteral(SourceLocation * AtLocs,Expr ** strings,unsigned NumStrings)34 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
35 Expr **strings,
36 unsigned NumStrings) {
37 StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings);
38
39 // Most ObjC strings are formed out of a single piece. However, we *can*
40 // have strings formed out of multiple @ strings with multiple pptokens in
41 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
42 // StringLiteral for ObjCStringLiteral to hold onto.
43 StringLiteral *S = Strings[0];
44
45 // If we have a multi-part string, merge it all together.
46 if (NumStrings != 1) {
47 // Concatenate objc strings.
48 SmallString<128> StrBuf;
49 SmallVector<SourceLocation, 8> StrLocs;
50
51 for (unsigned i = 0; i != NumStrings; ++i) {
52 S = Strings[i];
53
54 // ObjC strings can't be wide or UTF.
55 if (!S->isAscii()) {
56 Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant)
57 << S->getSourceRange();
58 return true;
59 }
60
61 // Append the string.
62 StrBuf += S->getString();
63
64 // Get the locations of the string tokens.
65 StrLocs.append(S->tokloc_begin(), S->tokloc_end());
66 }
67
68 // Create the aggregate string with the appropriate content and location
69 // information.
70 S = StringLiteral::Create(Context, StrBuf,
71 StringLiteral::Ascii, /*Pascal=*/false,
72 Context.getPointerType(Context.CharTy),
73 &StrLocs[0], StrLocs.size());
74 }
75
76 return BuildObjCStringLiteral(AtLocs[0], S);
77 }
78
BuildObjCStringLiteral(SourceLocation AtLoc,StringLiteral * S)79 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){
80 // Verify that this composite string is acceptable for ObjC strings.
81 if (CheckObjCString(S))
82 return true;
83
84 // Initialize the constant string interface lazily. This assumes
85 // the NSString interface is seen in this translation unit. Note: We
86 // don't use NSConstantString, since the runtime team considers this
87 // interface private (even though it appears in the header files).
88 QualType Ty = Context.getObjCConstantStringInterface();
89 if (!Ty.isNull()) {
90 Ty = Context.getObjCObjectPointerType(Ty);
91 } else if (getLangOpts().NoConstantCFStrings) {
92 IdentifierInfo *NSIdent=0;
93 std::string StringClass(getLangOpts().ObjCConstantStringClass);
94
95 if (StringClass.empty())
96 NSIdent = &Context.Idents.get("NSConstantString");
97 else
98 NSIdent = &Context.Idents.get(StringClass);
99
100 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
101 LookupOrdinaryName);
102 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
103 Context.setObjCConstantStringInterface(StrIF);
104 Ty = Context.getObjCConstantStringInterface();
105 Ty = Context.getObjCObjectPointerType(Ty);
106 } else {
107 // If there is no NSConstantString interface defined then treat this
108 // as error and recover from it.
109 Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent
110 << S->getSourceRange();
111 Ty = Context.getObjCIdType();
112 }
113 } else {
114 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
115 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
116 LookupOrdinaryName);
117 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
118 Context.setObjCConstantStringInterface(StrIF);
119 Ty = Context.getObjCConstantStringInterface();
120 Ty = Context.getObjCObjectPointerType(Ty);
121 } else {
122 // If there is no NSString interface defined, implicitly declare
123 // a @class NSString; and use that instead. This is to make sure
124 // type of an NSString literal is represented correctly, instead of
125 // being an 'id' type.
126 Ty = Context.getObjCNSStringType();
127 if (Ty.isNull()) {
128 ObjCInterfaceDecl *NSStringIDecl =
129 ObjCInterfaceDecl::Create (Context,
130 Context.getTranslationUnitDecl(),
131 SourceLocation(), NSIdent,
132 0, SourceLocation());
133 Ty = Context.getObjCInterfaceType(NSStringIDecl);
134 Context.setObjCNSStringType(Ty);
135 }
136 Ty = Context.getObjCObjectPointerType(Ty);
137 }
138 }
139
140 return new (Context) ObjCStringLiteral(S, Ty, AtLoc);
141 }
142
143 /// \brief Emits an error if the given method does not exist, or if the return
144 /// type is not an Objective-C object.
validateBoxingMethod(Sema & S,SourceLocation Loc,const ObjCInterfaceDecl * Class,Selector Sel,const ObjCMethodDecl * Method)145 static bool validateBoxingMethod(Sema &S, SourceLocation Loc,
146 const ObjCInterfaceDecl *Class,
147 Selector Sel, const ObjCMethodDecl *Method) {
148 if (!Method) {
149 // FIXME: Is there a better way to avoid quotes than using getName()?
150 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName();
151 return false;
152 }
153
154 // Make sure the return type is reasonable.
155 QualType ReturnType = Method->getResultType();
156 if (!ReturnType->isObjCObjectPointerType()) {
157 S.Diag(Loc, diag::err_objc_literal_method_sig)
158 << Sel;
159 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return)
160 << ReturnType;
161 return false;
162 }
163
164 return true;
165 }
166
167 /// \brief Retrieve the NSNumber factory method that should be used to create
168 /// an Objective-C literal for the given type.
getNSNumberFactoryMethod(Sema & S,SourceLocation Loc,QualType NumberType,bool isLiteral=false,SourceRange R=SourceRange ())169 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc,
170 QualType NumberType,
171 bool isLiteral = false,
172 SourceRange R = SourceRange()) {
173 llvm::Optional<NSAPI::NSNumberLiteralMethodKind> Kind
174 = S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType);
175
176 if (!Kind) {
177 if (isLiteral) {
178 S.Diag(Loc, diag::err_invalid_nsnumber_type)
179 << NumberType << R;
180 }
181 return 0;
182 }
183
184 // If we already looked up this method, we're done.
185 if (S.NSNumberLiteralMethods[*Kind])
186 return S.NSNumberLiteralMethods[*Kind];
187
188 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind,
189 /*Instance=*/false);
190
191 ASTContext &CX = S.Context;
192
193 // Look up the NSNumber class, if we haven't done so already. It's cached
194 // in the Sema instance.
195 if (!S.NSNumberDecl) {
196 IdentifierInfo *NSNumberId =
197 S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber);
198 NamedDecl *IF = S.LookupSingleName(S.TUScope, NSNumberId,
199 Loc, Sema::LookupOrdinaryName);
200 S.NSNumberDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
201 if (!S.NSNumberDecl) {
202 if (S.getLangOpts().DebuggerObjCLiteral) {
203 // Create a stub definition of NSNumber.
204 S.NSNumberDecl = ObjCInterfaceDecl::Create(CX,
205 CX.getTranslationUnitDecl(),
206 SourceLocation(), NSNumberId,
207 0, SourceLocation());
208 } else {
209 // Otherwise, require a declaration of NSNumber.
210 S.Diag(Loc, diag::err_undeclared_nsnumber);
211 return 0;
212 }
213 } else if (!S.NSNumberDecl->hasDefinition()) {
214 S.Diag(Loc, diag::err_undeclared_nsnumber);
215 return 0;
216 }
217
218 // generate the pointer to NSNumber type.
219 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl);
220 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject);
221 }
222
223 // Look for the appropriate method within NSNumber.
224 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);
225 if (!Method && S.getLangOpts().DebuggerObjCLiteral) {
226 // create a stub definition this NSNumber factory method.
227 TypeSourceInfo *ResultTInfo = 0;
228 Method = ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel,
229 S.NSNumberPointer, ResultTInfo,
230 S.NSNumberDecl,
231 /*isInstance=*/false, /*isVariadic=*/false,
232 /*isSynthesized=*/false,
233 /*isImplicitlyDeclared=*/true,
234 /*isDefined=*/false,
235 ObjCMethodDecl::Required,
236 /*HasRelatedResultType=*/false);
237 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method,
238 SourceLocation(), SourceLocation(),
239 &CX.Idents.get("value"),
240 NumberType, /*TInfo=*/0, SC_None,
241 SC_None, 0);
242 Method->setMethodParams(S.Context, value, ArrayRef<SourceLocation>());
243 }
244
245 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method))
246 return 0;
247
248 // Note: if the parameter type is out-of-line, we'll catch it later in the
249 // implicit conversion.
250
251 S.NSNumberLiteralMethods[*Kind] = Method;
252 return Method;
253 }
254
255 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
256 /// numeric literal expression. Type of the expression will be "NSNumber *".
BuildObjCNumericLiteral(SourceLocation AtLoc,Expr * Number)257 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) {
258 // Determine the type of the literal.
259 QualType NumberType = Number->getType();
260 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) {
261 // In C, character literals have type 'int'. That's not the type we want
262 // to use to determine the Objective-c literal kind.
263 switch (Char->getKind()) {
264 case CharacterLiteral::Ascii:
265 NumberType = Context.CharTy;
266 break;
267
268 case CharacterLiteral::Wide:
269 NumberType = Context.getWCharType();
270 break;
271
272 case CharacterLiteral::UTF16:
273 NumberType = Context.Char16Ty;
274 break;
275
276 case CharacterLiteral::UTF32:
277 NumberType = Context.Char32Ty;
278 break;
279 }
280 }
281
282 // Look for the appropriate method within NSNumber.
283 // Construct the literal.
284 SourceRange NR(Number->getSourceRange());
285 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType,
286 true, NR);
287 if (!Method)
288 return ExprError();
289
290 // Convert the number to the type that the parameter expects.
291 ParmVarDecl *ParamDecl = Method->param_begin()[0];
292 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
293 ParamDecl);
294 ExprResult ConvertedNumber = PerformCopyInitialization(Entity,
295 SourceLocation(),
296 Owned(Number));
297 if (ConvertedNumber.isInvalid())
298 return ExprError();
299 Number = ConvertedNumber.get();
300
301 // Use the effective source range of the literal, including the leading '@'.
302 return MaybeBindToTemporary(
303 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method,
304 SourceRange(AtLoc, NR.getEnd())));
305 }
306
ActOnObjCBoolLiteral(SourceLocation AtLoc,SourceLocation ValueLoc,bool Value)307 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc,
308 SourceLocation ValueLoc,
309 bool Value) {
310 ExprResult Inner;
311 if (getLangOpts().CPlusPlus) {
312 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false);
313 } else {
314 // C doesn't actually have a way to represent literal values of type
315 // _Bool. So, we'll use 0/1 and implicit cast to _Bool.
316 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0);
317 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy,
318 CK_IntegralToBoolean);
319 }
320
321 return BuildObjCNumericLiteral(AtLoc, Inner.get());
322 }
323
324 /// \brief Check that the given expression is a valid element of an Objective-C
325 /// collection literal.
CheckObjCCollectionLiteralElement(Sema & S,Expr * Element,QualType T)326 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element,
327 QualType T) {
328 // If the expression is type-dependent, there's nothing for us to do.
329 if (Element->isTypeDependent())
330 return Element;
331
332 ExprResult Result = S.CheckPlaceholderExpr(Element);
333 if (Result.isInvalid())
334 return ExprError();
335 Element = Result.get();
336
337 // In C++, check for an implicit conversion to an Objective-C object pointer
338 // type.
339 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) {
340 InitializedEntity Entity
341 = InitializedEntity::InitializeParameter(S.Context, T,
342 /*Consumed=*/false);
343 InitializationKind Kind
344 = InitializationKind::CreateCopy(Element->getLocStart(),
345 SourceLocation());
346 InitializationSequence Seq(S, Entity, Kind, &Element, 1);
347 if (!Seq.Failed())
348 return Seq.Perform(S, Entity, Kind, Element);
349 }
350
351 Expr *OrigElement = Element;
352
353 // Perform lvalue-to-rvalue conversion.
354 Result = S.DefaultLvalueConversion(Element);
355 if (Result.isInvalid())
356 return ExprError();
357 Element = Result.get();
358
359 // Make sure that we have an Objective-C pointer type or block.
360 if (!Element->getType()->isObjCObjectPointerType() &&
361 !Element->getType()->isBlockPointerType()) {
362 bool Recovered = false;
363
364 // If this is potentially an Objective-C numeric literal, add the '@'.
365 if (isa<IntegerLiteral>(OrigElement) ||
366 isa<CharacterLiteral>(OrigElement) ||
367 isa<FloatingLiteral>(OrigElement) ||
368 isa<ObjCBoolLiteralExpr>(OrigElement) ||
369 isa<CXXBoolLiteralExpr>(OrigElement)) {
370 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) {
371 int Which = isa<CharacterLiteral>(OrigElement) ? 1
372 : (isa<CXXBoolLiteralExpr>(OrigElement) ||
373 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2
374 : 3;
375
376 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection)
377 << Which << OrigElement->getSourceRange()
378 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@");
379
380 Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(),
381 OrigElement);
382 if (Result.isInvalid())
383 return ExprError();
384
385 Element = Result.get();
386 Recovered = true;
387 }
388 }
389 // If this is potentially an Objective-C string literal, add the '@'.
390 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) {
391 if (String->isAscii()) {
392 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection)
393 << 0 << OrigElement->getSourceRange()
394 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@");
395
396 Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String);
397 if (Result.isInvalid())
398 return ExprError();
399
400 Element = Result.get();
401 Recovered = true;
402 }
403 }
404
405 if (!Recovered) {
406 S.Diag(Element->getLocStart(), diag::err_invalid_collection_element)
407 << Element->getType();
408 return ExprError();
409 }
410 }
411
412 // Make sure that the element has the type that the container factory
413 // function expects.
414 return S.PerformCopyInitialization(
415 InitializedEntity::InitializeParameter(S.Context, T,
416 /*Consumed=*/false),
417 Element->getLocStart(), Element);
418 }
419
BuildObjCBoxedExpr(SourceRange SR,Expr * ValueExpr)420 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
421 if (ValueExpr->isTypeDependent()) {
422 ObjCBoxedExpr *BoxedExpr =
423 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, NULL, SR);
424 return Owned(BoxedExpr);
425 }
426 ObjCMethodDecl *BoxingMethod = NULL;
427 QualType BoxedType;
428 // Convert the expression to an RValue, so we can check for pointer types...
429 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr);
430 if (RValue.isInvalid()) {
431 return ExprError();
432 }
433 ValueExpr = RValue.get();
434 QualType ValueType(ValueExpr->getType());
435 if (const PointerType *PT = ValueType->getAs<PointerType>()) {
436 QualType PointeeType = PT->getPointeeType();
437 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) {
438
439 if (!NSStringDecl) {
440 IdentifierInfo *NSStringId =
441 NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
442 NamedDecl *Decl = LookupSingleName(TUScope, NSStringId,
443 SR.getBegin(), LookupOrdinaryName);
444 NSStringDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Decl);
445 if (!NSStringDecl) {
446 if (getLangOpts().DebuggerObjCLiteral) {
447 // Support boxed expressions in the debugger w/o NSString declaration.
448 DeclContext *TU = Context.getTranslationUnitDecl();
449 NSStringDecl = ObjCInterfaceDecl::Create(Context, TU,
450 SourceLocation(),
451 NSStringId,
452 0, SourceLocation());
453 } else {
454 Diag(SR.getBegin(), diag::err_undeclared_nsstring);
455 return ExprError();
456 }
457 } else if (!NSStringDecl->hasDefinition()) {
458 Diag(SR.getBegin(), diag::err_undeclared_nsstring);
459 return ExprError();
460 }
461 assert(NSStringDecl && "NSStringDecl should not be NULL");
462 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl);
463 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject);
464 }
465
466 if (!StringWithUTF8StringMethod) {
467 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String");
468 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II);
469
470 // Look for the appropriate method within NSString.
471 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String);
472 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
473 // Debugger needs to work even if NSString hasn't been defined.
474 TypeSourceInfo *ResultTInfo = 0;
475 ObjCMethodDecl *M =
476 ObjCMethodDecl::Create(Context, SourceLocation(), SourceLocation(),
477 stringWithUTF8String, NSStringPointer,
478 ResultTInfo, NSStringDecl,
479 /*isInstance=*/false, /*isVariadic=*/false,
480 /*isSynthesized=*/false,
481 /*isImplicitlyDeclared=*/true,
482 /*isDefined=*/false,
483 ObjCMethodDecl::Required,
484 /*HasRelatedResultType=*/false);
485 QualType ConstCharType = Context.CharTy.withConst();
486 ParmVarDecl *value =
487 ParmVarDecl::Create(Context, M,
488 SourceLocation(), SourceLocation(),
489 &Context.Idents.get("value"),
490 Context.getPointerType(ConstCharType),
491 /*TInfo=*/0,
492 SC_None, SC_None, 0);
493 M->setMethodParams(Context, value, ArrayRef<SourceLocation>());
494 BoxingMethod = M;
495 }
496
497 if (!validateBoxingMethod(*this, SR.getBegin(), NSStringDecl,
498 stringWithUTF8String, BoxingMethod))
499 return ExprError();
500
501 StringWithUTF8StringMethod = BoxingMethod;
502 }
503
504 BoxingMethod = StringWithUTF8StringMethod;
505 BoxedType = NSStringPointer;
506 }
507 } else if (ValueType->isBuiltinType()) {
508 // The other types we support are numeric, char and BOOL/bool. We could also
509 // provide limited support for structure types, such as NSRange, NSRect, and
510 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h>
511 // for more details.
512
513 // Check for a top-level character literal.
514 if (const CharacterLiteral *Char =
515 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) {
516 // In C, character literals have type 'int'. That's not the type we want
517 // to use to determine the Objective-c literal kind.
518 switch (Char->getKind()) {
519 case CharacterLiteral::Ascii:
520 ValueType = Context.CharTy;
521 break;
522
523 case CharacterLiteral::Wide:
524 ValueType = Context.getWCharType();
525 break;
526
527 case CharacterLiteral::UTF16:
528 ValueType = Context.Char16Ty;
529 break;
530
531 case CharacterLiteral::UTF32:
532 ValueType = Context.Char32Ty;
533 break;
534 }
535 }
536
537 // FIXME: Do I need to do anything special with BoolTy expressions?
538
539 // Look for the appropriate method within NSNumber.
540 BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(), ValueType);
541 BoxedType = NSNumberPointer;
542
543 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) {
544 if (!ET->getDecl()->isComplete()) {
545 Diag(SR.getBegin(), diag::err_objc_incomplete_boxed_expression_type)
546 << ValueType << ValueExpr->getSourceRange();
547 return ExprError();
548 }
549
550 BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(),
551 ET->getDecl()->getIntegerType());
552 BoxedType = NSNumberPointer;
553 }
554
555 if (!BoxingMethod) {
556 Diag(SR.getBegin(), diag::err_objc_illegal_boxed_expression_type)
557 << ValueType << ValueExpr->getSourceRange();
558 return ExprError();
559 }
560
561 // Convert the expression to the type that the parameter requires.
562 ParmVarDecl *ParamDecl = BoxingMethod->param_begin()[0];
563 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
564 ParamDecl);
565 ExprResult ConvertedValueExpr = PerformCopyInitialization(Entity,
566 SourceLocation(),
567 Owned(ValueExpr));
568 if (ConvertedValueExpr.isInvalid())
569 return ExprError();
570 ValueExpr = ConvertedValueExpr.get();
571
572 ObjCBoxedExpr *BoxedExpr =
573 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType,
574 BoxingMethod, SR);
575 return MaybeBindToTemporary(BoxedExpr);
576 }
577
578 /// Build an ObjC subscript pseudo-object expression, given that
579 /// that's supported by the runtime.
BuildObjCSubscriptExpression(SourceLocation RB,Expr * BaseExpr,Expr * IndexExpr,ObjCMethodDecl * getterMethod,ObjCMethodDecl * setterMethod)580 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
581 Expr *IndexExpr,
582 ObjCMethodDecl *getterMethod,
583 ObjCMethodDecl *setterMethod) {
584 assert(!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic());
585
586 // We can't get dependent types here; our callers should have
587 // filtered them out.
588 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) &&
589 "base or index cannot have dependent type here");
590
591 // Filter out placeholders in the index. In theory, overloads could
592 // be preserved here, although that might not actually work correctly.
593 ExprResult Result = CheckPlaceholderExpr(IndexExpr);
594 if (Result.isInvalid())
595 return ExprError();
596 IndexExpr = Result.get();
597
598 // Perform lvalue-to-rvalue conversion on the base.
599 Result = DefaultLvalueConversion(BaseExpr);
600 if (Result.isInvalid())
601 return ExprError();
602 BaseExpr = Result.get();
603
604 // Build the pseudo-object expression.
605 return Owned(ObjCSubscriptRefExpr::Create(Context,
606 BaseExpr,
607 IndexExpr,
608 Context.PseudoObjectTy,
609 getterMethod,
610 setterMethod, RB));
611
612 }
613
BuildObjCArrayLiteral(SourceRange SR,MultiExprArg Elements)614 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) {
615 // Look up the NSArray class, if we haven't done so already.
616 if (!NSArrayDecl) {
617 NamedDecl *IF = LookupSingleName(TUScope,
618 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray),
619 SR.getBegin(),
620 LookupOrdinaryName);
621 NSArrayDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
622 if (!NSArrayDecl && getLangOpts().DebuggerObjCLiteral)
623 NSArrayDecl = ObjCInterfaceDecl::Create (Context,
624 Context.getTranslationUnitDecl(),
625 SourceLocation(),
626 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray),
627 0, SourceLocation());
628
629 if (!NSArrayDecl) {
630 Diag(SR.getBegin(), diag::err_undeclared_nsarray);
631 return ExprError();
632 }
633 }
634
635 // Find the arrayWithObjects:count: method, if we haven't done so already.
636 QualType IdT = Context.getObjCIdType();
637 if (!ArrayWithObjectsMethod) {
638 Selector
639 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount);
640 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel);
641 if (!Method && getLangOpts().DebuggerObjCLiteral) {
642 TypeSourceInfo *ResultTInfo = 0;
643 Method = ObjCMethodDecl::Create(Context,
644 SourceLocation(), SourceLocation(), Sel,
645 IdT,
646 ResultTInfo,
647 Context.getTranslationUnitDecl(),
648 false /*Instance*/, false/*isVariadic*/,
649 /*isSynthesized=*/false,
650 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
651 ObjCMethodDecl::Required,
652 false);
653 SmallVector<ParmVarDecl *, 2> Params;
654 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
655 SourceLocation(),
656 SourceLocation(),
657 &Context.Idents.get("objects"),
658 Context.getPointerType(IdT),
659 /*TInfo=*/0, SC_None, SC_None,
660 0);
661 Params.push_back(objects);
662 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
663 SourceLocation(),
664 SourceLocation(),
665 &Context.Idents.get("cnt"),
666 Context.UnsignedLongTy,
667 /*TInfo=*/0, SC_None, SC_None,
668 0);
669 Params.push_back(cnt);
670 Method->setMethodParams(Context, Params, ArrayRef<SourceLocation>());
671 }
672
673 if (!validateBoxingMethod(*this, SR.getBegin(), NSArrayDecl, Sel, Method))
674 return ExprError();
675
676 // Dig out the type that all elements should be converted to.
677 QualType T = Method->param_begin()[0]->getType();
678 const PointerType *PtrT = T->getAs<PointerType>();
679 if (!PtrT ||
680 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) {
681 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
682 << Sel;
683 Diag(Method->param_begin()[0]->getLocation(),
684 diag::note_objc_literal_method_param)
685 << 0 << T
686 << Context.getPointerType(IdT.withConst());
687 return ExprError();
688 }
689
690 // Check that the 'count' parameter is integral.
691 if (!Method->param_begin()[1]->getType()->isIntegerType()) {
692 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
693 << Sel;
694 Diag(Method->param_begin()[1]->getLocation(),
695 diag::note_objc_literal_method_param)
696 << 1
697 << Method->param_begin()[1]->getType()
698 << "integral";
699 return ExprError();
700 }
701
702 // We've found a good +arrayWithObjects:count: method. Save it!
703 ArrayWithObjectsMethod = Method;
704 }
705
706 QualType ObjectsType = ArrayWithObjectsMethod->param_begin()[0]->getType();
707 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType();
708
709 // Check that each of the elements provided is valid in a collection literal,
710 // performing conversions as necessary.
711 Expr **ElementsBuffer = Elements.data();
712 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
713 ExprResult Converted = CheckObjCCollectionLiteralElement(*this,
714 ElementsBuffer[I],
715 RequiredType);
716 if (Converted.isInvalid())
717 return ExprError();
718
719 ElementsBuffer[I] = Converted.get();
720 }
721
722 QualType Ty
723 = Context.getObjCObjectPointerType(
724 Context.getObjCInterfaceType(NSArrayDecl));
725
726 return MaybeBindToTemporary(
727 ObjCArrayLiteral::Create(Context, Elements, Ty,
728 ArrayWithObjectsMethod, SR));
729 }
730
BuildObjCDictionaryLiteral(SourceRange SR,ObjCDictionaryElement * Elements,unsigned NumElements)731 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR,
732 ObjCDictionaryElement *Elements,
733 unsigned NumElements) {
734 // Look up the NSDictionary class, if we haven't done so already.
735 if (!NSDictionaryDecl) {
736 NamedDecl *IF = LookupSingleName(TUScope,
737 NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary),
738 SR.getBegin(), LookupOrdinaryName);
739 NSDictionaryDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
740 if (!NSDictionaryDecl && getLangOpts().DebuggerObjCLiteral)
741 NSDictionaryDecl = ObjCInterfaceDecl::Create (Context,
742 Context.getTranslationUnitDecl(),
743 SourceLocation(),
744 NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary),
745 0, SourceLocation());
746
747 if (!NSDictionaryDecl) {
748 Diag(SR.getBegin(), diag::err_undeclared_nsdictionary);
749 return ExprError();
750 }
751 }
752
753 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done
754 // so already.
755 QualType IdT = Context.getObjCIdType();
756 if (!DictionaryWithObjectsMethod) {
757 Selector Sel = NSAPIObj->getNSDictionarySelector(
758 NSAPI::NSDict_dictionaryWithObjectsForKeysCount);
759 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel);
760 if (!Method && getLangOpts().DebuggerObjCLiteral) {
761 Method = ObjCMethodDecl::Create(Context,
762 SourceLocation(), SourceLocation(), Sel,
763 IdT,
764 0 /*TypeSourceInfo */,
765 Context.getTranslationUnitDecl(),
766 false /*Instance*/, false/*isVariadic*/,
767 /*isSynthesized=*/false,
768 /*isImplicitlyDeclared=*/true, /*isDefined=*/false,
769 ObjCMethodDecl::Required,
770 false);
771 SmallVector<ParmVarDecl *, 3> Params;
772 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
773 SourceLocation(),
774 SourceLocation(),
775 &Context.Idents.get("objects"),
776 Context.getPointerType(IdT),
777 /*TInfo=*/0, SC_None, SC_None,
778 0);
779 Params.push_back(objects);
780 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method,
781 SourceLocation(),
782 SourceLocation(),
783 &Context.Idents.get("keys"),
784 Context.getPointerType(IdT),
785 /*TInfo=*/0, SC_None, SC_None,
786 0);
787 Params.push_back(keys);
788 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
789 SourceLocation(),
790 SourceLocation(),
791 &Context.Idents.get("cnt"),
792 Context.UnsignedLongTy,
793 /*TInfo=*/0, SC_None, SC_None,
794 0);
795 Params.push_back(cnt);
796 Method->setMethodParams(Context, Params, ArrayRef<SourceLocation>());
797 }
798
799 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel,
800 Method))
801 return ExprError();
802
803 // Dig out the type that all values should be converted to.
804 QualType ValueT = Method->param_begin()[0]->getType();
805 const PointerType *PtrValue = ValueT->getAs<PointerType>();
806 if (!PtrValue ||
807 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) {
808 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
809 << Sel;
810 Diag(Method->param_begin()[0]->getLocation(),
811 diag::note_objc_literal_method_param)
812 << 0 << ValueT
813 << Context.getPointerType(IdT.withConst());
814 return ExprError();
815 }
816
817 // Dig out the type that all keys should be converted to.
818 QualType KeyT = Method->param_begin()[1]->getType();
819 const PointerType *PtrKey = KeyT->getAs<PointerType>();
820 if (!PtrKey ||
821 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
822 IdT)) {
823 bool err = true;
824 if (PtrKey) {
825 if (QIDNSCopying.isNull()) {
826 // key argument of selector is id<NSCopying>?
827 if (ObjCProtocolDecl *NSCopyingPDecl =
828 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) {
829 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl};
830 QIDNSCopying =
831 Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
832 (ObjCProtocolDecl**) PQ,1);
833 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying);
834 }
835 }
836 if (!QIDNSCopying.isNull())
837 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
838 QIDNSCopying);
839 }
840
841 if (err) {
842 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
843 << Sel;
844 Diag(Method->param_begin()[1]->getLocation(),
845 diag::note_objc_literal_method_param)
846 << 1 << KeyT
847 << Context.getPointerType(IdT.withConst());
848 return ExprError();
849 }
850 }
851
852 // Check that the 'count' parameter is integral.
853 QualType CountType = Method->param_begin()[2]->getType();
854 if (!CountType->isIntegerType()) {
855 Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
856 << Sel;
857 Diag(Method->param_begin()[2]->getLocation(),
858 diag::note_objc_literal_method_param)
859 << 2 << CountType
860 << "integral";
861 return ExprError();
862 }
863
864 // We've found a good +dictionaryWithObjects:keys:count: method; save it!
865 DictionaryWithObjectsMethod = Method;
866 }
867
868 QualType ValuesT = DictionaryWithObjectsMethod->param_begin()[0]->getType();
869 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType();
870 QualType KeysT = DictionaryWithObjectsMethod->param_begin()[1]->getType();
871 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType();
872
873 // Check that each of the keys and values provided is valid in a collection
874 // literal, performing conversions as necessary.
875 bool HasPackExpansions = false;
876 for (unsigned I = 0, N = NumElements; I != N; ++I) {
877 // Check the key.
878 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key,
879 KeyT);
880 if (Key.isInvalid())
881 return ExprError();
882
883 // Check the value.
884 ExprResult Value
885 = CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT);
886 if (Value.isInvalid())
887 return ExprError();
888
889 Elements[I].Key = Key.get();
890 Elements[I].Value = Value.get();
891
892 if (Elements[I].EllipsisLoc.isInvalid())
893 continue;
894
895 if (!Elements[I].Key->containsUnexpandedParameterPack() &&
896 !Elements[I].Value->containsUnexpandedParameterPack()) {
897 Diag(Elements[I].EllipsisLoc,
898 diag::err_pack_expansion_without_parameter_packs)
899 << SourceRange(Elements[I].Key->getLocStart(),
900 Elements[I].Value->getLocEnd());
901 return ExprError();
902 }
903
904 HasPackExpansions = true;
905 }
906
907
908 QualType Ty
909 = Context.getObjCObjectPointerType(
910 Context.getObjCInterfaceType(NSDictionaryDecl));
911 return MaybeBindToTemporary(
912 ObjCDictionaryLiteral::Create(Context,
913 llvm::makeArrayRef(Elements,
914 NumElements),
915 HasPackExpansions,
916 Ty,
917 DictionaryWithObjectsMethod, SR));
918 }
919
BuildObjCEncodeExpression(SourceLocation AtLoc,TypeSourceInfo * EncodedTypeInfo,SourceLocation RParenLoc)920 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
921 TypeSourceInfo *EncodedTypeInfo,
922 SourceLocation RParenLoc) {
923 QualType EncodedType = EncodedTypeInfo->getType();
924 QualType StrTy;
925 if (EncodedType->isDependentType())
926 StrTy = Context.DependentTy;
927 else {
928 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
929 !EncodedType->isVoidType()) // void is handled too.
930 if (RequireCompleteType(AtLoc, EncodedType,
931 diag::err_incomplete_type_objc_at_encode,
932 EncodedTypeInfo->getTypeLoc()))
933 return ExprError();
934
935 std::string Str;
936 Context.getObjCEncodingForType(EncodedType, Str);
937
938 // The type of @encode is the same as the type of the corresponding string,
939 // which is an array type.
940 StrTy = Context.CharTy;
941 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
942 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
943 StrTy.addConst();
944 StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1),
945 ArrayType::Normal, 0);
946 }
947
948 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
949 }
950
ParseObjCEncodeExpression(SourceLocation AtLoc,SourceLocation EncodeLoc,SourceLocation LParenLoc,ParsedType ty,SourceLocation RParenLoc)951 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
952 SourceLocation EncodeLoc,
953 SourceLocation LParenLoc,
954 ParsedType ty,
955 SourceLocation RParenLoc) {
956 // FIXME: Preserve type source info ?
957 TypeSourceInfo *TInfo;
958 QualType EncodedType = GetTypeFromParser(ty, &TInfo);
959 if (!TInfo)
960 TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
961 PP.getLocForEndOfToken(LParenLoc));
962
963 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
964 }
965
ParseObjCSelectorExpression(Selector Sel,SourceLocation AtLoc,SourceLocation SelLoc,SourceLocation LParenLoc,SourceLocation RParenLoc)966 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
967 SourceLocation AtLoc,
968 SourceLocation SelLoc,
969 SourceLocation LParenLoc,
970 SourceLocation RParenLoc) {
971 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
972 SourceRange(LParenLoc, RParenLoc), false, false);
973 if (!Method)
974 Method = LookupFactoryMethodInGlobalPool(Sel,
975 SourceRange(LParenLoc, RParenLoc));
976 if (!Method)
977 Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
978
979 if (!Method ||
980 Method->getImplementationControl() != ObjCMethodDecl::Optional) {
981 llvm::DenseMap<Selector, SourceLocation>::iterator Pos
982 = ReferencedSelectors.find(Sel);
983 if (Pos == ReferencedSelectors.end())
984 ReferencedSelectors.insert(std::make_pair(Sel, SelLoc));
985 }
986
987 // In ARC, forbid the user from using @selector for
988 // retain/release/autorelease/dealloc/retainCount.
989 if (getLangOpts().ObjCAutoRefCount) {
990 switch (Sel.getMethodFamily()) {
991 case OMF_retain:
992 case OMF_release:
993 case OMF_autorelease:
994 case OMF_retainCount:
995 case OMF_dealloc:
996 Diag(AtLoc, diag::err_arc_illegal_selector) <<
997 Sel << SourceRange(LParenLoc, RParenLoc);
998 break;
999
1000 case OMF_None:
1001 case OMF_alloc:
1002 case OMF_copy:
1003 case OMF_finalize:
1004 case OMF_init:
1005 case OMF_mutableCopy:
1006 case OMF_new:
1007 case OMF_self:
1008 case OMF_performSelector:
1009 break;
1010 }
1011 }
1012 QualType Ty = Context.getObjCSelType();
1013 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
1014 }
1015
ParseObjCProtocolExpression(IdentifierInfo * ProtocolId,SourceLocation AtLoc,SourceLocation ProtoLoc,SourceLocation LParenLoc,SourceLocation ProtoIdLoc,SourceLocation RParenLoc)1016 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
1017 SourceLocation AtLoc,
1018 SourceLocation ProtoLoc,
1019 SourceLocation LParenLoc,
1020 SourceLocation ProtoIdLoc,
1021 SourceLocation RParenLoc) {
1022 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc);
1023 if (!PDecl) {
1024 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
1025 return true;
1026 }
1027
1028 QualType Ty = Context.getObjCProtoType();
1029 if (Ty.isNull())
1030 return true;
1031 Ty = Context.getObjCObjectPointerType(Ty);
1032 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc);
1033 }
1034
1035 /// Try to capture an implicit reference to 'self'.
tryCaptureObjCSelf(SourceLocation Loc)1036 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) {
1037 DeclContext *DC = getFunctionLevelDeclContext();
1038
1039 // If we're not in an ObjC method, error out. Note that, unlike the
1040 // C++ case, we don't require an instance method --- class methods
1041 // still have a 'self', and we really do still need to capture it!
1042 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
1043 if (!method)
1044 return 0;
1045
1046 tryCaptureVariable(method->getSelfDecl(), Loc);
1047
1048 return method;
1049 }
1050
stripObjCInstanceType(ASTContext & Context,QualType T)1051 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
1052 if (T == Context.getObjCInstanceType())
1053 return Context.getObjCIdType();
1054
1055 return T;
1056 }
1057
getMessageSendResultType(QualType ReceiverType,ObjCMethodDecl * Method,bool isClassMessage,bool isSuperMessage)1058 QualType Sema::getMessageSendResultType(QualType ReceiverType,
1059 ObjCMethodDecl *Method,
1060 bool isClassMessage, bool isSuperMessage) {
1061 assert(Method && "Must have a method");
1062 if (!Method->hasRelatedResultType())
1063 return Method->getSendResultType();
1064
1065 // If a method has a related return type:
1066 // - if the method found is an instance method, but the message send
1067 // was a class message send, T is the declared return type of the method
1068 // found
1069 if (Method->isInstanceMethod() && isClassMessage)
1070 return stripObjCInstanceType(Context, Method->getSendResultType());
1071
1072 // - if the receiver is super, T is a pointer to the class of the
1073 // enclosing method definition
1074 if (isSuperMessage) {
1075 if (ObjCMethodDecl *CurMethod = getCurMethodDecl())
1076 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface())
1077 return Context.getObjCObjectPointerType(
1078 Context.getObjCInterfaceType(Class));
1079 }
1080
1081 // - if the receiver is the name of a class U, T is a pointer to U
1082 if (ReceiverType->getAs<ObjCInterfaceType>() ||
1083 ReceiverType->isObjCQualifiedInterfaceType())
1084 return Context.getObjCObjectPointerType(ReceiverType);
1085 // - if the receiver is of type Class or qualified Class type,
1086 // T is the declared return type of the method.
1087 if (ReceiverType->isObjCClassType() ||
1088 ReceiverType->isObjCQualifiedClassType())
1089 return stripObjCInstanceType(Context, Method->getSendResultType());
1090
1091 // - if the receiver is id, qualified id, Class, or qualified Class, T
1092 // is the receiver type, otherwise
1093 // - T is the type of the receiver expression.
1094 return ReceiverType;
1095 }
1096
EmitRelatedResultTypeNote(const Expr * E)1097 void Sema::EmitRelatedResultTypeNote(const Expr *E) {
1098 E = E->IgnoreParenImpCasts();
1099 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
1100 if (!MsgSend)
1101 return;
1102
1103 const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
1104 if (!Method)
1105 return;
1106
1107 if (!Method->hasRelatedResultType())
1108 return;
1109
1110 if (Context.hasSameUnqualifiedType(Method->getResultType()
1111 .getNonReferenceType(),
1112 MsgSend->getType()))
1113 return;
1114
1115 if (!Context.hasSameUnqualifiedType(Method->getResultType(),
1116 Context.getObjCInstanceType()))
1117 return;
1118
1119 Diag(Method->getLocation(), diag::note_related_result_type_inferred)
1120 << Method->isInstanceMethod() << Method->getSelector()
1121 << MsgSend->getType();
1122 }
1123
CheckMessageArgumentTypes(QualType ReceiverType,Expr ** Args,unsigned NumArgs,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,bool isClassMessage,bool isSuperMessage,SourceLocation lbrac,SourceLocation rbrac,QualType & ReturnType,ExprValueKind & VK)1124 bool Sema::CheckMessageArgumentTypes(QualType ReceiverType,
1125 Expr **Args, unsigned NumArgs,
1126 Selector Sel,
1127 ArrayRef<SourceLocation> SelectorLocs,
1128 ObjCMethodDecl *Method,
1129 bool isClassMessage, bool isSuperMessage,
1130 SourceLocation lbrac, SourceLocation rbrac,
1131 QualType &ReturnType, ExprValueKind &VK) {
1132 if (!Method) {
1133 // Apply default argument promotion as for (C99 6.5.2.2p6).
1134 for (unsigned i = 0; i != NumArgs; i++) {
1135 if (Args[i]->isTypeDependent())
1136 continue;
1137
1138 ExprResult Result = DefaultArgumentPromotion(Args[i]);
1139 if (Result.isInvalid())
1140 return true;
1141 Args[i] = Result.take();
1142 }
1143
1144 unsigned DiagID;
1145 if (getLangOpts().ObjCAutoRefCount)
1146 DiagID = diag::err_arc_method_not_found;
1147 else
1148 DiagID = isClassMessage ? diag::warn_class_method_not_found
1149 : diag::warn_inst_method_not_found;
1150 if (!getLangOpts().DebuggerSupport)
1151 Diag(lbrac, DiagID)
1152 << Sel << isClassMessage << SourceRange(SelectorLocs.front(),
1153 SelectorLocs.back());
1154
1155 // In debuggers, we want to use __unknown_anytype for these
1156 // results so that clients can cast them.
1157 if (getLangOpts().DebuggerSupport) {
1158 ReturnType = Context.UnknownAnyTy;
1159 } else {
1160 ReturnType = Context.getObjCIdType();
1161 }
1162 VK = VK_RValue;
1163 return false;
1164 }
1165
1166 ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage,
1167 isSuperMessage);
1168 VK = Expr::getValueKindForType(Method->getResultType());
1169
1170 unsigned NumNamedArgs = Sel.getNumArgs();
1171 // Method might have more arguments than selector indicates. This is due
1172 // to addition of c-style arguments in method.
1173 if (Method->param_size() > Sel.getNumArgs())
1174 NumNamedArgs = Method->param_size();
1175 // FIXME. This need be cleaned up.
1176 if (NumArgs < NumNamedArgs) {
1177 Diag(lbrac, diag::err_typecheck_call_too_few_args)
1178 << 2 << NumNamedArgs << NumArgs;
1179 return false;
1180 }
1181
1182 bool IsError = false;
1183 for (unsigned i = 0; i < NumNamedArgs; i++) {
1184 // We can't do any type-checking on a type-dependent argument.
1185 if (Args[i]->isTypeDependent())
1186 continue;
1187
1188 Expr *argExpr = Args[i];
1189
1190 ParmVarDecl *param = Method->param_begin()[i];
1191 assert(argExpr && "CheckMessageArgumentTypes(): missing expression");
1192
1193 // Strip the unbridged-cast placeholder expression off unless it's
1194 // a consumed argument.
1195 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
1196 !param->hasAttr<CFConsumedAttr>())
1197 argExpr = stripARCUnbridgedCast(argExpr);
1198
1199 if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
1200 param->getType(),
1201 diag::err_call_incomplete_argument, argExpr))
1202 return true;
1203
1204 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1205 param);
1206 ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr));
1207 if (ArgE.isInvalid())
1208 IsError = true;
1209 else
1210 Args[i] = ArgE.takeAs<Expr>();
1211 }
1212
1213 // Promote additional arguments to variadic methods.
1214 if (Method->isVariadic()) {
1215 for (unsigned i = NumNamedArgs; i < NumArgs; ++i) {
1216 if (Args[i]->isTypeDependent())
1217 continue;
1218
1219 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
1220 0);
1221 IsError |= Arg.isInvalid();
1222 Args[i] = Arg.take();
1223 }
1224 } else {
1225 // Check for extra arguments to non-variadic methods.
1226 if (NumArgs != NumNamedArgs) {
1227 Diag(Args[NumNamedArgs]->getLocStart(),
1228 diag::err_typecheck_call_too_many_args)
1229 << 2 /*method*/ << NumNamedArgs << NumArgs
1230 << Method->getSourceRange()
1231 << SourceRange(Args[NumNamedArgs]->getLocStart(),
1232 Args[NumArgs-1]->getLocEnd());
1233 }
1234 }
1235
1236 DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs);
1237
1238 // Do additional checkings on method.
1239 IsError |= CheckObjCMethodCall(Method, lbrac, Args, NumArgs);
1240
1241 return IsError;
1242 }
1243
isSelfExpr(Expr * receiver)1244 bool Sema::isSelfExpr(Expr *receiver) {
1245 // 'self' is objc 'self' in an objc method only.
1246 ObjCMethodDecl *method =
1247 dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
1248 if (!method) return false;
1249
1250 receiver = receiver->IgnoreParenLValueCasts();
1251 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
1252 if (DRE->getDecl() == method->getSelfDecl())
1253 return true;
1254 return false;
1255 }
1256
1257 /// LookupMethodInType - Look up a method in an ObjCObjectType.
LookupMethodInObjectType(Selector sel,QualType type,bool isInstance)1258 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
1259 bool isInstance) {
1260 const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
1261 if (ObjCInterfaceDecl *iface = objType->getInterface()) {
1262 // Look it up in the main interface (and categories, etc.)
1263 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
1264 return method;
1265
1266 // Okay, look for "private" methods declared in any
1267 // @implementations we've seen.
1268 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance))
1269 return method;
1270 }
1271
1272 // Check qualifiers.
1273 for (ObjCObjectType::qual_iterator
1274 i = objType->qual_begin(), e = objType->qual_end(); i != e; ++i)
1275 if (ObjCMethodDecl *method = (*i)->lookupMethod(sel, isInstance))
1276 return method;
1277
1278 return 0;
1279 }
1280
1281 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
1282 /// list of a qualified objective pointer type.
LookupMethodInQualifiedType(Selector Sel,const ObjCObjectPointerType * OPT,bool Instance)1283 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
1284 const ObjCObjectPointerType *OPT,
1285 bool Instance)
1286 {
1287 ObjCMethodDecl *MD = 0;
1288 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
1289 E = OPT->qual_end(); I != E; ++I) {
1290 ObjCProtocolDecl *PROTO = (*I);
1291 if ((MD = PROTO->lookupMethod(Sel, Instance))) {
1292 return MD;
1293 }
1294 }
1295 return 0;
1296 }
1297
DiagnoseARCUseOfWeakReceiver(Sema & S,Expr * Receiver)1298 static void DiagnoseARCUseOfWeakReceiver(Sema &S, Expr *Receiver) {
1299 if (!Receiver)
1300 return;
1301
1302 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Receiver))
1303 Receiver = OVE->getSourceExpr();
1304
1305 Expr *RExpr = Receiver->IgnoreParenImpCasts();
1306 SourceLocation Loc = RExpr->getLocStart();
1307 QualType T = RExpr->getType();
1308 ObjCPropertyDecl *PDecl = 0;
1309 ObjCMethodDecl *GDecl = 0;
1310 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(RExpr)) {
1311 RExpr = POE->getSyntacticForm();
1312 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(RExpr)) {
1313 if (PRE->isImplicitProperty()) {
1314 GDecl = PRE->getImplicitPropertyGetter();
1315 if (GDecl) {
1316 T = GDecl->getResultType();
1317 }
1318 }
1319 else {
1320 PDecl = PRE->getExplicitProperty();
1321 if (PDecl) {
1322 T = PDecl->getType();
1323 }
1324 }
1325 }
1326 }
1327 else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(RExpr)) {
1328 // See if receiver is a method which envokes a synthesized getter
1329 // backing a 'weak' property.
1330 ObjCMethodDecl *Method = ME->getMethodDecl();
1331 if (Method && Method->isSynthesized()) {
1332 Selector Sel = Method->getSelector();
1333 if (Sel.getNumArgs() == 0) {
1334 const DeclContext *Container = Method->getDeclContext();
1335 PDecl =
1336 S.LookupPropertyDecl(cast<ObjCContainerDecl>(Container),
1337 Sel.getIdentifierInfoForSlot(0));
1338 }
1339 if (PDecl)
1340 T = PDecl->getType();
1341 }
1342 }
1343
1344 if (T.getObjCLifetime() == Qualifiers::OCL_Weak) {
1345 S.Diag(Loc, diag::warn_receiver_is_weak)
1346 << ((!PDecl && !GDecl) ? 0 : (PDecl ? 1 : 2));
1347 if (PDecl)
1348 S.Diag(PDecl->getLocation(), diag::note_property_declare);
1349 else if (GDecl)
1350 S.Diag(GDecl->getLocation(), diag::note_method_declared_at) << GDecl;
1351 return;
1352 }
1353
1354 if (PDecl &&
1355 (PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)) {
1356 S.Diag(Loc, diag::warn_receiver_is_weak) << 1;
1357 S.Diag(PDecl->getLocation(), diag::note_property_declare);
1358 }
1359 }
1360
1361 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
1362 /// objective C interface. This is a property reference expression.
1363 ExprResult Sema::
HandleExprPropertyRefExpr(const ObjCObjectPointerType * OPT,Expr * BaseExpr,SourceLocation OpLoc,DeclarationName MemberName,SourceLocation MemberLoc,SourceLocation SuperLoc,QualType SuperType,bool Super)1364 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
1365 Expr *BaseExpr, SourceLocation OpLoc,
1366 DeclarationName MemberName,
1367 SourceLocation MemberLoc,
1368 SourceLocation SuperLoc, QualType SuperType,
1369 bool Super) {
1370 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
1371 ObjCInterfaceDecl *IFace = IFaceT->getDecl();
1372
1373 if (!MemberName.isIdentifier()) {
1374 Diag(MemberLoc, diag::err_invalid_property_name)
1375 << MemberName << QualType(OPT, 0);
1376 return ExprError();
1377 }
1378
1379 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1380
1381 SourceRange BaseRange = Super? SourceRange(SuperLoc)
1382 : BaseExpr->getSourceRange();
1383 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(),
1384 diag::err_property_not_found_forward_class,
1385 MemberName, BaseRange))
1386 return ExprError();
1387
1388 // Search for a declared property first.
1389 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
1390 // Check whether we can reference this property.
1391 if (DiagnoseUseOfDecl(PD, MemberLoc))
1392 return ExprError();
1393 if (Super)
1394 return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy,
1395 VK_LValue, OK_ObjCProperty,
1396 MemberLoc,
1397 SuperLoc, SuperType));
1398 else
1399 return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy,
1400 VK_LValue, OK_ObjCProperty,
1401 MemberLoc, BaseExpr));
1402 }
1403 // Check protocols on qualified interfaces.
1404 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
1405 E = OPT->qual_end(); I != E; ++I)
1406 if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
1407 // Check whether we can reference this property.
1408 if (DiagnoseUseOfDecl(PD, MemberLoc))
1409 return ExprError();
1410
1411 if (Super)
1412 return Owned(new (Context) ObjCPropertyRefExpr(PD,
1413 Context.PseudoObjectTy,
1414 VK_LValue,
1415 OK_ObjCProperty,
1416 MemberLoc,
1417 SuperLoc, SuperType));
1418 else
1419 return Owned(new (Context) ObjCPropertyRefExpr(PD,
1420 Context.PseudoObjectTy,
1421 VK_LValue,
1422 OK_ObjCProperty,
1423 MemberLoc,
1424 BaseExpr));
1425 }
1426 // If that failed, look for an "implicit" property by seeing if the nullary
1427 // selector is implemented.
1428
1429 // FIXME: The logic for looking up nullary and unary selectors should be
1430 // shared with the code in ActOnInstanceMessage.
1431
1432 Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1433 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1434
1435 // May be founf in property's qualified list.
1436 if (!Getter)
1437 Getter = LookupMethodInQualifiedType(Sel, OPT, true);
1438
1439 // If this reference is in an @implementation, check for 'private' methods.
1440 if (!Getter)
1441 Getter = IFace->lookupPrivateMethod(Sel);
1442
1443 if (Getter) {
1444 // Check if we can reference this property.
1445 if (DiagnoseUseOfDecl(Getter, MemberLoc))
1446 return ExprError();
1447 }
1448 // If we found a getter then this may be a valid dot-reference, we
1449 // will look for the matching setter, in case it is needed.
1450 Selector SetterSel =
1451 SelectorTable::constructSetterName(PP.getIdentifierTable(),
1452 PP.getSelectorTable(), Member);
1453 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1454
1455 // May be founf in property's qualified list.
1456 if (!Setter)
1457 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
1458
1459 if (!Setter) {
1460 // If this reference is in an @implementation, also check for 'private'
1461 // methods.
1462 Setter = IFace->lookupPrivateMethod(SetterSel);
1463 }
1464
1465 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1466 return ExprError();
1467
1468 if (Getter || Setter) {
1469 if (Super)
1470 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1471 Context.PseudoObjectTy,
1472 VK_LValue, OK_ObjCProperty,
1473 MemberLoc,
1474 SuperLoc, SuperType));
1475 else
1476 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1477 Context.PseudoObjectTy,
1478 VK_LValue, OK_ObjCProperty,
1479 MemberLoc, BaseExpr));
1480
1481 }
1482
1483 // Attempt to correct for typos in property names.
1484 DeclFilterCCC<ObjCPropertyDecl> Validator;
1485 if (TypoCorrection Corrected = CorrectTypo(
1486 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL,
1487 NULL, Validator, IFace, false, OPT)) {
1488 ObjCPropertyDecl *Property =
1489 Corrected.getCorrectionDeclAs<ObjCPropertyDecl>();
1490 DeclarationName TypoResult = Corrected.getCorrection();
1491 Diag(MemberLoc, diag::err_property_not_found_suggest)
1492 << MemberName << QualType(OPT, 0) << TypoResult
1493 << FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString());
1494 Diag(Property->getLocation(), diag::note_previous_decl)
1495 << Property->getDeclName();
1496 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
1497 TypoResult, MemberLoc,
1498 SuperLoc, SuperType, Super);
1499 }
1500 ObjCInterfaceDecl *ClassDeclared;
1501 if (ObjCIvarDecl *Ivar =
1502 IFace->lookupInstanceVariable(Member, ClassDeclared)) {
1503 QualType T = Ivar->getType();
1504 if (const ObjCObjectPointerType * OBJPT =
1505 T->getAsObjCInterfacePointerType()) {
1506 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(),
1507 diag::err_property_not_as_forward_class,
1508 MemberName, BaseExpr))
1509 return ExprError();
1510 }
1511 Diag(MemberLoc,
1512 diag::err_ivar_access_using_property_syntax_suggest)
1513 << MemberName << QualType(OPT, 0) << Ivar->getDeclName()
1514 << FixItHint::CreateReplacement(OpLoc, "->");
1515 return ExprError();
1516 }
1517
1518 Diag(MemberLoc, diag::err_property_not_found)
1519 << MemberName << QualType(OPT, 0);
1520 if (Setter)
1521 Diag(Setter->getLocation(), diag::note_getter_unavailable)
1522 << MemberName << BaseExpr->getSourceRange();
1523 return ExprError();
1524 }
1525
1526
1527
1528 ExprResult Sema::
ActOnClassPropertyRefExpr(IdentifierInfo & receiverName,IdentifierInfo & propertyName,SourceLocation receiverNameLoc,SourceLocation propertyNameLoc)1529 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
1530 IdentifierInfo &propertyName,
1531 SourceLocation receiverNameLoc,
1532 SourceLocation propertyNameLoc) {
1533
1534 IdentifierInfo *receiverNamePtr = &receiverName;
1535 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
1536 receiverNameLoc);
1537
1538 bool IsSuper = false;
1539 if (IFace == 0) {
1540 // If the "receiver" is 'super' in a method, handle it as an expression-like
1541 // property reference.
1542 if (receiverNamePtr->isStr("super")) {
1543 IsSuper = true;
1544
1545 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) {
1546 if (CurMethod->isInstanceMethod()) {
1547 QualType T =
1548 Context.getObjCInterfaceType(CurMethod->getClassInterface());
1549 T = Context.getObjCObjectPointerType(T);
1550
1551 return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(),
1552 /*BaseExpr*/0,
1553 SourceLocation()/*OpLoc*/,
1554 &propertyName,
1555 propertyNameLoc,
1556 receiverNameLoc, T, true);
1557 }
1558
1559 // Otherwise, if this is a class method, try dispatching to our
1560 // superclass.
1561 IFace = CurMethod->getClassInterface()->getSuperClass();
1562 }
1563 }
1564
1565 if (IFace == 0) {
1566 Diag(receiverNameLoc, diag::err_expected_ident_or_lparen);
1567 return ExprError();
1568 }
1569 }
1570
1571 // Search for a declared property first.
1572 Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName);
1573 ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel);
1574
1575 // If this reference is in an @implementation, check for 'private' methods.
1576 if (!Getter)
1577 if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1578 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1579 if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
1580 Getter = ImpDecl->getClassMethod(Sel);
1581
1582 if (Getter) {
1583 // FIXME: refactor/share with ActOnMemberReference().
1584 // Check if we can reference this property.
1585 if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
1586 return ExprError();
1587 }
1588
1589 // Look for the matching setter, in case it is needed.
1590 Selector SetterSel =
1591 SelectorTable::constructSetterName(PP.getIdentifierTable(),
1592 PP.getSelectorTable(), &propertyName);
1593
1594 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1595 if (!Setter) {
1596 // If this reference is in an @implementation, also check for 'private'
1597 // methods.
1598 if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1599 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1600 if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
1601 Setter = ImpDecl->getClassMethod(SetterSel);
1602 }
1603 // Look through local category implementations associated with the class.
1604 if (!Setter)
1605 Setter = IFace->getCategoryClassMethod(SetterSel);
1606
1607 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
1608 return ExprError();
1609
1610 if (Getter || Setter) {
1611 if (IsSuper)
1612 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1613 Context.PseudoObjectTy,
1614 VK_LValue, OK_ObjCProperty,
1615 propertyNameLoc,
1616 receiverNameLoc,
1617 Context.getObjCInterfaceType(IFace)));
1618
1619 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1620 Context.PseudoObjectTy,
1621 VK_LValue, OK_ObjCProperty,
1622 propertyNameLoc,
1623 receiverNameLoc, IFace));
1624 }
1625 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
1626 << &propertyName << Context.getObjCInterfaceType(IFace));
1627 }
1628
1629 namespace {
1630
1631 class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback {
1632 public:
ObjCInterfaceOrSuperCCC(ObjCMethodDecl * Method)1633 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
1634 // Determine whether "super" is acceptable in the current context.
1635 if (Method && Method->getClassInterface())
1636 WantObjCSuper = Method->getClassInterface()->getSuperClass();
1637 }
1638
ValidateCandidate(const TypoCorrection & candidate)1639 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1640 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
1641 candidate.isKeyword("super");
1642 }
1643 };
1644
1645 }
1646
getObjCMessageKind(Scope * S,IdentifierInfo * Name,SourceLocation NameLoc,bool IsSuper,bool HasTrailingDot,ParsedType & ReceiverType)1647 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
1648 IdentifierInfo *Name,
1649 SourceLocation NameLoc,
1650 bool IsSuper,
1651 bool HasTrailingDot,
1652 ParsedType &ReceiverType) {
1653 ReceiverType = ParsedType();
1654
1655 // If the identifier is "super" and there is no trailing dot, we're
1656 // messaging super. If the identifier is "super" and there is a
1657 // trailing dot, it's an instance message.
1658 if (IsSuper && S->isInObjcMethodScope())
1659 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
1660
1661 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1662 LookupName(Result, S);
1663
1664 switch (Result.getResultKind()) {
1665 case LookupResult::NotFound:
1666 // Normal name lookup didn't find anything. If we're in an
1667 // Objective-C method, look for ivars. If we find one, we're done!
1668 // FIXME: This is a hack. Ivar lookup should be part of normal
1669 // lookup.
1670 if (ObjCMethodDecl *Method = getCurMethodDecl()) {
1671 if (!Method->getClassInterface()) {
1672 // Fall back: let the parser try to parse it as an instance message.
1673 return ObjCInstanceMessage;
1674 }
1675
1676 ObjCInterfaceDecl *ClassDeclared;
1677 if (Method->getClassInterface()->lookupInstanceVariable(Name,
1678 ClassDeclared))
1679 return ObjCInstanceMessage;
1680 }
1681
1682 // Break out; we'll perform typo correction below.
1683 break;
1684
1685 case LookupResult::NotFoundInCurrentInstantiation:
1686 case LookupResult::FoundOverloaded:
1687 case LookupResult::FoundUnresolvedValue:
1688 case LookupResult::Ambiguous:
1689 Result.suppressDiagnostics();
1690 return ObjCInstanceMessage;
1691
1692 case LookupResult::Found: {
1693 // If the identifier is a class or not, and there is a trailing dot,
1694 // it's an instance message.
1695 if (HasTrailingDot)
1696 return ObjCInstanceMessage;
1697 // We found something. If it's a type, then we have a class
1698 // message. Otherwise, it's an instance message.
1699 NamedDecl *ND = Result.getFoundDecl();
1700 QualType T;
1701 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
1702 T = Context.getObjCInterfaceType(Class);
1703 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND))
1704 T = Context.getTypeDeclType(Type);
1705 else
1706 return ObjCInstanceMessage;
1707
1708 // We have a class message, and T is the type we're
1709 // messaging. Build source-location information for it.
1710 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
1711 ReceiverType = CreateParsedType(T, TSInfo);
1712 return ObjCClassMessage;
1713 }
1714 }
1715
1716 ObjCInterfaceOrSuperCCC Validator(getCurMethodDecl());
1717 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
1718 Result.getLookupKind(), S, NULL,
1719 Validator)) {
1720 if (Corrected.isKeyword()) {
1721 // If we've found the keyword "super" (the only keyword that would be
1722 // returned by CorrectTypo), this is a send to super.
1723 Diag(NameLoc, diag::err_unknown_receiver_suggest)
1724 << Name << Corrected.getCorrection()
1725 << FixItHint::CreateReplacement(SourceRange(NameLoc), "super");
1726 return ObjCSuperMessage;
1727 } else if (ObjCInterfaceDecl *Class =
1728 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1729 // If we found a declaration, correct when it refers to an Objective-C
1730 // class.
1731 Diag(NameLoc, diag::err_unknown_receiver_suggest)
1732 << Name << Corrected.getCorrection()
1733 << FixItHint::CreateReplacement(SourceRange(NameLoc),
1734 Class->getNameAsString());
1735 Diag(Class->getLocation(), diag::note_previous_decl)
1736 << Corrected.getCorrection();
1737
1738 QualType T = Context.getObjCInterfaceType(Class);
1739 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
1740 ReceiverType = CreateParsedType(T, TSInfo);
1741 return ObjCClassMessage;
1742 }
1743 }
1744
1745 // Fall back: let the parser try to parse it as an instance message.
1746 return ObjCInstanceMessage;
1747 }
1748
ActOnSuperMessage(Scope * S,SourceLocation SuperLoc,Selector Sel,SourceLocation LBracLoc,ArrayRef<SourceLocation> SelectorLocs,SourceLocation RBracLoc,MultiExprArg Args)1749 ExprResult Sema::ActOnSuperMessage(Scope *S,
1750 SourceLocation SuperLoc,
1751 Selector Sel,
1752 SourceLocation LBracLoc,
1753 ArrayRef<SourceLocation> SelectorLocs,
1754 SourceLocation RBracLoc,
1755 MultiExprArg Args) {
1756 // Determine whether we are inside a method or not.
1757 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc);
1758 if (!Method) {
1759 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
1760 return ExprError();
1761 }
1762
1763 ObjCInterfaceDecl *Class = Method->getClassInterface();
1764 if (!Class) {
1765 Diag(SuperLoc, diag::error_no_super_class_message)
1766 << Method->getDeclName();
1767 return ExprError();
1768 }
1769
1770 ObjCInterfaceDecl *Super = Class->getSuperClass();
1771 if (!Super) {
1772 // The current class does not have a superclass.
1773 Diag(SuperLoc, diag::error_root_class_cannot_use_super)
1774 << Class->getIdentifier();
1775 return ExprError();
1776 }
1777
1778 // We are in a method whose class has a superclass, so 'super'
1779 // is acting as a keyword.
1780 if (Method->isInstanceMethod()) {
1781 if (Sel.getMethodFamily() == OMF_dealloc)
1782 getCurFunction()->ObjCShouldCallSuperDealloc = false;
1783 else if (const ObjCMethodDecl *IMD =
1784 Class->lookupMethod(Method->getSelector(),
1785 Method->isInstanceMethod()))
1786 // Must check for name of message since the method could
1787 // be another method with objc_requires_super attribute set.
1788 if (IMD->hasAttr<ObjCRequiresSuperAttr>() &&
1789 Sel == IMD->getSelector())
1790 getCurFunction()->ObjCShouldCallSuperDealloc = false;
1791 if (Sel.getMethodFamily() == OMF_finalize)
1792 getCurFunction()->ObjCShouldCallSuperFinalize = false;
1793
1794 // Since we are in an instance method, this is an instance
1795 // message to the superclass instance.
1796 QualType SuperTy = Context.getObjCInterfaceType(Super);
1797 SuperTy = Context.getObjCObjectPointerType(SuperTy);
1798 return BuildInstanceMessage(0, SuperTy, SuperLoc,
1799 Sel, /*Method=*/0,
1800 LBracLoc, SelectorLocs, RBracLoc, Args);
1801 }
1802
1803 // Since we are in a class method, this is a class message to
1804 // the superclass.
1805 return BuildClassMessage(/*ReceiverTypeInfo=*/0,
1806 Context.getObjCInterfaceType(Super),
1807 SuperLoc, Sel, /*Method=*/0,
1808 LBracLoc, SelectorLocs, RBracLoc, Args);
1809 }
1810
1811
BuildClassMessageImplicit(QualType ReceiverType,bool isSuperReceiver,SourceLocation Loc,Selector Sel,ObjCMethodDecl * Method,MultiExprArg Args)1812 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
1813 bool isSuperReceiver,
1814 SourceLocation Loc,
1815 Selector Sel,
1816 ObjCMethodDecl *Method,
1817 MultiExprArg Args) {
1818 TypeSourceInfo *receiverTypeInfo = 0;
1819 if (!ReceiverType.isNull())
1820 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);
1821
1822 return BuildClassMessage(receiverTypeInfo, ReceiverType,
1823 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
1824 Sel, Method, Loc, Loc, Loc, Args,
1825 /*isImplicit=*/true);
1826
1827 }
1828
applyCocoaAPICheck(Sema & S,const ObjCMessageExpr * Msg,unsigned DiagID,bool (* refactor)(const ObjCMessageExpr *,const NSAPI &,edit::Commit &))1829 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg,
1830 unsigned DiagID,
1831 bool (*refactor)(const ObjCMessageExpr *,
1832 const NSAPI &, edit::Commit &)) {
1833 SourceLocation MsgLoc = Msg->getExprLoc();
1834 if (S.Diags.getDiagnosticLevel(DiagID, MsgLoc) == DiagnosticsEngine::Ignored)
1835 return;
1836
1837 SourceManager &SM = S.SourceMgr;
1838 edit::Commit ECommit(SM, S.LangOpts);
1839 if (refactor(Msg,*S.NSAPIObj, ECommit)) {
1840 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID)
1841 << Msg->getSelector() << Msg->getSourceRange();
1842 // FIXME: Don't emit diagnostic at all if fixits are non-commitable.
1843 if (!ECommit.isCommitable())
1844 return;
1845 for (edit::Commit::edit_iterator
1846 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) {
1847 const edit::Commit::Edit &Edit = *I;
1848 switch (Edit.Kind) {
1849 case edit::Commit::Act_Insert:
1850 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc,
1851 Edit.Text,
1852 Edit.BeforePrev));
1853 break;
1854 case edit::Commit::Act_InsertFromRange:
1855 Builder.AddFixItHint(
1856 FixItHint::CreateInsertionFromRange(Edit.OrigLoc,
1857 Edit.getInsertFromRange(SM),
1858 Edit.BeforePrev));
1859 break;
1860 case edit::Commit::Act_Remove:
1861 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM)));
1862 break;
1863 }
1864 }
1865 }
1866 }
1867
checkCocoaAPI(Sema & S,const ObjCMessageExpr * Msg)1868 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) {
1869 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use,
1870 edit::rewriteObjCRedundantCallWithLiteral);
1871 }
1872
1873 /// \brief Build an Objective-C class message expression.
1874 ///
1875 /// This routine takes care of both normal class messages and
1876 /// class messages to the superclass.
1877 ///
1878 /// \param ReceiverTypeInfo Type source information that describes the
1879 /// receiver of this message. This may be NULL, in which case we are
1880 /// sending to the superclass and \p SuperLoc must be a valid source
1881 /// location.
1882
1883 /// \param ReceiverType The type of the object receiving the
1884 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same
1885 /// type as that refers to. For a superclass send, this is the type of
1886 /// the superclass.
1887 ///
1888 /// \param SuperLoc The location of the "super" keyword in a
1889 /// superclass message.
1890 ///
1891 /// \param Sel The selector to which the message is being sent.
1892 ///
1893 /// \param Method The method that this class message is invoking, if
1894 /// already known.
1895 ///
1896 /// \param LBracLoc The location of the opening square bracket ']'.
1897 ///
1898 /// \param RBracLoc The location of the closing square bracket ']'.
1899 ///
1900 /// \param ArgsIn The message arguments.
BuildClassMessage(TypeSourceInfo * ReceiverTypeInfo,QualType ReceiverType,SourceLocation SuperLoc,Selector Sel,ObjCMethodDecl * Method,SourceLocation LBracLoc,ArrayRef<SourceLocation> SelectorLocs,SourceLocation RBracLoc,MultiExprArg ArgsIn,bool isImplicit)1901 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
1902 QualType ReceiverType,
1903 SourceLocation SuperLoc,
1904 Selector Sel,
1905 ObjCMethodDecl *Method,
1906 SourceLocation LBracLoc,
1907 ArrayRef<SourceLocation> SelectorLocs,
1908 SourceLocation RBracLoc,
1909 MultiExprArg ArgsIn,
1910 bool isImplicit) {
1911 SourceLocation Loc = SuperLoc.isValid()? SuperLoc
1912 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
1913 if (LBracLoc.isInvalid()) {
1914 Diag(Loc, diag::err_missing_open_square_message_send)
1915 << FixItHint::CreateInsertion(Loc, "[");
1916 LBracLoc = Loc;
1917 }
1918
1919 if (ReceiverType->isDependentType()) {
1920 // If the receiver type is dependent, we can't type-check anything
1921 // at this point. Build a dependent expression.
1922 unsigned NumArgs = ArgsIn.size();
1923 Expr **Args = ArgsIn.data();
1924 assert(SuperLoc.isInvalid() && "Message to super with dependent type");
1925 return Owned(ObjCMessageExpr::Create(Context, ReceiverType,
1926 VK_RValue, LBracLoc, ReceiverTypeInfo,
1927 Sel, SelectorLocs, /*Method=*/0,
1928 makeArrayRef(Args, NumArgs),RBracLoc,
1929 isImplicit));
1930 }
1931
1932 // Find the class to which we are sending this message.
1933 ObjCInterfaceDecl *Class = 0;
1934 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
1935 if (!ClassType || !(Class = ClassType->getInterface())) {
1936 Diag(Loc, diag::err_invalid_receiver_class_message)
1937 << ReceiverType;
1938 return ExprError();
1939 }
1940 assert(Class && "We don't know which class we're messaging?");
1941 // objc++ diagnoses during typename annotation.
1942 if (!getLangOpts().CPlusPlus)
1943 (void)DiagnoseUseOfDecl(Class, Loc);
1944 // Find the method we are messaging.
1945 if (!Method) {
1946 SourceRange TypeRange
1947 = SuperLoc.isValid()? SourceRange(SuperLoc)
1948 : ReceiverTypeInfo->getTypeLoc().getSourceRange();
1949 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class),
1950 (getLangOpts().ObjCAutoRefCount
1951 ? diag::err_arc_receiver_forward_class
1952 : diag::warn_receiver_forward_class),
1953 TypeRange)) {
1954 // A forward class used in messaging is treated as a 'Class'
1955 Method = LookupFactoryMethodInGlobalPool(Sel,
1956 SourceRange(LBracLoc, RBracLoc));
1957 if (Method && !getLangOpts().ObjCAutoRefCount)
1958 Diag(Method->getLocation(), diag::note_method_sent_forward_class)
1959 << Method->getDeclName();
1960 }
1961 if (!Method)
1962 Method = Class->lookupClassMethod(Sel);
1963
1964 // If we have an implementation in scope, check "private" methods.
1965 if (!Method)
1966 Method = Class->lookupPrivateClassMethod(Sel);
1967
1968 if (Method && DiagnoseUseOfDecl(Method, Loc))
1969 return ExprError();
1970 }
1971
1972 // Check the argument types and determine the result type.
1973 QualType ReturnType;
1974 ExprValueKind VK = VK_RValue;
1975
1976 unsigned NumArgs = ArgsIn.size();
1977 Expr **Args = ArgsIn.data();
1978 if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, SelectorLocs,
1979 Method, true,
1980 SuperLoc.isValid(), LBracLoc, RBracLoc,
1981 ReturnType, VK))
1982 return ExprError();
1983
1984 if (Method && !Method->getResultType()->isVoidType() &&
1985 RequireCompleteType(LBracLoc, Method->getResultType(),
1986 diag::err_illegal_message_expr_incomplete_type))
1987 return ExprError();
1988
1989 // Construct the appropriate ObjCMessageExpr.
1990 ObjCMessageExpr *Result;
1991 if (SuperLoc.isValid())
1992 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
1993 SuperLoc, /*IsInstanceSuper=*/false,
1994 ReceiverType, Sel, SelectorLocs,
1995 Method, makeArrayRef(Args, NumArgs),
1996 RBracLoc, isImplicit);
1997 else {
1998 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
1999 ReceiverTypeInfo, Sel, SelectorLocs,
2000 Method, makeArrayRef(Args, NumArgs),
2001 RBracLoc, isImplicit);
2002 if (!isImplicit)
2003 checkCocoaAPI(*this, Result);
2004 }
2005 return MaybeBindToTemporary(Result);
2006 }
2007
2008 // ActOnClassMessage - used for both unary and keyword messages.
2009 // ArgExprs is optional - if it is present, the number of expressions
2010 // is obtained from Sel.getNumArgs().
ActOnClassMessage(Scope * S,ParsedType Receiver,Selector Sel,SourceLocation LBracLoc,ArrayRef<SourceLocation> SelectorLocs,SourceLocation RBracLoc,MultiExprArg Args)2011 ExprResult Sema::ActOnClassMessage(Scope *S,
2012 ParsedType Receiver,
2013 Selector Sel,
2014 SourceLocation LBracLoc,
2015 ArrayRef<SourceLocation> SelectorLocs,
2016 SourceLocation RBracLoc,
2017 MultiExprArg Args) {
2018 TypeSourceInfo *ReceiverTypeInfo;
2019 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
2020 if (ReceiverType.isNull())
2021 return ExprError();
2022
2023
2024 if (!ReceiverTypeInfo)
2025 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
2026
2027 return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
2028 /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
2029 LBracLoc, SelectorLocs, RBracLoc, Args);
2030 }
2031
BuildInstanceMessageImplicit(Expr * Receiver,QualType ReceiverType,SourceLocation Loc,Selector Sel,ObjCMethodDecl * Method,MultiExprArg Args)2032 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
2033 QualType ReceiverType,
2034 SourceLocation Loc,
2035 Selector Sel,
2036 ObjCMethodDecl *Method,
2037 MultiExprArg Args) {
2038 return BuildInstanceMessage(Receiver, ReceiverType,
2039 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
2040 Sel, Method, Loc, Loc, Loc, Args,
2041 /*isImplicit=*/true);
2042 }
2043
2044 /// \brief Build an Objective-C instance message expression.
2045 ///
2046 /// This routine takes care of both normal instance messages and
2047 /// instance messages to the superclass instance.
2048 ///
2049 /// \param Receiver The expression that computes the object that will
2050 /// receive this message. This may be empty, in which case we are
2051 /// sending to the superclass instance and \p SuperLoc must be a valid
2052 /// source location.
2053 ///
2054 /// \param ReceiverType The (static) type of the object receiving the
2055 /// message. When a \p Receiver expression is provided, this is the
2056 /// same type as that expression. For a superclass instance send, this
2057 /// is a pointer to the type of the superclass.
2058 ///
2059 /// \param SuperLoc The location of the "super" keyword in a
2060 /// superclass instance message.
2061 ///
2062 /// \param Sel The selector to which the message is being sent.
2063 ///
2064 /// \param Method The method that this instance message is invoking, if
2065 /// already known.
2066 ///
2067 /// \param LBracLoc The location of the opening square bracket ']'.
2068 ///
2069 /// \param RBracLoc The location of the closing square bracket ']'.
2070 ///
2071 /// \param ArgsIn The message arguments.
BuildInstanceMessage(Expr * Receiver,QualType ReceiverType,SourceLocation SuperLoc,Selector Sel,ObjCMethodDecl * Method,SourceLocation LBracLoc,ArrayRef<SourceLocation> SelectorLocs,SourceLocation RBracLoc,MultiExprArg ArgsIn,bool isImplicit)2072 ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
2073 QualType ReceiverType,
2074 SourceLocation SuperLoc,
2075 Selector Sel,
2076 ObjCMethodDecl *Method,
2077 SourceLocation LBracLoc,
2078 ArrayRef<SourceLocation> SelectorLocs,
2079 SourceLocation RBracLoc,
2080 MultiExprArg ArgsIn,
2081 bool isImplicit) {
2082 // The location of the receiver.
2083 SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart();
2084
2085 if (LBracLoc.isInvalid()) {
2086 Diag(Loc, diag::err_missing_open_square_message_send)
2087 << FixItHint::CreateInsertion(Loc, "[");
2088 LBracLoc = Loc;
2089 }
2090
2091 // If we have a receiver expression, perform appropriate promotions
2092 // and determine receiver type.
2093 if (Receiver) {
2094 if (Receiver->hasPlaceholderType()) {
2095 ExprResult Result;
2096 if (Receiver->getType() == Context.UnknownAnyTy)
2097 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
2098 else
2099 Result = CheckPlaceholderExpr(Receiver);
2100 if (Result.isInvalid()) return ExprError();
2101 Receiver = Result.take();
2102 }
2103
2104 if (Receiver->isTypeDependent()) {
2105 // If the receiver is type-dependent, we can't type-check anything
2106 // at this point. Build a dependent expression.
2107 unsigned NumArgs = ArgsIn.size();
2108 Expr **Args = ArgsIn.data();
2109 assert(SuperLoc.isInvalid() && "Message to super with dependent type");
2110 return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy,
2111 VK_RValue, LBracLoc, Receiver, Sel,
2112 SelectorLocs, /*Method=*/0,
2113 makeArrayRef(Args, NumArgs),
2114 RBracLoc, isImplicit));
2115 }
2116
2117 // If necessary, apply function/array conversion to the receiver.
2118 // C99 6.7.5.3p[7,8].
2119 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
2120 if (Result.isInvalid())
2121 return ExprError();
2122 Receiver = Result.take();
2123 ReceiverType = Receiver->getType();
2124 }
2125
2126 if (!Method) {
2127 // Handle messages to id.
2128 bool receiverIsId = ReceiverType->isObjCIdType();
2129 if (receiverIsId || ReceiverType->isBlockPointerType() ||
2130 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
2131 Method = LookupInstanceMethodInGlobalPool(Sel,
2132 SourceRange(LBracLoc, RBracLoc),
2133 receiverIsId);
2134 if (!Method)
2135 Method = LookupFactoryMethodInGlobalPool(Sel,
2136 SourceRange(LBracLoc,RBracLoc),
2137 receiverIsId);
2138 } else if (ReceiverType->isObjCClassType() ||
2139 ReceiverType->isObjCQualifiedClassType()) {
2140 // Handle messages to Class.
2141 // We allow sending a message to a qualified Class ("Class<foo>"), which
2142 // is ok as long as one of the protocols implements the selector (if not, warn).
2143 if (const ObjCObjectPointerType *QClassTy
2144 = ReceiverType->getAsObjCQualifiedClassType()) {
2145 // Search protocols for class methods.
2146 Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
2147 if (!Method) {
2148 Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
2149 // warn if instance method found for a Class message.
2150 if (Method) {
2151 Diag(Loc, diag::warn_instance_method_on_class_found)
2152 << Method->getSelector() << Sel;
2153 Diag(Method->getLocation(), diag::note_method_declared_at)
2154 << Method->getDeclName();
2155 }
2156 }
2157 } else {
2158 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
2159 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
2160 // First check the public methods in the class interface.
2161 Method = ClassDecl->lookupClassMethod(Sel);
2162
2163 if (!Method)
2164 Method = ClassDecl->lookupPrivateClassMethod(Sel);
2165 }
2166 if (Method && DiagnoseUseOfDecl(Method, Loc))
2167 return ExprError();
2168 }
2169 if (!Method) {
2170 // If not messaging 'self', look for any factory method named 'Sel'.
2171 if (!Receiver || !isSelfExpr(Receiver)) {
2172 Method = LookupFactoryMethodInGlobalPool(Sel,
2173 SourceRange(LBracLoc, RBracLoc),
2174 true);
2175 if (!Method) {
2176 // If no class (factory) method was found, check if an _instance_
2177 // method of the same name exists in the root class only.
2178 Method = LookupInstanceMethodInGlobalPool(Sel,
2179 SourceRange(LBracLoc, RBracLoc),
2180 true);
2181 if (Method)
2182 if (const ObjCInterfaceDecl *ID =
2183 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
2184 if (ID->getSuperClass())
2185 Diag(Loc, diag::warn_root_inst_method_not_found)
2186 << Sel << SourceRange(LBracLoc, RBracLoc);
2187 }
2188 }
2189 }
2190 }
2191 }
2192 } else {
2193 ObjCInterfaceDecl* ClassDecl = 0;
2194
2195 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
2196 // long as one of the protocols implements the selector (if not, warn).
2197 // And as long as message is not deprecated/unavailable (warn if it is).
2198 if (const ObjCObjectPointerType *QIdTy
2199 = ReceiverType->getAsObjCQualifiedIdType()) {
2200 // Search protocols for instance methods.
2201 Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
2202 if (!Method)
2203 Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
2204 if (Method && DiagnoseUseOfDecl(Method, Loc))
2205 return ExprError();
2206 } else if (const ObjCObjectPointerType *OCIType
2207 = ReceiverType->getAsObjCInterfacePointerType()) {
2208 // We allow sending a message to a pointer to an interface (an object).
2209 ClassDecl = OCIType->getInterfaceDecl();
2210
2211 // Try to complete the type. Under ARC, this is a hard error from which
2212 // we don't try to recover.
2213 const ObjCInterfaceDecl *forwardClass = 0;
2214 if (RequireCompleteType(Loc, OCIType->getPointeeType(),
2215 getLangOpts().ObjCAutoRefCount
2216 ? diag::err_arc_receiver_forward_instance
2217 : diag::warn_receiver_forward_instance,
2218 Receiver? Receiver->getSourceRange()
2219 : SourceRange(SuperLoc))) {
2220 if (getLangOpts().ObjCAutoRefCount)
2221 return ExprError();
2222
2223 forwardClass = OCIType->getInterfaceDecl();
2224 Diag(Receiver ? Receiver->getLocStart()
2225 : SuperLoc, diag::note_receiver_is_id);
2226 Method = 0;
2227 } else {
2228 Method = ClassDecl->lookupInstanceMethod(Sel);
2229 }
2230
2231 if (!Method)
2232 // Search protocol qualifiers.
2233 Method = LookupMethodInQualifiedType(Sel, OCIType, true);
2234
2235 if (!Method) {
2236 // If we have implementations in scope, check "private" methods.
2237 Method = ClassDecl->lookupPrivateMethod(Sel);
2238
2239 if (!Method && getLangOpts().ObjCAutoRefCount) {
2240 Diag(Loc, diag::err_arc_may_not_respond)
2241 << OCIType->getPointeeType() << Sel;
2242 return ExprError();
2243 }
2244
2245 if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
2246 // If we still haven't found a method, look in the global pool. This
2247 // behavior isn't very desirable, however we need it for GCC
2248 // compatibility. FIXME: should we deviate??
2249 if (OCIType->qual_empty()) {
2250 Method = LookupInstanceMethodInGlobalPool(Sel,
2251 SourceRange(LBracLoc, RBracLoc));
2252 if (Method && !forwardClass)
2253 Diag(Loc, diag::warn_maynot_respond)
2254 << OCIType->getInterfaceDecl()->getIdentifier() << Sel;
2255 }
2256 }
2257 }
2258 if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass))
2259 return ExprError();
2260 } else if (!getLangOpts().ObjCAutoRefCount &&
2261 !Context.getObjCIdType().isNull() &&
2262 (ReceiverType->isPointerType() ||
2263 ReceiverType->isIntegerType())) {
2264 // Implicitly convert integers and pointers to 'id' but emit a warning.
2265 // But not in ARC.
2266 Diag(Loc, diag::warn_bad_receiver_type)
2267 << ReceiverType
2268 << Receiver->getSourceRange();
2269 if (ReceiverType->isPointerType())
2270 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2271 CK_CPointerToObjCPointerCast).take();
2272 else {
2273 // TODO: specialized warning on null receivers?
2274 bool IsNull = Receiver->isNullPointerConstant(Context,
2275 Expr::NPC_ValueDependentIsNull);
2276 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer;
2277 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
2278 Kind).take();
2279 }
2280 ReceiverType = Receiver->getType();
2281 } else {
2282 ExprResult ReceiverRes;
2283 if (getLangOpts().CPlusPlus)
2284 ReceiverRes = PerformContextuallyConvertToObjCPointer(Receiver);
2285 if (ReceiverRes.isUsable()) {
2286 Receiver = ReceiverRes.take();
2287 return BuildInstanceMessage(Receiver,
2288 ReceiverType,
2289 SuperLoc,
2290 Sel,
2291 Method,
2292 LBracLoc,
2293 SelectorLocs,
2294 RBracLoc,
2295 ArgsIn);
2296 } else {
2297 // Reject other random receiver types (e.g. structs).
2298 Diag(Loc, diag::err_bad_receiver_type)
2299 << ReceiverType << Receiver->getSourceRange();
2300 return ExprError();
2301 }
2302 }
2303 }
2304 }
2305
2306 // Check the message arguments.
2307 unsigned NumArgs = ArgsIn.size();
2308 Expr **Args = ArgsIn.data();
2309 QualType ReturnType;
2310 ExprValueKind VK = VK_RValue;
2311 bool ClassMessage = (ReceiverType->isObjCClassType() ||
2312 ReceiverType->isObjCQualifiedClassType());
2313 if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel,
2314 SelectorLocs, Method,
2315 ClassMessage, SuperLoc.isValid(),
2316 LBracLoc, RBracLoc, ReturnType, VK))
2317 return ExprError();
2318
2319 if (Method && !Method->getResultType()->isVoidType() &&
2320 RequireCompleteType(LBracLoc, Method->getResultType(),
2321 diag::err_illegal_message_expr_incomplete_type))
2322 return ExprError();
2323
2324 SourceLocation SelLoc = SelectorLocs.front();
2325
2326 // In ARC, forbid the user from sending messages to
2327 // retain/release/autorelease/dealloc/retainCount explicitly.
2328 if (getLangOpts().ObjCAutoRefCount) {
2329 ObjCMethodFamily family =
2330 (Method ? Method->getMethodFamily() : Sel.getMethodFamily());
2331 switch (family) {
2332 case OMF_init:
2333 if (Method)
2334 checkInitMethod(Method, ReceiverType);
2335
2336 case OMF_None:
2337 case OMF_alloc:
2338 case OMF_copy:
2339 case OMF_finalize:
2340 case OMF_mutableCopy:
2341 case OMF_new:
2342 case OMF_self:
2343 break;
2344
2345 case OMF_dealloc:
2346 case OMF_retain:
2347 case OMF_release:
2348 case OMF_autorelease:
2349 case OMF_retainCount:
2350 Diag(Loc, diag::err_arc_illegal_explicit_message)
2351 << Sel << SelLoc;
2352 break;
2353
2354 case OMF_performSelector:
2355 if (Method && NumArgs >= 1) {
2356 if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) {
2357 Selector ArgSel = SelExp->getSelector();
2358 ObjCMethodDecl *SelMethod =
2359 LookupInstanceMethodInGlobalPool(ArgSel,
2360 SelExp->getSourceRange());
2361 if (!SelMethod)
2362 SelMethod =
2363 LookupFactoryMethodInGlobalPool(ArgSel,
2364 SelExp->getSourceRange());
2365 if (SelMethod) {
2366 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
2367 switch (SelFamily) {
2368 case OMF_alloc:
2369 case OMF_copy:
2370 case OMF_mutableCopy:
2371 case OMF_new:
2372 case OMF_self:
2373 case OMF_init:
2374 // Issue error, unless ns_returns_not_retained.
2375 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
2376 // selector names a +1 method
2377 Diag(SelLoc,
2378 diag::err_arc_perform_selector_retains);
2379 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
2380 << SelMethod->getDeclName();
2381 }
2382 break;
2383 default:
2384 // +0 call. OK. unless ns_returns_retained.
2385 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
2386 // selector names a +1 method
2387 Diag(SelLoc,
2388 diag::err_arc_perform_selector_retains);
2389 Diag(SelMethod->getLocation(), diag::note_method_declared_at)
2390 << SelMethod->getDeclName();
2391 }
2392 break;
2393 }
2394 }
2395 } else {
2396 // error (may leak).
2397 Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
2398 Diag(Args[0]->getExprLoc(), diag::note_used_here);
2399 }
2400 }
2401 break;
2402 }
2403 }
2404
2405 // Construct the appropriate ObjCMessageExpr instance.
2406 ObjCMessageExpr *Result;
2407 if (SuperLoc.isValid())
2408 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2409 SuperLoc, /*IsInstanceSuper=*/true,
2410 ReceiverType, Sel, SelectorLocs, Method,
2411 makeArrayRef(Args, NumArgs), RBracLoc,
2412 isImplicit);
2413 else {
2414 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
2415 Receiver, Sel, SelectorLocs, Method,
2416 makeArrayRef(Args, NumArgs), RBracLoc,
2417 isImplicit);
2418 if (!isImplicit)
2419 checkCocoaAPI(*this, Result);
2420 }
2421
2422 if (getLangOpts().ObjCAutoRefCount) {
2423 DiagnoseARCUseOfWeakReceiver(*this, Receiver);
2424
2425 // In ARC, annotate delegate init calls.
2426 if (Result->getMethodFamily() == OMF_init &&
2427 (SuperLoc.isValid() || isSelfExpr(Receiver))) {
2428 // Only consider init calls *directly* in init implementations,
2429 // not within blocks.
2430 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
2431 if (method && method->getMethodFamily() == OMF_init) {
2432 // The implicit assignment to self means we also don't want to
2433 // consume the result.
2434 Result->setDelegateInitCall(true);
2435 return Owned(Result);
2436 }
2437 }
2438
2439 // In ARC, check for message sends which are likely to introduce
2440 // retain cycles.
2441 checkRetainCycles(Result);
2442 }
2443
2444 return MaybeBindToTemporary(Result);
2445 }
2446
2447 // ActOnInstanceMessage - used for both unary and keyword messages.
2448 // ArgExprs is optional - if it is present, the number of expressions
2449 // is obtained from Sel.getNumArgs().
ActOnInstanceMessage(Scope * S,Expr * Receiver,Selector Sel,SourceLocation LBracLoc,ArrayRef<SourceLocation> SelectorLocs,SourceLocation RBracLoc,MultiExprArg Args)2450 ExprResult Sema::ActOnInstanceMessage(Scope *S,
2451 Expr *Receiver,
2452 Selector Sel,
2453 SourceLocation LBracLoc,
2454 ArrayRef<SourceLocation> SelectorLocs,
2455 SourceLocation RBracLoc,
2456 MultiExprArg Args) {
2457 if (!Receiver)
2458 return ExprError();
2459
2460 return BuildInstanceMessage(Receiver, Receiver->getType(),
2461 /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
2462 LBracLoc, SelectorLocs, RBracLoc, Args);
2463 }
2464
2465 enum ARCConversionTypeClass {
2466 /// int, void, struct A
2467 ACTC_none,
2468
2469 /// id, void (^)()
2470 ACTC_retainable,
2471
2472 /// id*, id***, void (^*)(),
2473 ACTC_indirectRetainable,
2474
2475 /// void* might be a normal C type, or it might a CF type.
2476 ACTC_voidPtr,
2477
2478 /// struct A*
2479 ACTC_coreFoundation
2480 };
isAnyRetainable(ARCConversionTypeClass ACTC)2481 static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
2482 return (ACTC == ACTC_retainable ||
2483 ACTC == ACTC_coreFoundation ||
2484 ACTC == ACTC_voidPtr);
2485 }
isAnyCLike(ARCConversionTypeClass ACTC)2486 static bool isAnyCLike(ARCConversionTypeClass ACTC) {
2487 return ACTC == ACTC_none ||
2488 ACTC == ACTC_voidPtr ||
2489 ACTC == ACTC_coreFoundation;
2490 }
2491
classifyTypeForARCConversion(QualType type)2492 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
2493 bool isIndirect = false;
2494
2495 // Ignore an outermost reference type.
2496 if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2497 type = ref->getPointeeType();
2498 isIndirect = true;
2499 }
2500
2501 // Drill through pointers and arrays recursively.
2502 while (true) {
2503 if (const PointerType *ptr = type->getAs<PointerType>()) {
2504 type = ptr->getPointeeType();
2505
2506 // The first level of pointer may be the innermost pointer on a CF type.
2507 if (!isIndirect) {
2508 if (type->isVoidType()) return ACTC_voidPtr;
2509 if (type->isRecordType()) return ACTC_coreFoundation;
2510 }
2511 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
2512 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
2513 } else {
2514 break;
2515 }
2516 isIndirect = true;
2517 }
2518
2519 if (isIndirect) {
2520 if (type->isObjCARCBridgableType())
2521 return ACTC_indirectRetainable;
2522 return ACTC_none;
2523 }
2524
2525 if (type->isObjCARCBridgableType())
2526 return ACTC_retainable;
2527
2528 return ACTC_none;
2529 }
2530
2531 namespace {
2532 /// A result from the cast checker.
2533 enum ACCResult {
2534 /// Cannot be casted.
2535 ACC_invalid,
2536
2537 /// Can be safely retained or not retained.
2538 ACC_bottom,
2539
2540 /// Can be casted at +0.
2541 ACC_plusZero,
2542
2543 /// Can be casted at +1.
2544 ACC_plusOne
2545 };
merge(ACCResult left,ACCResult right)2546 ACCResult merge(ACCResult left, ACCResult right) {
2547 if (left == right) return left;
2548 if (left == ACC_bottom) return right;
2549 if (right == ACC_bottom) return left;
2550 return ACC_invalid;
2551 }
2552
2553 /// A checker which white-lists certain expressions whose conversion
2554 /// to or from retainable type would otherwise be forbidden in ARC.
2555 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
2556 typedef StmtVisitor<ARCCastChecker, ACCResult> super;
2557
2558 ASTContext &Context;
2559 ARCConversionTypeClass SourceClass;
2560 ARCConversionTypeClass TargetClass;
2561 bool Diagnose;
2562
isCFType(QualType type)2563 static bool isCFType(QualType type) {
2564 // Someday this can use ns_bridged. For now, it has to do this.
2565 return type->isCARCBridgableType();
2566 }
2567
2568 public:
ARCCastChecker(ASTContext & Context,ARCConversionTypeClass source,ARCConversionTypeClass target,bool diagnose)2569 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
2570 ARCConversionTypeClass target, bool diagnose)
2571 : Context(Context), SourceClass(source), TargetClass(target),
2572 Diagnose(diagnose) {}
2573
2574 using super::Visit;
Visit(Expr * e)2575 ACCResult Visit(Expr *e) {
2576 return super::Visit(e->IgnoreParens());
2577 }
2578
VisitStmt(Stmt * s)2579 ACCResult VisitStmt(Stmt *s) {
2580 return ACC_invalid;
2581 }
2582
2583 /// Null pointer constants can be casted however you please.
VisitExpr(Expr * e)2584 ACCResult VisitExpr(Expr *e) {
2585 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2586 return ACC_bottom;
2587 return ACC_invalid;
2588 }
2589
2590 /// Objective-C string literals can be safely casted.
VisitObjCStringLiteral(ObjCStringLiteral * e)2591 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
2592 // If we're casting to any retainable type, go ahead. Global
2593 // strings are immune to retains, so this is bottom.
2594 if (isAnyRetainable(TargetClass)) return ACC_bottom;
2595
2596 return ACC_invalid;
2597 }
2598
2599 /// Look through certain implicit and explicit casts.
VisitCastExpr(CastExpr * e)2600 ACCResult VisitCastExpr(CastExpr *e) {
2601 switch (e->getCastKind()) {
2602 case CK_NullToPointer:
2603 return ACC_bottom;
2604
2605 case CK_NoOp:
2606 case CK_LValueToRValue:
2607 case CK_BitCast:
2608 case CK_CPointerToObjCPointerCast:
2609 case CK_BlockPointerToObjCPointerCast:
2610 case CK_AnyPointerToBlockPointerCast:
2611 return Visit(e->getSubExpr());
2612
2613 default:
2614 return ACC_invalid;
2615 }
2616 }
2617
2618 /// Look through unary extension.
VisitUnaryExtension(UnaryOperator * e)2619 ACCResult VisitUnaryExtension(UnaryOperator *e) {
2620 return Visit(e->getSubExpr());
2621 }
2622
2623 /// Ignore the LHS of a comma operator.
VisitBinComma(BinaryOperator * e)2624 ACCResult VisitBinComma(BinaryOperator *e) {
2625 return Visit(e->getRHS());
2626 }
2627
2628 /// Conditional operators are okay if both sides are okay.
VisitConditionalOperator(ConditionalOperator * e)2629 ACCResult VisitConditionalOperator(ConditionalOperator *e) {
2630 ACCResult left = Visit(e->getTrueExpr());
2631 if (left == ACC_invalid) return ACC_invalid;
2632 return merge(left, Visit(e->getFalseExpr()));
2633 }
2634
2635 /// Look through pseudo-objects.
VisitPseudoObjectExpr(PseudoObjectExpr * e)2636 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
2637 // If we're getting here, we should always have a result.
2638 return Visit(e->getResultExpr());
2639 }
2640
2641 /// Statement expressions are okay if their result expression is okay.
VisitStmtExpr(StmtExpr * e)2642 ACCResult VisitStmtExpr(StmtExpr *e) {
2643 return Visit(e->getSubStmt()->body_back());
2644 }
2645
2646 /// Some declaration references are okay.
VisitDeclRefExpr(DeclRefExpr * e)2647 ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
2648 // References to global constants from system headers are okay.
2649 // These are things like 'kCFStringTransformToLatin'. They are
2650 // can also be assumed to be immune to retains.
2651 VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
2652 if (isAnyRetainable(TargetClass) &&
2653 isAnyRetainable(SourceClass) &&
2654 var &&
2655 var->getStorageClass() == SC_Extern &&
2656 var->getType().isConstQualified() &&
2657 Context.getSourceManager().isInSystemHeader(var->getLocation())) {
2658 return ACC_bottom;
2659 }
2660
2661 // Nothing else.
2662 return ACC_invalid;
2663 }
2664
2665 /// Some calls are okay.
VisitCallExpr(CallExpr * e)2666 ACCResult VisitCallExpr(CallExpr *e) {
2667 if (FunctionDecl *fn = e->getDirectCallee())
2668 if (ACCResult result = checkCallToFunction(fn))
2669 return result;
2670
2671 return super::VisitCallExpr(e);
2672 }
2673
checkCallToFunction(FunctionDecl * fn)2674 ACCResult checkCallToFunction(FunctionDecl *fn) {
2675 // Require a CF*Ref return type.
2676 if (!isCFType(fn->getResultType()))
2677 return ACC_invalid;
2678
2679 if (!isAnyRetainable(TargetClass))
2680 return ACC_invalid;
2681
2682 // Honor an explicit 'not retained' attribute.
2683 if (fn->hasAttr<CFReturnsNotRetainedAttr>())
2684 return ACC_plusZero;
2685
2686 // Honor an explicit 'retained' attribute, except that for
2687 // now we're not going to permit implicit handling of +1 results,
2688 // because it's a bit frightening.
2689 if (fn->hasAttr<CFReturnsRetainedAttr>())
2690 return Diagnose ? ACC_plusOne
2691 : ACC_invalid; // ACC_plusOne if we start accepting this
2692
2693 // Recognize this specific builtin function, which is used by CFSTR.
2694 unsigned builtinID = fn->getBuiltinID();
2695 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
2696 return ACC_bottom;
2697
2698 // Otherwise, don't do anything implicit with an unaudited function.
2699 if (!fn->hasAttr<CFAuditedTransferAttr>())
2700 return ACC_invalid;
2701
2702 // Otherwise, it's +0 unless it follows the create convention.
2703 if (ento::coreFoundation::followsCreateRule(fn))
2704 return Diagnose ? ACC_plusOne
2705 : ACC_invalid; // ACC_plusOne if we start accepting this
2706
2707 return ACC_plusZero;
2708 }
2709
VisitObjCMessageExpr(ObjCMessageExpr * e)2710 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
2711 return checkCallToMethod(e->getMethodDecl());
2712 }
2713
VisitObjCPropertyRefExpr(ObjCPropertyRefExpr * e)2714 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
2715 ObjCMethodDecl *method;
2716 if (e->isExplicitProperty())
2717 method = e->getExplicitProperty()->getGetterMethodDecl();
2718 else
2719 method = e->getImplicitPropertyGetter();
2720 return checkCallToMethod(method);
2721 }
2722
checkCallToMethod(ObjCMethodDecl * method)2723 ACCResult checkCallToMethod(ObjCMethodDecl *method) {
2724 if (!method) return ACC_invalid;
2725
2726 // Check for message sends to functions returning CF types. We
2727 // just obey the Cocoa conventions with these, even though the
2728 // return type is CF.
2729 if (!isAnyRetainable(TargetClass) || !isCFType(method->getResultType()))
2730 return ACC_invalid;
2731
2732 // If the method is explicitly marked not-retained, it's +0.
2733 if (method->hasAttr<CFReturnsNotRetainedAttr>())
2734 return ACC_plusZero;
2735
2736 // If the method is explicitly marked as returning retained, or its
2737 // selector follows a +1 Cocoa convention, treat it as +1.
2738 if (method->hasAttr<CFReturnsRetainedAttr>())
2739 return ACC_plusOne;
2740
2741 switch (method->getSelector().getMethodFamily()) {
2742 case OMF_alloc:
2743 case OMF_copy:
2744 case OMF_mutableCopy:
2745 case OMF_new:
2746 return ACC_plusOne;
2747
2748 default:
2749 // Otherwise, treat it as +0.
2750 return ACC_plusZero;
2751 }
2752 }
2753 };
2754 }
2755
isKnownName(StringRef name)2756 bool Sema::isKnownName(StringRef name) {
2757 if (name.empty())
2758 return false;
2759 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(),
2760 Sema::LookupOrdinaryName);
2761 return LookupName(R, TUScope, false);
2762 }
2763
addFixitForObjCARCConversion(Sema & S,DiagnosticBuilder & DiagB,Sema::CheckedConversionKind CCK,SourceLocation afterLParen,QualType castType,Expr * castExpr,const char * bridgeKeyword,const char * CFBridgeName)2764 static void addFixitForObjCARCConversion(Sema &S,
2765 DiagnosticBuilder &DiagB,
2766 Sema::CheckedConversionKind CCK,
2767 SourceLocation afterLParen,
2768 QualType castType,
2769 Expr *castExpr,
2770 const char *bridgeKeyword,
2771 const char *CFBridgeName) {
2772 // We handle C-style and implicit casts here.
2773 switch (CCK) {
2774 case Sema::CCK_ImplicitConversion:
2775 case Sema::CCK_CStyleCast:
2776 break;
2777 case Sema::CCK_FunctionalCast:
2778 case Sema::CCK_OtherCast:
2779 return;
2780 }
2781
2782 if (CFBridgeName) {
2783 Expr *castedE = castExpr;
2784 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE))
2785 castedE = CCE->getSubExpr();
2786 castedE = castedE->IgnoreImpCasts();
2787 SourceRange range = castedE->getSourceRange();
2788
2789 SmallString<32> BridgeCall;
2790
2791 SourceManager &SM = S.getSourceManager();
2792 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
2793 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
2794 BridgeCall += ' ';
2795
2796 BridgeCall += CFBridgeName;
2797
2798 if (isa<ParenExpr>(castedE)) {
2799 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
2800 BridgeCall));
2801 } else {
2802 BridgeCall += '(';
2803 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
2804 BridgeCall));
2805 DiagB.AddFixItHint(FixItHint::CreateInsertion(
2806 S.PP.getLocForEndOfToken(range.getEnd()),
2807 ")"));
2808 }
2809 return;
2810 }
2811
2812 if (CCK == Sema::CCK_CStyleCast) {
2813 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword));
2814 } else {
2815 std::string castCode = "(";
2816 castCode += bridgeKeyword;
2817 castCode += castType.getAsString();
2818 castCode += ")";
2819 Expr *castedE = castExpr->IgnoreImpCasts();
2820 SourceRange range = castedE->getSourceRange();
2821 if (isa<ParenExpr>(castedE)) {
2822 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
2823 castCode));
2824 } else {
2825 castCode += "(";
2826 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
2827 castCode));
2828 DiagB.AddFixItHint(FixItHint::CreateInsertion(
2829 S.PP.getLocForEndOfToken(range.getEnd()),
2830 ")"));
2831 }
2832 }
2833 }
2834
2835 static void
diagnoseObjCARCConversion(Sema & S,SourceRange castRange,QualType castType,ARCConversionTypeClass castACTC,Expr * castExpr,ARCConversionTypeClass exprACTC,Sema::CheckedConversionKind CCK)2836 diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
2837 QualType castType, ARCConversionTypeClass castACTC,
2838 Expr *castExpr, ARCConversionTypeClass exprACTC,
2839 Sema::CheckedConversionKind CCK) {
2840 SourceLocation loc =
2841 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
2842
2843 if (S.makeUnavailableInSystemHeader(loc,
2844 "converts between Objective-C and C pointers in -fobjc-arc"))
2845 return;
2846
2847 QualType castExprType = castExpr->getType();
2848
2849 unsigned srcKind = 0;
2850 switch (exprACTC) {
2851 case ACTC_none:
2852 case ACTC_coreFoundation:
2853 case ACTC_voidPtr:
2854 srcKind = (castExprType->isPointerType() ? 1 : 0);
2855 break;
2856 case ACTC_retainable:
2857 srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
2858 break;
2859 case ACTC_indirectRetainable:
2860 srcKind = 4;
2861 break;
2862 }
2863
2864 // Check whether this could be fixed with a bridge cast.
2865 SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin());
2866 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;
2867
2868 // Bridge from an ARC type to a CF type.
2869 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {
2870
2871 S.Diag(loc, diag::err_arc_cast_requires_bridge)
2872 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
2873 << 2 // of C pointer type
2874 << castExprType
2875 << unsigned(castType->isBlockPointerType()) // to ObjC|block type
2876 << castType
2877 << castRange
2878 << castExpr->getSourceRange();
2879 bool br = S.isKnownName("CFBridgingRelease");
2880 ACCResult CreateRule =
2881 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
2882 assert(CreateRule != ACC_bottom && "This cast should already be accepted.");
2883 if (CreateRule != ACC_plusOne)
2884 {
2885 DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge);
2886 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
2887 castType, castExpr, "__bridge ", 0);
2888 }
2889 if (CreateRule != ACC_plusZero)
2890 {
2891 DiagnosticBuilder DiagB = S.Diag(br ? castExpr->getExprLoc() : noteLoc,
2892 diag::note_arc_bridge_transfer)
2893 << castExprType << br;
2894 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
2895 castType, castExpr, "__bridge_transfer ",
2896 br ? "CFBridgingRelease" : 0);
2897 }
2898
2899 return;
2900 }
2901
2902 // Bridge from a CF type to an ARC type.
2903 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
2904 bool br = S.isKnownName("CFBridgingRetain");
2905 S.Diag(loc, diag::err_arc_cast_requires_bridge)
2906 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
2907 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
2908 << castExprType
2909 << 2 // to C pointer type
2910 << castType
2911 << castRange
2912 << castExpr->getSourceRange();
2913 ACCResult CreateRule =
2914 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
2915 assert(CreateRule != ACC_bottom && "This cast should already be accepted.");
2916 if (CreateRule != ACC_plusOne)
2917 {
2918 DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge);
2919 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
2920 castType, castExpr, "__bridge ", 0);
2921 }
2922 if (CreateRule != ACC_plusZero)
2923 {
2924 DiagnosticBuilder DiagB = S.Diag(br ? castExpr->getExprLoc() : noteLoc,
2925 diag::note_arc_bridge_retained)
2926 << castType << br;
2927 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
2928 castType, castExpr, "__bridge_retained ",
2929 br ? "CFBridgingRetain" : 0);
2930 }
2931
2932 return;
2933 }
2934
2935 S.Diag(loc, diag::err_arc_mismatched_cast)
2936 << (CCK != Sema::CCK_ImplicitConversion)
2937 << srcKind << castExprType << castType
2938 << castRange << castExpr->getSourceRange();
2939 }
2940
2941 Sema::ARCConversionResult
CheckObjCARCConversion(SourceRange castRange,QualType castType,Expr * & castExpr,CheckedConversionKind CCK)2942 Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType,
2943 Expr *&castExpr, CheckedConversionKind CCK) {
2944 QualType castExprType = castExpr->getType();
2945
2946 // For the purposes of the classification, we assume reference types
2947 // will bind to temporaries.
2948 QualType effCastType = castType;
2949 if (const ReferenceType *ref = castType->getAs<ReferenceType>())
2950 effCastType = ref->getPointeeType();
2951
2952 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
2953 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
2954 if (exprACTC == castACTC) {
2955 // check for viablity and report error if casting an rvalue to a
2956 // life-time qualifier.
2957 if ((castACTC == ACTC_retainable) &&
2958 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
2959 (castType != castExprType)) {
2960 const Type *DT = castType.getTypePtr();
2961 QualType QDT = castType;
2962 // We desugar some types but not others. We ignore those
2963 // that cannot happen in a cast; i.e. auto, and those which
2964 // should not be de-sugared; i.e typedef.
2965 if (const ParenType *PT = dyn_cast<ParenType>(DT))
2966 QDT = PT->desugar();
2967 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
2968 QDT = TP->desugar();
2969 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
2970 QDT = AT->desugar();
2971 if (QDT != castType &&
2972 QDT.getObjCLifetime() != Qualifiers::OCL_None) {
2973 SourceLocation loc =
2974 (castRange.isValid() ? castRange.getBegin()
2975 : castExpr->getExprLoc());
2976 Diag(loc, diag::err_arc_nolifetime_behavior);
2977 }
2978 }
2979 return ACR_okay;
2980 }
2981
2982 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;
2983
2984 // Allow all of these types to be cast to integer types (but not
2985 // vice-versa).
2986 if (castACTC == ACTC_none && castType->isIntegralType(Context))
2987 return ACR_okay;
2988
2989 // Allow casts between pointers to lifetime types (e.g., __strong id*)
2990 // and pointers to void (e.g., cv void *). Casting from void* to lifetime*
2991 // must be explicit.
2992 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr)
2993 return ACR_okay;
2994 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr &&
2995 CCK != CCK_ImplicitConversion)
2996 return ACR_okay;
2997
2998 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) {
2999 // For invalid casts, fall through.
3000 case ACC_invalid:
3001 break;
3002
3003 // Do nothing for both bottom and +0.
3004 case ACC_bottom:
3005 case ACC_plusZero:
3006 return ACR_okay;
3007
3008 // If the result is +1, consume it here.
3009 case ACC_plusOne:
3010 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
3011 CK_ARCConsumeObject, castExpr,
3012 0, VK_RValue);
3013 ExprNeedsCleanups = true;
3014 return ACR_okay;
3015 }
3016
3017 // If this is a non-implicit cast from id or block type to a
3018 // CoreFoundation type, delay complaining in case the cast is used
3019 // in an acceptable context.
3020 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) &&
3021 CCK != CCK_ImplicitConversion)
3022 return ACR_unbridged;
3023
3024 diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
3025 castExpr, exprACTC, CCK);
3026 return ACR_okay;
3027 }
3028
3029 /// Given that we saw an expression with the ARCUnbridgedCastTy
3030 /// placeholder type, complain bitterly.
diagnoseARCUnbridgedCast(Expr * e)3031 void Sema::diagnoseARCUnbridgedCast(Expr *e) {
3032 // We expect the spurious ImplicitCastExpr to already have been stripped.
3033 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
3034 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());
3035
3036 SourceRange castRange;
3037 QualType castType;
3038 CheckedConversionKind CCK;
3039
3040 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
3041 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
3042 castType = cast->getTypeAsWritten();
3043 CCK = CCK_CStyleCast;
3044 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
3045 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
3046 castType = cast->getTypeAsWritten();
3047 CCK = CCK_OtherCast;
3048 } else {
3049 castType = cast->getType();
3050 CCK = CCK_ImplicitConversion;
3051 }
3052
3053 ARCConversionTypeClass castACTC =
3054 classifyTypeForARCConversion(castType.getNonReferenceType());
3055
3056 Expr *castExpr = realCast->getSubExpr();
3057 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable);
3058
3059 diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
3060 castExpr, ACTC_retainable, CCK);
3061 }
3062
3063 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
3064 /// type, remove the placeholder cast.
stripARCUnbridgedCast(Expr * e)3065 Expr *Sema::stripARCUnbridgedCast(Expr *e) {
3066 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
3067
3068 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
3069 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
3070 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
3071 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
3072 assert(uo->getOpcode() == UO_Extension);
3073 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
3074 return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(),
3075 sub->getValueKind(), sub->getObjectKind(),
3076 uo->getOperatorLoc());
3077 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
3078 assert(!gse->isResultDependent());
3079
3080 unsigned n = gse->getNumAssocs();
3081 SmallVector<Expr*, 4> subExprs(n);
3082 SmallVector<TypeSourceInfo*, 4> subTypes(n);
3083 for (unsigned i = 0; i != n; ++i) {
3084 subTypes[i] = gse->getAssocTypeSourceInfo(i);
3085 Expr *sub = gse->getAssocExpr(i);
3086 if (i == gse->getResultIndex())
3087 sub = stripARCUnbridgedCast(sub);
3088 subExprs[i] = sub;
3089 }
3090
3091 return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(),
3092 gse->getControllingExpr(),
3093 subTypes, subExprs,
3094 gse->getDefaultLoc(),
3095 gse->getRParenLoc(),
3096 gse->containsUnexpandedParameterPack(),
3097 gse->getResultIndex());
3098 } else {
3099 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!");
3100 return cast<ImplicitCastExpr>(e)->getSubExpr();
3101 }
3102 }
3103
CheckObjCARCUnavailableWeakConversion(QualType castType,QualType exprType)3104 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
3105 QualType exprType) {
3106 QualType canCastType =
3107 Context.getCanonicalType(castType).getUnqualifiedType();
3108 QualType canExprType =
3109 Context.getCanonicalType(exprType).getUnqualifiedType();
3110 if (isa<ObjCObjectPointerType>(canCastType) &&
3111 castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
3112 canExprType->isObjCObjectPointerType()) {
3113 if (const ObjCObjectPointerType *ObjT =
3114 canExprType->getAs<ObjCObjectPointerType>())
3115 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl())
3116 return !ObjI->isArcWeakrefUnavailable();
3117 }
3118 return true;
3119 }
3120
3121 /// Look for an ObjCReclaimReturnedObject cast and destroy it.
maybeUndoReclaimObject(Expr * e)3122 static Expr *maybeUndoReclaimObject(Expr *e) {
3123 // For now, we just undo operands that are *immediately* reclaim
3124 // expressions, which prevents the vast majority of potential
3125 // problems here. To catch them all, we'd need to rebuild arbitrary
3126 // value-propagating subexpressions --- we can't reliably rebuild
3127 // in-place because of expression sharing.
3128 if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3129 if (ice->getCastKind() == CK_ARCReclaimReturnedObject)
3130 return ice->getSubExpr();
3131
3132 return e;
3133 }
3134
BuildObjCBridgedCast(SourceLocation LParenLoc,ObjCBridgeCastKind Kind,SourceLocation BridgeKeywordLoc,TypeSourceInfo * TSInfo,Expr * SubExpr)3135 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
3136 ObjCBridgeCastKind Kind,
3137 SourceLocation BridgeKeywordLoc,
3138 TypeSourceInfo *TSInfo,
3139 Expr *SubExpr) {
3140 ExprResult SubResult = UsualUnaryConversions(SubExpr);
3141 if (SubResult.isInvalid()) return ExprError();
3142 SubExpr = SubResult.take();
3143
3144 QualType T = TSInfo->getType();
3145 QualType FromType = SubExpr->getType();
3146
3147 CastKind CK;
3148
3149 bool MustConsume = false;
3150 if (T->isDependentType() || SubExpr->isTypeDependent()) {
3151 // Okay: we'll build a dependent expression type.
3152 CK = CK_Dependent;
3153 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
3154 // Casting CF -> id
3155 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
3156 : CK_CPointerToObjCPointerCast);
3157 switch (Kind) {
3158 case OBC_Bridge:
3159 break;
3160
3161 case OBC_BridgeRetained: {
3162 bool br = isKnownName("CFBridgingRelease");
3163 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
3164 << 2
3165 << FromType
3166 << (T->isBlockPointerType()? 1 : 0)
3167 << T
3168 << SubExpr->getSourceRange()
3169 << Kind;
3170 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
3171 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
3172 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
3173 << FromType << br
3174 << FixItHint::CreateReplacement(BridgeKeywordLoc,
3175 br ? "CFBridgingRelease "
3176 : "__bridge_transfer ");
3177
3178 Kind = OBC_Bridge;
3179 break;
3180 }
3181
3182 case OBC_BridgeTransfer:
3183 // We must consume the Objective-C object produced by the cast.
3184 MustConsume = true;
3185 break;
3186 }
3187 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
3188 // Okay: id -> CF
3189 CK = CK_BitCast;
3190 switch (Kind) {
3191 case OBC_Bridge:
3192 // Reclaiming a value that's going to be __bridge-casted to CF
3193 // is very dangerous, so we don't do it.
3194 SubExpr = maybeUndoReclaimObject(SubExpr);
3195 break;
3196
3197 case OBC_BridgeRetained:
3198 // Produce the object before casting it.
3199 SubExpr = ImplicitCastExpr::Create(Context, FromType,
3200 CK_ARCProduceObject,
3201 SubExpr, 0, VK_RValue);
3202 break;
3203
3204 case OBC_BridgeTransfer: {
3205 bool br = isKnownName("CFBridgingRetain");
3206 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
3207 << (FromType->isBlockPointerType()? 1 : 0)
3208 << FromType
3209 << 2
3210 << T
3211 << SubExpr->getSourceRange()
3212 << Kind;
3213
3214 Diag(BridgeKeywordLoc, diag::note_arc_bridge)
3215 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
3216 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
3217 << T << br
3218 << FixItHint::CreateReplacement(BridgeKeywordLoc,
3219 br ? "CFBridgingRetain " : "__bridge_retained");
3220
3221 Kind = OBC_Bridge;
3222 break;
3223 }
3224 }
3225 } else {
3226 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
3227 << FromType << T << Kind
3228 << SubExpr->getSourceRange()
3229 << TSInfo->getTypeLoc().getSourceRange();
3230 return ExprError();
3231 }
3232
3233 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
3234 BridgeKeywordLoc,
3235 TSInfo, SubExpr);
3236
3237 if (MustConsume) {
3238 ExprNeedsCleanups = true;
3239 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result,
3240 0, VK_RValue);
3241 }
3242
3243 return Result;
3244 }
3245
ActOnObjCBridgedCast(Scope * S,SourceLocation LParenLoc,ObjCBridgeCastKind Kind,SourceLocation BridgeKeywordLoc,ParsedType Type,SourceLocation RParenLoc,Expr * SubExpr)3246 ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
3247 SourceLocation LParenLoc,
3248 ObjCBridgeCastKind Kind,
3249 SourceLocation BridgeKeywordLoc,
3250 ParsedType Type,
3251 SourceLocation RParenLoc,
3252 Expr *SubExpr) {
3253 TypeSourceInfo *TSInfo = 0;
3254 QualType T = GetTypeFromParser(Type, &TSInfo);
3255 if (!TSInfo)
3256 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
3257 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
3258 SubExpr);
3259 }
3260