1 //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing DWARF exception info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "DwarfException.h"
15 #include "llvm/Module.h"
16 #include "llvm/CodeGen/AsmPrinter.h"
17 #include "llvm/CodeGen/MachineModuleInfo.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/Target/Mangler.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetFrameLowering.h"
29 #include "llvm/Target/TargetLoweringObjectFile.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Support/Dwarf.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/FormattedStream.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/Twine.h"
39 using namespace llvm;
40
DwarfException(AsmPrinter * A)41 DwarfException::DwarfException(AsmPrinter *A)
42 : Asm(A), MMI(Asm->MMI) {}
43
~DwarfException()44 DwarfException::~DwarfException() {}
45
46 /// SharedTypeIds - How many leading type ids two landing pads have in common.
SharedTypeIds(const LandingPadInfo * L,const LandingPadInfo * R)47 unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
48 const LandingPadInfo *R) {
49 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
50 unsigned LSize = LIds.size(), RSize = RIds.size();
51 unsigned MinSize = LSize < RSize ? LSize : RSize;
52 unsigned Count = 0;
53
54 for (; Count != MinSize; ++Count)
55 if (LIds[Count] != RIds[Count])
56 return Count;
57
58 return Count;
59 }
60
61 /// PadLT - Order landing pads lexicographically by type id.
PadLT(const LandingPadInfo * L,const LandingPadInfo * R)62 bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
63 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
64 unsigned LSize = LIds.size(), RSize = RIds.size();
65 unsigned MinSize = LSize < RSize ? LSize : RSize;
66
67 for (unsigned i = 0; i != MinSize; ++i)
68 if (LIds[i] != RIds[i])
69 return LIds[i] < RIds[i];
70
71 return LSize < RSize;
72 }
73
74 /// ComputeActionsTable - Compute the actions table and gather the first action
75 /// index for each landing pad site.
76 unsigned DwarfException::
ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,SmallVectorImpl<ActionEntry> & Actions,SmallVectorImpl<unsigned> & FirstActions)77 ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
78 SmallVectorImpl<ActionEntry> &Actions,
79 SmallVectorImpl<unsigned> &FirstActions) {
80
81 // The action table follows the call-site table in the LSDA. The individual
82 // records are of two types:
83 //
84 // * Catch clause
85 // * Exception specification
86 //
87 // The two record kinds have the same format, with only small differences.
88 // They are distinguished by the "switch value" field: Catch clauses
89 // (TypeInfos) have strictly positive switch values, and exception
90 // specifications (FilterIds) have strictly negative switch values. Value 0
91 // indicates a catch-all clause.
92 //
93 // Negative type IDs index into FilterIds. Positive type IDs index into
94 // TypeInfos. The value written for a positive type ID is just the type ID
95 // itself. For a negative type ID, however, the value written is the
96 // (negative) byte offset of the corresponding FilterIds entry. The byte
97 // offset is usually equal to the type ID (because the FilterIds entries are
98 // written using a variable width encoding, which outputs one byte per entry
99 // as long as the value written is not too large) but can differ. This kind
100 // of complication does not occur for positive type IDs because type infos are
101 // output using a fixed width encoding. FilterOffsets[i] holds the byte
102 // offset corresponding to FilterIds[i].
103
104 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
105 SmallVector<int, 16> FilterOffsets;
106 FilterOffsets.reserve(FilterIds.size());
107 int Offset = -1;
108
109 for (std::vector<unsigned>::const_iterator
110 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
111 FilterOffsets.push_back(Offset);
112 Offset -= MCAsmInfo::getULEB128Size(*I);
113 }
114
115 FirstActions.reserve(LandingPads.size());
116
117 int FirstAction = 0;
118 unsigned SizeActions = 0;
119 const LandingPadInfo *PrevLPI = 0;
120
121 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
122 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
123 const LandingPadInfo *LPI = *I;
124 const std::vector<int> &TypeIds = LPI->TypeIds;
125 unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
126 unsigned SizeSiteActions = 0;
127
128 if (NumShared < TypeIds.size()) {
129 unsigned SizeAction = 0;
130 unsigned PrevAction = (unsigned)-1;
131
132 if (NumShared) {
133 unsigned SizePrevIds = PrevLPI->TypeIds.size();
134 assert(Actions.size());
135 PrevAction = Actions.size() - 1;
136 SizeAction =
137 MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
138 MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
139
140 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
141 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
142 SizeAction -=
143 MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
144 SizeAction += -Actions[PrevAction].NextAction;
145 PrevAction = Actions[PrevAction].Previous;
146 }
147 }
148
149 // Compute the actions.
150 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
151 int TypeID = TypeIds[J];
152 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
153 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
154 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
155
156 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
157 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
158 SizeSiteActions += SizeAction;
159
160 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
161 Actions.push_back(Action);
162 PrevAction = Actions.size() - 1;
163 }
164
165 // Record the first action of the landing pad site.
166 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
167 } // else identical - re-use previous FirstAction
168
169 // Information used when created the call-site table. The action record
170 // field of the call site record is the offset of the first associated
171 // action record, relative to the start of the actions table. This value is
172 // biased by 1 (1 indicating the start of the actions table), and 0
173 // indicates that there are no actions.
174 FirstActions.push_back(FirstAction);
175
176 // Compute this sites contribution to size.
177 SizeActions += SizeSiteActions;
178
179 PrevLPI = LPI;
180 }
181
182 return SizeActions;
183 }
184
185 /// CallToNoUnwindFunction - Return `true' if this is a call to a function
186 /// marked `nounwind'. Return `false' otherwise.
CallToNoUnwindFunction(const MachineInstr * MI)187 bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
188 assert(MI->isCall() && "This should be a call instruction!");
189
190 bool MarkedNoUnwind = false;
191 bool SawFunc = false;
192
193 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
194 const MachineOperand &MO = MI->getOperand(I);
195
196 if (!MO.isGlobal()) continue;
197
198 const Function *F = dyn_cast<Function>(MO.getGlobal());
199 if (F == 0) continue;
200
201 if (SawFunc) {
202 // Be conservative. If we have more than one function operand for this
203 // call, then we can't make the assumption that it's the callee and
204 // not a parameter to the call.
205 //
206 // FIXME: Determine if there's a way to say that `F' is the callee or
207 // parameter.
208 MarkedNoUnwind = false;
209 break;
210 }
211
212 MarkedNoUnwind = F->doesNotThrow();
213 SawFunc = true;
214 }
215
216 return MarkedNoUnwind;
217 }
218
219 /// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke
220 /// has a try-range containing the call, a non-zero landing pad, and an
221 /// appropriate action. The entry for an ordinary call has a try-range
222 /// containing the call and zero for the landing pad and the action. Calls
223 /// marked 'nounwind' have no entry and must not be contained in the try-range
224 /// of any entry - they form gaps in the table. Entries must be ordered by
225 /// try-range address.
226 void DwarfException::
ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> & CallSites,const RangeMapType & PadMap,const SmallVectorImpl<const LandingPadInfo * > & LandingPads,const SmallVectorImpl<unsigned> & FirstActions)227 ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
228 const RangeMapType &PadMap,
229 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
230 const SmallVectorImpl<unsigned> &FirstActions) {
231 // The end label of the previous invoke or nounwind try-range.
232 MCSymbol *LastLabel = 0;
233
234 // Whether there is a potentially throwing instruction (currently this means
235 // an ordinary call) between the end of the previous try-range and now.
236 bool SawPotentiallyThrowing = false;
237
238 // Whether the last CallSite entry was for an invoke.
239 bool PreviousIsInvoke = false;
240
241 // Visit all instructions in order of address.
242 for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
243 I != E; ++I) {
244 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
245 MI != E; ++MI) {
246 if (!MI->isLabel()) {
247 if (MI->isCall())
248 SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
249 continue;
250 }
251
252 // End of the previous try-range?
253 MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
254 if (BeginLabel == LastLabel)
255 SawPotentiallyThrowing = false;
256
257 // Beginning of a new try-range?
258 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
259 if (L == PadMap.end())
260 // Nope, it was just some random label.
261 continue;
262
263 const PadRange &P = L->second;
264 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
265 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
266 "Inconsistent landing pad map!");
267
268 // For Dwarf exception handling (SjLj handling doesn't use this). If some
269 // instruction between the previous try-range and this one may throw,
270 // create a call-site entry with no landing pad for the region between the
271 // try-ranges.
272 if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
273 CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
274 CallSites.push_back(Site);
275 PreviousIsInvoke = false;
276 }
277
278 LastLabel = LandingPad->EndLabels[P.RangeIndex];
279 assert(BeginLabel && LastLabel && "Invalid landing pad!");
280
281 if (!LandingPad->LandingPadLabel) {
282 // Create a gap.
283 PreviousIsInvoke = false;
284 } else {
285 // This try-range is for an invoke.
286 CallSiteEntry Site = {
287 BeginLabel,
288 LastLabel,
289 LandingPad->LandingPadLabel,
290 FirstActions[P.PadIndex]
291 };
292
293 // Try to merge with the previous call-site. SJLJ doesn't do this
294 if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
295 CallSiteEntry &Prev = CallSites.back();
296 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
297 // Extend the range of the previous entry.
298 Prev.EndLabel = Site.EndLabel;
299 continue;
300 }
301 }
302
303 // Otherwise, create a new call-site.
304 if (Asm->MAI->isExceptionHandlingDwarf())
305 CallSites.push_back(Site);
306 else {
307 // SjLj EH must maintain the call sites in the order assigned
308 // to them by the SjLjPrepare pass.
309 unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
310 if (CallSites.size() < SiteNo)
311 CallSites.resize(SiteNo);
312 CallSites[SiteNo - 1] = Site;
313 }
314 PreviousIsInvoke = true;
315 }
316 }
317 }
318
319 // If some instruction between the previous try-range and the end of the
320 // function may throw, create a call-site entry with no landing pad for the
321 // region following the try-range.
322 if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
323 CallSiteEntry Site = { LastLabel, 0, 0, 0 };
324 CallSites.push_back(Site);
325 }
326 }
327
328 /// EmitExceptionTable - Emit landing pads and actions.
329 ///
330 /// The general organization of the table is complex, but the basic concepts are
331 /// easy. First there is a header which describes the location and organization
332 /// of the three components that follow.
333 ///
334 /// 1. The landing pad site information describes the range of code covered by
335 /// the try. In our case it's an accumulation of the ranges covered by the
336 /// invokes in the try. There is also a reference to the landing pad that
337 /// handles the exception once processed. Finally an index into the actions
338 /// table.
339 /// 2. The action table, in our case, is composed of pairs of type IDs and next
340 /// action offset. Starting with the action index from the landing pad
341 /// site, each type ID is checked for a match to the current exception. If
342 /// it matches then the exception and type id are passed on to the landing
343 /// pad. Otherwise the next action is looked up. This chain is terminated
344 /// with a next action of zero. If no type id is found then the frame is
345 /// unwound and handling continues.
346 /// 3. Type ID table contains references to all the C++ typeinfo for all
347 /// catches in the function. This tables is reverse indexed base 1.
EmitExceptionTable()348 void DwarfException::EmitExceptionTable() {
349 const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
350 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
351 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
352
353 // Sort the landing pads in order of their type ids. This is used to fold
354 // duplicate actions.
355 SmallVector<const LandingPadInfo *, 64> LandingPads;
356 LandingPads.reserve(PadInfos.size());
357
358 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
359 LandingPads.push_back(&PadInfos[i]);
360
361 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
362
363 // Compute the actions table and gather the first action index for each
364 // landing pad site.
365 SmallVector<ActionEntry, 32> Actions;
366 SmallVector<unsigned, 64> FirstActions;
367 unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
368
369 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
370 // by try-range labels when lowered). Ordinary calls do not, so appropriate
371 // try-ranges for them need be deduced when using DWARF exception handling.
372 RangeMapType PadMap;
373 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
374 const LandingPadInfo *LandingPad = LandingPads[i];
375 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
376 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
377 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
378 PadRange P = { i, j };
379 PadMap[BeginLabel] = P;
380 }
381 }
382
383 // Compute the call-site table.
384 SmallVector<CallSiteEntry, 64> CallSites;
385 ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
386
387 // Final tallies.
388
389 // Call sites.
390 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
391 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
392
393 unsigned CallSiteTableLength;
394 if (IsSJLJ)
395 CallSiteTableLength = 0;
396 else {
397 unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4
398 unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
399 unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
400 CallSiteTableLength =
401 CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
402 }
403
404 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
405 CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
406 if (IsSJLJ)
407 CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
408 }
409
410 // Type infos.
411 const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
412 unsigned TTypeEncoding;
413 unsigned TypeFormatSize;
414
415 if (!HaveTTData) {
416 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
417 // that we're omitting that bit.
418 TTypeEncoding = dwarf::DW_EH_PE_omit;
419 // dwarf::DW_EH_PE_absptr
420 TypeFormatSize = Asm->getTargetData().getPointerSize();
421 } else {
422 // Okay, we have actual filters or typeinfos to emit. As such, we need to
423 // pick a type encoding for them. We're about to emit a list of pointers to
424 // typeinfo objects at the end of the LSDA. However, unless we're in static
425 // mode, this reference will require a relocation by the dynamic linker.
426 //
427 // Because of this, we have a couple of options:
428 //
429 // 1) If we are in -static mode, we can always use an absolute reference
430 // from the LSDA, because the static linker will resolve it.
431 //
432 // 2) Otherwise, if the LSDA section is writable, we can output the direct
433 // reference to the typeinfo and allow the dynamic linker to relocate
434 // it. Since it is in a writable section, the dynamic linker won't
435 // have a problem.
436 //
437 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
438 // we need to use some form of indirection. For example, on Darwin,
439 // we can output a statically-relocatable reference to a dyld stub. The
440 // offset to the stub is constant, but the contents are in a section
441 // that is updated by the dynamic linker. This is easy enough, but we
442 // need to tell the personality function of the unwinder to indirect
443 // through the dyld stub.
444 //
445 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
446 // somewhere. This predicate should be moved to a shared location that is
447 // in target-independent code.
448 //
449 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
450 TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
451 }
452
453 // Begin the exception table.
454 // Sometimes we want not to emit the data into separate section (e.g. ARM
455 // EHABI). In this case LSDASection will be NULL.
456 if (LSDASection)
457 Asm->OutStreamer.SwitchSection(LSDASection);
458 Asm->EmitAlignment(2);
459
460 // Emit the LSDA.
461 MCSymbol *GCCETSym =
462 Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
463 Twine(Asm->getFunctionNumber()));
464 Asm->OutStreamer.EmitLabel(GCCETSym);
465 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
466 Asm->getFunctionNumber()));
467
468 if (IsSJLJ)
469 Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
470 Asm->getFunctionNumber()));
471
472 // Emit the LSDA header.
473 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
474 Asm->EmitEncodingByte(TTypeEncoding, "@TType");
475
476 // The type infos need to be aligned. GCC does this by inserting padding just
477 // before the type infos. However, this changes the size of the exception
478 // table, so you need to take this into account when you output the exception
479 // table size. However, the size is output using a variable length encoding.
480 // So by increasing the size by inserting padding, you may increase the number
481 // of bytes used for writing the size. If it increases, say by one byte, then
482 // you now need to output one less byte of padding to get the type infos
483 // aligned. However this decreases the size of the exception table. This
484 // changes the value you have to output for the exception table size. Due to
485 // the variable length encoding, the number of bytes used for writing the
486 // length may decrease. If so, you then have to increase the amount of
487 // padding. And so on. If you look carefully at the GCC code you will see that
488 // it indeed does this in a loop, going on and on until the values stabilize.
489 // We chose another solution: don't output padding inside the table like GCC
490 // does, instead output it before the table.
491 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
492 unsigned CallSiteTableLengthSize =
493 MCAsmInfo::getULEB128Size(CallSiteTableLength);
494 unsigned TTypeBaseOffset =
495 sizeof(int8_t) + // Call site format
496 CallSiteTableLengthSize + // Call site table length size
497 CallSiteTableLength + // Call site table length
498 SizeActions + // Actions size
499 SizeTypes;
500 unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
501 unsigned TotalSize =
502 sizeof(int8_t) + // LPStart format
503 sizeof(int8_t) + // TType format
504 (HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size
505 TTypeBaseOffset; // TType base offset
506 unsigned SizeAlign = (4 - TotalSize) & 3;
507
508 if (HaveTTData) {
509 // Account for any extra padding that will be added to the call site table
510 // length.
511 Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
512 SizeAlign = 0;
513 }
514
515 bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
516
517 // SjLj Exception handling
518 if (IsSJLJ) {
519 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
520
521 // Add extra padding if it wasn't added to the TType base offset.
522 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
523
524 // Emit the landing pad site information.
525 unsigned idx = 0;
526 for (SmallVectorImpl<CallSiteEntry>::const_iterator
527 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
528 const CallSiteEntry &S = *I;
529
530 // Offset of the landing pad, counted in 16-byte bundles relative to the
531 // @LPStart address.
532 if (VerboseAsm) {
533 Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
534 Asm->OutStreamer.AddComment(" On exception at call site "+Twine(idx));
535 }
536 Asm->EmitULEB128(idx);
537
538 // Offset of the first associated action record, relative to the start of
539 // the action table. This value is biased by 1 (1 indicates the start of
540 // the action table), and 0 indicates that there are no actions.
541 if (VerboseAsm) {
542 if (S.Action == 0)
543 Asm->OutStreamer.AddComment(" Action: cleanup");
544 else
545 Asm->OutStreamer.AddComment(" Action: " +
546 Twine((S.Action - 1) / 2 + 1));
547 }
548 Asm->EmitULEB128(S.Action);
549 }
550 } else {
551 // DWARF Exception handling
552 assert(Asm->MAI->isExceptionHandlingDwarf());
553
554 // The call-site table is a list of all call sites that may throw an
555 // exception (including C++ 'throw' statements) in the procedure
556 // fragment. It immediately follows the LSDA header. Each entry indicates,
557 // for a given call, the first corresponding action record and corresponding
558 // landing pad.
559 //
560 // The table begins with the number of bytes, stored as an LEB128
561 // compressed, unsigned integer. The records immediately follow the record
562 // count. They are sorted in increasing call-site address. Each record
563 // indicates:
564 //
565 // * The position of the call-site.
566 // * The position of the landing pad.
567 // * The first action record for that call site.
568 //
569 // A missing entry in the call-site table indicates that a call is not
570 // supposed to throw.
571
572 // Emit the landing pad call site table.
573 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
574
575 // Add extra padding if it wasn't added to the TType base offset.
576 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
577
578 unsigned Entry = 0;
579 for (SmallVectorImpl<CallSiteEntry>::const_iterator
580 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
581 const CallSiteEntry &S = *I;
582
583 MCSymbol *EHFuncBeginSym =
584 Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
585
586 MCSymbol *BeginLabel = S.BeginLabel;
587 if (BeginLabel == 0)
588 BeginLabel = EHFuncBeginSym;
589 MCSymbol *EndLabel = S.EndLabel;
590 if (EndLabel == 0)
591 EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
592
593
594 // Offset of the call site relative to the previous call site, counted in
595 // number of 16-byte bundles. The first call site is counted relative to
596 // the start of the procedure fragment.
597 if (VerboseAsm)
598 Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
599 Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
600 if (VerboseAsm)
601 Asm->OutStreamer.AddComment(Twine(" Call between ") +
602 BeginLabel->getName() + " and " +
603 EndLabel->getName());
604 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
605
606 // Offset of the landing pad, counted in 16-byte bundles relative to the
607 // @LPStart address.
608 if (!S.PadLabel) {
609 if (VerboseAsm)
610 Asm->OutStreamer.AddComment(" has no landing pad");
611 Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
612 } else {
613 if (VerboseAsm)
614 Asm->OutStreamer.AddComment(Twine(" jumps to ") +
615 S.PadLabel->getName());
616 Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
617 }
618
619 // Offset of the first associated action record, relative to the start of
620 // the action table. This value is biased by 1 (1 indicates the start of
621 // the action table), and 0 indicates that there are no actions.
622 if (VerboseAsm) {
623 if (S.Action == 0)
624 Asm->OutStreamer.AddComment(" On action: cleanup");
625 else
626 Asm->OutStreamer.AddComment(" On action: " +
627 Twine((S.Action - 1) / 2 + 1));
628 }
629 Asm->EmitULEB128(S.Action);
630 }
631 }
632
633 // Emit the Action Table.
634 int Entry = 0;
635 for (SmallVectorImpl<ActionEntry>::const_iterator
636 I = Actions.begin(), E = Actions.end(); I != E; ++I) {
637 const ActionEntry &Action = *I;
638
639 if (VerboseAsm) {
640 // Emit comments that decode the action table.
641 Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
642 }
643
644 // Type Filter
645 //
646 // Used by the runtime to match the type of the thrown exception to the
647 // type of the catch clauses or the types in the exception specification.
648 if (VerboseAsm) {
649 if (Action.ValueForTypeID > 0)
650 Asm->OutStreamer.AddComment(" Catch TypeInfo " +
651 Twine(Action.ValueForTypeID));
652 else if (Action.ValueForTypeID < 0)
653 Asm->OutStreamer.AddComment(" Filter TypeInfo " +
654 Twine(Action.ValueForTypeID));
655 else
656 Asm->OutStreamer.AddComment(" Cleanup");
657 }
658 Asm->EmitSLEB128(Action.ValueForTypeID);
659
660 // Action Record
661 //
662 // Self-relative signed displacement in bytes of the next action record,
663 // or 0 if there is no next action record.
664 if (VerboseAsm) {
665 if (Action.NextAction == 0) {
666 Asm->OutStreamer.AddComment(" No further actions");
667 } else {
668 unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
669 Asm->OutStreamer.AddComment(" Continue to action "+Twine(NextAction));
670 }
671 }
672 Asm->EmitSLEB128(Action.NextAction);
673 }
674
675 // Emit the Catch TypeInfos.
676 if (VerboseAsm && !TypeInfos.empty()) {
677 Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
678 Asm->OutStreamer.AddBlankLine();
679 Entry = TypeInfos.size();
680 }
681
682 for (std::vector<const GlobalVariable *>::const_reverse_iterator
683 I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
684 const GlobalVariable *GV = *I;
685 if (VerboseAsm)
686 Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
687 if (GV)
688 Asm->EmitReference(GV, TTypeEncoding);
689 else
690 Asm->OutStreamer.EmitIntValue(0,Asm->GetSizeOfEncodedValue(TTypeEncoding),
691 0);
692 }
693
694 // Emit the Exception Specifications.
695 if (VerboseAsm && !FilterIds.empty()) {
696 Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
697 Asm->OutStreamer.AddBlankLine();
698 Entry = 0;
699 }
700 for (std::vector<unsigned>::const_iterator
701 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
702 unsigned TypeID = *I;
703 if (VerboseAsm) {
704 --Entry;
705 if (TypeID != 0)
706 Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
707 }
708
709 Asm->EmitULEB128(TypeID);
710 }
711
712 Asm->EmitAlignment(2);
713 }
714
715 /// EndModule - Emit all exception information that should come after the
716 /// content.
EndModule()717 void DwarfException::EndModule() {
718 llvm_unreachable("Should be implemented");
719 }
720
721 /// BeginFunction - Gather pre-function exception information. Assumes it's
722 /// being emitted immediately after the function entry point.
BeginFunction(const MachineFunction * MF)723 void DwarfException::BeginFunction(const MachineFunction *MF) {
724 llvm_unreachable("Should be implemented");
725 }
726
727 /// EndFunction - Gather and emit post-function exception information.
728 ///
EndFunction()729 void DwarfException::EndFunction() {
730 llvm_unreachable("Should be implemented");
731 }
732