1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
17 # include "DwarfDebug.h"
18 # include "DwarfException.h"
19 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
20 #include "llvm/DebugInfo.h"
21 #include "llvm/Module.h"
22 #include "llvm/CodeGen/GCMetadataPrinter.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCContext.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCSection.h"
35 #include "llvm/MC/MCStreamer.h"
36 #include "llvm/MC/MCSymbol.h"
37 #include "llvm/Target/Mangler.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetLowering.h"
41 #include "llvm/Target/TargetLoweringObjectFile.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Assembly/Writer.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/Timer.h"
51 #include <ctype.h>
52 using namespace llvm;
53
54 static const char *DWARFGroupName = "DWARF Emission";
55 static const char *DbgTimerName = "DWARF Debug Writer";
56 static const char *EHTimerName = "DWARF Exception Writer";
57
58 STATISTIC(EmittedInsts, "Number of machine instrs printed");
59
60 char AsmPrinter::ID = 0;
61
62 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
getGCMap(void * & P)63 static gcp_map_type &getGCMap(void *&P) {
64 if (P == 0)
65 P = new gcp_map_type();
66 return *(gcp_map_type*)P;
67 }
68
69
70 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
71 /// value in log2 form. This rounds up to the preferred alignment if possible
72 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const TargetData & TD,unsigned InBits=0)73 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
74 unsigned InBits = 0) {
75 unsigned NumBits = 0;
76 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
77 NumBits = TD.getPreferredAlignmentLog(GVar);
78
79 // If InBits is specified, round it to it.
80 if (InBits > NumBits)
81 NumBits = InBits;
82
83 // If the GV has a specified alignment, take it into account.
84 if (GV->getAlignment() == 0)
85 return NumBits;
86
87 unsigned GVAlign = Log2_32(GV->getAlignment());
88
89 // If the GVAlign is larger than NumBits, or if we are required to obey
90 // NumBits because the GV has an assigned section, obey it.
91 if (GVAlign > NumBits || GV->hasSection())
92 NumBits = GVAlign;
93 return NumBits;
94 }
95
96
97
98
AsmPrinter(TargetMachine & tm,MCStreamer & Streamer)99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
100 : MachineFunctionPass(ID),
101 TM(tm), MAI(tm.getMCAsmInfo()),
102 OutContext(Streamer.getContext()),
103 OutStreamer(Streamer),
104 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
105 DD = 0; DE = 0; MMI = 0; LI = 0;
106 CurrentFnSym = CurrentFnSymForSize = 0;
107 GCMetadataPrinters = 0;
108 VerboseAsm = Streamer.isVerboseAsm();
109 }
110
~AsmPrinter()111 AsmPrinter::~AsmPrinter() {
112 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
113
114 if (GCMetadataPrinters != 0) {
115 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
116
117 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
118 delete I->second;
119 delete &GCMap;
120 GCMetadataPrinters = 0;
121 }
122
123 delete &OutStreamer;
124 }
125
126 /// getFunctionNumber - Return a unique ID for the current function.
127 ///
getFunctionNumber() const128 unsigned AsmPrinter::getFunctionNumber() const {
129 return MF->getFunctionNumber();
130 }
131
getObjFileLowering() const132 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
133 return TM.getTargetLowering()->getObjFileLowering();
134 }
135
136
137 /// getTargetData - Return information about data layout.
getTargetData() const138 const TargetData &AsmPrinter::getTargetData() const {
139 return *TM.getTargetData();
140 }
141
142 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const143 const MCSection *AsmPrinter::getCurrentSection() const {
144 return OutStreamer.getCurrentSection();
145 }
146
147
148
getAnalysisUsage(AnalysisUsage & AU) const149 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
150 AU.setPreservesAll();
151 MachineFunctionPass::getAnalysisUsage(AU);
152 AU.addRequired<MachineModuleInfo>();
153 AU.addRequired<GCModuleInfo>();
154 if (isVerbose())
155 AU.addRequired<MachineLoopInfo>();
156 }
157
doInitialization(Module & M)158 bool AsmPrinter::doInitialization(Module &M) {
159 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
160 MMI->AnalyzeModule(M);
161
162 // Initialize TargetLoweringObjectFile.
163 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
164 .Initialize(OutContext, TM);
165
166 Mang = new Mangler(OutContext, *TM.getTargetData());
167
168 // Allow the target to emit any magic that it wants at the start of the file.
169 EmitStartOfAsmFile(M);
170
171 // Very minimal debug info. It is ignored if we emit actual debug info. If we
172 // don't, this at least helps the user find where a global came from.
173 if (MAI->hasSingleParameterDotFile()) {
174 // .file "foo.c"
175 OutStreamer.EmitFileDirective(M.getModuleIdentifier());
176 }
177
178 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
179 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
180 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
181 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
182 MP->beginAssembly(*this);
183
184 // Emit module-level inline asm if it exists.
185 if (!M.getModuleInlineAsm().empty()) {
186 OutStreamer.AddComment("Start of file scope inline assembly");
187 OutStreamer.AddBlankLine();
188 EmitInlineAsm(M.getModuleInlineAsm()+"\n");
189 OutStreamer.AddComment("End of file scope inline assembly");
190 OutStreamer.AddBlankLine();
191 }
192
193 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
194 if (MAI->doesSupportDebugInformation())
195 DD = new DwarfDebug(this, &M);
196
197 switch (MAI->getExceptionHandlingType()) {
198 case ExceptionHandling::None:
199 return false;
200 case ExceptionHandling::SjLj:
201 case ExceptionHandling::DwarfCFI:
202 DE = new DwarfCFIException(this);
203 return false;
204 case ExceptionHandling::ARM:
205 DE = new ARMException(this);
206 return false;
207 case ExceptionHandling::Win64:
208 DE = new Win64Exception(this);
209 return false;
210 }
211 #else
212 return false;
213 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
214
215 llvm_unreachable("Unknown exception type.");
216 }
217
EmitLinkage(unsigned Linkage,MCSymbol * GVSym) const218 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
219 switch ((GlobalValue::LinkageTypes)Linkage) {
220 case GlobalValue::CommonLinkage:
221 case GlobalValue::LinkOnceAnyLinkage:
222 case GlobalValue::LinkOnceODRLinkage:
223 case GlobalValue::LinkOnceODRAutoHideLinkage:
224 case GlobalValue::WeakAnyLinkage:
225 case GlobalValue::WeakODRLinkage:
226 case GlobalValue::LinkerPrivateWeakLinkage:
227 if (MAI->getWeakDefDirective() != 0) {
228 // .globl _foo
229 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
230
231 if ((GlobalValue::LinkageTypes)Linkage !=
232 GlobalValue::LinkOnceODRAutoHideLinkage)
233 // .weak_definition _foo
234 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
235 else
236 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
237 } else if (MAI->getLinkOnceDirective() != 0) {
238 // .globl _foo
239 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
240 //NOTE: linkonce is handled by the section the symbol was assigned to.
241 } else {
242 // .weak _foo
243 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
244 }
245 break;
246 case GlobalValue::DLLExportLinkage:
247 case GlobalValue::AppendingLinkage:
248 // FIXME: appending linkage variables should go into a section of
249 // their name or something. For now, just emit them as external.
250 case GlobalValue::ExternalLinkage:
251 // If external or appending, declare as a global symbol.
252 // .globl _foo
253 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
254 break;
255 case GlobalValue::PrivateLinkage:
256 case GlobalValue::InternalLinkage:
257 case GlobalValue::LinkerPrivateLinkage:
258 break;
259 default:
260 llvm_unreachable("Unknown linkage type!");
261 }
262 }
263
264
265 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)266 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
267 if (GV->hasInitializer()) {
268 // Check to see if this is a special global used by LLVM, if so, emit it.
269 if (EmitSpecialLLVMGlobal(GV))
270 return;
271
272 if (isVerbose()) {
273 WriteAsOperand(OutStreamer.GetCommentOS(), GV,
274 /*PrintType=*/false, GV->getParent());
275 OutStreamer.GetCommentOS() << '\n';
276 }
277 }
278
279 MCSymbol *GVSym = Mang->getSymbol(GV);
280 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
281
282 if (!GV->hasInitializer()) // External globals require no extra code.
283 return;
284
285 if (MAI->hasDotTypeDotSizeDirective())
286 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
287
288 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
289
290 const TargetData *TD = TM.getTargetData();
291 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
292
293 // If the alignment is specified, we *must* obey it. Overaligning a global
294 // with a specified alignment is a prompt way to break globals emitted to
295 // sections and expected to be contiguous (e.g. ObjC metadata).
296 unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
297
298 // Handle common and BSS local symbols (.lcomm).
299 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
300 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
301 unsigned Align = 1 << AlignLog;
302
303 // Handle common symbols.
304 if (GVKind.isCommon()) {
305 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
306 Align = 0;
307
308 // .comm _foo, 42, 4
309 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
310 return;
311 }
312
313 // Handle local BSS symbols.
314 if (MAI->hasMachoZeroFillDirective()) {
315 const MCSection *TheSection =
316 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
317 // .zerofill __DATA, __bss, _foo, 400, 5
318 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
319 return;
320 }
321
322 if (Align == 1 ||
323 MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
324 // .lcomm _foo, 42
325 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
326 return;
327 }
328
329 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
330 Align = 0;
331
332 // .local _foo
333 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
334 // .comm _foo, 42, 4
335 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
336 return;
337 }
338
339 const MCSection *TheSection =
340 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
341
342 // Handle the zerofill directive on darwin, which is a special form of BSS
343 // emission.
344 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
345 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
346
347 // .globl _foo
348 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
349 // .zerofill __DATA, __common, _foo, 400, 5
350 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
351 return;
352 }
353
354 // Handle thread local data for mach-o which requires us to output an
355 // additional structure of data and mangle the original symbol so that we
356 // can reference it later.
357 //
358 // TODO: This should become an "emit thread local global" method on TLOF.
359 // All of this macho specific stuff should be sunk down into TLOFMachO and
360 // stuff like "TLSExtraDataSection" should no longer be part of the parent
361 // TLOF class. This will also make it more obvious that stuff like
362 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
363 // specific code.
364 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
365 // Emit the .tbss symbol
366 MCSymbol *MangSym =
367 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
368
369 if (GVKind.isThreadBSS())
370 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
371 else if (GVKind.isThreadData()) {
372 OutStreamer.SwitchSection(TheSection);
373
374 EmitAlignment(AlignLog, GV);
375 OutStreamer.EmitLabel(MangSym);
376
377 EmitGlobalConstant(GV->getInitializer());
378 }
379
380 OutStreamer.AddBlankLine();
381
382 // Emit the variable struct for the runtime.
383 const MCSection *TLVSect
384 = getObjFileLowering().getTLSExtraDataSection();
385
386 OutStreamer.SwitchSection(TLVSect);
387 // Emit the linkage here.
388 EmitLinkage(GV->getLinkage(), GVSym);
389 OutStreamer.EmitLabel(GVSym);
390
391 // Three pointers in size:
392 // - __tlv_bootstrap - used to make sure support exists
393 // - spare pointer, used when mapped by the runtime
394 // - pointer to mangled symbol above with initializer
395 unsigned PtrSize = TD->getPointerSizeInBits()/8;
396 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
397 PtrSize, 0);
398 OutStreamer.EmitIntValue(0, PtrSize, 0);
399 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
400
401 OutStreamer.AddBlankLine();
402 return;
403 }
404
405 OutStreamer.SwitchSection(TheSection);
406
407 EmitLinkage(GV->getLinkage(), GVSym);
408 EmitAlignment(AlignLog, GV);
409
410 OutStreamer.EmitLabel(GVSym);
411
412 EmitGlobalConstant(GV->getInitializer());
413
414 if (MAI->hasDotTypeDotSizeDirective())
415 // .size foo, 42
416 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
417
418 OutStreamer.AddBlankLine();
419 }
420
421 /// EmitFunctionHeader - This method emits the header for the current
422 /// function.
EmitFunctionHeader()423 void AsmPrinter::EmitFunctionHeader() {
424 // Print out constants referenced by the function
425 EmitConstantPool();
426
427 // Print the 'header' of function.
428 const Function *F = MF->getFunction();
429
430 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
431 EmitVisibility(CurrentFnSym, F->getVisibility());
432
433 EmitLinkage(F->getLinkage(), CurrentFnSym);
434 EmitAlignment(MF->getAlignment(), F);
435
436 if (MAI->hasDotTypeDotSizeDirective())
437 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
438
439 if (isVerbose()) {
440 WriteAsOperand(OutStreamer.GetCommentOS(), F,
441 /*PrintType=*/false, F->getParent());
442 OutStreamer.GetCommentOS() << '\n';
443 }
444
445 // Emit the CurrentFnSym. This is a virtual function to allow targets to
446 // do their wild and crazy things as required.
447 EmitFunctionEntryLabel();
448
449 // If the function had address-taken blocks that got deleted, then we have
450 // references to the dangling symbols. Emit them at the start of the function
451 // so that we don't get references to undefined symbols.
452 std::vector<MCSymbol*> DeadBlockSyms;
453 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
454 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
455 OutStreamer.AddComment("Address taken block that was later removed");
456 OutStreamer.EmitLabel(DeadBlockSyms[i]);
457 }
458
459 // Add some workaround for linkonce linkage on Cygwin\MinGW.
460 if (MAI->getLinkOnceDirective() != 0 &&
461 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
462 // FIXME: What is this?
463 MCSymbol *FakeStub =
464 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
465 CurrentFnSym->getName());
466 OutStreamer.EmitLabel(FakeStub);
467 }
468
469 // Emit pre-function debug and/or EH information.
470 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
471 if (DE) {
472 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
473 DE->BeginFunction(MF);
474 }
475 if (DD) {
476 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
477 DD->beginFunction(MF);
478 }
479 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
480 }
481
482 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
483 /// function. This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()484 void AsmPrinter::EmitFunctionEntryLabel() {
485 // The function label could have already been emitted if two symbols end up
486 // conflicting due to asm renaming. Detect this and emit an error.
487 if (CurrentFnSym->isUndefined())
488 return OutStreamer.EmitLabel(CurrentFnSym);
489
490 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
491 "' label emitted multiple times to assembly file");
492 }
493
494 /// emitComments - Pretty-print comments for instructions.
emitComments(const MachineInstr & MI,raw_ostream & CommentOS)495 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
496 const MachineFunction *MF = MI.getParent()->getParent();
497 const TargetMachine &TM = MF->getTarget();
498
499 // Check for spills and reloads
500 int FI;
501
502 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
503
504 // We assume a single instruction only has a spill or reload, not
505 // both.
506 const MachineMemOperand *MMO;
507 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
508 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
509 MMO = *MI.memoperands_begin();
510 CommentOS << MMO->getSize() << "-byte Reload\n";
511 }
512 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
513 if (FrameInfo->isSpillSlotObjectIndex(FI))
514 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
515 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
516 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
517 MMO = *MI.memoperands_begin();
518 CommentOS << MMO->getSize() << "-byte Spill\n";
519 }
520 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
521 if (FrameInfo->isSpillSlotObjectIndex(FI))
522 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
523 }
524
525 // Check for spill-induced copies
526 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
527 CommentOS << " Reload Reuse\n";
528 }
529
530 /// emitImplicitDef - This method emits the specified machine instruction
531 /// that is an implicit def.
emitImplicitDef(const MachineInstr * MI,AsmPrinter & AP)532 static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
533 unsigned RegNo = MI->getOperand(0).getReg();
534 AP.OutStreamer.AddComment(Twine("implicit-def: ") +
535 AP.TM.getRegisterInfo()->getName(RegNo));
536 AP.OutStreamer.AddBlankLine();
537 }
538
emitKill(const MachineInstr * MI,AsmPrinter & AP)539 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
540 std::string Str = "kill:";
541 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
542 const MachineOperand &Op = MI->getOperand(i);
543 assert(Op.isReg() && "KILL instruction must have only register operands");
544 Str += ' ';
545 Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
546 Str += (Op.isDef() ? "<def>" : "<kill>");
547 }
548 AP.OutStreamer.AddComment(Str);
549 AP.OutStreamer.AddBlankLine();
550 }
551
552 /// emitDebugValueComment - This method handles the target-independent form
553 /// of DBG_VALUE, returning true if it was able to do so. A false return
554 /// means the target will need to handle MI in EmitInstruction.
emitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)555 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
556 // This code handles only the 3-operand target-independent form.
557 if (MI->getNumOperands() != 3)
558 return false;
559
560 SmallString<128> Str;
561 raw_svector_ostream OS(Str);
562 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
563
564 // cast away const; DIetc do not take const operands for some reason.
565 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
566 if (V.getContext().isSubprogram())
567 OS << DISubprogram(V.getContext()).getDisplayName() << ":";
568 OS << V.getName() << " <- ";
569
570 // Register or immediate value. Register 0 means undef.
571 if (MI->getOperand(0).isFPImm()) {
572 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
573 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
574 OS << (double)APF.convertToFloat();
575 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
576 OS << APF.convertToDouble();
577 } else {
578 // There is no good way to print long double. Convert a copy to
579 // double. Ah well, it's only a comment.
580 bool ignored;
581 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
582 &ignored);
583 OS << "(long double) " << APF.convertToDouble();
584 }
585 } else if (MI->getOperand(0).isImm()) {
586 OS << MI->getOperand(0).getImm();
587 } else if (MI->getOperand(0).isCImm()) {
588 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
589 } else {
590 assert(MI->getOperand(0).isReg() && "Unknown operand type");
591 if (MI->getOperand(0).getReg() == 0) {
592 // Suppress offset, it is not meaningful here.
593 OS << "undef";
594 // NOTE: Want this comment at start of line, don't emit with AddComment.
595 AP.OutStreamer.EmitRawText(OS.str());
596 return true;
597 }
598 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
599 }
600
601 OS << '+' << MI->getOperand(1).getImm();
602 // NOTE: Want this comment at start of line, don't emit with AddComment.
603 AP.OutStreamer.EmitRawText(OS.str());
604 return true;
605 }
606
needsCFIMoves()607 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
608 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
609 MF->getFunction()->needsUnwindTableEntry())
610 return CFI_M_EH;
611
612 if (MMI->hasDebugInfo())
613 return CFI_M_Debug;
614
615 return CFI_M_None;
616 }
617
needsSEHMoves()618 bool AsmPrinter::needsSEHMoves() {
619 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
620 MF->getFunction()->needsUnwindTableEntry();
621 }
622
needsRelocationsForDwarfStringPool() const623 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
624 return MAI->doesDwarfUseRelocationsAcrossSections();
625 }
626
emitPrologLabel(const MachineInstr & MI)627 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
628 MCSymbol *Label = MI.getOperand(0).getMCSymbol();
629
630 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
631 return;
632
633 if (needsCFIMoves() == CFI_M_None)
634 return;
635
636 if (MMI->getCompactUnwindEncoding() != 0)
637 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
638
639 MachineModuleInfo &MMI = MF->getMMI();
640 std::vector<MachineMove> &Moves = MMI.getFrameMoves();
641 bool FoundOne = false;
642 (void)FoundOne;
643 for (std::vector<MachineMove>::iterator I = Moves.begin(),
644 E = Moves.end(); I != E; ++I) {
645 if (I->getLabel() == Label) {
646 EmitCFIFrameMove(*I);
647 FoundOne = true;
648 }
649 }
650 assert(FoundOne);
651 }
652
653 /// EmitFunctionBody - This method emits the body and trailer for a
654 /// function.
EmitFunctionBody()655 void AsmPrinter::EmitFunctionBody() {
656 // Emit target-specific gunk before the function body.
657 EmitFunctionBodyStart();
658
659 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
660
661 // Print out code for the function.
662 bool HasAnyRealCode = false;
663 const MachineInstr *LastMI = 0;
664 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
665 I != E; ++I) {
666 // Print a label for the basic block.
667 EmitBasicBlockStart(I);
668 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
669 II != IE; ++II) {
670 LastMI = II;
671
672 // Print the assembly for the instruction.
673 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
674 !II->isDebugValue()) {
675 HasAnyRealCode = true;
676
677 ++EmittedInsts;
678 }
679 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
680 if (ShouldPrintDebugScopes) {
681 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
682 DD->beginInstruction(II);
683 }
684 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
685
686 if (isVerbose())
687 emitComments(*II, OutStreamer.GetCommentOS());
688
689 switch (II->getOpcode()) {
690 case TargetOpcode::PROLOG_LABEL:
691 emitPrologLabel(*II);
692 break;
693
694 case TargetOpcode::EH_LABEL:
695 case TargetOpcode::GC_LABEL:
696 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
697 break;
698 case TargetOpcode::INLINEASM:
699 EmitInlineAsm(II);
700 break;
701 case TargetOpcode::DBG_VALUE:
702 if (isVerbose()) {
703 if (!emitDebugValueComment(II, *this))
704 EmitInstruction(II);
705 }
706 break;
707 case TargetOpcode::IMPLICIT_DEF:
708 if (isVerbose()) emitImplicitDef(II, *this);
709 break;
710 case TargetOpcode::KILL:
711 if (isVerbose()) emitKill(II, *this);
712 break;
713 default:
714 if (!TM.hasMCUseLoc())
715 MCLineEntry::Make(&OutStreamer, getCurrentSection());
716
717 EmitInstruction(II);
718 break;
719 }
720
721 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
722 if (ShouldPrintDebugScopes) {
723 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
724 DD->endInstruction(II);
725 }
726 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
727 }
728 }
729
730 // If the last instruction was a prolog label, then we have a situation where
731 // we emitted a prolog but no function body. This results in the ending prolog
732 // label equaling the end of function label and an invalid "row" in the
733 // FDE. We need to emit a noop in this situation so that the FDE's rows are
734 // valid.
735 bool RequiresNoop = LastMI && LastMI->isPrologLabel();
736
737 // If the function is empty and the object file uses .subsections_via_symbols,
738 // then we need to emit *something* to the function body to prevent the
739 // labels from collapsing together. Just emit a noop.
740 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
741 MCInst Noop;
742 TM.getInstrInfo()->getNoopForMachoTarget(Noop);
743 if (Noop.getOpcode()) {
744 OutStreamer.AddComment("avoids zero-length function");
745 OutStreamer.EmitInstruction(Noop);
746 } else // Target not mc-ized yet.
747 OutStreamer.EmitRawText(StringRef("\tnop\n"));
748 }
749
750 const Function *F = MF->getFunction();
751 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
752 const BasicBlock *BB = i;
753 if (!BB->hasAddressTaken())
754 continue;
755 MCSymbol *Sym = GetBlockAddressSymbol(BB);
756 if (Sym->isDefined())
757 continue;
758 OutStreamer.AddComment("Address of block that was removed by CodeGen");
759 OutStreamer.EmitLabel(Sym);
760 }
761
762 // Emit target-specific gunk after the function body.
763 EmitFunctionBodyEnd();
764
765 // If the target wants a .size directive for the size of the function, emit
766 // it.
767 if (MAI->hasDotTypeDotSizeDirective()) {
768 // Create a symbol for the end of function, so we can get the size as
769 // difference between the function label and the temp label.
770 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
771 OutStreamer.EmitLabel(FnEndLabel);
772
773 const MCExpr *SizeExp =
774 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
775 MCSymbolRefExpr::Create(CurrentFnSymForSize,
776 OutContext),
777 OutContext);
778 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
779 }
780
781 // Emit post-function debug information.
782 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
783 if (DD) {
784 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
785 DD->endFunction(MF);
786 }
787 if (DE) {
788 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
789 DE->EndFunction();
790 }
791 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
792 MMI->EndFunction();
793
794 // Print out jump tables referenced by the function.
795 EmitJumpTableInfo();
796
797 OutStreamer.AddBlankLine();
798 }
799
800 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
801 /// operands.
802 MachineLocation AsmPrinter::
getDebugValueLocation(const MachineInstr * MI) const803 getDebugValueLocation(const MachineInstr *MI) const {
804 // Target specific DBG_VALUE instructions are handled by each target.
805 return MachineLocation();
806 }
807
808 /// EmitDwarfRegOp - Emit dwarf register operation.
EmitDwarfRegOp(const MachineLocation & MLoc) const809 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
810 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
811 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
812
813 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
814 ++SR) {
815 Reg = TRI->getDwarfRegNum(*SR, false);
816 // FIXME: Get the bit range this register uses of the superregister
817 // so that we can produce a DW_OP_bit_piece
818 }
819
820 // FIXME: Handle cases like a super register being encoded as
821 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
822
823 // FIXME: We have no reasonable way of handling errors in here. The
824 // caller might be in the middle of an dwarf expression. We should
825 // probably assert that Reg >= 0 once debug info generation is more mature.
826
827 if (int Offset = MLoc.getOffset()) {
828 if (Reg < 32) {
829 OutStreamer.AddComment(
830 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
831 EmitInt8(dwarf::DW_OP_breg0 + Reg);
832 } else {
833 OutStreamer.AddComment("DW_OP_bregx");
834 EmitInt8(dwarf::DW_OP_bregx);
835 OutStreamer.AddComment(Twine(Reg));
836 EmitULEB128(Reg);
837 }
838 EmitSLEB128(Offset);
839 } else {
840 if (Reg < 32) {
841 OutStreamer.AddComment(
842 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
843 EmitInt8(dwarf::DW_OP_reg0 + Reg);
844 } else {
845 OutStreamer.AddComment("DW_OP_regx");
846 EmitInt8(dwarf::DW_OP_regx);
847 OutStreamer.AddComment(Twine(Reg));
848 EmitULEB128(Reg);
849 }
850 }
851
852 // FIXME: Produce a DW_OP_bit_piece if we used a superregister
853 }
854
doFinalization(Module & M)855 bool AsmPrinter::doFinalization(Module &M) {
856 // Emit global variables.
857 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
858 I != E; ++I)
859 EmitGlobalVariable(I);
860
861 // Emit visibility info for declarations
862 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
863 const Function &F = *I;
864 if (!F.isDeclaration())
865 continue;
866 GlobalValue::VisibilityTypes V = F.getVisibility();
867 if (V == GlobalValue::DefaultVisibility)
868 continue;
869
870 MCSymbol *Name = Mang->getSymbol(&F);
871 EmitVisibility(Name, V, false);
872 }
873
874 // Emit module flags.
875 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
876 M.getModuleFlagsMetadata(ModuleFlags);
877 if (!ModuleFlags.empty())
878 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
879
880 // Finalize debug and EH information.
881 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
882 if (DE) {
883 {
884 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
885 DE->EndModule();
886 }
887 delete DE; DE = 0;
888 }
889 if (DD) {
890 {
891 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
892 DD->endModule();
893 }
894 delete DD; DD = 0;
895 }
896 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
897
898 // If the target wants to know about weak references, print them all.
899 if (MAI->getWeakRefDirective()) {
900 // FIXME: This is not lazy, it would be nice to only print weak references
901 // to stuff that is actually used. Note that doing so would require targets
902 // to notice uses in operands (due to constant exprs etc). This should
903 // happen with the MC stuff eventually.
904
905 // Print out module-level global variables here.
906 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
907 I != E; ++I) {
908 if (!I->hasExternalWeakLinkage()) continue;
909 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
910 }
911
912 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
913 if (!I->hasExternalWeakLinkage()) continue;
914 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
915 }
916 }
917
918 if (MAI->hasSetDirective()) {
919 OutStreamer.AddBlankLine();
920 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
921 I != E; ++I) {
922 MCSymbol *Name = Mang->getSymbol(I);
923
924 const GlobalValue *GV = I->getAliasedGlobal();
925 MCSymbol *Target = Mang->getSymbol(GV);
926
927 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
928 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
929 else if (I->hasWeakLinkage())
930 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
931 else
932 assert(I->hasLocalLinkage() && "Invalid alias linkage");
933
934 EmitVisibility(Name, I->getVisibility());
935
936 // Emit the directives as assignments aka .set:
937 OutStreamer.EmitAssignment(Name,
938 MCSymbolRefExpr::Create(Target, OutContext));
939 }
940 }
941
942 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
943 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
944 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
945 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
946 MP->finishAssembly(*this);
947
948 // If we don't have any trampolines, then we don't require stack memory
949 // to be executable. Some targets have a directive to declare this.
950 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
951 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
952 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
953 OutStreamer.SwitchSection(S);
954
955 // Allow the target to emit any magic that it wants at the end of the file,
956 // after everything else has gone out.
957 EmitEndOfAsmFile(M);
958
959 delete Mang; Mang = 0;
960 MMI = 0;
961
962 OutStreamer.Finish();
963 return false;
964 }
965
SetupMachineFunction(MachineFunction & MF)966 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
967 this->MF = &MF;
968 // Get the function symbol.
969 CurrentFnSym = Mang->getSymbol(MF.getFunction());
970 CurrentFnSymForSize = CurrentFnSym;
971
972 if (isVerbose())
973 LI = &getAnalysis<MachineLoopInfo>();
974 }
975
976 namespace {
977 // SectionCPs - Keep track the alignment, constpool entries per Section.
978 struct SectionCPs {
979 const MCSection *S;
980 unsigned Alignment;
981 SmallVector<unsigned, 4> CPEs;
SectionCPs__anon86d9e5d50111::SectionCPs982 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
983 };
984 }
985
986 /// EmitConstantPool - Print to the current output stream assembly
987 /// representations of the constants in the constant pool MCP. This is
988 /// used to print out constants which have been "spilled to memory" by
989 /// the code generator.
990 ///
EmitConstantPool()991 void AsmPrinter::EmitConstantPool() {
992 const MachineConstantPool *MCP = MF->getConstantPool();
993 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
994 if (CP.empty()) return;
995
996 // Calculate sections for constant pool entries. We collect entries to go into
997 // the same section together to reduce amount of section switch statements.
998 SmallVector<SectionCPs, 4> CPSections;
999 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1000 const MachineConstantPoolEntry &CPE = CP[i];
1001 unsigned Align = CPE.getAlignment();
1002
1003 SectionKind Kind;
1004 switch (CPE.getRelocationInfo()) {
1005 default: llvm_unreachable("Unknown section kind");
1006 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1007 case 1:
1008 Kind = SectionKind::getReadOnlyWithRelLocal();
1009 break;
1010 case 0:
1011 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
1012 case 4: Kind = SectionKind::getMergeableConst4(); break;
1013 case 8: Kind = SectionKind::getMergeableConst8(); break;
1014 case 16: Kind = SectionKind::getMergeableConst16();break;
1015 default: Kind = SectionKind::getMergeableConst(); break;
1016 }
1017 }
1018
1019 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1020
1021 // The number of sections are small, just do a linear search from the
1022 // last section to the first.
1023 bool Found = false;
1024 unsigned SecIdx = CPSections.size();
1025 while (SecIdx != 0) {
1026 if (CPSections[--SecIdx].S == S) {
1027 Found = true;
1028 break;
1029 }
1030 }
1031 if (!Found) {
1032 SecIdx = CPSections.size();
1033 CPSections.push_back(SectionCPs(S, Align));
1034 }
1035
1036 if (Align > CPSections[SecIdx].Alignment)
1037 CPSections[SecIdx].Alignment = Align;
1038 CPSections[SecIdx].CPEs.push_back(i);
1039 }
1040
1041 // Now print stuff into the calculated sections.
1042 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1043 OutStreamer.SwitchSection(CPSections[i].S);
1044 EmitAlignment(Log2_32(CPSections[i].Alignment));
1045
1046 unsigned Offset = 0;
1047 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1048 unsigned CPI = CPSections[i].CPEs[j];
1049 MachineConstantPoolEntry CPE = CP[CPI];
1050
1051 // Emit inter-object padding for alignment.
1052 unsigned AlignMask = CPE.getAlignment() - 1;
1053 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1054 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1055
1056 Type *Ty = CPE.getType();
1057 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1058 OutStreamer.EmitLabel(GetCPISymbol(CPI));
1059
1060 if (CPE.isMachineConstantPoolEntry())
1061 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1062 else
1063 EmitGlobalConstant(CPE.Val.ConstVal);
1064 }
1065 }
1066 }
1067
1068 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1069 /// by the current function to the current output stream.
1070 ///
EmitJumpTableInfo()1071 void AsmPrinter::EmitJumpTableInfo() {
1072 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1073 if (MJTI == 0) return;
1074 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1075 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1076 if (JT.empty()) return;
1077
1078 // Pick the directive to use to print the jump table entries, and switch to
1079 // the appropriate section.
1080 const Function *F = MF->getFunction();
1081 bool JTInDiffSection = false;
1082 if (// In PIC mode, we need to emit the jump table to the same section as the
1083 // function body itself, otherwise the label differences won't make sense.
1084 // FIXME: Need a better predicate for this: what about custom entries?
1085 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1086 // We should also do if the section name is NULL or function is declared
1087 // in discardable section
1088 // FIXME: this isn't the right predicate, should be based on the MCSection
1089 // for the function.
1090 F->isWeakForLinker()) {
1091 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1092 } else {
1093 // Otherwise, drop it in the readonly section.
1094 const MCSection *ReadOnlySection =
1095 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1096 OutStreamer.SwitchSection(ReadOnlySection);
1097 JTInDiffSection = true;
1098 }
1099
1100 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1101
1102 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1103 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1104
1105 // If this jump table was deleted, ignore it.
1106 if (JTBBs.empty()) continue;
1107
1108 // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1109 // .set directive for each unique entry. This reduces the number of
1110 // relocations the assembler will generate for the jump table.
1111 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1112 MAI->hasSetDirective()) {
1113 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1114 const TargetLowering *TLI = TM.getTargetLowering();
1115 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1116 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1117 const MachineBasicBlock *MBB = JTBBs[ii];
1118 if (!EmittedSets.insert(MBB)) continue;
1119
1120 // .set LJTSet, LBB32-base
1121 const MCExpr *LHS =
1122 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1123 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1124 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1125 }
1126 }
1127
1128 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1129 // before each jump table. The first label is never referenced, but tells
1130 // the assembler and linker the extents of the jump table object. The
1131 // second label is actually referenced by the code.
1132 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1133 // FIXME: This doesn't have to have any specific name, just any randomly
1134 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1135 OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1136
1137 OutStreamer.EmitLabel(GetJTISymbol(JTI));
1138
1139 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1140 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1141 }
1142 }
1143
1144 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1145 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1146 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1147 const MachineBasicBlock *MBB,
1148 unsigned UID) const {
1149 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1150 const MCExpr *Value = 0;
1151 switch (MJTI->getEntryKind()) {
1152 case MachineJumpTableInfo::EK_Inline:
1153 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1154 case MachineJumpTableInfo::EK_Custom32:
1155 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1156 OutContext);
1157 break;
1158 case MachineJumpTableInfo::EK_BlockAddress:
1159 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1160 // .word LBB123
1161 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1162 break;
1163 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1164 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1165 // with a relocation as gp-relative, e.g.:
1166 // .gprel32 LBB123
1167 MCSymbol *MBBSym = MBB->getSymbol();
1168 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1169 return;
1170 }
1171
1172 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1173 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1174 // with a relocation as gp-relative, e.g.:
1175 // .gpdword LBB123
1176 MCSymbol *MBBSym = MBB->getSymbol();
1177 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1178 return;
1179 }
1180
1181 case MachineJumpTableInfo::EK_LabelDifference32: {
1182 // EK_LabelDifference32 - Each entry is the address of the block minus
1183 // the address of the jump table. This is used for PIC jump tables where
1184 // gprel32 is not supported. e.g.:
1185 // .word LBB123 - LJTI1_2
1186 // If the .set directive is supported, this is emitted as:
1187 // .set L4_5_set_123, LBB123 - LJTI1_2
1188 // .word L4_5_set_123
1189
1190 // If we have emitted set directives for the jump table entries, print
1191 // them rather than the entries themselves. If we're emitting PIC, then
1192 // emit the table entries as differences between two text section labels.
1193 if (MAI->hasSetDirective()) {
1194 // If we used .set, reference the .set's symbol.
1195 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1196 OutContext);
1197 break;
1198 }
1199 // Otherwise, use the difference as the jump table entry.
1200 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1201 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1202 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1203 break;
1204 }
1205 }
1206
1207 assert(Value && "Unknown entry kind!");
1208
1209 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1210 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1211 }
1212
1213
1214 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1215 /// special global used by LLVM. If so, emit it and return true, otherwise
1216 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1217 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1218 if (GV->getName() == "llvm.used") {
1219 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1220 EmitLLVMUsedList(GV->getInitializer());
1221 return true;
1222 }
1223
1224 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1225 if (GV->getSection() == "llvm.metadata" ||
1226 GV->hasAvailableExternallyLinkage())
1227 return true;
1228
1229 if (!GV->hasAppendingLinkage()) return false;
1230
1231 assert(GV->hasInitializer() && "Not a special LLVM global!");
1232
1233 if (GV->getName() == "llvm.global_ctors") {
1234 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1235
1236 if (TM.getRelocationModel() == Reloc::Static &&
1237 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1238 StringRef Sym(".constructors_used");
1239 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1240 MCSA_Reference);
1241 }
1242 return true;
1243 }
1244
1245 if (GV->getName() == "llvm.global_dtors") {
1246 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1247
1248 if (TM.getRelocationModel() == Reloc::Static &&
1249 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1250 StringRef Sym(".destructors_used");
1251 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1252 MCSA_Reference);
1253 }
1254 return true;
1255 }
1256
1257 return false;
1258 }
1259
1260 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1261 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1262 /// is true, as being used with this directive.
EmitLLVMUsedList(const Constant * List)1263 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1264 // Should be an array of 'i8*'.
1265 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1266 if (InitList == 0) return;
1267
1268 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1269 const GlobalValue *GV =
1270 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1271 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1272 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1273 }
1274 }
1275
1276 typedef std::pair<unsigned, Constant*> Structor;
1277
priority_order(const Structor & lhs,const Structor & rhs)1278 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1279 return lhs.first < rhs.first;
1280 }
1281
1282 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1283 /// priority.
EmitXXStructorList(const Constant * List,bool isCtor)1284 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1285 // Should be an array of '{ int, void ()* }' structs. The first value is the
1286 // init priority.
1287 if (!isa<ConstantArray>(List)) return;
1288
1289 // Sanity check the structors list.
1290 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1291 if (!InitList) return; // Not an array!
1292 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1293 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1294 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1295 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1296
1297 // Gather the structors in a form that's convenient for sorting by priority.
1298 SmallVector<Structor, 8> Structors;
1299 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1300 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1301 if (!CS) continue; // Malformed.
1302 if (CS->getOperand(1)->isNullValue())
1303 break; // Found a null terminator, skip the rest.
1304 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1305 if (!Priority) continue; // Malformed.
1306 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1307 CS->getOperand(1)));
1308 }
1309
1310 // Emit the function pointers in the target-specific order
1311 const TargetData *TD = TM.getTargetData();
1312 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1313 std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1314 for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1315 const MCSection *OutputSection =
1316 (isCtor ?
1317 getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1318 getObjFileLowering().getStaticDtorSection(Structors[i].first));
1319 OutStreamer.SwitchSection(OutputSection);
1320 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1321 EmitAlignment(Align);
1322 EmitXXStructor(Structors[i].second);
1323 }
1324 }
1325
1326 //===--------------------------------------------------------------------===//
1327 // Emission and print routines
1328 //
1329
1330 /// EmitInt8 - Emit a byte directive and value.
1331 ///
EmitInt8(int Value) const1332 void AsmPrinter::EmitInt8(int Value) const {
1333 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1334 }
1335
1336 /// EmitInt16 - Emit a short directive and value.
1337 ///
EmitInt16(int Value) const1338 void AsmPrinter::EmitInt16(int Value) const {
1339 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1340 }
1341
1342 /// EmitInt32 - Emit a long directive and value.
1343 ///
EmitInt32(int Value) const1344 void AsmPrinter::EmitInt32(int Value) const {
1345 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1346 }
1347
1348 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1349 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1350 /// labels. This implicitly uses .set if it is available.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1351 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1352 unsigned Size) const {
1353 // Get the Hi-Lo expression.
1354 const MCExpr *Diff =
1355 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1356 MCSymbolRefExpr::Create(Lo, OutContext),
1357 OutContext);
1358
1359 if (!MAI->hasSetDirective()) {
1360 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1361 return;
1362 }
1363
1364 // Otherwise, emit with .set (aka assignment).
1365 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1366 OutStreamer.EmitAssignment(SetLabel, Diff);
1367 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1368 }
1369
1370 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1371 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1372 /// specify the labels. This implicitly uses .set if it is available.
EmitLabelOffsetDifference(const MCSymbol * Hi,uint64_t Offset,const MCSymbol * Lo,unsigned Size) const1373 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1374 const MCSymbol *Lo, unsigned Size)
1375 const {
1376
1377 // Emit Hi+Offset - Lo
1378 // Get the Hi+Offset expression.
1379 const MCExpr *Plus =
1380 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1381 MCConstantExpr::Create(Offset, OutContext),
1382 OutContext);
1383
1384 // Get the Hi+Offset-Lo expression.
1385 const MCExpr *Diff =
1386 MCBinaryExpr::CreateSub(Plus,
1387 MCSymbolRefExpr::Create(Lo, OutContext),
1388 OutContext);
1389
1390 if (!MAI->hasSetDirective())
1391 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1392 else {
1393 // Otherwise, emit with .set (aka assignment).
1394 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1395 OutStreamer.EmitAssignment(SetLabel, Diff);
1396 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1397 }
1398 }
1399
1400 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1401 /// where the size in bytes of the directive is specified by Size and Label
1402 /// specifies the label. This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size) const1403 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1404 unsigned Size)
1405 const {
1406
1407 // Emit Label+Offset (or just Label if Offset is zero)
1408 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1409 if (Offset)
1410 Expr = MCBinaryExpr::CreateAdd(Expr,
1411 MCConstantExpr::Create(Offset, OutContext),
1412 OutContext);
1413
1414 OutStreamer.EmitValue(Expr, Size, 0/*AddrSpace*/);
1415 }
1416
1417
1418 //===----------------------------------------------------------------------===//
1419
1420 // EmitAlignment - Emit an alignment directive to the specified power of
1421 // two boundary. For example, if you pass in 3 here, you will get an 8
1422 // byte alignment. If a global value is specified, and if that global has
1423 // an explicit alignment requested, it will override the alignment request
1424 // if required for correctness.
1425 //
EmitAlignment(unsigned NumBits,const GlobalValue * GV) const1426 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1427 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1428
1429 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1430
1431 if (getCurrentSection()->getKind().isText())
1432 OutStreamer.EmitCodeAlignment(1 << NumBits);
1433 else
1434 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1435 }
1436
1437 //===----------------------------------------------------------------------===//
1438 // Constant emission.
1439 //===----------------------------------------------------------------------===//
1440
1441 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1442 ///
lowerConstant(const Constant * CV,AsmPrinter & AP)1443 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1444 MCContext &Ctx = AP.OutContext;
1445
1446 if (CV->isNullValue() || isa<UndefValue>(CV))
1447 return MCConstantExpr::Create(0, Ctx);
1448
1449 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1450 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1451
1452 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1453 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1454
1455 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1456 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1457
1458 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1459 if (CE == 0) {
1460 llvm_unreachable("Unknown constant value to lower!");
1461 }
1462
1463 switch (CE->getOpcode()) {
1464 default:
1465 // If the code isn't optimized, there may be outstanding folding
1466 // opportunities. Attempt to fold the expression using TargetData as a
1467 // last resort before giving up.
1468 if (Constant *C =
1469 ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1470 if (C != CE)
1471 return lowerConstant(C, AP);
1472
1473 // Otherwise report the problem to the user.
1474 {
1475 std::string S;
1476 raw_string_ostream OS(S);
1477 OS << "Unsupported expression in static initializer: ";
1478 WriteAsOperand(OS, CE, /*PrintType=*/false,
1479 !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1480 report_fatal_error(OS.str());
1481 }
1482 case Instruction::GetElementPtr: {
1483 const TargetData &TD = *AP.TM.getTargetData();
1484 // Generate a symbolic expression for the byte address
1485 const Constant *PtrVal = CE->getOperand(0);
1486 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1487 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1488
1489 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1490 if (Offset == 0)
1491 return Base;
1492
1493 // Truncate/sext the offset to the pointer size.
1494 unsigned Width = TD.getPointerSizeInBits();
1495 if (Width < 64)
1496 Offset = SignExtend64(Offset, Width);
1497
1498 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1499 Ctx);
1500 }
1501
1502 case Instruction::Trunc:
1503 // We emit the value and depend on the assembler to truncate the generated
1504 // expression properly. This is important for differences between
1505 // blockaddress labels. Since the two labels are in the same function, it
1506 // is reasonable to treat their delta as a 32-bit value.
1507 // FALL THROUGH.
1508 case Instruction::BitCast:
1509 return lowerConstant(CE->getOperand(0), AP);
1510
1511 case Instruction::IntToPtr: {
1512 const TargetData &TD = *AP.TM.getTargetData();
1513 // Handle casts to pointers by changing them into casts to the appropriate
1514 // integer type. This promotes constant folding and simplifies this code.
1515 Constant *Op = CE->getOperand(0);
1516 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1517 false/*ZExt*/);
1518 return lowerConstant(Op, AP);
1519 }
1520
1521 case Instruction::PtrToInt: {
1522 const TargetData &TD = *AP.TM.getTargetData();
1523 // Support only foldable casts to/from pointers that can be eliminated by
1524 // changing the pointer to the appropriately sized integer type.
1525 Constant *Op = CE->getOperand(0);
1526 Type *Ty = CE->getType();
1527
1528 const MCExpr *OpExpr = lowerConstant(Op, AP);
1529
1530 // We can emit the pointer value into this slot if the slot is an
1531 // integer slot equal to the size of the pointer.
1532 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1533 return OpExpr;
1534
1535 // Otherwise the pointer is smaller than the resultant integer, mask off
1536 // the high bits so we are sure to get a proper truncation if the input is
1537 // a constant expr.
1538 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1539 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1540 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1541 }
1542
1543 // The MC library also has a right-shift operator, but it isn't consistently
1544 // signed or unsigned between different targets.
1545 case Instruction::Add:
1546 case Instruction::Sub:
1547 case Instruction::Mul:
1548 case Instruction::SDiv:
1549 case Instruction::SRem:
1550 case Instruction::Shl:
1551 case Instruction::And:
1552 case Instruction::Or:
1553 case Instruction::Xor: {
1554 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1555 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1556 switch (CE->getOpcode()) {
1557 default: llvm_unreachable("Unknown binary operator constant cast expr");
1558 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1559 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1560 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1561 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1562 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1563 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1564 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1565 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1566 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1567 }
1568 }
1569 }
1570 }
1571
1572 static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1573 AsmPrinter &AP);
1574
1575 /// isRepeatedByteSequence - Determine whether the given value is
1576 /// composed of a repeated sequence of identical bytes and return the
1577 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)1578 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1579 StringRef Data = V->getRawDataValues();
1580 assert(!Data.empty() && "Empty aggregates should be CAZ node");
1581 char C = Data[0];
1582 for (unsigned i = 1, e = Data.size(); i != e; ++i)
1583 if (Data[i] != C) return -1;
1584 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1585 }
1586
1587
1588 /// isRepeatedByteSequence - Determine whether the given value is
1589 /// composed of a repeated sequence of identical bytes and return the
1590 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,TargetMachine & TM)1591 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1592
1593 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1594 if (CI->getBitWidth() > 64) return -1;
1595
1596 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1597 uint64_t Value = CI->getZExtValue();
1598
1599 // Make sure the constant is at least 8 bits long and has a power
1600 // of 2 bit width. This guarantees the constant bit width is
1601 // always a multiple of 8 bits, avoiding issues with padding out
1602 // to Size and other such corner cases.
1603 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1604
1605 uint8_t Byte = static_cast<uint8_t>(Value);
1606
1607 for (unsigned i = 1; i < Size; ++i) {
1608 Value >>= 8;
1609 if (static_cast<uint8_t>(Value) != Byte) return -1;
1610 }
1611 return Byte;
1612 }
1613 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1614 // Make sure all array elements are sequences of the same repeated
1615 // byte.
1616 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1617 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1618 if (Byte == -1) return -1;
1619
1620 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1621 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1622 if (ThisByte == -1) return -1;
1623 if (Byte != ThisByte) return -1;
1624 }
1625 return Byte;
1626 }
1627
1628 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1629 return isRepeatedByteSequence(CDS);
1630
1631 return -1;
1632 }
1633
emitGlobalConstantDataSequential(const ConstantDataSequential * CDS,unsigned AddrSpace,AsmPrinter & AP)1634 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1635 unsigned AddrSpace,AsmPrinter &AP){
1636
1637 // See if we can aggregate this into a .fill, if so, emit it as such.
1638 int Value = isRepeatedByteSequence(CDS, AP.TM);
1639 if (Value != -1) {
1640 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1641 // Don't emit a 1-byte object as a .fill.
1642 if (Bytes > 1)
1643 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1644 }
1645
1646 // If this can be emitted with .ascii/.asciz, emit it as such.
1647 if (CDS->isString())
1648 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1649
1650 // Otherwise, emit the values in successive locations.
1651 unsigned ElementByteSize = CDS->getElementByteSize();
1652 if (isa<IntegerType>(CDS->getElementType())) {
1653 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1654 if (AP.isVerbose())
1655 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1656 CDS->getElementAsInteger(i));
1657 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1658 ElementByteSize, AddrSpace);
1659 }
1660 } else if (ElementByteSize == 4) {
1661 // FP Constants are printed as integer constants to avoid losing
1662 // precision.
1663 assert(CDS->getElementType()->isFloatTy());
1664 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1665 union {
1666 float F;
1667 uint32_t I;
1668 };
1669
1670 F = CDS->getElementAsFloat(i);
1671 if (AP.isVerbose())
1672 AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1673 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1674 }
1675 } else {
1676 assert(CDS->getElementType()->isDoubleTy());
1677 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1678 union {
1679 double F;
1680 uint64_t I;
1681 };
1682
1683 F = CDS->getElementAsDouble(i);
1684 if (AP.isVerbose())
1685 AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1686 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1687 }
1688 }
1689
1690 const TargetData &TD = *AP.TM.getTargetData();
1691 unsigned Size = TD.getTypeAllocSize(CDS->getType());
1692 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1693 CDS->getNumElements();
1694 if (unsigned Padding = Size - EmittedSize)
1695 AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1696
1697 }
1698
emitGlobalConstantArray(const ConstantArray * CA,unsigned AddrSpace,AsmPrinter & AP)1699 static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1700 AsmPrinter &AP) {
1701 // See if we can aggregate some values. Make sure it can be
1702 // represented as a series of bytes of the constant value.
1703 int Value = isRepeatedByteSequence(CA, AP.TM);
1704
1705 if (Value != -1) {
1706 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1707 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1708 }
1709 else {
1710 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1711 emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1712 }
1713 }
1714
emitGlobalConstantVector(const ConstantVector * CV,unsigned AddrSpace,AsmPrinter & AP)1715 static void emitGlobalConstantVector(const ConstantVector *CV,
1716 unsigned AddrSpace, AsmPrinter &AP) {
1717 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1718 emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1719
1720 const TargetData &TD = *AP.TM.getTargetData();
1721 unsigned Size = TD.getTypeAllocSize(CV->getType());
1722 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1723 CV->getType()->getNumElements();
1724 if (unsigned Padding = Size - EmittedSize)
1725 AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1726 }
1727
emitGlobalConstantStruct(const ConstantStruct * CS,unsigned AddrSpace,AsmPrinter & AP)1728 static void emitGlobalConstantStruct(const ConstantStruct *CS,
1729 unsigned AddrSpace, AsmPrinter &AP) {
1730 // Print the fields in successive locations. Pad to align if needed!
1731 const TargetData *TD = AP.TM.getTargetData();
1732 unsigned Size = TD->getTypeAllocSize(CS->getType());
1733 const StructLayout *Layout = TD->getStructLayout(CS->getType());
1734 uint64_t SizeSoFar = 0;
1735 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1736 const Constant *Field = CS->getOperand(i);
1737
1738 // Check if padding is needed and insert one or more 0s.
1739 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1740 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1741 - Layout->getElementOffset(i)) - FieldSize;
1742 SizeSoFar += FieldSize + PadSize;
1743
1744 // Now print the actual field value.
1745 emitGlobalConstantImpl(Field, AddrSpace, AP);
1746
1747 // Insert padding - this may include padding to increase the size of the
1748 // current field up to the ABI size (if the struct is not packed) as well
1749 // as padding to ensure that the next field starts at the right offset.
1750 AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1751 }
1752 assert(SizeSoFar == Layout->getSizeInBytes() &&
1753 "Layout of constant struct may be incorrect!");
1754 }
1755
emitGlobalConstantFP(const ConstantFP * CFP,unsigned AddrSpace,AsmPrinter & AP)1756 static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1757 AsmPrinter &AP) {
1758 if (CFP->getType()->isHalfTy()) {
1759 if (AP.isVerbose()) {
1760 SmallString<10> Str;
1761 CFP->getValueAPF().toString(Str);
1762 AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1763 }
1764 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1765 AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1766 return;
1767 }
1768
1769 if (CFP->getType()->isFloatTy()) {
1770 if (AP.isVerbose()) {
1771 float Val = CFP->getValueAPF().convertToFloat();
1772 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1773 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1774 << " (" << format("0x%x", IntVal) << ")\n";
1775 }
1776 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1777 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1778 return;
1779 }
1780
1781 // FP Constants are printed as integer constants to avoid losing
1782 // precision.
1783 if (CFP->getType()->isDoubleTy()) {
1784 if (AP.isVerbose()) {
1785 double Val = CFP->getValueAPF().convertToDouble();
1786 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1787 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1788 << " (" << format("0x%lx", IntVal) << ")\n";
1789 }
1790
1791 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1792 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1793 return;
1794 }
1795
1796 if (CFP->getType()->isX86_FP80Ty()) {
1797 // all long double variants are printed as hex
1798 // API needed to prevent premature destruction
1799 APInt API = CFP->getValueAPF().bitcastToAPInt();
1800 const uint64_t *p = API.getRawData();
1801 if (AP.isVerbose()) {
1802 // Convert to double so we can print the approximate val as a comment.
1803 APFloat DoubleVal = CFP->getValueAPF();
1804 bool ignored;
1805 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1806 &ignored);
1807 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1808 << DoubleVal.convertToDouble() << '\n';
1809 }
1810
1811 if (AP.TM.getTargetData()->isBigEndian()) {
1812 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1813 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1814 } else {
1815 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1816 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1817 }
1818
1819 // Emit the tail padding for the long double.
1820 const TargetData &TD = *AP.TM.getTargetData();
1821 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1822 TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1823 return;
1824 }
1825
1826 assert(CFP->getType()->isPPC_FP128Ty() &&
1827 "Floating point constant type not handled");
1828 // All long double variants are printed as hex
1829 // API needed to prevent premature destruction.
1830 APInt API = CFP->getValueAPF().bitcastToAPInt();
1831 const uint64_t *p = API.getRawData();
1832 if (AP.TM.getTargetData()->isBigEndian()) {
1833 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1834 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1835 } else {
1836 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1837 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1838 }
1839 }
1840
emitGlobalConstantLargeInt(const ConstantInt * CI,unsigned AddrSpace,AsmPrinter & AP)1841 static void emitGlobalConstantLargeInt(const ConstantInt *CI,
1842 unsigned AddrSpace, AsmPrinter &AP) {
1843 const TargetData *TD = AP.TM.getTargetData();
1844 unsigned BitWidth = CI->getBitWidth();
1845 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1846
1847 // We don't expect assemblers to support integer data directives
1848 // for more than 64 bits, so we emit the data in at most 64-bit
1849 // quantities at a time.
1850 const uint64_t *RawData = CI->getValue().getRawData();
1851 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1852 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1853 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1854 }
1855 }
1856
emitGlobalConstantImpl(const Constant * CV,unsigned AddrSpace,AsmPrinter & AP)1857 static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1858 AsmPrinter &AP) {
1859 const TargetData *TD = AP.TM.getTargetData();
1860 uint64_t Size = TD->getTypeAllocSize(CV->getType());
1861 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1862 return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1863
1864 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1865 switch (Size) {
1866 case 1:
1867 case 2:
1868 case 4:
1869 case 8:
1870 if (AP.isVerbose())
1871 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1872 CI->getZExtValue());
1873 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1874 return;
1875 default:
1876 emitGlobalConstantLargeInt(CI, AddrSpace, AP);
1877 return;
1878 }
1879 }
1880
1881 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1882 return emitGlobalConstantFP(CFP, AddrSpace, AP);
1883
1884 if (isa<ConstantPointerNull>(CV)) {
1885 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1886 return;
1887 }
1888
1889 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1890 return emitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1891
1892 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1893 return emitGlobalConstantArray(CVA, AddrSpace, AP);
1894
1895 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1896 return emitGlobalConstantStruct(CVS, AddrSpace, AP);
1897
1898 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1899 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1900 // vectors).
1901 if (CE->getOpcode() == Instruction::BitCast)
1902 return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1903
1904 if (Size > 8) {
1905 // If the constant expression's size is greater than 64-bits, then we have
1906 // to emit the value in chunks. Try to constant fold the value and emit it
1907 // that way.
1908 Constant *New = ConstantFoldConstantExpression(CE, TD);
1909 if (New && New != CE)
1910 return emitGlobalConstantImpl(New, AddrSpace, AP);
1911 }
1912 }
1913
1914 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1915 return emitGlobalConstantVector(V, AddrSpace, AP);
1916
1917 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
1918 // thread the streamer with EmitValue.
1919 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace);
1920 }
1921
1922 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const Constant * CV,unsigned AddrSpace)1923 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1924 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1925 if (Size)
1926 emitGlobalConstantImpl(CV, AddrSpace, *this);
1927 else if (MAI->hasSubsectionsViaSymbols()) {
1928 // If the global has zero size, emit a single byte so that two labels don't
1929 // look like they are at the same location.
1930 OutStreamer.EmitIntValue(0, 1, AddrSpace);
1931 }
1932 }
1933
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)1934 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1935 // Target doesn't support this yet!
1936 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1937 }
1938
printOffset(int64_t Offset,raw_ostream & OS) const1939 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1940 if (Offset > 0)
1941 OS << '+' << Offset;
1942 else if (Offset < 0)
1943 OS << Offset;
1944 }
1945
1946 //===----------------------------------------------------------------------===//
1947 // Symbol Lowering Routines.
1948 //===----------------------------------------------------------------------===//
1949
1950 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1951 /// temporary label with the specified stem and unique ID.
GetTempSymbol(StringRef Name,unsigned ID) const1952 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1953 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1954 Name + Twine(ID));
1955 }
1956
1957 /// GetTempSymbol - Return an assembler temporary label with the specified
1958 /// stem.
GetTempSymbol(StringRef Name) const1959 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1960 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1961 Name);
1962 }
1963
1964
GetBlockAddressSymbol(const BlockAddress * BA) const1965 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1966 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1967 }
1968
GetBlockAddressSymbol(const BasicBlock * BB) const1969 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1970 return MMI->getAddrLabelSymbol(BB);
1971 }
1972
1973 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const1974 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1975 return OutContext.GetOrCreateSymbol
1976 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1977 + "_" + Twine(CPID));
1978 }
1979
1980 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const1981 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1982 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1983 }
1984
1985 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1986 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const1987 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1988 return OutContext.GetOrCreateSymbol
1989 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1990 Twine(UID) + "_set_" + Twine(MBBID));
1991 }
1992
1993 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1994 /// global value name as its base, with the specified suffix, and where the
1995 /// symbol is forced to have private linkage if ForcePrivate is true.
GetSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix,bool ForcePrivate) const1996 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1997 StringRef Suffix,
1998 bool ForcePrivate) const {
1999 SmallString<60> NameStr;
2000 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2001 NameStr.append(Suffix.begin(), Suffix.end());
2002 return OutContext.GetOrCreateSymbol(NameStr.str());
2003 }
2004
2005 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2006 /// ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2007 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2008 SmallString<60> NameStr;
2009 Mang->getNameWithPrefix(NameStr, Sym);
2010 return OutContext.GetOrCreateSymbol(NameStr.str());
2011 }
2012
2013
2014
2015 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2016 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2017 unsigned FunctionNumber) {
2018 if (Loop == 0) return;
2019 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2020 OS.indent(Loop->getLoopDepth()*2)
2021 << "Parent Loop BB" << FunctionNumber << "_"
2022 << Loop->getHeader()->getNumber()
2023 << " Depth=" << Loop->getLoopDepth() << '\n';
2024 }
2025
2026
2027 /// PrintChildLoopComment - Print comments about child loops within
2028 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2029 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2030 unsigned FunctionNumber) {
2031 // Add child loop information
2032 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2033 OS.indent((*CL)->getLoopDepth()*2)
2034 << "Child Loop BB" << FunctionNumber << "_"
2035 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2036 << '\n';
2037 PrintChildLoopComment(OS, *CL, FunctionNumber);
2038 }
2039 }
2040
2041 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
emitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2042 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2043 const MachineLoopInfo *LI,
2044 const AsmPrinter &AP) {
2045 // Add loop depth information
2046 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2047 if (Loop == 0) return;
2048
2049 MachineBasicBlock *Header = Loop->getHeader();
2050 assert(Header && "No header for loop");
2051
2052 // If this block is not a loop header, just print out what is the loop header
2053 // and return.
2054 if (Header != &MBB) {
2055 AP.OutStreamer.AddComment(" in Loop: Header=BB" +
2056 Twine(AP.getFunctionNumber())+"_" +
2057 Twine(Loop->getHeader()->getNumber())+
2058 " Depth="+Twine(Loop->getLoopDepth()));
2059 return;
2060 }
2061
2062 // Otherwise, it is a loop header. Print out information about child and
2063 // parent loops.
2064 raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2065
2066 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2067
2068 OS << "=>";
2069 OS.indent(Loop->getLoopDepth()*2-2);
2070
2071 OS << "This ";
2072 if (Loop->empty())
2073 OS << "Inner ";
2074 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2075
2076 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2077 }
2078
2079
2080 /// EmitBasicBlockStart - This method prints the label for the specified
2081 /// MachineBasicBlock, an alignment (if present) and a comment describing
2082 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock * MBB) const2083 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2084 // Emit an alignment directive for this block, if needed.
2085 if (unsigned Align = MBB->getAlignment())
2086 EmitAlignment(Align);
2087
2088 // If the block has its address taken, emit any labels that were used to
2089 // reference the block. It is possible that there is more than one label
2090 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2091 // the references were generated.
2092 if (MBB->hasAddressTaken()) {
2093 const BasicBlock *BB = MBB->getBasicBlock();
2094 if (isVerbose())
2095 OutStreamer.AddComment("Block address taken");
2096
2097 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2098
2099 for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2100 OutStreamer.EmitLabel(Syms[i]);
2101 }
2102
2103 // Print some verbose block comments.
2104 if (isVerbose()) {
2105 if (const BasicBlock *BB = MBB->getBasicBlock())
2106 if (BB->hasName())
2107 OutStreamer.AddComment("%" + BB->getName());
2108 emitBasicBlockLoopComments(*MBB, LI, *this);
2109 }
2110
2111 // Print the main label for the block.
2112 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2113 if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2114 // NOTE: Want this comment at start of line, don't emit with AddComment.
2115 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2116 Twine(MBB->getNumber()) + ":");
2117 }
2118 } else {
2119 OutStreamer.EmitLabel(MBB->getSymbol());
2120 }
2121 }
2122
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const2123 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2124 bool IsDefinition) const {
2125 MCSymbolAttr Attr = MCSA_Invalid;
2126
2127 switch (Visibility) {
2128 default: break;
2129 case GlobalValue::HiddenVisibility:
2130 if (IsDefinition)
2131 Attr = MAI->getHiddenVisibilityAttr();
2132 else
2133 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2134 break;
2135 case GlobalValue::ProtectedVisibility:
2136 Attr = MAI->getProtectedVisibilityAttr();
2137 break;
2138 }
2139
2140 if (Attr != MCSA_Invalid)
2141 OutStreamer.EmitSymbolAttribute(Sym, Attr);
2142 }
2143
2144 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2145 /// exactly one predecessor and the control transfer mechanism between
2146 /// the predecessor and this block is a fall-through.
2147 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2148 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2149 // If this is a landing pad, it isn't a fall through. If it has no preds,
2150 // then nothing falls through to it.
2151 if (MBB->isLandingPad() || MBB->pred_empty())
2152 return false;
2153
2154 // If there isn't exactly one predecessor, it can't be a fall through.
2155 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2156 ++PI2;
2157 if (PI2 != MBB->pred_end())
2158 return false;
2159
2160 // The predecessor has to be immediately before this block.
2161 MachineBasicBlock *Pred = *PI;
2162
2163 if (!Pred->isLayoutSuccessor(MBB))
2164 return false;
2165
2166 // If the block is completely empty, then it definitely does fall through.
2167 if (Pred->empty())
2168 return true;
2169
2170 // Check the terminators in the previous blocks
2171 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2172 IE = Pred->end(); II != IE; ++II) {
2173 MachineInstr &MI = *II;
2174
2175 // If it is not a simple branch, we are in a table somewhere.
2176 if (!MI.isBranch() || MI.isIndirectBranch())
2177 return false;
2178
2179 // If we are the operands of one of the branches, this is not
2180 // a fall through.
2181 for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2182 OE = MI.operands_end(); OI != OE; ++OI) {
2183 const MachineOperand& OP = *OI;
2184 if (OP.isJTI())
2185 return false;
2186 if (OP.isMBB() && OP.getMBB() == MBB)
2187 return false;
2188 }
2189 }
2190
2191 return true;
2192 }
2193
2194
2195
GetOrCreateGCPrinter(GCStrategy * S)2196 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2197 if (!S->usesMetadata())
2198 return 0;
2199
2200 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2201 gcp_map_type::iterator GCPI = GCMap.find(S);
2202 if (GCPI != GCMap.end())
2203 return GCPI->second;
2204
2205 const char *Name = S->getName().c_str();
2206
2207 for (GCMetadataPrinterRegistry::iterator
2208 I = GCMetadataPrinterRegistry::begin(),
2209 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2210 if (strcmp(Name, I->getName()) == 0) {
2211 GCMetadataPrinter *GMP = I->instantiate();
2212 GMP->S = S;
2213 GCMap.insert(std::make_pair(S, GMP));
2214 return GMP;
2215 }
2216
2217 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2218 }
2219