1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_UTILS_H_
29 #define V8_UTILS_H_
30
31 #include <stdlib.h>
32 #include <string.h>
33 #include <climits>
34
35 #include "globals.h"
36 #include "checks.h"
37 #include "allocation.h"
38
39 namespace v8 {
40 namespace internal {
41
42 // ----------------------------------------------------------------------------
43 // General helper functions
44
45 #define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
46
47 // Returns true iff x is a power of 2 (or zero). Cannot be used with the
48 // maximally negative value of the type T (the -1 overflows).
49 template <typename T>
IsPowerOf2(T x)50 inline bool IsPowerOf2(T x) {
51 return IS_POWER_OF_TWO(x);
52 }
53
54
55 // X must be a power of 2. Returns the number of trailing zeros.
WhichPowerOf2(uint32_t x)56 inline int WhichPowerOf2(uint32_t x) {
57 ASSERT(IsPowerOf2(x));
58 ASSERT(x != 0);
59 int bits = 0;
60 #ifdef DEBUG
61 int original_x = x;
62 #endif
63 if (x >= 0x10000) {
64 bits += 16;
65 x >>= 16;
66 }
67 if (x >= 0x100) {
68 bits += 8;
69 x >>= 8;
70 }
71 if (x >= 0x10) {
72 bits += 4;
73 x >>= 4;
74 }
75 switch (x) {
76 default: UNREACHABLE();
77 case 8: bits++; // Fall through.
78 case 4: bits++; // Fall through.
79 case 2: bits++; // Fall through.
80 case 1: break;
81 }
82 ASSERT_EQ(1 << bits, original_x);
83 return bits;
84 return 0;
85 }
86
87
88 // The C++ standard leaves the semantics of '>>' undefined for
89 // negative signed operands. Most implementations do the right thing,
90 // though.
ArithmeticShiftRight(int x,int s)91 inline int ArithmeticShiftRight(int x, int s) {
92 return x >> s;
93 }
94
95
96 // Compute the 0-relative offset of some absolute value x of type T.
97 // This allows conversion of Addresses and integral types into
98 // 0-relative int offsets.
99 template <typename T>
OffsetFrom(T x)100 inline intptr_t OffsetFrom(T x) {
101 return x - static_cast<T>(0);
102 }
103
104
105 // Compute the absolute value of type T for some 0-relative offset x.
106 // This allows conversion of 0-relative int offsets into Addresses and
107 // integral types.
108 template <typename T>
AddressFrom(intptr_t x)109 inline T AddressFrom(intptr_t x) {
110 return static_cast<T>(static_cast<T>(0) + x);
111 }
112
113
114 // Return the largest multiple of m which is <= x.
115 template <typename T>
RoundDown(T x,intptr_t m)116 inline T RoundDown(T x, intptr_t m) {
117 ASSERT(IsPowerOf2(m));
118 return AddressFrom<T>(OffsetFrom(x) & -m);
119 }
120
121
122 // Return the smallest multiple of m which is >= x.
123 template <typename T>
RoundUp(T x,intptr_t m)124 inline T RoundUp(T x, intptr_t m) {
125 return RoundDown<T>(static_cast<T>(x + m - 1), m);
126 }
127
128
129 template <typename T>
Compare(const T & a,const T & b)130 int Compare(const T& a, const T& b) {
131 if (a == b)
132 return 0;
133 else if (a < b)
134 return -1;
135 else
136 return 1;
137 }
138
139
140 template <typename T>
PointerValueCompare(const T * a,const T * b)141 int PointerValueCompare(const T* a, const T* b) {
142 return Compare<T>(*a, *b);
143 }
144
145
146 // Compare function to compare the object pointer value of two
147 // handlified objects. The handles are passed as pointers to the
148 // handles.
149 template<typename T> class Handle; // Forward declaration.
150 template <typename T>
HandleObjectPointerCompare(const Handle<T> * a,const Handle<T> * b)151 int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
152 return Compare<T*>(*(*a), *(*b));
153 }
154
155
156 // Returns the smallest power of two which is >= x. If you pass in a
157 // number that is already a power of two, it is returned as is.
158 // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
159 // figure 3-3, page 48, where the function is called clp2.
RoundUpToPowerOf2(uint32_t x)160 inline uint32_t RoundUpToPowerOf2(uint32_t x) {
161 ASSERT(x <= 0x80000000u);
162 x = x - 1;
163 x = x | (x >> 1);
164 x = x | (x >> 2);
165 x = x | (x >> 4);
166 x = x | (x >> 8);
167 x = x | (x >> 16);
168 return x + 1;
169 }
170
171
RoundDownToPowerOf2(uint32_t x)172 inline uint32_t RoundDownToPowerOf2(uint32_t x) {
173 uint32_t rounded_up = RoundUpToPowerOf2(x);
174 if (rounded_up > x) return rounded_up >> 1;
175 return rounded_up;
176 }
177
178
179 template <typename T, typename U>
IsAligned(T value,U alignment)180 inline bool IsAligned(T value, U alignment) {
181 return (value & (alignment - 1)) == 0;
182 }
183
184
185 // Returns true if (addr + offset) is aligned.
186 inline bool IsAddressAligned(Address addr,
187 intptr_t alignment,
188 int offset = 0) {
189 intptr_t offs = OffsetFrom(addr + offset);
190 return IsAligned(offs, alignment);
191 }
192
193
194 // Returns the maximum of the two parameters.
195 template <typename T>
Max(T a,T b)196 T Max(T a, T b) {
197 return a < b ? b : a;
198 }
199
200
201 // Returns the minimum of the two parameters.
202 template <typename T>
Min(T a,T b)203 T Min(T a, T b) {
204 return a < b ? a : b;
205 }
206
207
StrLength(const char * string)208 inline int StrLength(const char* string) {
209 size_t length = strlen(string);
210 ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
211 return static_cast<int>(length);
212 }
213
214
215 // ----------------------------------------------------------------------------
216 // BitField is a help template for encoding and decode bitfield with
217 // unsigned content.
218 template<class T, int shift, int size>
219 class BitField {
220 public:
221 // A uint32_t mask of bit field. To use all bits of a uint32 in a
222 // bitfield without compiler warnings we have to compute 2^32 without
223 // using a shift count of 32.
224 static const uint32_t kMask = ((1U << shift) << size) - (1U << shift);
225
226 // Value for the field with all bits set.
227 static const T kMax = static_cast<T>((1U << size) - 1);
228
229 // Tells whether the provided value fits into the bit field.
is_valid(T value)230 static bool is_valid(T value) {
231 return (static_cast<uint32_t>(value) & ~static_cast<uint32_t>(kMax)) == 0;
232 }
233
234 // Returns a uint32_t with the bit field value encoded.
encode(T value)235 static uint32_t encode(T value) {
236 ASSERT(is_valid(value));
237 return static_cast<uint32_t>(value) << shift;
238 }
239
240 // Returns a uint32_t with the bit field value updated.
update(uint32_t previous,T value)241 static uint32_t update(uint32_t previous, T value) {
242 return (previous & ~kMask) | encode(value);
243 }
244
245 // Extracts the bit field from the value.
decode(uint32_t value)246 static T decode(uint32_t value) {
247 return static_cast<T>((value & kMask) >> shift);
248 }
249 };
250
251
252 // ----------------------------------------------------------------------------
253 // Hash function.
254
255 static const uint32_t kZeroHashSeed = 0;
256
257 // Thomas Wang, Integer Hash Functions.
258 // http://www.concentric.net/~Ttwang/tech/inthash.htm
ComputeIntegerHash(uint32_t key,uint32_t seed)259 inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) {
260 uint32_t hash = key;
261 hash = hash ^ seed;
262 hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
263 hash = hash ^ (hash >> 12);
264 hash = hash + (hash << 2);
265 hash = hash ^ (hash >> 4);
266 hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
267 hash = hash ^ (hash >> 16);
268 return hash;
269 }
270
271
ComputeLongHash(uint64_t key)272 inline uint32_t ComputeLongHash(uint64_t key) {
273 uint64_t hash = key;
274 hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1;
275 hash = hash ^ (hash >> 31);
276 hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4);
277 hash = hash ^ (hash >> 11);
278 hash = hash + (hash << 6);
279 hash = hash ^ (hash >> 22);
280 return (uint32_t) hash;
281 }
282
283
ComputePointerHash(void * ptr)284 inline uint32_t ComputePointerHash(void* ptr) {
285 return ComputeIntegerHash(
286 static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)),
287 v8::internal::kZeroHashSeed);
288 }
289
290
291 // ----------------------------------------------------------------------------
292 // Miscellaneous
293
294 // A static resource holds a static instance that can be reserved in
295 // a local scope using an instance of Access. Attempts to re-reserve
296 // the instance will cause an error.
297 template <typename T>
298 class StaticResource {
299 public:
StaticResource()300 StaticResource() : is_reserved_(false) {}
301
302 private:
303 template <typename S> friend class Access;
304 T instance_;
305 bool is_reserved_;
306 };
307
308
309 // Locally scoped access to a static resource.
310 template <typename T>
311 class Access {
312 public:
Access(StaticResource<T> * resource)313 explicit Access(StaticResource<T>* resource)
314 : resource_(resource)
315 , instance_(&resource->instance_) {
316 ASSERT(!resource->is_reserved_);
317 resource->is_reserved_ = true;
318 }
319
~Access()320 ~Access() {
321 resource_->is_reserved_ = false;
322 resource_ = NULL;
323 instance_ = NULL;
324 }
325
value()326 T* value() { return instance_; }
327 T* operator -> () { return instance_; }
328
329 private:
330 StaticResource<T>* resource_;
331 T* instance_;
332 };
333
334
335 template <typename T>
336 class Vector {
337 public:
Vector()338 Vector() : start_(NULL), length_(0) {}
Vector(T * data,int length)339 Vector(T* data, int length) : start_(data), length_(length) {
340 ASSERT(length == 0 || (length > 0 && data != NULL));
341 }
342
New(int length)343 static Vector<T> New(int length) {
344 return Vector<T>(NewArray<T>(length), length);
345 }
346
347 // Returns a vector using the same backing storage as this one,
348 // spanning from and including 'from', to but not including 'to'.
SubVector(int from,int to)349 Vector<T> SubVector(int from, int to) {
350 ASSERT(to <= length_);
351 ASSERT(from < to);
352 ASSERT(0 <= from);
353 return Vector<T>(start() + from, to - from);
354 }
355
356 // Returns the length of the vector.
length()357 int length() const { return length_; }
358
359 // Returns whether or not the vector is empty.
is_empty()360 bool is_empty() const { return length_ == 0; }
361
362 // Returns the pointer to the start of the data in the vector.
start()363 T* start() const { return start_; }
364
365 // Access individual vector elements - checks bounds in debug mode.
366 T& operator[](int index) const {
367 ASSERT(0 <= index && index < length_);
368 return start_[index];
369 }
370
at(int index)371 const T& at(int index) const { return operator[](index); }
372
first()373 T& first() { return start_[0]; }
374
last()375 T& last() { return start_[length_ - 1]; }
376
377 // Returns a clone of this vector with a new backing store.
Clone()378 Vector<T> Clone() const {
379 T* result = NewArray<T>(length_);
380 for (int i = 0; i < length_; i++) result[i] = start_[i];
381 return Vector<T>(result, length_);
382 }
383
Sort(int (* cmp)(const T *,const T *))384 void Sort(int (*cmp)(const T*, const T*)) {
385 typedef int (*RawComparer)(const void*, const void*);
386 qsort(start(),
387 length(),
388 sizeof(T),
389 reinterpret_cast<RawComparer>(cmp));
390 }
391
Sort()392 void Sort() {
393 Sort(PointerValueCompare<T>);
394 }
395
Truncate(int length)396 void Truncate(int length) {
397 ASSERT(length <= length_);
398 length_ = length;
399 }
400
401 // Releases the array underlying this vector. Once disposed the
402 // vector is empty.
Dispose()403 void Dispose() {
404 DeleteArray(start_);
405 start_ = NULL;
406 length_ = 0;
407 }
408
409 inline Vector<T> operator+(int offset) {
410 ASSERT(offset < length_);
411 return Vector<T>(start_ + offset, length_ - offset);
412 }
413
414 // Factory method for creating empty vectors.
empty()415 static Vector<T> empty() { return Vector<T>(NULL, 0); }
416
417 template<typename S>
cast(Vector<S> input)418 static Vector<T> cast(Vector<S> input) {
419 return Vector<T>(reinterpret_cast<T*>(input.start()),
420 input.length() * sizeof(S) / sizeof(T));
421 }
422
423 protected:
set_start(T * start)424 void set_start(T* start) { start_ = start; }
425
426 private:
427 T* start_;
428 int length_;
429 };
430
431
432 // A pointer that can only be set once and doesn't allow NULL values.
433 template<typename T>
434 class SetOncePointer {
435 public:
SetOncePointer()436 SetOncePointer() : pointer_(NULL) { }
437
is_set()438 bool is_set() const { return pointer_ != NULL; }
439
get()440 T* get() const {
441 ASSERT(pointer_ != NULL);
442 return pointer_;
443 }
444
set(T * value)445 void set(T* value) {
446 ASSERT(pointer_ == NULL && value != NULL);
447 pointer_ = value;
448 }
449
450 private:
451 T* pointer_;
452 };
453
454
455 template <typename T, int kSize>
456 class EmbeddedVector : public Vector<T> {
457 public:
EmbeddedVector()458 EmbeddedVector() : Vector<T>(buffer_, kSize) { }
459
EmbeddedVector(T initial_value)460 explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
461 for (int i = 0; i < kSize; ++i) {
462 buffer_[i] = initial_value;
463 }
464 }
465
466 // When copying, make underlying Vector to reference our buffer.
EmbeddedVector(const EmbeddedVector & rhs)467 EmbeddedVector(const EmbeddedVector& rhs)
468 : Vector<T>(rhs) {
469 memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
470 set_start(buffer_);
471 }
472
473 EmbeddedVector& operator=(const EmbeddedVector& rhs) {
474 if (this == &rhs) return *this;
475 Vector<T>::operator=(rhs);
476 memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
477 this->set_start(buffer_);
478 return *this;
479 }
480
481 private:
482 T buffer_[kSize];
483 };
484
485
486 template <typename T>
487 class ScopedVector : public Vector<T> {
488 public:
ScopedVector(int length)489 explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
~ScopedVector()490 ~ScopedVector() {
491 DeleteArray(this->start());
492 }
493
494 private:
495 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
496 };
497
498
CStrVector(const char * data)499 inline Vector<const char> CStrVector(const char* data) {
500 return Vector<const char>(data, StrLength(data));
501 }
502
MutableCStrVector(char * data)503 inline Vector<char> MutableCStrVector(char* data) {
504 return Vector<char>(data, StrLength(data));
505 }
506
MutableCStrVector(char * data,int max)507 inline Vector<char> MutableCStrVector(char* data, int max) {
508 int length = StrLength(data);
509 return Vector<char>(data, (length < max) ? length : max);
510 }
511
512
513 /*
514 * A class that collects values into a backing store.
515 * Specialized versions of the class can allow access to the backing store
516 * in different ways.
517 * There is no guarantee that the backing store is contiguous (and, as a
518 * consequence, no guarantees that consecutively added elements are adjacent
519 * in memory). The collector may move elements unless it has guaranteed not
520 * to.
521 */
522 template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
523 class Collector {
524 public:
525 explicit Collector(int initial_capacity = kMinCapacity)
526 : index_(0), size_(0) {
527 current_chunk_ = Vector<T>::New(initial_capacity);
528 }
529
~Collector()530 virtual ~Collector() {
531 // Free backing store (in reverse allocation order).
532 current_chunk_.Dispose();
533 for (int i = chunks_.length() - 1; i >= 0; i--) {
534 chunks_.at(i).Dispose();
535 }
536 }
537
538 // Add a single element.
Add(T value)539 inline void Add(T value) {
540 if (index_ >= current_chunk_.length()) {
541 Grow(1);
542 }
543 current_chunk_[index_] = value;
544 index_++;
545 size_++;
546 }
547
548 // Add a block of contiguous elements and return a Vector backed by the
549 // memory area.
550 // A basic Collector will keep this vector valid as long as the Collector
551 // is alive.
AddBlock(int size,T initial_value)552 inline Vector<T> AddBlock(int size, T initial_value) {
553 ASSERT(size > 0);
554 if (size > current_chunk_.length() - index_) {
555 Grow(size);
556 }
557 T* position = current_chunk_.start() + index_;
558 index_ += size;
559 size_ += size;
560 for (int i = 0; i < size; i++) {
561 position[i] = initial_value;
562 }
563 return Vector<T>(position, size);
564 }
565
566
567 // Add a contiguous block of elements and return a vector backed
568 // by the added block.
569 // A basic Collector will keep this vector valid as long as the Collector
570 // is alive.
AddBlock(Vector<const T> source)571 inline Vector<T> AddBlock(Vector<const T> source) {
572 if (source.length() > current_chunk_.length() - index_) {
573 Grow(source.length());
574 }
575 T* position = current_chunk_.start() + index_;
576 index_ += source.length();
577 size_ += source.length();
578 for (int i = 0; i < source.length(); i++) {
579 position[i] = source[i];
580 }
581 return Vector<T>(position, source.length());
582 }
583
584
585 // Write the contents of the collector into the provided vector.
WriteTo(Vector<T> destination)586 void WriteTo(Vector<T> destination) {
587 ASSERT(size_ <= destination.length());
588 int position = 0;
589 for (int i = 0; i < chunks_.length(); i++) {
590 Vector<T> chunk = chunks_.at(i);
591 for (int j = 0; j < chunk.length(); j++) {
592 destination[position] = chunk[j];
593 position++;
594 }
595 }
596 for (int i = 0; i < index_; i++) {
597 destination[position] = current_chunk_[i];
598 position++;
599 }
600 }
601
602 // Allocate a single contiguous vector, copy all the collected
603 // elements to the vector, and return it.
604 // The caller is responsible for freeing the memory of the returned
605 // vector (e.g., using Vector::Dispose).
ToVector()606 Vector<T> ToVector() {
607 Vector<T> new_store = Vector<T>::New(size_);
608 WriteTo(new_store);
609 return new_store;
610 }
611
612 // Resets the collector to be empty.
613 virtual void Reset();
614
615 // Total number of elements added to collector so far.
size()616 inline int size() { return size_; }
617
618 protected:
619 static const int kMinCapacity = 16;
620 List<Vector<T> > chunks_;
621 Vector<T> current_chunk_; // Block of memory currently being written into.
622 int index_; // Current index in current chunk.
623 int size_; // Total number of elements in collector.
624
625 // Creates a new current chunk, and stores the old chunk in the chunks_ list.
Grow(int min_capacity)626 void Grow(int min_capacity) {
627 ASSERT(growth_factor > 1);
628 int new_capacity;
629 int current_length = current_chunk_.length();
630 if (current_length < kMinCapacity) {
631 // The collector started out as empty.
632 new_capacity = min_capacity * growth_factor;
633 if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
634 } else {
635 int growth = current_length * (growth_factor - 1);
636 if (growth > max_growth) {
637 growth = max_growth;
638 }
639 new_capacity = current_length + growth;
640 if (new_capacity < min_capacity) {
641 new_capacity = min_capacity + growth;
642 }
643 }
644 NewChunk(new_capacity);
645 ASSERT(index_ + min_capacity <= current_chunk_.length());
646 }
647
648 // Before replacing the current chunk, give a subclass the option to move
649 // some of the current data into the new chunk. The function may update
650 // the current index_ value to represent data no longer in the current chunk.
651 // Returns the initial index of the new chunk (after copied data).
NewChunk(int new_capacity)652 virtual void NewChunk(int new_capacity) {
653 Vector<T> new_chunk = Vector<T>::New(new_capacity);
654 if (index_ > 0) {
655 chunks_.Add(current_chunk_.SubVector(0, index_));
656 } else {
657 current_chunk_.Dispose();
658 }
659 current_chunk_ = new_chunk;
660 index_ = 0;
661 }
662 };
663
664
665 /*
666 * A collector that allows sequences of values to be guaranteed to
667 * stay consecutive.
668 * If the backing store grows while a sequence is active, the current
669 * sequence might be moved, but after the sequence is ended, it will
670 * not move again.
671 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
672 * as well, if inside an active sequence where another element is added.
673 */
674 template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
675 class SequenceCollector : public Collector<T, growth_factor, max_growth> {
676 public:
SequenceCollector(int initial_capacity)677 explicit SequenceCollector(int initial_capacity)
678 : Collector<T, growth_factor, max_growth>(initial_capacity),
679 sequence_start_(kNoSequence) { }
680
~SequenceCollector()681 virtual ~SequenceCollector() {}
682
StartSequence()683 void StartSequence() {
684 ASSERT(sequence_start_ == kNoSequence);
685 sequence_start_ = this->index_;
686 }
687
EndSequence()688 Vector<T> EndSequence() {
689 ASSERT(sequence_start_ != kNoSequence);
690 int sequence_start = sequence_start_;
691 sequence_start_ = kNoSequence;
692 if (sequence_start == this->index_) return Vector<T>();
693 return this->current_chunk_.SubVector(sequence_start, this->index_);
694 }
695
696 // Drops the currently added sequence, and all collected elements in it.
DropSequence()697 void DropSequence() {
698 ASSERT(sequence_start_ != kNoSequence);
699 int sequence_length = this->index_ - sequence_start_;
700 this->index_ = sequence_start_;
701 this->size_ -= sequence_length;
702 sequence_start_ = kNoSequence;
703 }
704
Reset()705 virtual void Reset() {
706 sequence_start_ = kNoSequence;
707 this->Collector<T, growth_factor, max_growth>::Reset();
708 }
709
710 private:
711 static const int kNoSequence = -1;
712 int sequence_start_;
713
714 // Move the currently active sequence to the new chunk.
NewChunk(int new_capacity)715 virtual void NewChunk(int new_capacity) {
716 if (sequence_start_ == kNoSequence) {
717 // Fall back on default behavior if no sequence has been started.
718 this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
719 return;
720 }
721 int sequence_length = this->index_ - sequence_start_;
722 Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
723 ASSERT(sequence_length < new_chunk.length());
724 for (int i = 0; i < sequence_length; i++) {
725 new_chunk[i] = this->current_chunk_[sequence_start_ + i];
726 }
727 if (sequence_start_ > 0) {
728 this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
729 } else {
730 this->current_chunk_.Dispose();
731 }
732 this->current_chunk_ = new_chunk;
733 this->index_ = sequence_length;
734 sequence_start_ = 0;
735 }
736 };
737
738
739 // Compare ASCII/16bit chars to ASCII/16bit chars.
740 template <typename lchar, typename rchar>
CompareChars(const lchar * lhs,const rchar * rhs,int chars)741 inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
742 const lchar* limit = lhs + chars;
743 #ifdef V8_HOST_CAN_READ_UNALIGNED
744 if (sizeof(*lhs) == sizeof(*rhs)) {
745 // Number of characters in a uintptr_t.
746 static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
747 while (lhs <= limit - kStepSize) {
748 if (*reinterpret_cast<const uintptr_t*>(lhs) !=
749 *reinterpret_cast<const uintptr_t*>(rhs)) {
750 break;
751 }
752 lhs += kStepSize;
753 rhs += kStepSize;
754 }
755 }
756 #endif
757 while (lhs < limit) {
758 int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
759 if (r != 0) return r;
760 ++lhs;
761 ++rhs;
762 }
763 return 0;
764 }
765
766
767 // Calculate 10^exponent.
TenToThe(int exponent)768 inline int TenToThe(int exponent) {
769 ASSERT(exponent <= 9);
770 ASSERT(exponent >= 1);
771 int answer = 10;
772 for (int i = 1; i < exponent; i++) answer *= 10;
773 return answer;
774 }
775
776
777 // The type-based aliasing rule allows the compiler to assume that pointers of
778 // different types (for some definition of different) never alias each other.
779 // Thus the following code does not work:
780 //
781 // float f = foo();
782 // int fbits = *(int*)(&f);
783 //
784 // The compiler 'knows' that the int pointer can't refer to f since the types
785 // don't match, so the compiler may cache f in a register, leaving random data
786 // in fbits. Using C++ style casts makes no difference, however a pointer to
787 // char data is assumed to alias any other pointer. This is the 'memcpy
788 // exception'.
789 //
790 // Bit_cast uses the memcpy exception to move the bits from a variable of one
791 // type of a variable of another type. Of course the end result is likely to
792 // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
793 // will completely optimize BitCast away.
794 //
795 // There is an additional use for BitCast.
796 // Recent gccs will warn when they see casts that may result in breakage due to
797 // the type-based aliasing rule. If you have checked that there is no breakage
798 // you can use BitCast to cast one pointer type to another. This confuses gcc
799 // enough that it can no longer see that you have cast one pointer type to
800 // another thus avoiding the warning.
801
802 // We need different implementations of BitCast for pointer and non-pointer
803 // values. We use partial specialization of auxiliary struct to work around
804 // issues with template functions overloading.
805 template <class Dest, class Source>
806 struct BitCastHelper {
807 STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
808
INLINEBitCastHelper809 INLINE(static Dest cast(const Source& source)) {
810 Dest dest;
811 memcpy(&dest, &source, sizeof(dest));
812 return dest;
813 }
814 };
815
816 template <class Dest, class Source>
817 struct BitCastHelper<Dest, Source*> {
818 INLINE(static Dest cast(Source* source)) {
819 return BitCastHelper<Dest, uintptr_t>::
820 cast(reinterpret_cast<uintptr_t>(source));
821 }
822 };
823
824 template <class Dest, class Source>
825 INLINE(Dest BitCast(const Source& source));
826
827 template <class Dest, class Source>
828 inline Dest BitCast(const Source& source) {
829 return BitCastHelper<Dest, Source>::cast(source);
830 }
831
832
833 template<typename ElementType, int NumElements>
834 class EmbeddedContainer {
835 public:
836 EmbeddedContainer() : elems_() { }
837
838 int length() { return NumElements; }
839 ElementType& operator[](int i) {
840 ASSERT(i < length());
841 return elems_[i];
842 }
843
844 private:
845 ElementType elems_[NumElements];
846 };
847
848
849 template<typename ElementType>
850 class EmbeddedContainer<ElementType, 0> {
851 public:
852 int length() { return 0; }
853 ElementType& operator[](int i) {
854 UNREACHABLE();
855 static ElementType t = 0;
856 return t;
857 }
858 };
859
860
861 // Helper class for building result strings in a character buffer. The
862 // purpose of the class is to use safe operations that checks the
863 // buffer bounds on all operations in debug mode.
864 // This simple base class does not allow formatted output.
865 class SimpleStringBuilder {
866 public:
867 // Create a string builder with a buffer of the given size. The
868 // buffer is allocated through NewArray<char> and must be
869 // deallocated by the caller of Finalize().
870 explicit SimpleStringBuilder(int size);
871
872 SimpleStringBuilder(char* buffer, int size)
873 : buffer_(buffer, size), position_(0) { }
874
875 ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
876
877 int size() const { return buffer_.length(); }
878
879 // Get the current position in the builder.
880 int position() const {
881 ASSERT(!is_finalized());
882 return position_;
883 }
884
885 // Reset the position.
886 void Reset() { position_ = 0; }
887
888 // Add a single character to the builder. It is not allowed to add
889 // 0-characters; use the Finalize() method to terminate the string
890 // instead.
891 void AddCharacter(char c) {
892 ASSERT(c != '\0');
893 ASSERT(!is_finalized() && position_ < buffer_.length());
894 buffer_[position_++] = c;
895 }
896
897 // Add an entire string to the builder. Uses strlen() internally to
898 // compute the length of the input string.
899 void AddString(const char* s);
900
901 // Add the first 'n' characters of the given string 's' to the
902 // builder. The input string must have enough characters.
903 void AddSubstring(const char* s, int n);
904
905 // Add character padding to the builder. If count is non-positive,
906 // nothing is added to the builder.
907 void AddPadding(char c, int count);
908
909 // Add the decimal representation of the value.
910 void AddDecimalInteger(int value);
911
912 // Finalize the string by 0-terminating it and returning the buffer.
913 char* Finalize();
914
915 protected:
916 Vector<char> buffer_;
917 int position_;
918
919 bool is_finalized() const { return position_ < 0; }
920
921 private:
922 DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
923 };
924
925
926 // A poor man's version of STL's bitset: A bit set of enums E (without explicit
927 // values), fitting into an integral type T.
928 template <class E, class T = int>
929 class EnumSet {
930 public:
931 explicit EnumSet(T bits = 0) : bits_(bits) {}
932 bool IsEmpty() const { return bits_ == 0; }
933 bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
934 bool ContainsAnyOf(const EnumSet& set) const {
935 return (bits_ & set.bits_) != 0;
936 }
937 void Add(E element) { bits_ |= Mask(element); }
938 void Add(const EnumSet& set) { bits_ |= set.bits_; }
939 void Remove(E element) { bits_ &= ~Mask(element); }
940 void Remove(const EnumSet& set) { bits_ &= ~set.bits_; }
941 void RemoveAll() { bits_ = 0; }
942 void Intersect(const EnumSet& set) { bits_ &= set.bits_; }
943 T ToIntegral() const { return bits_; }
944 bool operator==(const EnumSet& set) { return bits_ == set.bits_; }
945
946 private:
947 T Mask(E element) const {
948 // The strange typing in ASSERT is necessary to avoid stupid warnings, see:
949 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
950 ASSERT(element < static_cast<int>(sizeof(T) * CHAR_BIT));
951 return 1 << element;
952 }
953
954 T bits_;
955 };
956
957 } } // namespace v8::internal
958
959 #endif // V8_UTILS_H_
960