• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Lex/LiteralSupport.h"
25 #include "clang/Lex/Lexer.h"
26 #include "clang/Sema/SemaDiagnostic.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cstring>
34 using namespace clang;
35 
getBestDynamicClassType() const36 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
37   const Expr *E = ignoreParenBaseCasts();
38 
39   QualType DerivedType = E->getType();
40   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
41     DerivedType = PTy->getPointeeType();
42 
43   if (DerivedType->isDependentType())
44     return NULL;
45 
46   const RecordType *Ty = DerivedType->castAs<RecordType>();
47   Decl *D = Ty->getDecl();
48   return cast<CXXRecordDecl>(D);
49 }
50 
51 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
52 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
53 /// but also int expressions which are produced by things like comparisons in
54 /// C.
isKnownToHaveBooleanValue() const55 bool Expr::isKnownToHaveBooleanValue() const {
56   const Expr *E = IgnoreParens();
57 
58   // If this value has _Bool type, it is obvious 0/1.
59   if (E->getType()->isBooleanType()) return true;
60   // If this is a non-scalar-integer type, we don't care enough to try.
61   if (!E->getType()->isIntegralOrEnumerationType()) return false;
62 
63   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
64     switch (UO->getOpcode()) {
65     case UO_Plus:
66       return UO->getSubExpr()->isKnownToHaveBooleanValue();
67     default:
68       return false;
69     }
70   }
71 
72   // Only look through implicit casts.  If the user writes
73   // '(int) (a && b)' treat it as an arbitrary int.
74   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
75     return CE->getSubExpr()->isKnownToHaveBooleanValue();
76 
77   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
78     switch (BO->getOpcode()) {
79     default: return false;
80     case BO_LT:   // Relational operators.
81     case BO_GT:
82     case BO_LE:
83     case BO_GE:
84     case BO_EQ:   // Equality operators.
85     case BO_NE:
86     case BO_LAnd: // AND operator.
87     case BO_LOr:  // Logical OR operator.
88       return true;
89 
90     case BO_And:  // Bitwise AND operator.
91     case BO_Xor:  // Bitwise XOR operator.
92     case BO_Or:   // Bitwise OR operator.
93       // Handle things like (x==2)|(y==12).
94       return BO->getLHS()->isKnownToHaveBooleanValue() &&
95              BO->getRHS()->isKnownToHaveBooleanValue();
96 
97     case BO_Comma:
98     case BO_Assign:
99       return BO->getRHS()->isKnownToHaveBooleanValue();
100     }
101   }
102 
103   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
104     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
105            CO->getFalseExpr()->isKnownToHaveBooleanValue();
106 
107   return false;
108 }
109 
110 // Amusing macro metaprogramming hack: check whether a class provides
111 // a more specific implementation of getExprLoc().
112 //
113 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
114 namespace {
115   /// This implementation is used when a class provides a custom
116   /// implementation of getExprLoc.
117   template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)118   SourceLocation getExprLocImpl(const Expr *expr,
119                                 SourceLocation (T::*v)() const) {
120     return static_cast<const E*>(expr)->getExprLoc();
121   }
122 
123   /// This implementation is used when a class doesn't provide
124   /// a custom implementation of getExprLoc.  Overload resolution
125   /// should pick it over the implementation above because it's
126   /// more specialized according to function template partial ordering.
127   template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)128   SourceLocation getExprLocImpl(const Expr *expr,
129                                 SourceLocation (Expr::*v)() const) {
130     return static_cast<const E*>(expr)->getLocStart();
131   }
132 }
133 
getExprLoc() const134 SourceLocation Expr::getExprLoc() const {
135   switch (getStmtClass()) {
136   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
137 #define ABSTRACT_STMT(type)
138 #define STMT(type, base) \
139   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
140 #define EXPR(type, base) \
141   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
142 #include "clang/AST/StmtNodes.inc"
143   }
144   llvm_unreachable("unknown statement kind");
145 }
146 
147 //===----------------------------------------------------------------------===//
148 // Primary Expressions.
149 //===----------------------------------------------------------------------===//
150 
151 /// \brief Compute the type-, value-, and instantiation-dependence of a
152 /// declaration reference
153 /// based on the declaration being referenced.
computeDeclRefDependence(ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)154 static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
155                                      bool &TypeDependent,
156                                      bool &ValueDependent,
157                                      bool &InstantiationDependent) {
158   TypeDependent = false;
159   ValueDependent = false;
160   InstantiationDependent = false;
161 
162   // (TD) C++ [temp.dep.expr]p3:
163   //   An id-expression is type-dependent if it contains:
164   //
165   // and
166   //
167   // (VD) C++ [temp.dep.constexpr]p2:
168   //  An identifier is value-dependent if it is:
169 
170   //  (TD)  - an identifier that was declared with dependent type
171   //  (VD)  - a name declared with a dependent type,
172   if (T->isDependentType()) {
173     TypeDependent = true;
174     ValueDependent = true;
175     InstantiationDependent = true;
176     return;
177   } else if (T->isInstantiationDependentType()) {
178     InstantiationDependent = true;
179   }
180 
181   //  (TD)  - a conversion-function-id that specifies a dependent type
182   if (D->getDeclName().getNameKind()
183                                 == DeclarationName::CXXConversionFunctionName) {
184     QualType T = D->getDeclName().getCXXNameType();
185     if (T->isDependentType()) {
186       TypeDependent = true;
187       ValueDependent = true;
188       InstantiationDependent = true;
189       return;
190     }
191 
192     if (T->isInstantiationDependentType())
193       InstantiationDependent = true;
194   }
195 
196   //  (VD)  - the name of a non-type template parameter,
197   if (isa<NonTypeTemplateParmDecl>(D)) {
198     ValueDependent = true;
199     InstantiationDependent = true;
200     return;
201   }
202 
203   //  (VD) - a constant with integral or enumeration type and is
204   //         initialized with an expression that is value-dependent.
205   //  (VD) - a constant with literal type and is initialized with an
206   //         expression that is value-dependent [C++11].
207   //  (VD) - FIXME: Missing from the standard:
208   //       -  an entity with reference type and is initialized with an
209   //          expression that is value-dependent [C++11]
210   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
211     if ((Ctx.getLangOpts().CPlusPlus0x ?
212            Var->getType()->isLiteralType() :
213            Var->getType()->isIntegralOrEnumerationType()) &&
214         (Var->getType().isConstQualified() ||
215          Var->getType()->isReferenceType())) {
216       if (const Expr *Init = Var->getAnyInitializer())
217         if (Init->isValueDependent()) {
218           ValueDependent = true;
219           InstantiationDependent = true;
220         }
221     }
222 
223     // (VD) - FIXME: Missing from the standard:
224     //      -  a member function or a static data member of the current
225     //         instantiation
226     if (Var->isStaticDataMember() &&
227         Var->getDeclContext()->isDependentContext()) {
228       ValueDependent = true;
229       InstantiationDependent = true;
230     }
231 
232     return;
233   }
234 
235   // (VD) - FIXME: Missing from the standard:
236   //      -  a member function or a static data member of the current
237   //         instantiation
238   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
239     ValueDependent = true;
240     InstantiationDependent = true;
241   }
242 }
243 
computeDependence(ASTContext & Ctx)244 void DeclRefExpr::computeDependence(ASTContext &Ctx) {
245   bool TypeDependent = false;
246   bool ValueDependent = false;
247   bool InstantiationDependent = false;
248   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
249                            ValueDependent, InstantiationDependent);
250 
251   // (TD) C++ [temp.dep.expr]p3:
252   //   An id-expression is type-dependent if it contains:
253   //
254   // and
255   //
256   // (VD) C++ [temp.dep.constexpr]p2:
257   //  An identifier is value-dependent if it is:
258   if (!TypeDependent && !ValueDependent &&
259       hasExplicitTemplateArgs() &&
260       TemplateSpecializationType::anyDependentTemplateArguments(
261                                                             getTemplateArgs(),
262                                                        getNumTemplateArgs(),
263                                                       InstantiationDependent)) {
264     TypeDependent = true;
265     ValueDependent = true;
266     InstantiationDependent = true;
267   }
268 
269   ExprBits.TypeDependent = TypeDependent;
270   ExprBits.ValueDependent = ValueDependent;
271   ExprBits.InstantiationDependent = InstantiationDependent;
272 
273   // Is the declaration a parameter pack?
274   if (getDecl()->isParameterPack())
275     ExprBits.ContainsUnexpandedParameterPack = true;
276 }
277 
DeclRefExpr(ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)278 DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
279                          NestedNameSpecifierLoc QualifierLoc,
280                          SourceLocation TemplateKWLoc,
281                          ValueDecl *D, bool RefersToEnclosingLocal,
282                          const DeclarationNameInfo &NameInfo,
283                          NamedDecl *FoundD,
284                          const TemplateArgumentListInfo *TemplateArgs,
285                          QualType T, ExprValueKind VK)
286   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
287     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
288   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
289   if (QualifierLoc)
290     getInternalQualifierLoc() = QualifierLoc;
291   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
292   if (FoundD)
293     getInternalFoundDecl() = FoundD;
294   DeclRefExprBits.HasTemplateKWAndArgsInfo
295     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
296   DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
297   if (TemplateArgs) {
298     bool Dependent = false;
299     bool InstantiationDependent = false;
300     bool ContainsUnexpandedParameterPack = false;
301     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
302                                                Dependent,
303                                                InstantiationDependent,
304                                                ContainsUnexpandedParameterPack);
305     if (InstantiationDependent)
306       setInstantiationDependent(true);
307   } else if (TemplateKWLoc.isValid()) {
308     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
309   }
310   DeclRefExprBits.HadMultipleCandidates = 0;
311 
312   computeDependence(Ctx);
313 }
314 
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)315 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
316                                  NestedNameSpecifierLoc QualifierLoc,
317                                  SourceLocation TemplateKWLoc,
318                                  ValueDecl *D,
319                                  bool RefersToEnclosingLocal,
320                                  SourceLocation NameLoc,
321                                  QualType T,
322                                  ExprValueKind VK,
323                                  NamedDecl *FoundD,
324                                  const TemplateArgumentListInfo *TemplateArgs) {
325   return Create(Context, QualifierLoc, TemplateKWLoc, D,
326                 RefersToEnclosingLocal,
327                 DeclarationNameInfo(D->getDeclName(), NameLoc),
328                 T, VK, FoundD, TemplateArgs);
329 }
330 
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)331 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
332                                  NestedNameSpecifierLoc QualifierLoc,
333                                  SourceLocation TemplateKWLoc,
334                                  ValueDecl *D,
335                                  bool RefersToEnclosingLocal,
336                                  const DeclarationNameInfo &NameInfo,
337                                  QualType T,
338                                  ExprValueKind VK,
339                                  NamedDecl *FoundD,
340                                  const TemplateArgumentListInfo *TemplateArgs) {
341   // Filter out cases where the found Decl is the same as the value refenenced.
342   if (D == FoundD)
343     FoundD = 0;
344 
345   std::size_t Size = sizeof(DeclRefExpr);
346   if (QualifierLoc != 0)
347     Size += sizeof(NestedNameSpecifierLoc);
348   if (FoundD)
349     Size += sizeof(NamedDecl *);
350   if (TemplateArgs)
351     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
352   else if (TemplateKWLoc.isValid())
353     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
354 
355   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
356   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
357                                RefersToEnclosingLocal,
358                                NameInfo, FoundD, TemplateArgs, T, VK);
359 }
360 
CreateEmpty(ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)361 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
362                                       bool HasQualifier,
363                                       bool HasFoundDecl,
364                                       bool HasTemplateKWAndArgsInfo,
365                                       unsigned NumTemplateArgs) {
366   std::size_t Size = sizeof(DeclRefExpr);
367   if (HasQualifier)
368     Size += sizeof(NestedNameSpecifierLoc);
369   if (HasFoundDecl)
370     Size += sizeof(NamedDecl *);
371   if (HasTemplateKWAndArgsInfo)
372     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
373 
374   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
375   return new (Mem) DeclRefExpr(EmptyShell());
376 }
377 
getSourceRange() const378 SourceRange DeclRefExpr::getSourceRange() const {
379   SourceRange R = getNameInfo().getSourceRange();
380   if (hasQualifier())
381     R.setBegin(getQualifierLoc().getBeginLoc());
382   if (hasExplicitTemplateArgs())
383     R.setEnd(getRAngleLoc());
384   return R;
385 }
getLocStart() const386 SourceLocation DeclRefExpr::getLocStart() const {
387   if (hasQualifier())
388     return getQualifierLoc().getBeginLoc();
389   return getNameInfo().getLocStart();
390 }
getLocEnd() const391 SourceLocation DeclRefExpr::getLocEnd() const {
392   if (hasExplicitTemplateArgs())
393     return getRAngleLoc();
394   return getNameInfo().getLocEnd();
395 }
396 
397 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
398 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)399 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
400   ASTContext &Context = CurrentDecl->getASTContext();
401 
402   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
403     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
404       return FD->getNameAsString();
405 
406     SmallString<256> Name;
407     llvm::raw_svector_ostream Out(Name);
408 
409     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
410       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
411         Out << "virtual ";
412       if (MD->isStatic())
413         Out << "static ";
414     }
415 
416     PrintingPolicy Policy(Context.getLangOpts());
417     std::string Proto = FD->getQualifiedNameAsString(Policy);
418     llvm::raw_string_ostream POut(Proto);
419 
420     const FunctionDecl *Decl = FD;
421     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
422       Decl = Pattern;
423     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
424     const FunctionProtoType *FT = 0;
425     if (FD->hasWrittenPrototype())
426       FT = dyn_cast<FunctionProtoType>(AFT);
427 
428     POut << "(";
429     if (FT) {
430       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
431         if (i) POut << ", ";
432         POut << Decl->getParamDecl(i)->getType().stream(Policy);
433       }
434 
435       if (FT->isVariadic()) {
436         if (FD->getNumParams()) POut << ", ";
437         POut << "...";
438       }
439     }
440     POut << ")";
441 
442     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
443       const FunctionType *FT = cast<FunctionType>(MD->getType().getTypePtr());
444       if (FT->isConst())
445         POut << " const";
446       if (FT->isVolatile())
447         POut << " volatile";
448       RefQualifierKind Ref = MD->getRefQualifier();
449       if (Ref == RQ_LValue)
450         POut << " &";
451       else if (Ref == RQ_RValue)
452         POut << " &&";
453     }
454 
455     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
456     SpecsTy Specs;
457     const DeclContext *Ctx = FD->getDeclContext();
458     while (Ctx && isa<NamedDecl>(Ctx)) {
459       const ClassTemplateSpecializationDecl *Spec
460                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
461       if (Spec && !Spec->isExplicitSpecialization())
462         Specs.push_back(Spec);
463       Ctx = Ctx->getParent();
464     }
465 
466     std::string TemplateParams;
467     llvm::raw_string_ostream TOut(TemplateParams);
468     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
469          I != E; ++I) {
470       const TemplateParameterList *Params
471                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
472       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
473       assert(Params->size() == Args.size());
474       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
475         StringRef Param = Params->getParam(i)->getName();
476         if (Param.empty()) continue;
477         TOut << Param << " = ";
478         Args.get(i).print(Policy, TOut);
479         TOut << ", ";
480       }
481     }
482 
483     FunctionTemplateSpecializationInfo *FSI
484                                           = FD->getTemplateSpecializationInfo();
485     if (FSI && !FSI->isExplicitSpecialization()) {
486       const TemplateParameterList* Params
487                                   = FSI->getTemplate()->getTemplateParameters();
488       const TemplateArgumentList* Args = FSI->TemplateArguments;
489       assert(Params->size() == Args->size());
490       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
491         StringRef Param = Params->getParam(i)->getName();
492         if (Param.empty()) continue;
493         TOut << Param << " = ";
494         Args->get(i).print(Policy, TOut);
495         TOut << ", ";
496       }
497     }
498 
499     TOut.flush();
500     if (!TemplateParams.empty()) {
501       // remove the trailing comma and space
502       TemplateParams.resize(TemplateParams.size() - 2);
503       POut << " [" << TemplateParams << "]";
504     }
505 
506     POut.flush();
507 
508     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
509       AFT->getResultType().getAsStringInternal(Proto, Policy);
510 
511     Out << Proto;
512 
513     Out.flush();
514     return Name.str().str();
515   }
516   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
517     SmallString<256> Name;
518     llvm::raw_svector_ostream Out(Name);
519     Out << (MD->isInstanceMethod() ? '-' : '+');
520     Out << '[';
521 
522     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
523     // a null check to avoid a crash.
524     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
525       Out << *ID;
526 
527     if (const ObjCCategoryImplDecl *CID =
528         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
529       Out << '(' << *CID << ')';
530 
531     Out <<  ' ';
532     Out << MD->getSelector().getAsString();
533     Out <<  ']';
534 
535     Out.flush();
536     return Name.str().str();
537   }
538   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
539     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
540     return "top level";
541   }
542   return "";
543 }
544 
setIntValue(ASTContext & C,const llvm::APInt & Val)545 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
546   if (hasAllocation())
547     C.Deallocate(pVal);
548 
549   BitWidth = Val.getBitWidth();
550   unsigned NumWords = Val.getNumWords();
551   const uint64_t* Words = Val.getRawData();
552   if (NumWords > 1) {
553     pVal = new (C) uint64_t[NumWords];
554     std::copy(Words, Words + NumWords, pVal);
555   } else if (NumWords == 1)
556     VAL = Words[0];
557   else
558     VAL = 0;
559 }
560 
IntegerLiteral(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)561 IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
562                                QualType type, SourceLocation l)
563   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
564          false, false),
565     Loc(l) {
566   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
567   assert(V.getBitWidth() == C.getIntWidth(type) &&
568          "Integer type is not the correct size for constant.");
569   setValue(C, V);
570 }
571 
572 IntegerLiteral *
Create(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)573 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
574                        QualType type, SourceLocation l) {
575   return new (C) IntegerLiteral(C, V, type, l);
576 }
577 
578 IntegerLiteral *
Create(ASTContext & C,EmptyShell Empty)579 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
580   return new (C) IntegerLiteral(Empty);
581 }
582 
FloatingLiteral(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)583 FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
584                                  bool isexact, QualType Type, SourceLocation L)
585   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
586          false, false), Loc(L) {
587   FloatingLiteralBits.IsIEEE =
588     &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
589   FloatingLiteralBits.IsExact = isexact;
590   setValue(C, V);
591 }
592 
FloatingLiteral(ASTContext & C,EmptyShell Empty)593 FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
594   : Expr(FloatingLiteralClass, Empty) {
595   FloatingLiteralBits.IsIEEE =
596     &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
597   FloatingLiteralBits.IsExact = false;
598 }
599 
600 FloatingLiteral *
Create(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)601 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
602                         bool isexact, QualType Type, SourceLocation L) {
603   return new (C) FloatingLiteral(C, V, isexact, Type, L);
604 }
605 
606 FloatingLiteral *
Create(ASTContext & C,EmptyShell Empty)607 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
608   return new (C) FloatingLiteral(C, Empty);
609 }
610 
611 /// getValueAsApproximateDouble - This returns the value as an inaccurate
612 /// double.  Note that this may cause loss of precision, but is useful for
613 /// debugging dumps, etc.
getValueAsApproximateDouble() const614 double FloatingLiteral::getValueAsApproximateDouble() const {
615   llvm::APFloat V = getValue();
616   bool ignored;
617   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
618             &ignored);
619   return V.convertToDouble();
620 }
621 
mapCharByteWidth(TargetInfo const & target,StringKind k)622 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
623   int CharByteWidth = 0;
624   switch(k) {
625     case Ascii:
626     case UTF8:
627       CharByteWidth = target.getCharWidth();
628       break;
629     case Wide:
630       CharByteWidth = target.getWCharWidth();
631       break;
632     case UTF16:
633       CharByteWidth = target.getChar16Width();
634       break;
635     case UTF32:
636       CharByteWidth = target.getChar32Width();
637       break;
638   }
639   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
640   CharByteWidth /= 8;
641   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
642          && "character byte widths supported are 1, 2, and 4 only");
643   return CharByteWidth;
644 }
645 
Create(ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)646 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
647                                      StringKind Kind, bool Pascal, QualType Ty,
648                                      const SourceLocation *Loc,
649                                      unsigned NumStrs) {
650   // Allocate enough space for the StringLiteral plus an array of locations for
651   // any concatenated string tokens.
652   void *Mem = C.Allocate(sizeof(StringLiteral)+
653                          sizeof(SourceLocation)*(NumStrs-1),
654                          llvm::alignOf<StringLiteral>());
655   StringLiteral *SL = new (Mem) StringLiteral(Ty);
656 
657   // OPTIMIZE: could allocate this appended to the StringLiteral.
658   SL->setString(C,Str,Kind,Pascal);
659 
660   SL->TokLocs[0] = Loc[0];
661   SL->NumConcatenated = NumStrs;
662 
663   if (NumStrs != 1)
664     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
665   return SL;
666 }
667 
CreateEmpty(ASTContext & C,unsigned NumStrs)668 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
669   void *Mem = C.Allocate(sizeof(StringLiteral)+
670                          sizeof(SourceLocation)*(NumStrs-1),
671                          llvm::alignOf<StringLiteral>());
672   StringLiteral *SL = new (Mem) StringLiteral(QualType());
673   SL->CharByteWidth = 0;
674   SL->Length = 0;
675   SL->NumConcatenated = NumStrs;
676   return SL;
677 }
678 
outputString(raw_ostream & OS)679 void StringLiteral::outputString(raw_ostream &OS) {
680   switch (getKind()) {
681   case Ascii: break; // no prefix.
682   case Wide:  OS << 'L'; break;
683   case UTF8:  OS << "u8"; break;
684   case UTF16: OS << 'u'; break;
685   case UTF32: OS << 'U'; break;
686   }
687   OS << '"';
688   static const char Hex[] = "0123456789ABCDEF";
689 
690   unsigned LastSlashX = getLength();
691   for (unsigned I = 0, N = getLength(); I != N; ++I) {
692     switch (uint32_t Char = getCodeUnit(I)) {
693     default:
694       // FIXME: Convert UTF-8 back to codepoints before rendering.
695 
696       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
697       // Leave invalid surrogates alone; we'll use \x for those.
698       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
699           Char <= 0xdbff) {
700         uint32_t Trail = getCodeUnit(I + 1);
701         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
702           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
703           ++I;
704         }
705       }
706 
707       if (Char > 0xff) {
708         // If this is a wide string, output characters over 0xff using \x
709         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
710         // codepoint: use \x escapes for invalid codepoints.
711         if (getKind() == Wide ||
712             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
713           // FIXME: Is this the best way to print wchar_t?
714           OS << "\\x";
715           int Shift = 28;
716           while ((Char >> Shift) == 0)
717             Shift -= 4;
718           for (/**/; Shift >= 0; Shift -= 4)
719             OS << Hex[(Char >> Shift) & 15];
720           LastSlashX = I;
721           break;
722         }
723 
724         if (Char > 0xffff)
725           OS << "\\U00"
726              << Hex[(Char >> 20) & 15]
727              << Hex[(Char >> 16) & 15];
728         else
729           OS << "\\u";
730         OS << Hex[(Char >> 12) & 15]
731            << Hex[(Char >>  8) & 15]
732            << Hex[(Char >>  4) & 15]
733            << Hex[(Char >>  0) & 15];
734         break;
735       }
736 
737       // If we used \x... for the previous character, and this character is a
738       // hexadecimal digit, prevent it being slurped as part of the \x.
739       if (LastSlashX + 1 == I) {
740         switch (Char) {
741           case '0': case '1': case '2': case '3': case '4':
742           case '5': case '6': case '7': case '8': case '9':
743           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
744           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
745             OS << "\"\"";
746         }
747       }
748 
749       assert(Char <= 0xff &&
750              "Characters above 0xff should already have been handled.");
751 
752       if (isprint(Char))
753         OS << (char)Char;
754       else  // Output anything hard as an octal escape.
755         OS << '\\'
756            << (char)('0' + ((Char >> 6) & 7))
757            << (char)('0' + ((Char >> 3) & 7))
758            << (char)('0' + ((Char >> 0) & 7));
759       break;
760     // Handle some common non-printable cases to make dumps prettier.
761     case '\\': OS << "\\\\"; break;
762     case '"': OS << "\\\""; break;
763     case '\n': OS << "\\n"; break;
764     case '\t': OS << "\\t"; break;
765     case '\a': OS << "\\a"; break;
766     case '\b': OS << "\\b"; break;
767     }
768   }
769   OS << '"';
770 }
771 
setString(ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)772 void StringLiteral::setString(ASTContext &C, StringRef Str,
773                               StringKind Kind, bool IsPascal) {
774   //FIXME: we assume that the string data comes from a target that uses the same
775   // code unit size and endianess for the type of string.
776   this->Kind = Kind;
777   this->IsPascal = IsPascal;
778 
779   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
780   assert((Str.size()%CharByteWidth == 0)
781          && "size of data must be multiple of CharByteWidth");
782   Length = Str.size()/CharByteWidth;
783 
784   switch(CharByteWidth) {
785     case 1: {
786       char *AStrData = new (C) char[Length];
787       std::memcpy(AStrData,Str.data(),Str.size());
788       StrData.asChar = AStrData;
789       break;
790     }
791     case 2: {
792       uint16_t *AStrData = new (C) uint16_t[Length];
793       std::memcpy(AStrData,Str.data(),Str.size());
794       StrData.asUInt16 = AStrData;
795       break;
796     }
797     case 4: {
798       uint32_t *AStrData = new (C) uint32_t[Length];
799       std::memcpy(AStrData,Str.data(),Str.size());
800       StrData.asUInt32 = AStrData;
801       break;
802     }
803     default:
804       assert(false && "unsupported CharByteWidth");
805   }
806 }
807 
808 /// getLocationOfByte - Return a source location that points to the specified
809 /// byte of this string literal.
810 ///
811 /// Strings are amazingly complex.  They can be formed from multiple tokens and
812 /// can have escape sequences in them in addition to the usual trigraph and
813 /// escaped newline business.  This routine handles this complexity.
814 ///
815 SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target) const816 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
817                   const LangOptions &Features, const TargetInfo &Target) const {
818   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
819          "Only narrow string literals are currently supported");
820 
821   // Loop over all of the tokens in this string until we find the one that
822   // contains the byte we're looking for.
823   unsigned TokNo = 0;
824   while (1) {
825     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
826     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
827 
828     // Get the spelling of the string so that we can get the data that makes up
829     // the string literal, not the identifier for the macro it is potentially
830     // expanded through.
831     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
832 
833     // Re-lex the token to get its length and original spelling.
834     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
835     bool Invalid = false;
836     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
837     if (Invalid)
838       return StrTokSpellingLoc;
839 
840     const char *StrData = Buffer.data()+LocInfo.second;
841 
842     // Create a lexer starting at the beginning of this token.
843     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
844                    Buffer.begin(), StrData, Buffer.end());
845     Token TheTok;
846     TheLexer.LexFromRawLexer(TheTok);
847 
848     // Use the StringLiteralParser to compute the length of the string in bytes.
849     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
850     unsigned TokNumBytes = SLP.GetStringLength();
851 
852     // If the byte is in this token, return the location of the byte.
853     if (ByteNo < TokNumBytes ||
854         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
855       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
856 
857       // Now that we know the offset of the token in the spelling, use the
858       // preprocessor to get the offset in the original source.
859       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
860     }
861 
862     // Move to the next string token.
863     ++TokNo;
864     ByteNo -= TokNumBytes;
865   }
866 }
867 
868 
869 
870 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
871 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)872 const char *UnaryOperator::getOpcodeStr(Opcode Op) {
873   switch (Op) {
874   case UO_PostInc: return "++";
875   case UO_PostDec: return "--";
876   case UO_PreInc:  return "++";
877   case UO_PreDec:  return "--";
878   case UO_AddrOf:  return "&";
879   case UO_Deref:   return "*";
880   case UO_Plus:    return "+";
881   case UO_Minus:   return "-";
882   case UO_Not:     return "~";
883   case UO_LNot:    return "!";
884   case UO_Real:    return "__real";
885   case UO_Imag:    return "__imag";
886   case UO_Extension: return "__extension__";
887   }
888   llvm_unreachable("Unknown unary operator");
889 }
890 
891 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)892 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
893   switch (OO) {
894   default: llvm_unreachable("No unary operator for overloaded function");
895   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
896   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
897   case OO_Amp:        return UO_AddrOf;
898   case OO_Star:       return UO_Deref;
899   case OO_Plus:       return UO_Plus;
900   case OO_Minus:      return UO_Minus;
901   case OO_Tilde:      return UO_Not;
902   case OO_Exclaim:    return UO_LNot;
903   }
904 }
905 
getOverloadedOperator(Opcode Opc)906 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
907   switch (Opc) {
908   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
909   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
910   case UO_AddrOf: return OO_Amp;
911   case UO_Deref: return OO_Star;
912   case UO_Plus: return OO_Plus;
913   case UO_Minus: return OO_Minus;
914   case UO_Not: return OO_Tilde;
915   case UO_LNot: return OO_Exclaim;
916   default: return OO_None;
917   }
918 }
919 
920 
921 //===----------------------------------------------------------------------===//
922 // Postfix Operators.
923 //===----------------------------------------------------------------------===//
924 
CallExpr(ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)925 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
926                    ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
927                    SourceLocation rparenloc)
928   : Expr(SC, t, VK, OK_Ordinary,
929          fn->isTypeDependent(),
930          fn->isValueDependent(),
931          fn->isInstantiationDependent(),
932          fn->containsUnexpandedParameterPack()),
933     NumArgs(args.size()) {
934 
935   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
936   SubExprs[FN] = fn;
937   for (unsigned i = 0; i != args.size(); ++i) {
938     if (args[i]->isTypeDependent())
939       ExprBits.TypeDependent = true;
940     if (args[i]->isValueDependent())
941       ExprBits.ValueDependent = true;
942     if (args[i]->isInstantiationDependent())
943       ExprBits.InstantiationDependent = true;
944     if (args[i]->containsUnexpandedParameterPack())
945       ExprBits.ContainsUnexpandedParameterPack = true;
946 
947     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
948   }
949 
950   CallExprBits.NumPreArgs = NumPreArgs;
951   RParenLoc = rparenloc;
952 }
953 
CallExpr(ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)954 CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
955                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
956   : Expr(CallExprClass, t, VK, OK_Ordinary,
957          fn->isTypeDependent(),
958          fn->isValueDependent(),
959          fn->isInstantiationDependent(),
960          fn->containsUnexpandedParameterPack()),
961     NumArgs(args.size()) {
962 
963   SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
964   SubExprs[FN] = fn;
965   for (unsigned i = 0; i != args.size(); ++i) {
966     if (args[i]->isTypeDependent())
967       ExprBits.TypeDependent = true;
968     if (args[i]->isValueDependent())
969       ExprBits.ValueDependent = true;
970     if (args[i]->isInstantiationDependent())
971       ExprBits.InstantiationDependent = true;
972     if (args[i]->containsUnexpandedParameterPack())
973       ExprBits.ContainsUnexpandedParameterPack = true;
974 
975     SubExprs[i+PREARGS_START] = args[i];
976   }
977 
978   CallExprBits.NumPreArgs = 0;
979   RParenLoc = rparenloc;
980 }
981 
CallExpr(ASTContext & C,StmtClass SC,EmptyShell Empty)982 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
983   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
984   // FIXME: Why do we allocate this?
985   SubExprs = new (C) Stmt*[PREARGS_START];
986   CallExprBits.NumPreArgs = 0;
987 }
988 
CallExpr(ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)989 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
990                    EmptyShell Empty)
991   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
992   // FIXME: Why do we allocate this?
993   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
994   CallExprBits.NumPreArgs = NumPreArgs;
995 }
996 
getCalleeDecl()997 Decl *CallExpr::getCalleeDecl() {
998   Expr *CEE = getCallee()->IgnoreParenImpCasts();
999 
1000   while (SubstNonTypeTemplateParmExpr *NTTP
1001                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1002     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1003   }
1004 
1005   // If we're calling a dereference, look at the pointer instead.
1006   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1007     if (BO->isPtrMemOp())
1008       CEE = BO->getRHS()->IgnoreParenCasts();
1009   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1010     if (UO->getOpcode() == UO_Deref)
1011       CEE = UO->getSubExpr()->IgnoreParenCasts();
1012   }
1013   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1014     return DRE->getDecl();
1015   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1016     return ME->getMemberDecl();
1017 
1018   return 0;
1019 }
1020 
getDirectCallee()1021 FunctionDecl *CallExpr::getDirectCallee() {
1022   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1023 }
1024 
1025 /// setNumArgs - This changes the number of arguments present in this call.
1026 /// Any orphaned expressions are deleted by this, and any new operands are set
1027 /// to null.
setNumArgs(ASTContext & C,unsigned NumArgs)1028 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1029   // No change, just return.
1030   if (NumArgs == getNumArgs()) return;
1031 
1032   // If shrinking # arguments, just delete the extras and forgot them.
1033   if (NumArgs < getNumArgs()) {
1034     this->NumArgs = NumArgs;
1035     return;
1036   }
1037 
1038   // Otherwise, we are growing the # arguments.  New an bigger argument array.
1039   unsigned NumPreArgs = getNumPreArgs();
1040   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1041   // Copy over args.
1042   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1043     NewSubExprs[i] = SubExprs[i];
1044   // Null out new args.
1045   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1046        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1047     NewSubExprs[i] = 0;
1048 
1049   if (SubExprs) C.Deallocate(SubExprs);
1050   SubExprs = NewSubExprs;
1051   this->NumArgs = NumArgs;
1052 }
1053 
1054 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1055 /// not, return 0.
isBuiltinCall() const1056 unsigned CallExpr::isBuiltinCall() const {
1057   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1058   // function. As a result, we try and obtain the DeclRefExpr from the
1059   // ImplicitCastExpr.
1060   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1061   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1062     return 0;
1063 
1064   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1065   if (!DRE)
1066     return 0;
1067 
1068   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1069   if (!FDecl)
1070     return 0;
1071 
1072   if (!FDecl->getIdentifier())
1073     return 0;
1074 
1075   return FDecl->getBuiltinID();
1076 }
1077 
getCallReturnType() const1078 QualType CallExpr::getCallReturnType() const {
1079   QualType CalleeType = getCallee()->getType();
1080   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1081     CalleeType = FnTypePtr->getPointeeType();
1082   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1083     CalleeType = BPT->getPointeeType();
1084   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1085     // This should never be overloaded and so should never return null.
1086     CalleeType = Expr::findBoundMemberType(getCallee());
1087 
1088   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1089   return FnType->getResultType();
1090 }
1091 
getSourceRange() const1092 SourceRange CallExpr::getSourceRange() const {
1093   if (isa<CXXOperatorCallExpr>(this))
1094     return cast<CXXOperatorCallExpr>(this)->getSourceRange();
1095 
1096   SourceLocation begin = getCallee()->getLocStart();
1097   if (begin.isInvalid() && getNumArgs() > 0)
1098     begin = getArg(0)->getLocStart();
1099   SourceLocation end = getRParenLoc();
1100   if (end.isInvalid() && getNumArgs() > 0)
1101     end = getArg(getNumArgs() - 1)->getLocEnd();
1102   return SourceRange(begin, end);
1103 }
getLocStart() const1104 SourceLocation CallExpr::getLocStart() const {
1105   if (isa<CXXOperatorCallExpr>(this))
1106     return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
1107 
1108   SourceLocation begin = getCallee()->getLocStart();
1109   if (begin.isInvalid() && getNumArgs() > 0)
1110     begin = getArg(0)->getLocStart();
1111   return begin;
1112 }
getLocEnd() const1113 SourceLocation CallExpr::getLocEnd() const {
1114   if (isa<CXXOperatorCallExpr>(this))
1115     return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
1116 
1117   SourceLocation end = getRParenLoc();
1118   if (end.isInvalid() && getNumArgs() > 0)
1119     end = getArg(getNumArgs() - 1)->getLocEnd();
1120   return end;
1121 }
1122 
Create(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1123 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1124                                    SourceLocation OperatorLoc,
1125                                    TypeSourceInfo *tsi,
1126                                    ArrayRef<OffsetOfNode> comps,
1127                                    ArrayRef<Expr*> exprs,
1128                                    SourceLocation RParenLoc) {
1129   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1130                          sizeof(OffsetOfNode) * comps.size() +
1131                          sizeof(Expr*) * exprs.size());
1132 
1133   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1134                                 RParenLoc);
1135 }
1136 
CreateEmpty(ASTContext & C,unsigned numComps,unsigned numExprs)1137 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1138                                         unsigned numComps, unsigned numExprs) {
1139   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1140                          sizeof(OffsetOfNode) * numComps +
1141                          sizeof(Expr*) * numExprs);
1142   return new (Mem) OffsetOfExpr(numComps, numExprs);
1143 }
1144 
OffsetOfExpr(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1145 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1146                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1147                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1148                            SourceLocation RParenLoc)
1149   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1150          /*TypeDependent=*/false,
1151          /*ValueDependent=*/tsi->getType()->isDependentType(),
1152          tsi->getType()->isInstantiationDependentType(),
1153          tsi->getType()->containsUnexpandedParameterPack()),
1154     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1155     NumComps(comps.size()), NumExprs(exprs.size())
1156 {
1157   for (unsigned i = 0; i != comps.size(); ++i) {
1158     setComponent(i, comps[i]);
1159   }
1160 
1161   for (unsigned i = 0; i != exprs.size(); ++i) {
1162     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1163       ExprBits.ValueDependent = true;
1164     if (exprs[i]->containsUnexpandedParameterPack())
1165       ExprBits.ContainsUnexpandedParameterPack = true;
1166 
1167     setIndexExpr(i, exprs[i]);
1168   }
1169 }
1170 
getFieldName() const1171 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1172   assert(getKind() == Field || getKind() == Identifier);
1173   if (getKind() == Field)
1174     return getField()->getIdentifier();
1175 
1176   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1177 }
1178 
Create(ASTContext & C,Expr * base,bool isarrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1179 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1180                                NestedNameSpecifierLoc QualifierLoc,
1181                                SourceLocation TemplateKWLoc,
1182                                ValueDecl *memberdecl,
1183                                DeclAccessPair founddecl,
1184                                DeclarationNameInfo nameinfo,
1185                                const TemplateArgumentListInfo *targs,
1186                                QualType ty,
1187                                ExprValueKind vk,
1188                                ExprObjectKind ok) {
1189   std::size_t Size = sizeof(MemberExpr);
1190 
1191   bool hasQualOrFound = (QualifierLoc ||
1192                          founddecl.getDecl() != memberdecl ||
1193                          founddecl.getAccess() != memberdecl->getAccess());
1194   if (hasQualOrFound)
1195     Size += sizeof(MemberNameQualifier);
1196 
1197   if (targs)
1198     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1199   else if (TemplateKWLoc.isValid())
1200     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1201 
1202   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1203   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1204                                        ty, vk, ok);
1205 
1206   if (hasQualOrFound) {
1207     // FIXME: Wrong. We should be looking at the member declaration we found.
1208     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1209       E->setValueDependent(true);
1210       E->setTypeDependent(true);
1211       E->setInstantiationDependent(true);
1212     }
1213     else if (QualifierLoc &&
1214              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1215       E->setInstantiationDependent(true);
1216 
1217     E->HasQualifierOrFoundDecl = true;
1218 
1219     MemberNameQualifier *NQ = E->getMemberQualifier();
1220     NQ->QualifierLoc = QualifierLoc;
1221     NQ->FoundDecl = founddecl;
1222   }
1223 
1224   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1225 
1226   if (targs) {
1227     bool Dependent = false;
1228     bool InstantiationDependent = false;
1229     bool ContainsUnexpandedParameterPack = false;
1230     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1231                                                   Dependent,
1232                                                   InstantiationDependent,
1233                                              ContainsUnexpandedParameterPack);
1234     if (InstantiationDependent)
1235       E->setInstantiationDependent(true);
1236   } else if (TemplateKWLoc.isValid()) {
1237     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1238   }
1239 
1240   return E;
1241 }
1242 
getSourceRange() const1243 SourceRange MemberExpr::getSourceRange() const {
1244   return SourceRange(getLocStart(), getLocEnd());
1245 }
getLocStart() const1246 SourceLocation MemberExpr::getLocStart() const {
1247   if (isImplicitAccess()) {
1248     if (hasQualifier())
1249       return getQualifierLoc().getBeginLoc();
1250     return MemberLoc;
1251   }
1252 
1253   // FIXME: We don't want this to happen. Rather, we should be able to
1254   // detect all kinds of implicit accesses more cleanly.
1255   SourceLocation BaseStartLoc = getBase()->getLocStart();
1256   if (BaseStartLoc.isValid())
1257     return BaseStartLoc;
1258   return MemberLoc;
1259 }
getLocEnd() const1260 SourceLocation MemberExpr::getLocEnd() const {
1261   if (hasExplicitTemplateArgs())
1262     return getRAngleLoc();
1263   return getMemberNameInfo().getEndLoc();
1264 }
1265 
CheckCastConsistency() const1266 void CastExpr::CheckCastConsistency() const {
1267   switch (getCastKind()) {
1268   case CK_DerivedToBase:
1269   case CK_UncheckedDerivedToBase:
1270   case CK_DerivedToBaseMemberPointer:
1271   case CK_BaseToDerived:
1272   case CK_BaseToDerivedMemberPointer:
1273     assert(!path_empty() && "Cast kind should have a base path!");
1274     break;
1275 
1276   case CK_CPointerToObjCPointerCast:
1277     assert(getType()->isObjCObjectPointerType());
1278     assert(getSubExpr()->getType()->isPointerType());
1279     goto CheckNoBasePath;
1280 
1281   case CK_BlockPointerToObjCPointerCast:
1282     assert(getType()->isObjCObjectPointerType());
1283     assert(getSubExpr()->getType()->isBlockPointerType());
1284     goto CheckNoBasePath;
1285 
1286   case CK_ReinterpretMemberPointer:
1287     assert(getType()->isMemberPointerType());
1288     assert(getSubExpr()->getType()->isMemberPointerType());
1289     goto CheckNoBasePath;
1290 
1291   case CK_BitCast:
1292     // Arbitrary casts to C pointer types count as bitcasts.
1293     // Otherwise, we should only have block and ObjC pointer casts
1294     // here if they stay within the type kind.
1295     if (!getType()->isPointerType()) {
1296       assert(getType()->isObjCObjectPointerType() ==
1297              getSubExpr()->getType()->isObjCObjectPointerType());
1298       assert(getType()->isBlockPointerType() ==
1299              getSubExpr()->getType()->isBlockPointerType());
1300     }
1301     goto CheckNoBasePath;
1302 
1303   case CK_AnyPointerToBlockPointerCast:
1304     assert(getType()->isBlockPointerType());
1305     assert(getSubExpr()->getType()->isAnyPointerType() &&
1306            !getSubExpr()->getType()->isBlockPointerType());
1307     goto CheckNoBasePath;
1308 
1309   case CK_CopyAndAutoreleaseBlockObject:
1310     assert(getType()->isBlockPointerType());
1311     assert(getSubExpr()->getType()->isBlockPointerType());
1312     goto CheckNoBasePath;
1313 
1314   case CK_FunctionToPointerDecay:
1315     assert(getType()->isPointerType());
1316     assert(getSubExpr()->getType()->isFunctionType());
1317     goto CheckNoBasePath;
1318 
1319   // These should not have an inheritance path.
1320   case CK_Dynamic:
1321   case CK_ToUnion:
1322   case CK_ArrayToPointerDecay:
1323   case CK_NullToMemberPointer:
1324   case CK_NullToPointer:
1325   case CK_ConstructorConversion:
1326   case CK_IntegralToPointer:
1327   case CK_PointerToIntegral:
1328   case CK_ToVoid:
1329   case CK_VectorSplat:
1330   case CK_IntegralCast:
1331   case CK_IntegralToFloating:
1332   case CK_FloatingToIntegral:
1333   case CK_FloatingCast:
1334   case CK_ObjCObjectLValueCast:
1335   case CK_FloatingRealToComplex:
1336   case CK_FloatingComplexToReal:
1337   case CK_FloatingComplexCast:
1338   case CK_FloatingComplexToIntegralComplex:
1339   case CK_IntegralRealToComplex:
1340   case CK_IntegralComplexToReal:
1341   case CK_IntegralComplexCast:
1342   case CK_IntegralComplexToFloatingComplex:
1343   case CK_ARCProduceObject:
1344   case CK_ARCConsumeObject:
1345   case CK_ARCReclaimReturnedObject:
1346   case CK_ARCExtendBlockObject:
1347     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1348     goto CheckNoBasePath;
1349 
1350   case CK_Dependent:
1351   case CK_LValueToRValue:
1352   case CK_NoOp:
1353   case CK_AtomicToNonAtomic:
1354   case CK_NonAtomicToAtomic:
1355   case CK_PointerToBoolean:
1356   case CK_IntegralToBoolean:
1357   case CK_FloatingToBoolean:
1358   case CK_MemberPointerToBoolean:
1359   case CK_FloatingComplexToBoolean:
1360   case CK_IntegralComplexToBoolean:
1361   case CK_LValueBitCast:            // -> bool&
1362   case CK_UserDefinedConversion:    // operator bool()
1363   case CK_BuiltinFnToFnPtr:
1364   CheckNoBasePath:
1365     assert(path_empty() && "Cast kind should not have a base path!");
1366     break;
1367   }
1368 }
1369 
getCastKindName() const1370 const char *CastExpr::getCastKindName() const {
1371   switch (getCastKind()) {
1372   case CK_Dependent:
1373     return "Dependent";
1374   case CK_BitCast:
1375     return "BitCast";
1376   case CK_LValueBitCast:
1377     return "LValueBitCast";
1378   case CK_LValueToRValue:
1379     return "LValueToRValue";
1380   case CK_NoOp:
1381     return "NoOp";
1382   case CK_BaseToDerived:
1383     return "BaseToDerived";
1384   case CK_DerivedToBase:
1385     return "DerivedToBase";
1386   case CK_UncheckedDerivedToBase:
1387     return "UncheckedDerivedToBase";
1388   case CK_Dynamic:
1389     return "Dynamic";
1390   case CK_ToUnion:
1391     return "ToUnion";
1392   case CK_ArrayToPointerDecay:
1393     return "ArrayToPointerDecay";
1394   case CK_FunctionToPointerDecay:
1395     return "FunctionToPointerDecay";
1396   case CK_NullToMemberPointer:
1397     return "NullToMemberPointer";
1398   case CK_NullToPointer:
1399     return "NullToPointer";
1400   case CK_BaseToDerivedMemberPointer:
1401     return "BaseToDerivedMemberPointer";
1402   case CK_DerivedToBaseMemberPointer:
1403     return "DerivedToBaseMemberPointer";
1404   case CK_ReinterpretMemberPointer:
1405     return "ReinterpretMemberPointer";
1406   case CK_UserDefinedConversion:
1407     return "UserDefinedConversion";
1408   case CK_ConstructorConversion:
1409     return "ConstructorConversion";
1410   case CK_IntegralToPointer:
1411     return "IntegralToPointer";
1412   case CK_PointerToIntegral:
1413     return "PointerToIntegral";
1414   case CK_PointerToBoolean:
1415     return "PointerToBoolean";
1416   case CK_ToVoid:
1417     return "ToVoid";
1418   case CK_VectorSplat:
1419     return "VectorSplat";
1420   case CK_IntegralCast:
1421     return "IntegralCast";
1422   case CK_IntegralToBoolean:
1423     return "IntegralToBoolean";
1424   case CK_IntegralToFloating:
1425     return "IntegralToFloating";
1426   case CK_FloatingToIntegral:
1427     return "FloatingToIntegral";
1428   case CK_FloatingCast:
1429     return "FloatingCast";
1430   case CK_FloatingToBoolean:
1431     return "FloatingToBoolean";
1432   case CK_MemberPointerToBoolean:
1433     return "MemberPointerToBoolean";
1434   case CK_CPointerToObjCPointerCast:
1435     return "CPointerToObjCPointerCast";
1436   case CK_BlockPointerToObjCPointerCast:
1437     return "BlockPointerToObjCPointerCast";
1438   case CK_AnyPointerToBlockPointerCast:
1439     return "AnyPointerToBlockPointerCast";
1440   case CK_ObjCObjectLValueCast:
1441     return "ObjCObjectLValueCast";
1442   case CK_FloatingRealToComplex:
1443     return "FloatingRealToComplex";
1444   case CK_FloatingComplexToReal:
1445     return "FloatingComplexToReal";
1446   case CK_FloatingComplexToBoolean:
1447     return "FloatingComplexToBoolean";
1448   case CK_FloatingComplexCast:
1449     return "FloatingComplexCast";
1450   case CK_FloatingComplexToIntegralComplex:
1451     return "FloatingComplexToIntegralComplex";
1452   case CK_IntegralRealToComplex:
1453     return "IntegralRealToComplex";
1454   case CK_IntegralComplexToReal:
1455     return "IntegralComplexToReal";
1456   case CK_IntegralComplexToBoolean:
1457     return "IntegralComplexToBoolean";
1458   case CK_IntegralComplexCast:
1459     return "IntegralComplexCast";
1460   case CK_IntegralComplexToFloatingComplex:
1461     return "IntegralComplexToFloatingComplex";
1462   case CK_ARCConsumeObject:
1463     return "ARCConsumeObject";
1464   case CK_ARCProduceObject:
1465     return "ARCProduceObject";
1466   case CK_ARCReclaimReturnedObject:
1467     return "ARCReclaimReturnedObject";
1468   case CK_ARCExtendBlockObject:
1469     return "ARCCExtendBlockObject";
1470   case CK_AtomicToNonAtomic:
1471     return "AtomicToNonAtomic";
1472   case CK_NonAtomicToAtomic:
1473     return "NonAtomicToAtomic";
1474   case CK_CopyAndAutoreleaseBlockObject:
1475     return "CopyAndAutoreleaseBlockObject";
1476   case CK_BuiltinFnToFnPtr:
1477     return "BuiltinFnToFnPtr";
1478   }
1479 
1480   llvm_unreachable("Unhandled cast kind!");
1481 }
1482 
getSubExprAsWritten()1483 Expr *CastExpr::getSubExprAsWritten() {
1484   Expr *SubExpr = 0;
1485   CastExpr *E = this;
1486   do {
1487     SubExpr = E->getSubExpr();
1488 
1489     // Skip through reference binding to temporary.
1490     if (MaterializeTemporaryExpr *Materialize
1491                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1492       SubExpr = Materialize->GetTemporaryExpr();
1493 
1494     // Skip any temporary bindings; they're implicit.
1495     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1496       SubExpr = Binder->getSubExpr();
1497 
1498     // Conversions by constructor and conversion functions have a
1499     // subexpression describing the call; strip it off.
1500     if (E->getCastKind() == CK_ConstructorConversion)
1501       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1502     else if (E->getCastKind() == CK_UserDefinedConversion)
1503       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1504 
1505     // If the subexpression we're left with is an implicit cast, look
1506     // through that, too.
1507   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1508 
1509   return SubExpr;
1510 }
1511 
path_buffer()1512 CXXBaseSpecifier **CastExpr::path_buffer() {
1513   switch (getStmtClass()) {
1514 #define ABSTRACT_STMT(x)
1515 #define CASTEXPR(Type, Base) \
1516   case Stmt::Type##Class: \
1517     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1518 #define STMT(Type, Base)
1519 #include "clang/AST/StmtNodes.inc"
1520   default:
1521     llvm_unreachable("non-cast expressions not possible here");
1522   }
1523 }
1524 
setCastPath(const CXXCastPath & Path)1525 void CastExpr::setCastPath(const CXXCastPath &Path) {
1526   assert(Path.size() == path_size());
1527   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1528 }
1529 
Create(ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1530 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1531                                            CastKind Kind, Expr *Operand,
1532                                            const CXXCastPath *BasePath,
1533                                            ExprValueKind VK) {
1534   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1535   void *Buffer =
1536     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1537   ImplicitCastExpr *E =
1538     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1539   if (PathSize) E->setCastPath(*BasePath);
1540   return E;
1541 }
1542 
CreateEmpty(ASTContext & C,unsigned PathSize)1543 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1544                                                 unsigned PathSize) {
1545   void *Buffer =
1546     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1547   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1548 }
1549 
1550 
Create(ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1551 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1552                                        ExprValueKind VK, CastKind K, Expr *Op,
1553                                        const CXXCastPath *BasePath,
1554                                        TypeSourceInfo *WrittenTy,
1555                                        SourceLocation L, SourceLocation R) {
1556   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1557   void *Buffer =
1558     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1559   CStyleCastExpr *E =
1560     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1561   if (PathSize) E->setCastPath(*BasePath);
1562   return E;
1563 }
1564 
CreateEmpty(ASTContext & C,unsigned PathSize)1565 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1566   void *Buffer =
1567     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1568   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1569 }
1570 
1571 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1572 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1573 const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1574   switch (Op) {
1575   case BO_PtrMemD:   return ".*";
1576   case BO_PtrMemI:   return "->*";
1577   case BO_Mul:       return "*";
1578   case BO_Div:       return "/";
1579   case BO_Rem:       return "%";
1580   case BO_Add:       return "+";
1581   case BO_Sub:       return "-";
1582   case BO_Shl:       return "<<";
1583   case BO_Shr:       return ">>";
1584   case BO_LT:        return "<";
1585   case BO_GT:        return ">";
1586   case BO_LE:        return "<=";
1587   case BO_GE:        return ">=";
1588   case BO_EQ:        return "==";
1589   case BO_NE:        return "!=";
1590   case BO_And:       return "&";
1591   case BO_Xor:       return "^";
1592   case BO_Or:        return "|";
1593   case BO_LAnd:      return "&&";
1594   case BO_LOr:       return "||";
1595   case BO_Assign:    return "=";
1596   case BO_MulAssign: return "*=";
1597   case BO_DivAssign: return "/=";
1598   case BO_RemAssign: return "%=";
1599   case BO_AddAssign: return "+=";
1600   case BO_SubAssign: return "-=";
1601   case BO_ShlAssign: return "<<=";
1602   case BO_ShrAssign: return ">>=";
1603   case BO_AndAssign: return "&=";
1604   case BO_XorAssign: return "^=";
1605   case BO_OrAssign:  return "|=";
1606   case BO_Comma:     return ",";
1607   }
1608 
1609   llvm_unreachable("Invalid OpCode!");
1610 }
1611 
1612 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1613 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1614   switch (OO) {
1615   default: llvm_unreachable("Not an overloadable binary operator");
1616   case OO_Plus: return BO_Add;
1617   case OO_Minus: return BO_Sub;
1618   case OO_Star: return BO_Mul;
1619   case OO_Slash: return BO_Div;
1620   case OO_Percent: return BO_Rem;
1621   case OO_Caret: return BO_Xor;
1622   case OO_Amp: return BO_And;
1623   case OO_Pipe: return BO_Or;
1624   case OO_Equal: return BO_Assign;
1625   case OO_Less: return BO_LT;
1626   case OO_Greater: return BO_GT;
1627   case OO_PlusEqual: return BO_AddAssign;
1628   case OO_MinusEqual: return BO_SubAssign;
1629   case OO_StarEqual: return BO_MulAssign;
1630   case OO_SlashEqual: return BO_DivAssign;
1631   case OO_PercentEqual: return BO_RemAssign;
1632   case OO_CaretEqual: return BO_XorAssign;
1633   case OO_AmpEqual: return BO_AndAssign;
1634   case OO_PipeEqual: return BO_OrAssign;
1635   case OO_LessLess: return BO_Shl;
1636   case OO_GreaterGreater: return BO_Shr;
1637   case OO_LessLessEqual: return BO_ShlAssign;
1638   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1639   case OO_EqualEqual: return BO_EQ;
1640   case OO_ExclaimEqual: return BO_NE;
1641   case OO_LessEqual: return BO_LE;
1642   case OO_GreaterEqual: return BO_GE;
1643   case OO_AmpAmp: return BO_LAnd;
1644   case OO_PipePipe: return BO_LOr;
1645   case OO_Comma: return BO_Comma;
1646   case OO_ArrowStar: return BO_PtrMemI;
1647   }
1648 }
1649 
getOverloadedOperator(Opcode Opc)1650 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1651   static const OverloadedOperatorKind OverOps[] = {
1652     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1653     OO_Star, OO_Slash, OO_Percent,
1654     OO_Plus, OO_Minus,
1655     OO_LessLess, OO_GreaterGreater,
1656     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1657     OO_EqualEqual, OO_ExclaimEqual,
1658     OO_Amp,
1659     OO_Caret,
1660     OO_Pipe,
1661     OO_AmpAmp,
1662     OO_PipePipe,
1663     OO_Equal, OO_StarEqual,
1664     OO_SlashEqual, OO_PercentEqual,
1665     OO_PlusEqual, OO_MinusEqual,
1666     OO_LessLessEqual, OO_GreaterGreaterEqual,
1667     OO_AmpEqual, OO_CaretEqual,
1668     OO_PipeEqual,
1669     OO_Comma
1670   };
1671   return OverOps[Opc];
1672 }
1673 
InitListExpr(ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)1674 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1675                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1676   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1677          false, false),
1678     InitExprs(C, initExprs.size()),
1679     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1680 {
1681   sawArrayRangeDesignator(false);
1682   setInitializesStdInitializerList(false);
1683   for (unsigned I = 0; I != initExprs.size(); ++I) {
1684     if (initExprs[I]->isTypeDependent())
1685       ExprBits.TypeDependent = true;
1686     if (initExprs[I]->isValueDependent())
1687       ExprBits.ValueDependent = true;
1688     if (initExprs[I]->isInstantiationDependent())
1689       ExprBits.InstantiationDependent = true;
1690     if (initExprs[I]->containsUnexpandedParameterPack())
1691       ExprBits.ContainsUnexpandedParameterPack = true;
1692   }
1693 
1694   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1695 }
1696 
reserveInits(ASTContext & C,unsigned NumInits)1697 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1698   if (NumInits > InitExprs.size())
1699     InitExprs.reserve(C, NumInits);
1700 }
1701 
resizeInits(ASTContext & C,unsigned NumInits)1702 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1703   InitExprs.resize(C, NumInits, 0);
1704 }
1705 
updateInit(ASTContext & C,unsigned Init,Expr * expr)1706 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1707   if (Init >= InitExprs.size()) {
1708     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1709     InitExprs.back() = expr;
1710     return 0;
1711   }
1712 
1713   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1714   InitExprs[Init] = expr;
1715   return Result;
1716 }
1717 
setArrayFiller(Expr * filler)1718 void InitListExpr::setArrayFiller(Expr *filler) {
1719   assert(!hasArrayFiller() && "Filler already set!");
1720   ArrayFillerOrUnionFieldInit = filler;
1721   // Fill out any "holes" in the array due to designated initializers.
1722   Expr **inits = getInits();
1723   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1724     if (inits[i] == 0)
1725       inits[i] = filler;
1726 }
1727 
isStringLiteralInit() const1728 bool InitListExpr::isStringLiteralInit() const {
1729   if (getNumInits() != 1)
1730     return false;
1731   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1732   if (!AT || !AT->getElementType()->isIntegerType())
1733     return false;
1734   const Expr *Init = getInit(0)->IgnoreParens();
1735   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1736 }
1737 
getSourceRange() const1738 SourceRange InitListExpr::getSourceRange() const {
1739   if (SyntacticForm)
1740     return SyntacticForm->getSourceRange();
1741   SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1742   if (Beg.isInvalid()) {
1743     // Find the first non-null initializer.
1744     for (InitExprsTy::const_iterator I = InitExprs.begin(),
1745                                      E = InitExprs.end();
1746       I != E; ++I) {
1747       if (Stmt *S = *I) {
1748         Beg = S->getLocStart();
1749         break;
1750       }
1751     }
1752   }
1753   if (End.isInvalid()) {
1754     // Find the first non-null initializer from the end.
1755     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1756                                              E = InitExprs.rend();
1757       I != E; ++I) {
1758       if (Stmt *S = *I) {
1759         End = S->getSourceRange().getEnd();
1760         break;
1761       }
1762     }
1763   }
1764   return SourceRange(Beg, End);
1765 }
1766 
1767 /// getFunctionType - Return the underlying function type for this block.
1768 ///
getFunctionType() const1769 const FunctionProtoType *BlockExpr::getFunctionType() const {
1770   // The block pointer is never sugared, but the function type might be.
1771   return cast<BlockPointerType>(getType())
1772            ->getPointeeType()->castAs<FunctionProtoType>();
1773 }
1774 
getCaretLocation() const1775 SourceLocation BlockExpr::getCaretLocation() const {
1776   return TheBlock->getCaretLocation();
1777 }
getBody() const1778 const Stmt *BlockExpr::getBody() const {
1779   return TheBlock->getBody();
1780 }
getBody()1781 Stmt *BlockExpr::getBody() {
1782   return TheBlock->getBody();
1783 }
1784 
1785 
1786 //===----------------------------------------------------------------------===//
1787 // Generic Expression Routines
1788 //===----------------------------------------------------------------------===//
1789 
1790 /// isUnusedResultAWarning - Return true if this immediate expression should
1791 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
1792 /// with location to warn on and the source range[s] to report with the
1793 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1794 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1795                                   SourceRange &R1, SourceRange &R2,
1796                                   ASTContext &Ctx) const {
1797   // Don't warn if the expr is type dependent. The type could end up
1798   // instantiating to void.
1799   if (isTypeDependent())
1800     return false;
1801 
1802   switch (getStmtClass()) {
1803   default:
1804     if (getType()->isVoidType())
1805       return false;
1806     WarnE = this;
1807     Loc = getExprLoc();
1808     R1 = getSourceRange();
1809     return true;
1810   case ParenExprClass:
1811     return cast<ParenExpr>(this)->getSubExpr()->
1812       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1813   case GenericSelectionExprClass:
1814     return cast<GenericSelectionExpr>(this)->getResultExpr()->
1815       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1816   case UnaryOperatorClass: {
1817     const UnaryOperator *UO = cast<UnaryOperator>(this);
1818 
1819     switch (UO->getOpcode()) {
1820     case UO_Plus:
1821     case UO_Minus:
1822     case UO_AddrOf:
1823     case UO_Not:
1824     case UO_LNot:
1825     case UO_Deref:
1826       break;
1827     case UO_PostInc:
1828     case UO_PostDec:
1829     case UO_PreInc:
1830     case UO_PreDec:                 // ++/--
1831       return false;  // Not a warning.
1832     case UO_Real:
1833     case UO_Imag:
1834       // accessing a piece of a volatile complex is a side-effect.
1835       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1836           .isVolatileQualified())
1837         return false;
1838       break;
1839     case UO_Extension:
1840       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1841     }
1842     WarnE = this;
1843     Loc = UO->getOperatorLoc();
1844     R1 = UO->getSubExpr()->getSourceRange();
1845     return true;
1846   }
1847   case BinaryOperatorClass: {
1848     const BinaryOperator *BO = cast<BinaryOperator>(this);
1849     switch (BO->getOpcode()) {
1850       default:
1851         break;
1852       // Consider the RHS of comma for side effects. LHS was checked by
1853       // Sema::CheckCommaOperands.
1854       case BO_Comma:
1855         // ((foo = <blah>), 0) is an idiom for hiding the result (and
1856         // lvalue-ness) of an assignment written in a macro.
1857         if (IntegerLiteral *IE =
1858               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1859           if (IE->getValue() == 0)
1860             return false;
1861         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1862       // Consider '||', '&&' to have side effects if the LHS or RHS does.
1863       case BO_LAnd:
1864       case BO_LOr:
1865         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1866             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1867           return false;
1868         break;
1869     }
1870     if (BO->isAssignmentOp())
1871       return false;
1872     WarnE = this;
1873     Loc = BO->getOperatorLoc();
1874     R1 = BO->getLHS()->getSourceRange();
1875     R2 = BO->getRHS()->getSourceRange();
1876     return true;
1877   }
1878   case CompoundAssignOperatorClass:
1879   case VAArgExprClass:
1880   case AtomicExprClass:
1881     return false;
1882 
1883   case ConditionalOperatorClass: {
1884     // If only one of the LHS or RHS is a warning, the operator might
1885     // be being used for control flow. Only warn if both the LHS and
1886     // RHS are warnings.
1887     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1888     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1889       return false;
1890     if (!Exp->getLHS())
1891       return true;
1892     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1893   }
1894 
1895   case MemberExprClass:
1896     WarnE = this;
1897     Loc = cast<MemberExpr>(this)->getMemberLoc();
1898     R1 = SourceRange(Loc, Loc);
1899     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1900     return true;
1901 
1902   case ArraySubscriptExprClass:
1903     WarnE = this;
1904     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1905     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1906     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1907     return true;
1908 
1909   case CXXOperatorCallExprClass: {
1910     // We warn about operator== and operator!= even when user-defined operator
1911     // overloads as there is no reasonable way to define these such that they
1912     // have non-trivial, desirable side-effects. See the -Wunused-comparison
1913     // warning: these operators are commonly typo'ed, and so warning on them
1914     // provides additional value as well. If this list is updated,
1915     // DiagnoseUnusedComparison should be as well.
1916     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1917     if (Op->getOperator() == OO_EqualEqual ||
1918         Op->getOperator() == OO_ExclaimEqual) {
1919       WarnE = this;
1920       Loc = Op->getOperatorLoc();
1921       R1 = Op->getSourceRange();
1922       return true;
1923     }
1924 
1925     // Fallthrough for generic call handling.
1926   }
1927   case CallExprClass:
1928   case CXXMemberCallExprClass:
1929   case UserDefinedLiteralClass: {
1930     // If this is a direct call, get the callee.
1931     const CallExpr *CE = cast<CallExpr>(this);
1932     if (const Decl *FD = CE->getCalleeDecl()) {
1933       // If the callee has attribute pure, const, or warn_unused_result, warn
1934       // about it. void foo() { strlen("bar"); } should warn.
1935       //
1936       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1937       // updated to match for QoI.
1938       if (FD->getAttr<WarnUnusedResultAttr>() ||
1939           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1940         WarnE = this;
1941         Loc = CE->getCallee()->getLocStart();
1942         R1 = CE->getCallee()->getSourceRange();
1943 
1944         if (unsigned NumArgs = CE->getNumArgs())
1945           R2 = SourceRange(CE->getArg(0)->getLocStart(),
1946                            CE->getArg(NumArgs-1)->getLocEnd());
1947         return true;
1948       }
1949     }
1950     return false;
1951   }
1952 
1953   case CXXTemporaryObjectExprClass:
1954   case CXXConstructExprClass:
1955     return false;
1956 
1957   case ObjCMessageExprClass: {
1958     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1959     if (Ctx.getLangOpts().ObjCAutoRefCount &&
1960         ME->isInstanceMessage() &&
1961         !ME->getType()->isVoidType() &&
1962         ME->getSelector().getIdentifierInfoForSlot(0) &&
1963         ME->getSelector().getIdentifierInfoForSlot(0)
1964                                                ->getName().startswith("init")) {
1965       WarnE = this;
1966       Loc = getExprLoc();
1967       R1 = ME->getSourceRange();
1968       return true;
1969     }
1970 
1971     const ObjCMethodDecl *MD = ME->getMethodDecl();
1972     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1973       WarnE = this;
1974       Loc = getExprLoc();
1975       return true;
1976     }
1977     return false;
1978   }
1979 
1980   case ObjCPropertyRefExprClass:
1981     WarnE = this;
1982     Loc = getExprLoc();
1983     R1 = getSourceRange();
1984     return true;
1985 
1986   case PseudoObjectExprClass: {
1987     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1988 
1989     // Only complain about things that have the form of a getter.
1990     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1991         isa<BinaryOperator>(PO->getSyntacticForm()))
1992       return false;
1993 
1994     WarnE = this;
1995     Loc = getExprLoc();
1996     R1 = getSourceRange();
1997     return true;
1998   }
1999 
2000   case StmtExprClass: {
2001     // Statement exprs don't logically have side effects themselves, but are
2002     // sometimes used in macros in ways that give them a type that is unused.
2003     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2004     // however, if the result of the stmt expr is dead, we don't want to emit a
2005     // warning.
2006     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2007     if (!CS->body_empty()) {
2008       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2009         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2010       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2011         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2012           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2013     }
2014 
2015     if (getType()->isVoidType())
2016       return false;
2017     WarnE = this;
2018     Loc = cast<StmtExpr>(this)->getLParenLoc();
2019     R1 = getSourceRange();
2020     return true;
2021   }
2022   case CStyleCastExprClass: {
2023     // Ignore an explicit cast to void unless the operand is a non-trivial
2024     // volatile lvalue.
2025     const CastExpr *CE = cast<CastExpr>(this);
2026     if (CE->getCastKind() == CK_ToVoid) {
2027       if (CE->getSubExpr()->isGLValue() &&
2028           CE->getSubExpr()->getType().isVolatileQualified()) {
2029         const DeclRefExpr *DRE =
2030             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2031         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2032               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2033           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2034                                                           R1, R2, Ctx);
2035         }
2036       }
2037       return false;
2038     }
2039 
2040     // If this is a cast to a constructor conversion, check the operand.
2041     // Otherwise, the result of the cast is unused.
2042     if (CE->getCastKind() == CK_ConstructorConversion)
2043       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2044 
2045     WarnE = this;
2046     if (const CXXFunctionalCastExpr *CXXCE =
2047             dyn_cast<CXXFunctionalCastExpr>(this)) {
2048       Loc = CXXCE->getTypeBeginLoc();
2049       R1 = CXXCE->getSubExpr()->getSourceRange();
2050     } else {
2051       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2052       Loc = CStyleCE->getLParenLoc();
2053       R1 = CStyleCE->getSubExpr()->getSourceRange();
2054     }
2055     return true;
2056   }
2057   case ImplicitCastExprClass: {
2058     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2059 
2060     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2061     if (ICE->getCastKind() == CK_LValueToRValue &&
2062         ICE->getSubExpr()->getType().isVolatileQualified())
2063       return false;
2064 
2065     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2066   }
2067   case CXXDefaultArgExprClass:
2068     return (cast<CXXDefaultArgExpr>(this)
2069             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2070 
2071   case CXXNewExprClass:
2072     // FIXME: In theory, there might be new expressions that don't have side
2073     // effects (e.g. a placement new with an uninitialized POD).
2074   case CXXDeleteExprClass:
2075     return false;
2076   case CXXBindTemporaryExprClass:
2077     return (cast<CXXBindTemporaryExpr>(this)
2078             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2079   case ExprWithCleanupsClass:
2080     return (cast<ExprWithCleanups>(this)
2081             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2082   }
2083 }
2084 
2085 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2086 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2087 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2088   const Expr *E = IgnoreParens();
2089   switch (E->getStmtClass()) {
2090   default:
2091     return false;
2092   case ObjCIvarRefExprClass:
2093     return true;
2094   case Expr::UnaryOperatorClass:
2095     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2096   case ImplicitCastExprClass:
2097     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2098   case MaterializeTemporaryExprClass:
2099     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2100                                                       ->isOBJCGCCandidate(Ctx);
2101   case CStyleCastExprClass:
2102     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2103   case DeclRefExprClass: {
2104     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2105 
2106     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2107       if (VD->hasGlobalStorage())
2108         return true;
2109       QualType T = VD->getType();
2110       // dereferencing to a  pointer is always a gc'able candidate,
2111       // unless it is __weak.
2112       return T->isPointerType() &&
2113              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2114     }
2115     return false;
2116   }
2117   case MemberExprClass: {
2118     const MemberExpr *M = cast<MemberExpr>(E);
2119     return M->getBase()->isOBJCGCCandidate(Ctx);
2120   }
2121   case ArraySubscriptExprClass:
2122     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2123   }
2124 }
2125 
isBoundMemberFunction(ASTContext & Ctx) const2126 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2127   if (isTypeDependent())
2128     return false;
2129   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2130 }
2131 
findBoundMemberType(const Expr * expr)2132 QualType Expr::findBoundMemberType(const Expr *expr) {
2133   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2134 
2135   // Bound member expressions are always one of these possibilities:
2136   //   x->m      x.m      x->*y      x.*y
2137   // (possibly parenthesized)
2138 
2139   expr = expr->IgnoreParens();
2140   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2141     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2142     return mem->getMemberDecl()->getType();
2143   }
2144 
2145   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2146     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2147                       ->getPointeeType();
2148     assert(type->isFunctionType());
2149     return type;
2150   }
2151 
2152   assert(isa<UnresolvedMemberExpr>(expr));
2153   return QualType();
2154 }
2155 
IgnoreParens()2156 Expr* Expr::IgnoreParens() {
2157   Expr* E = this;
2158   while (true) {
2159     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2160       E = P->getSubExpr();
2161       continue;
2162     }
2163     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2164       if (P->getOpcode() == UO_Extension) {
2165         E = P->getSubExpr();
2166         continue;
2167       }
2168     }
2169     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2170       if (!P->isResultDependent()) {
2171         E = P->getResultExpr();
2172         continue;
2173       }
2174     }
2175     return E;
2176   }
2177 }
2178 
2179 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2180 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2181 Expr *Expr::IgnoreParenCasts() {
2182   Expr *E = this;
2183   while (true) {
2184     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2185       E = P->getSubExpr();
2186       continue;
2187     }
2188     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2189       E = P->getSubExpr();
2190       continue;
2191     }
2192     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2193       if (P->getOpcode() == UO_Extension) {
2194         E = P->getSubExpr();
2195         continue;
2196       }
2197     }
2198     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2199       if (!P->isResultDependent()) {
2200         E = P->getResultExpr();
2201         continue;
2202       }
2203     }
2204     if (MaterializeTemporaryExpr *Materialize
2205                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2206       E = Materialize->GetTemporaryExpr();
2207       continue;
2208     }
2209     if (SubstNonTypeTemplateParmExpr *NTTP
2210                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2211       E = NTTP->getReplacement();
2212       continue;
2213     }
2214     return E;
2215   }
2216 }
2217 
2218 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2219 /// casts.  This is intended purely as a temporary workaround for code
2220 /// that hasn't yet been rewritten to do the right thing about those
2221 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2222 Expr *Expr::IgnoreParenLValueCasts() {
2223   Expr *E = this;
2224   while (true) {
2225     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2226       E = P->getSubExpr();
2227       continue;
2228     } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2229       if (P->getCastKind() == CK_LValueToRValue) {
2230         E = P->getSubExpr();
2231         continue;
2232       }
2233     } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2234       if (P->getOpcode() == UO_Extension) {
2235         E = P->getSubExpr();
2236         continue;
2237       }
2238     } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2239       if (!P->isResultDependent()) {
2240         E = P->getResultExpr();
2241         continue;
2242       }
2243     } else if (MaterializeTemporaryExpr *Materialize
2244                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2245       E = Materialize->GetTemporaryExpr();
2246       continue;
2247     } else if (SubstNonTypeTemplateParmExpr *NTTP
2248                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2249       E = NTTP->getReplacement();
2250       continue;
2251     }
2252     break;
2253   }
2254   return E;
2255 }
2256 
ignoreParenBaseCasts()2257 Expr *Expr::ignoreParenBaseCasts() {
2258   Expr *E = this;
2259   while (true) {
2260     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2261       E = P->getSubExpr();
2262       continue;
2263     }
2264     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2265       if (CE->getCastKind() == CK_DerivedToBase ||
2266           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2267           CE->getCastKind() == CK_NoOp) {
2268         E = CE->getSubExpr();
2269         continue;
2270       }
2271     }
2272 
2273     return E;
2274   }
2275 }
2276 
IgnoreParenImpCasts()2277 Expr *Expr::IgnoreParenImpCasts() {
2278   Expr *E = this;
2279   while (true) {
2280     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2281       E = P->getSubExpr();
2282       continue;
2283     }
2284     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2285       E = P->getSubExpr();
2286       continue;
2287     }
2288     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2289       if (P->getOpcode() == UO_Extension) {
2290         E = P->getSubExpr();
2291         continue;
2292       }
2293     }
2294     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2295       if (!P->isResultDependent()) {
2296         E = P->getResultExpr();
2297         continue;
2298       }
2299     }
2300     if (MaterializeTemporaryExpr *Materialize
2301                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2302       E = Materialize->GetTemporaryExpr();
2303       continue;
2304     }
2305     if (SubstNonTypeTemplateParmExpr *NTTP
2306                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2307       E = NTTP->getReplacement();
2308       continue;
2309     }
2310     return E;
2311   }
2312 }
2313 
IgnoreConversionOperator()2314 Expr *Expr::IgnoreConversionOperator() {
2315   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2316     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2317       return MCE->getImplicitObjectArgument();
2318   }
2319   return this;
2320 }
2321 
2322 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2323 /// value (including ptr->int casts of the same size).  Strip off any
2324 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2325 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2326   Expr *E = this;
2327   while (true) {
2328     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2329       E = P->getSubExpr();
2330       continue;
2331     }
2332 
2333     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2334       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2335       // ptr<->int casts of the same width.  We also ignore all identity casts.
2336       Expr *SE = P->getSubExpr();
2337 
2338       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2339         E = SE;
2340         continue;
2341       }
2342 
2343       if ((E->getType()->isPointerType() ||
2344            E->getType()->isIntegralType(Ctx)) &&
2345           (SE->getType()->isPointerType() ||
2346            SE->getType()->isIntegralType(Ctx)) &&
2347           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2348         E = SE;
2349         continue;
2350       }
2351     }
2352 
2353     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2354       if (P->getOpcode() == UO_Extension) {
2355         E = P->getSubExpr();
2356         continue;
2357       }
2358     }
2359 
2360     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2361       if (!P->isResultDependent()) {
2362         E = P->getResultExpr();
2363         continue;
2364       }
2365     }
2366 
2367     if (SubstNonTypeTemplateParmExpr *NTTP
2368                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2369       E = NTTP->getReplacement();
2370       continue;
2371     }
2372 
2373     return E;
2374   }
2375 }
2376 
isDefaultArgument() const2377 bool Expr::isDefaultArgument() const {
2378   const Expr *E = this;
2379   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2380     E = M->GetTemporaryExpr();
2381 
2382   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2383     E = ICE->getSubExprAsWritten();
2384 
2385   return isa<CXXDefaultArgExpr>(E);
2386 }
2387 
2388 /// \brief Skip over any no-op casts and any temporary-binding
2389 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2390 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2391   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2392     E = M->GetTemporaryExpr();
2393 
2394   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2395     if (ICE->getCastKind() == CK_NoOp)
2396       E = ICE->getSubExpr();
2397     else
2398       break;
2399   }
2400 
2401   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2402     E = BE->getSubExpr();
2403 
2404   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2405     if (ICE->getCastKind() == CK_NoOp)
2406       E = ICE->getSubExpr();
2407     else
2408       break;
2409   }
2410 
2411   return E->IgnoreParens();
2412 }
2413 
2414 /// isTemporaryObject - Determines if this expression produces a
2415 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2416 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2417   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2418     return false;
2419 
2420   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2421 
2422   // Temporaries are by definition pr-values of class type.
2423   if (!E->Classify(C).isPRValue()) {
2424     // In this context, property reference is a message call and is pr-value.
2425     if (!isa<ObjCPropertyRefExpr>(E))
2426       return false;
2427   }
2428 
2429   // Black-list a few cases which yield pr-values of class type that don't
2430   // refer to temporaries of that type:
2431 
2432   // - implicit derived-to-base conversions
2433   if (isa<ImplicitCastExpr>(E)) {
2434     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2435     case CK_DerivedToBase:
2436     case CK_UncheckedDerivedToBase:
2437       return false;
2438     default:
2439       break;
2440     }
2441   }
2442 
2443   // - member expressions (all)
2444   if (isa<MemberExpr>(E))
2445     return false;
2446 
2447   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2448     if (BO->isPtrMemOp())
2449       return false;
2450 
2451   // - opaque values (all)
2452   if (isa<OpaqueValueExpr>(E))
2453     return false;
2454 
2455   return true;
2456 }
2457 
isImplicitCXXThis() const2458 bool Expr::isImplicitCXXThis() const {
2459   const Expr *E = this;
2460 
2461   // Strip away parentheses and casts we don't care about.
2462   while (true) {
2463     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2464       E = Paren->getSubExpr();
2465       continue;
2466     }
2467 
2468     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2469       if (ICE->getCastKind() == CK_NoOp ||
2470           ICE->getCastKind() == CK_LValueToRValue ||
2471           ICE->getCastKind() == CK_DerivedToBase ||
2472           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2473         E = ICE->getSubExpr();
2474         continue;
2475       }
2476     }
2477 
2478     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2479       if (UnOp->getOpcode() == UO_Extension) {
2480         E = UnOp->getSubExpr();
2481         continue;
2482       }
2483     }
2484 
2485     if (const MaterializeTemporaryExpr *M
2486                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2487       E = M->GetTemporaryExpr();
2488       continue;
2489     }
2490 
2491     break;
2492   }
2493 
2494   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2495     return This->isImplicit();
2496 
2497   return false;
2498 }
2499 
2500 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2501 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(llvm::ArrayRef<Expr * > Exprs)2502 bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2503   for (unsigned I = 0; I < Exprs.size(); ++I)
2504     if (Exprs[I]->isTypeDependent())
2505       return true;
2506 
2507   return false;
2508 }
2509 
isConstantInitializer(ASTContext & Ctx,bool IsForRef) const2510 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2511   // This function is attempting whether an expression is an initializer
2512   // which can be evaluated at compile-time.  isEvaluatable handles most
2513   // of the cases, but it can't deal with some initializer-specific
2514   // expressions, and it can't deal with aggregates; we deal with those here,
2515   // and fall back to isEvaluatable for the other cases.
2516 
2517   // If we ever capture reference-binding directly in the AST, we can
2518   // kill the second parameter.
2519 
2520   if (IsForRef) {
2521     EvalResult Result;
2522     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2523   }
2524 
2525   switch (getStmtClass()) {
2526   default: break;
2527   case IntegerLiteralClass:
2528   case FloatingLiteralClass:
2529   case StringLiteralClass:
2530   case ObjCStringLiteralClass:
2531   case ObjCEncodeExprClass:
2532     return true;
2533   case CXXTemporaryObjectExprClass:
2534   case CXXConstructExprClass: {
2535     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2536 
2537     // Only if it's
2538     if (CE->getConstructor()->isTrivial()) {
2539       // 1) an application of the trivial default constructor or
2540       if (!CE->getNumArgs()) return true;
2541 
2542       // 2) an elidable trivial copy construction of an operand which is
2543       //    itself a constant initializer.  Note that we consider the
2544       //    operand on its own, *not* as a reference binding.
2545       if (CE->isElidable() &&
2546           CE->getArg(0)->isConstantInitializer(Ctx, false))
2547         return true;
2548     }
2549 
2550     // 3) a foldable constexpr constructor.
2551     break;
2552   }
2553   case CompoundLiteralExprClass: {
2554     // This handles gcc's extension that allows global initializers like
2555     // "struct x {int x;} x = (struct x) {};".
2556     // FIXME: This accepts other cases it shouldn't!
2557     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2558     return Exp->isConstantInitializer(Ctx, false);
2559   }
2560   case InitListExprClass: {
2561     // FIXME: This doesn't deal with fields with reference types correctly.
2562     // FIXME: This incorrectly allows pointers cast to integers to be assigned
2563     // to bitfields.
2564     const InitListExpr *Exp = cast<InitListExpr>(this);
2565     unsigned numInits = Exp->getNumInits();
2566     for (unsigned i = 0; i < numInits; i++) {
2567       if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2568         return false;
2569     }
2570     return true;
2571   }
2572   case ImplicitValueInitExprClass:
2573     return true;
2574   case ParenExprClass:
2575     return cast<ParenExpr>(this)->getSubExpr()
2576       ->isConstantInitializer(Ctx, IsForRef);
2577   case GenericSelectionExprClass:
2578     if (cast<GenericSelectionExpr>(this)->isResultDependent())
2579       return false;
2580     return cast<GenericSelectionExpr>(this)->getResultExpr()
2581       ->isConstantInitializer(Ctx, IsForRef);
2582   case ChooseExprClass:
2583     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2584       ->isConstantInitializer(Ctx, IsForRef);
2585   case UnaryOperatorClass: {
2586     const UnaryOperator* Exp = cast<UnaryOperator>(this);
2587     if (Exp->getOpcode() == UO_Extension)
2588       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2589     break;
2590   }
2591   case CXXFunctionalCastExprClass:
2592   case CXXStaticCastExprClass:
2593   case ImplicitCastExprClass:
2594   case CStyleCastExprClass: {
2595     const CastExpr *CE = cast<CastExpr>(this);
2596 
2597     // If we're promoting an integer to an _Atomic type then this is constant
2598     // if the integer is constant.  We also need to check the converse in case
2599     // someone does something like:
2600     //
2601     // int a = (_Atomic(int))42;
2602     //
2603     // I doubt anyone would write code like this directly, but it's quite
2604     // possible as the result of macro expansions.
2605     if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2606         CE->getCastKind() == CK_AtomicToNonAtomic)
2607       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2608 
2609     // Handle bitcasts of vector constants.
2610     if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2611       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2612 
2613     // Handle misc casts we want to ignore.
2614     // FIXME: Is it really safe to ignore all these?
2615     if (CE->getCastKind() == CK_NoOp ||
2616         CE->getCastKind() == CK_LValueToRValue ||
2617         CE->getCastKind() == CK_ToUnion ||
2618         CE->getCastKind() == CK_ConstructorConversion)
2619       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2620 
2621     break;
2622   }
2623   case MaterializeTemporaryExprClass:
2624     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2625                                             ->isConstantInitializer(Ctx, false);
2626   }
2627   return isEvaluatable(Ctx);
2628 }
2629 
HasSideEffects(const ASTContext & Ctx) const2630 bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2631   if (isInstantiationDependent())
2632     return true;
2633 
2634   switch (getStmtClass()) {
2635   case NoStmtClass:
2636   #define ABSTRACT_STMT(Type)
2637   #define STMT(Type, Base) case Type##Class:
2638   #define EXPR(Type, Base)
2639   #include "clang/AST/StmtNodes.inc"
2640     llvm_unreachable("unexpected Expr kind");
2641 
2642   case DependentScopeDeclRefExprClass:
2643   case CXXUnresolvedConstructExprClass:
2644   case CXXDependentScopeMemberExprClass:
2645   case UnresolvedLookupExprClass:
2646   case UnresolvedMemberExprClass:
2647   case PackExpansionExprClass:
2648   case SubstNonTypeTemplateParmPackExprClass:
2649     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2650 
2651   case DeclRefExprClass:
2652   case ObjCIvarRefExprClass:
2653   case PredefinedExprClass:
2654   case IntegerLiteralClass:
2655   case FloatingLiteralClass:
2656   case ImaginaryLiteralClass:
2657   case StringLiteralClass:
2658   case CharacterLiteralClass:
2659   case OffsetOfExprClass:
2660   case ImplicitValueInitExprClass:
2661   case UnaryExprOrTypeTraitExprClass:
2662   case AddrLabelExprClass:
2663   case GNUNullExprClass:
2664   case CXXBoolLiteralExprClass:
2665   case CXXNullPtrLiteralExprClass:
2666   case CXXThisExprClass:
2667   case CXXScalarValueInitExprClass:
2668   case TypeTraitExprClass:
2669   case UnaryTypeTraitExprClass:
2670   case BinaryTypeTraitExprClass:
2671   case ArrayTypeTraitExprClass:
2672   case ExpressionTraitExprClass:
2673   case CXXNoexceptExprClass:
2674   case SizeOfPackExprClass:
2675   case ObjCStringLiteralClass:
2676   case ObjCEncodeExprClass:
2677   case ObjCBoolLiteralExprClass:
2678   case CXXUuidofExprClass:
2679   case OpaqueValueExprClass:
2680     // These never have a side-effect.
2681     return false;
2682 
2683   case CallExprClass:
2684   case CompoundAssignOperatorClass:
2685   case VAArgExprClass:
2686   case AtomicExprClass:
2687   case StmtExprClass:
2688   case CXXOperatorCallExprClass:
2689   case CXXMemberCallExprClass:
2690   case UserDefinedLiteralClass:
2691   case CXXThrowExprClass:
2692   case CXXNewExprClass:
2693   case CXXDeleteExprClass:
2694   case ExprWithCleanupsClass:
2695   case CXXBindTemporaryExprClass:
2696   case BlockExprClass:
2697   case CUDAKernelCallExprClass:
2698     // These always have a side-effect.
2699     return true;
2700 
2701   case ParenExprClass:
2702   case ArraySubscriptExprClass:
2703   case MemberExprClass:
2704   case ConditionalOperatorClass:
2705   case BinaryConditionalOperatorClass:
2706   case CompoundLiteralExprClass:
2707   case ExtVectorElementExprClass:
2708   case DesignatedInitExprClass:
2709   case ParenListExprClass:
2710   case CXXPseudoDestructorExprClass:
2711   case SubstNonTypeTemplateParmExprClass:
2712   case MaterializeTemporaryExprClass:
2713   case ShuffleVectorExprClass:
2714   case AsTypeExprClass:
2715     // These have a side-effect if any subexpression does.
2716     break;
2717 
2718   case UnaryOperatorClass:
2719     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2720       return true;
2721     break;
2722 
2723   case BinaryOperatorClass:
2724     if (cast<BinaryOperator>(this)->isAssignmentOp())
2725       return true;
2726     break;
2727 
2728   case InitListExprClass:
2729     // FIXME: The children for an InitListExpr doesn't include the array filler.
2730     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2731       if (E->HasSideEffects(Ctx))
2732         return true;
2733     break;
2734 
2735   case GenericSelectionExprClass:
2736     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2737         HasSideEffects(Ctx);
2738 
2739   case ChooseExprClass:
2740     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
2741 
2742   case CXXDefaultArgExprClass:
2743     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2744 
2745   case CXXDynamicCastExprClass: {
2746     // A dynamic_cast expression has side-effects if it can throw.
2747     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2748     if (DCE->getTypeAsWritten()->isReferenceType() &&
2749         DCE->getCastKind() == CK_Dynamic)
2750       return true;
2751   } // Fall through.
2752   case ImplicitCastExprClass:
2753   case CStyleCastExprClass:
2754   case CXXStaticCastExprClass:
2755   case CXXReinterpretCastExprClass:
2756   case CXXConstCastExprClass:
2757   case CXXFunctionalCastExprClass: {
2758     const CastExpr *CE = cast<CastExpr>(this);
2759     if (CE->getCastKind() == CK_LValueToRValue &&
2760         CE->getSubExpr()->getType().isVolatileQualified())
2761       return true;
2762     break;
2763   }
2764 
2765   case CXXTypeidExprClass:
2766     // typeid might throw if its subexpression is potentially-evaluated, so has
2767     // side-effects in that case whether or not its subexpression does.
2768     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2769 
2770   case CXXConstructExprClass:
2771   case CXXTemporaryObjectExprClass: {
2772     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2773     if (!CE->getConstructor()->isTrivial())
2774       return true;
2775     // A trivial constructor does not add any side-effects of its own. Just look
2776     // at its arguments.
2777     break;
2778   }
2779 
2780   case LambdaExprClass: {
2781     const LambdaExpr *LE = cast<LambdaExpr>(this);
2782     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2783                                       E = LE->capture_end(); I != E; ++I)
2784       if (I->getCaptureKind() == LCK_ByCopy)
2785         // FIXME: Only has a side-effect if the variable is volatile or if
2786         // the copy would invoke a non-trivial copy constructor.
2787         return true;
2788     return false;
2789   }
2790 
2791   case PseudoObjectExprClass: {
2792     // Only look for side-effects in the semantic form, and look past
2793     // OpaqueValueExpr bindings in that form.
2794     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2795     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2796                                                     E = PO->semantics_end();
2797          I != E; ++I) {
2798       const Expr *Subexpr = *I;
2799       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2800         Subexpr = OVE->getSourceExpr();
2801       if (Subexpr->HasSideEffects(Ctx))
2802         return true;
2803     }
2804     return false;
2805   }
2806 
2807   case ObjCBoxedExprClass:
2808   case ObjCArrayLiteralClass:
2809   case ObjCDictionaryLiteralClass:
2810   case ObjCMessageExprClass:
2811   case ObjCSelectorExprClass:
2812   case ObjCProtocolExprClass:
2813   case ObjCPropertyRefExprClass:
2814   case ObjCIsaExprClass:
2815   case ObjCIndirectCopyRestoreExprClass:
2816   case ObjCSubscriptRefExprClass:
2817   case ObjCBridgedCastExprClass:
2818     // FIXME: Classify these cases better.
2819     return true;
2820   }
2821 
2822   // Recurse to children.
2823   for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2824     if (const Stmt *S = *SubStmts)
2825       if (cast<Expr>(S)->HasSideEffects(Ctx))
2826         return true;
2827 
2828   return false;
2829 }
2830 
2831 namespace {
2832   /// \brief Look for a call to a non-trivial function within an expression.
2833   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2834   {
2835     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2836 
2837     bool NonTrivial;
2838 
2839   public:
NonTrivialCallFinder(ASTContext & Context)2840     explicit NonTrivialCallFinder(ASTContext &Context)
2841       : Inherited(Context), NonTrivial(false) { }
2842 
hasNonTrivialCall() const2843     bool hasNonTrivialCall() const { return NonTrivial; }
2844 
VisitCallExpr(CallExpr * E)2845     void VisitCallExpr(CallExpr *E) {
2846       if (CXXMethodDecl *Method
2847           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2848         if (Method->isTrivial()) {
2849           // Recurse to children of the call.
2850           Inherited::VisitStmt(E);
2851           return;
2852         }
2853       }
2854 
2855       NonTrivial = true;
2856     }
2857 
VisitCXXConstructExpr(CXXConstructExpr * E)2858     void VisitCXXConstructExpr(CXXConstructExpr *E) {
2859       if (E->getConstructor()->isTrivial()) {
2860         // Recurse to children of the call.
2861         Inherited::VisitStmt(E);
2862         return;
2863       }
2864 
2865       NonTrivial = true;
2866     }
2867 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)2868     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2869       if (E->getTemporary()->getDestructor()->isTrivial()) {
2870         Inherited::VisitStmt(E);
2871         return;
2872       }
2873 
2874       NonTrivial = true;
2875     }
2876   };
2877 }
2878 
hasNonTrivialCall(ASTContext & Ctx)2879 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2880   NonTrivialCallFinder Finder(Ctx);
2881   Finder.Visit(this);
2882   return Finder.hasNonTrivialCall();
2883 }
2884 
2885 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2886 /// pointer constant or not, as well as the specific kind of constant detected.
2887 /// Null pointer constants can be integer constant expressions with the
2888 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
2889 /// (a GNU extension).
2890 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const2891 Expr::isNullPointerConstant(ASTContext &Ctx,
2892                             NullPointerConstantValueDependence NPC) const {
2893   if (isValueDependent()) {
2894     switch (NPC) {
2895     case NPC_NeverValueDependent:
2896       llvm_unreachable("Unexpected value dependent expression!");
2897     case NPC_ValueDependentIsNull:
2898       if (isTypeDependent() || getType()->isIntegralType(Ctx))
2899         return NPCK_ZeroExpression;
2900       else
2901         return NPCK_NotNull;
2902 
2903     case NPC_ValueDependentIsNotNull:
2904       return NPCK_NotNull;
2905     }
2906   }
2907 
2908   // Strip off a cast to void*, if it exists. Except in C++.
2909   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2910     if (!Ctx.getLangOpts().CPlusPlus) {
2911       // Check that it is a cast to void*.
2912       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2913         QualType Pointee = PT->getPointeeType();
2914         if (!Pointee.hasQualifiers() &&
2915             Pointee->isVoidType() &&                              // to void*
2916             CE->getSubExpr()->getType()->isIntegerType())         // from int.
2917           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2918       }
2919     }
2920   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2921     // Ignore the ImplicitCastExpr type entirely.
2922     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2923   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2924     // Accept ((void*)0) as a null pointer constant, as many other
2925     // implementations do.
2926     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2927   } else if (const GenericSelectionExpr *GE =
2928                dyn_cast<GenericSelectionExpr>(this)) {
2929     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2930   } else if (const CXXDefaultArgExpr *DefaultArg
2931                = dyn_cast<CXXDefaultArgExpr>(this)) {
2932     // See through default argument expressions
2933     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2934   } else if (isa<GNUNullExpr>(this)) {
2935     // The GNU __null extension is always a null pointer constant.
2936     return NPCK_GNUNull;
2937   } else if (const MaterializeTemporaryExpr *M
2938                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
2939     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2940   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2941     if (const Expr *Source = OVE->getSourceExpr())
2942       return Source->isNullPointerConstant(Ctx, NPC);
2943   }
2944 
2945   // C++0x nullptr_t is always a null pointer constant.
2946   if (getType()->isNullPtrType())
2947     return NPCK_CXX0X_nullptr;
2948 
2949   if (const RecordType *UT = getType()->getAsUnionType())
2950     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2951       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2952         const Expr *InitExpr = CLE->getInitializer();
2953         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2954           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2955       }
2956   // This expression must be an integer type.
2957   if (!getType()->isIntegerType() ||
2958       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
2959     return NPCK_NotNull;
2960 
2961   // If we have an integer constant expression, we need to *evaluate* it and
2962   // test for the value 0. Don't use the C++11 constant expression semantics
2963   // for this, for now; once the dust settles on core issue 903, we might only
2964   // allow a literal 0 here in C++11 mode.
2965   if (Ctx.getLangOpts().CPlusPlus0x) {
2966     if (!isCXX98IntegralConstantExpr(Ctx))
2967       return NPCK_NotNull;
2968   } else {
2969     if (!isIntegerConstantExpr(Ctx))
2970       return NPCK_NotNull;
2971   }
2972 
2973   if (EvaluateKnownConstInt(Ctx) != 0)
2974     return NPCK_NotNull;
2975 
2976   if (isa<IntegerLiteral>(this))
2977     return NPCK_ZeroLiteral;
2978   return NPCK_ZeroExpression;
2979 }
2980 
2981 /// \brief If this expression is an l-value for an Objective C
2982 /// property, find the underlying property reference expression.
getObjCProperty() const2983 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2984   const Expr *E = this;
2985   while (true) {
2986     assert((E->getValueKind() == VK_LValue &&
2987             E->getObjectKind() == OK_ObjCProperty) &&
2988            "expression is not a property reference");
2989     E = E->IgnoreParenCasts();
2990     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2991       if (BO->getOpcode() == BO_Comma) {
2992         E = BO->getRHS();
2993         continue;
2994       }
2995     }
2996 
2997     break;
2998   }
2999 
3000   return cast<ObjCPropertyRefExpr>(E);
3001 }
3002 
getBitField()3003 FieldDecl *Expr::getBitField() {
3004   Expr *E = this->IgnoreParens();
3005 
3006   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3007     if (ICE->getCastKind() == CK_LValueToRValue ||
3008         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3009       E = ICE->getSubExpr()->IgnoreParens();
3010     else
3011       break;
3012   }
3013 
3014   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3015     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3016       if (Field->isBitField())
3017         return Field;
3018 
3019   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3020     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3021       if (Field->isBitField())
3022         return Field;
3023 
3024   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3025     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3026       return BinOp->getLHS()->getBitField();
3027 
3028     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3029       return BinOp->getRHS()->getBitField();
3030   }
3031 
3032   return 0;
3033 }
3034 
refersToVectorElement() const3035 bool Expr::refersToVectorElement() const {
3036   const Expr *E = this->IgnoreParens();
3037 
3038   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3039     if (ICE->getValueKind() != VK_RValue &&
3040         ICE->getCastKind() == CK_NoOp)
3041       E = ICE->getSubExpr()->IgnoreParens();
3042     else
3043       break;
3044   }
3045 
3046   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3047     return ASE->getBase()->getType()->isVectorType();
3048 
3049   if (isa<ExtVectorElementExpr>(E))
3050     return true;
3051 
3052   return false;
3053 }
3054 
3055 /// isArrow - Return true if the base expression is a pointer to vector,
3056 /// return false if the base expression is a vector.
isArrow() const3057 bool ExtVectorElementExpr::isArrow() const {
3058   return getBase()->getType()->isPointerType();
3059 }
3060 
getNumElements() const3061 unsigned ExtVectorElementExpr::getNumElements() const {
3062   if (const VectorType *VT = getType()->getAs<VectorType>())
3063     return VT->getNumElements();
3064   return 1;
3065 }
3066 
3067 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3068 bool ExtVectorElementExpr::containsDuplicateElements() const {
3069   // FIXME: Refactor this code to an accessor on the AST node which returns the
3070   // "type" of component access, and share with code below and in Sema.
3071   StringRef Comp = Accessor->getName();
3072 
3073   // Halving swizzles do not contain duplicate elements.
3074   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3075     return false;
3076 
3077   // Advance past s-char prefix on hex swizzles.
3078   if (Comp[0] == 's' || Comp[0] == 'S')
3079     Comp = Comp.substr(1);
3080 
3081   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3082     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3083         return true;
3084 
3085   return false;
3086 }
3087 
3088 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<unsigned> & Elts) const3089 void ExtVectorElementExpr::getEncodedElementAccess(
3090                                   SmallVectorImpl<unsigned> &Elts) const {
3091   StringRef Comp = Accessor->getName();
3092   if (Comp[0] == 's' || Comp[0] == 'S')
3093     Comp = Comp.substr(1);
3094 
3095   bool isHi =   Comp == "hi";
3096   bool isLo =   Comp == "lo";
3097   bool isEven = Comp == "even";
3098   bool isOdd  = Comp == "odd";
3099 
3100   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3101     uint64_t Index;
3102 
3103     if (isHi)
3104       Index = e + i;
3105     else if (isLo)
3106       Index = i;
3107     else if (isEven)
3108       Index = 2 * i;
3109     else if (isOdd)
3110       Index = 2 * i + 1;
3111     else
3112       Index = ExtVectorType::getAccessorIdx(Comp[i]);
3113 
3114     Elts.push_back(Index);
3115   }
3116 }
3117 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3118 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3119                                  ExprValueKind VK,
3120                                  SourceLocation LBracLoc,
3121                                  SourceLocation SuperLoc,
3122                                  bool IsInstanceSuper,
3123                                  QualType SuperType,
3124                                  Selector Sel,
3125                                  ArrayRef<SourceLocation> SelLocs,
3126                                  SelectorLocationsKind SelLocsK,
3127                                  ObjCMethodDecl *Method,
3128                                  ArrayRef<Expr *> Args,
3129                                  SourceLocation RBracLoc,
3130                                  bool isImplicit)
3131   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3132          /*TypeDependent=*/false, /*ValueDependent=*/false,
3133          /*InstantiationDependent=*/false,
3134          /*ContainsUnexpandedParameterPack=*/false),
3135     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3136                                                        : Sel.getAsOpaquePtr())),
3137     Kind(IsInstanceSuper? SuperInstance : SuperClass),
3138     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3139     SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3140 {
3141   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3142   setReceiverPointer(SuperType.getAsOpaquePtr());
3143 }
3144 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3145 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3146                                  ExprValueKind VK,
3147                                  SourceLocation LBracLoc,
3148                                  TypeSourceInfo *Receiver,
3149                                  Selector Sel,
3150                                  ArrayRef<SourceLocation> SelLocs,
3151                                  SelectorLocationsKind SelLocsK,
3152                                  ObjCMethodDecl *Method,
3153                                  ArrayRef<Expr *> Args,
3154                                  SourceLocation RBracLoc,
3155                                  bool isImplicit)
3156   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3157          T->isDependentType(), T->isInstantiationDependentType(),
3158          T->containsUnexpandedParameterPack()),
3159     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3160                                                        : Sel.getAsOpaquePtr())),
3161     Kind(Class),
3162     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3163     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3164 {
3165   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3166   setReceiverPointer(Receiver);
3167 }
3168 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3169 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3170                                  ExprValueKind VK,
3171                                  SourceLocation LBracLoc,
3172                                  Expr *Receiver,
3173                                  Selector Sel,
3174                                  ArrayRef<SourceLocation> SelLocs,
3175                                  SelectorLocationsKind SelLocsK,
3176                                  ObjCMethodDecl *Method,
3177                                  ArrayRef<Expr *> Args,
3178                                  SourceLocation RBracLoc,
3179                                  bool isImplicit)
3180   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3181          Receiver->isTypeDependent(),
3182          Receiver->isInstantiationDependent(),
3183          Receiver->containsUnexpandedParameterPack()),
3184     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3185                                                        : Sel.getAsOpaquePtr())),
3186     Kind(Instance),
3187     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3188     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3189 {
3190   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3191   setReceiverPointer(Receiver);
3192 }
3193 
initArgsAndSelLocs(ArrayRef<Expr * > Args,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK)3194 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3195                                          ArrayRef<SourceLocation> SelLocs,
3196                                          SelectorLocationsKind SelLocsK) {
3197   setNumArgs(Args.size());
3198   Expr **MyArgs = getArgs();
3199   for (unsigned I = 0; I != Args.size(); ++I) {
3200     if (Args[I]->isTypeDependent())
3201       ExprBits.TypeDependent = true;
3202     if (Args[I]->isValueDependent())
3203       ExprBits.ValueDependent = true;
3204     if (Args[I]->isInstantiationDependent())
3205       ExprBits.InstantiationDependent = true;
3206     if (Args[I]->containsUnexpandedParameterPack())
3207       ExprBits.ContainsUnexpandedParameterPack = true;
3208 
3209     MyArgs[I] = Args[I];
3210   }
3211 
3212   SelLocsKind = SelLocsK;
3213   if (!isImplicit()) {
3214     if (SelLocsK == SelLoc_NonStandard)
3215       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3216   }
3217 }
3218 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3219 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3220                                          ExprValueKind VK,
3221                                          SourceLocation LBracLoc,
3222                                          SourceLocation SuperLoc,
3223                                          bool IsInstanceSuper,
3224                                          QualType SuperType,
3225                                          Selector Sel,
3226                                          ArrayRef<SourceLocation> SelLocs,
3227                                          ObjCMethodDecl *Method,
3228                                          ArrayRef<Expr *> Args,
3229                                          SourceLocation RBracLoc,
3230                                          bool isImplicit) {
3231   assert((!SelLocs.empty() || isImplicit) &&
3232          "No selector locs for non-implicit message");
3233   ObjCMessageExpr *Mem;
3234   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3235   if (isImplicit)
3236     Mem = alloc(Context, Args.size(), 0);
3237   else
3238     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3239   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3240                                    SuperType, Sel, SelLocs, SelLocsK,
3241                                    Method, Args, RBracLoc, isImplicit);
3242 }
3243 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3244 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3245                                          ExprValueKind VK,
3246                                          SourceLocation LBracLoc,
3247                                          TypeSourceInfo *Receiver,
3248                                          Selector Sel,
3249                                          ArrayRef<SourceLocation> SelLocs,
3250                                          ObjCMethodDecl *Method,
3251                                          ArrayRef<Expr *> Args,
3252                                          SourceLocation RBracLoc,
3253                                          bool isImplicit) {
3254   assert((!SelLocs.empty() || isImplicit) &&
3255          "No selector locs for non-implicit message");
3256   ObjCMessageExpr *Mem;
3257   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3258   if (isImplicit)
3259     Mem = alloc(Context, Args.size(), 0);
3260   else
3261     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3262   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3263                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3264                                    isImplicit);
3265 }
3266 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3267 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3268                                          ExprValueKind VK,
3269                                          SourceLocation LBracLoc,
3270                                          Expr *Receiver,
3271                                          Selector Sel,
3272                                          ArrayRef<SourceLocation> SelLocs,
3273                                          ObjCMethodDecl *Method,
3274                                          ArrayRef<Expr *> Args,
3275                                          SourceLocation RBracLoc,
3276                                          bool isImplicit) {
3277   assert((!SelLocs.empty() || isImplicit) &&
3278          "No selector locs for non-implicit message");
3279   ObjCMessageExpr *Mem;
3280   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3281   if (isImplicit)
3282     Mem = alloc(Context, Args.size(), 0);
3283   else
3284     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3285   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3286                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3287                                    isImplicit);
3288 }
3289 
CreateEmpty(ASTContext & Context,unsigned NumArgs,unsigned NumStoredSelLocs)3290 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3291                                               unsigned NumArgs,
3292                                               unsigned NumStoredSelLocs) {
3293   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3294   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3295 }
3296 
alloc(ASTContext & C,ArrayRef<Expr * > Args,SourceLocation RBraceLoc,ArrayRef<SourceLocation> SelLocs,Selector Sel,SelectorLocationsKind & SelLocsK)3297 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3298                                         ArrayRef<Expr *> Args,
3299                                         SourceLocation RBraceLoc,
3300                                         ArrayRef<SourceLocation> SelLocs,
3301                                         Selector Sel,
3302                                         SelectorLocationsKind &SelLocsK) {
3303   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3304   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3305                                                                : 0;
3306   return alloc(C, Args.size(), NumStoredSelLocs);
3307 }
3308 
alloc(ASTContext & C,unsigned NumArgs,unsigned NumStoredSelLocs)3309 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3310                                         unsigned NumArgs,
3311                                         unsigned NumStoredSelLocs) {
3312   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3313     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3314   return (ObjCMessageExpr *)C.Allocate(Size,
3315                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
3316 }
3317 
getSelectorLocs(SmallVectorImpl<SourceLocation> & SelLocs) const3318 void ObjCMessageExpr::getSelectorLocs(
3319                                SmallVectorImpl<SourceLocation> &SelLocs) const {
3320   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3321     SelLocs.push_back(getSelectorLoc(i));
3322 }
3323 
getReceiverRange() const3324 SourceRange ObjCMessageExpr::getReceiverRange() const {
3325   switch (getReceiverKind()) {
3326   case Instance:
3327     return getInstanceReceiver()->getSourceRange();
3328 
3329   case Class:
3330     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3331 
3332   case SuperInstance:
3333   case SuperClass:
3334     return getSuperLoc();
3335   }
3336 
3337   llvm_unreachable("Invalid ReceiverKind!");
3338 }
3339 
getSelector() const3340 Selector ObjCMessageExpr::getSelector() const {
3341   if (HasMethod)
3342     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3343                                                                ->getSelector();
3344   return Selector(SelectorOrMethod);
3345 }
3346 
getReceiverInterface() const3347 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3348   switch (getReceiverKind()) {
3349   case Instance:
3350     if (const ObjCObjectPointerType *Ptr
3351           = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
3352       return Ptr->getInterfaceDecl();
3353     break;
3354 
3355   case Class:
3356     if (const ObjCObjectType *Ty
3357           = getClassReceiver()->getAs<ObjCObjectType>())
3358       return Ty->getInterface();
3359     break;
3360 
3361   case SuperInstance:
3362     if (const ObjCObjectPointerType *Ptr
3363           = getSuperType()->getAs<ObjCObjectPointerType>())
3364       return Ptr->getInterfaceDecl();
3365     break;
3366 
3367   case SuperClass:
3368     if (const ObjCObjectType *Iface
3369           = getSuperType()->getAs<ObjCObjectType>())
3370       return Iface->getInterface();
3371     break;
3372   }
3373 
3374   return 0;
3375 }
3376 
getBridgeKindName() const3377 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3378   switch (getBridgeKind()) {
3379   case OBC_Bridge:
3380     return "__bridge";
3381   case OBC_BridgeTransfer:
3382     return "__bridge_transfer";
3383   case OBC_BridgeRetained:
3384     return "__bridge_retained";
3385   }
3386 
3387   llvm_unreachable("Invalid BridgeKind!");
3388 }
3389 
isConditionTrue(const ASTContext & C) const3390 bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3391   return getCond()->EvaluateKnownConstInt(C) != 0;
3392 }
3393 
ShuffleVectorExpr(ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3394 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
3395                                      QualType Type, SourceLocation BLoc,
3396                                      SourceLocation RP)
3397    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3398           Type->isDependentType(), Type->isDependentType(),
3399           Type->isInstantiationDependentType(),
3400           Type->containsUnexpandedParameterPack()),
3401      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3402 {
3403   SubExprs = new (C) Stmt*[args.size()];
3404   for (unsigned i = 0; i != args.size(); i++) {
3405     if (args[i]->isTypeDependent())
3406       ExprBits.TypeDependent = true;
3407     if (args[i]->isValueDependent())
3408       ExprBits.ValueDependent = true;
3409     if (args[i]->isInstantiationDependent())
3410       ExprBits.InstantiationDependent = true;
3411     if (args[i]->containsUnexpandedParameterPack())
3412       ExprBits.ContainsUnexpandedParameterPack = true;
3413 
3414     SubExprs[i] = args[i];
3415   }
3416 }
3417 
setExprs(ASTContext & C,Expr ** Exprs,unsigned NumExprs)3418 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3419                                  unsigned NumExprs) {
3420   if (SubExprs) C.Deallocate(SubExprs);
3421 
3422   SubExprs = new (C) Stmt* [NumExprs];
3423   this->NumExprs = NumExprs;
3424   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3425 }
3426 
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3427 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3428                                SourceLocation GenericLoc, Expr *ControllingExpr,
3429                                ArrayRef<TypeSourceInfo*> AssocTypes,
3430                                ArrayRef<Expr*> AssocExprs,
3431                                SourceLocation DefaultLoc,
3432                                SourceLocation RParenLoc,
3433                                bool ContainsUnexpandedParameterPack,
3434                                unsigned ResultIndex)
3435   : Expr(GenericSelectionExprClass,
3436          AssocExprs[ResultIndex]->getType(),
3437          AssocExprs[ResultIndex]->getValueKind(),
3438          AssocExprs[ResultIndex]->getObjectKind(),
3439          AssocExprs[ResultIndex]->isTypeDependent(),
3440          AssocExprs[ResultIndex]->isValueDependent(),
3441          AssocExprs[ResultIndex]->isInstantiationDependent(),
3442          ContainsUnexpandedParameterPack),
3443     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3444     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3445     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3446     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3447   SubExprs[CONTROLLING] = ControllingExpr;
3448   assert(AssocTypes.size() == AssocExprs.size());
3449   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3450   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3451 }
3452 
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3453 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3454                                SourceLocation GenericLoc, Expr *ControllingExpr,
3455                                ArrayRef<TypeSourceInfo*> AssocTypes,
3456                                ArrayRef<Expr*> AssocExprs,
3457                                SourceLocation DefaultLoc,
3458                                SourceLocation RParenLoc,
3459                                bool ContainsUnexpandedParameterPack)
3460   : Expr(GenericSelectionExprClass,
3461          Context.DependentTy,
3462          VK_RValue,
3463          OK_Ordinary,
3464          /*isTypeDependent=*/true,
3465          /*isValueDependent=*/true,
3466          /*isInstantiationDependent=*/true,
3467          ContainsUnexpandedParameterPack),
3468     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3469     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3470     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3471     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3472   SubExprs[CONTROLLING] = ControllingExpr;
3473   assert(AssocTypes.size() == AssocExprs.size());
3474   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3475   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3476 }
3477 
3478 //===----------------------------------------------------------------------===//
3479 //  DesignatedInitExpr
3480 //===----------------------------------------------------------------------===//
3481 
getFieldName() const3482 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3483   assert(Kind == FieldDesignator && "Only valid on a field designator");
3484   if (Field.NameOrField & 0x01)
3485     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3486   else
3487     return getField()->getIdentifier();
3488 }
3489 
DesignatedInitExpr(ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)3490 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3491                                        unsigned NumDesignators,
3492                                        const Designator *Designators,
3493                                        SourceLocation EqualOrColonLoc,
3494                                        bool GNUSyntax,
3495                                        ArrayRef<Expr*> IndexExprs,
3496                                        Expr *Init)
3497   : Expr(DesignatedInitExprClass, Ty,
3498          Init->getValueKind(), Init->getObjectKind(),
3499          Init->isTypeDependent(), Init->isValueDependent(),
3500          Init->isInstantiationDependent(),
3501          Init->containsUnexpandedParameterPack()),
3502     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3503     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3504   this->Designators = new (C) Designator[NumDesignators];
3505 
3506   // Record the initializer itself.
3507   child_range Child = children();
3508   *Child++ = Init;
3509 
3510   // Copy the designators and their subexpressions, computing
3511   // value-dependence along the way.
3512   unsigned IndexIdx = 0;
3513   for (unsigned I = 0; I != NumDesignators; ++I) {
3514     this->Designators[I] = Designators[I];
3515 
3516     if (this->Designators[I].isArrayDesignator()) {
3517       // Compute type- and value-dependence.
3518       Expr *Index = IndexExprs[IndexIdx];
3519       if (Index->isTypeDependent() || Index->isValueDependent())
3520         ExprBits.ValueDependent = true;
3521       if (Index->isInstantiationDependent())
3522         ExprBits.InstantiationDependent = true;
3523       // Propagate unexpanded parameter packs.
3524       if (Index->containsUnexpandedParameterPack())
3525         ExprBits.ContainsUnexpandedParameterPack = true;
3526 
3527       // Copy the index expressions into permanent storage.
3528       *Child++ = IndexExprs[IndexIdx++];
3529     } else if (this->Designators[I].isArrayRangeDesignator()) {
3530       // Compute type- and value-dependence.
3531       Expr *Start = IndexExprs[IndexIdx];
3532       Expr *End = IndexExprs[IndexIdx + 1];
3533       if (Start->isTypeDependent() || Start->isValueDependent() ||
3534           End->isTypeDependent() || End->isValueDependent()) {
3535         ExprBits.ValueDependent = true;
3536         ExprBits.InstantiationDependent = true;
3537       } else if (Start->isInstantiationDependent() ||
3538                  End->isInstantiationDependent()) {
3539         ExprBits.InstantiationDependent = true;
3540       }
3541 
3542       // Propagate unexpanded parameter packs.
3543       if (Start->containsUnexpandedParameterPack() ||
3544           End->containsUnexpandedParameterPack())
3545         ExprBits.ContainsUnexpandedParameterPack = true;
3546 
3547       // Copy the start/end expressions into permanent storage.
3548       *Child++ = IndexExprs[IndexIdx++];
3549       *Child++ = IndexExprs[IndexIdx++];
3550     }
3551   }
3552 
3553   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3554 }
3555 
3556 DesignatedInitExpr *
Create(ASTContext & C,Designator * Designators,unsigned NumDesignators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3557 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3558                            unsigned NumDesignators,
3559                            ArrayRef<Expr*> IndexExprs,
3560                            SourceLocation ColonOrEqualLoc,
3561                            bool UsesColonSyntax, Expr *Init) {
3562   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3563                          sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3564   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3565                                       ColonOrEqualLoc, UsesColonSyntax,
3566                                       IndexExprs, Init);
3567 }
3568 
CreateEmpty(ASTContext & C,unsigned NumIndexExprs)3569 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3570                                                     unsigned NumIndexExprs) {
3571   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3572                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3573   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3574 }
3575 
setDesignators(ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3576 void DesignatedInitExpr::setDesignators(ASTContext &C,
3577                                         const Designator *Desigs,
3578                                         unsigned NumDesigs) {
3579   Designators = new (C) Designator[NumDesigs];
3580   NumDesignators = NumDesigs;
3581   for (unsigned I = 0; I != NumDesigs; ++I)
3582     Designators[I] = Desigs[I];
3583 }
3584 
getDesignatorsSourceRange() const3585 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3586   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3587   if (size() == 1)
3588     return DIE->getDesignator(0)->getSourceRange();
3589   return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3590                      DIE->getDesignator(size()-1)->getEndLocation());
3591 }
3592 
getSourceRange() const3593 SourceRange DesignatedInitExpr::getSourceRange() const {
3594   SourceLocation StartLoc;
3595   Designator &First =
3596     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3597   if (First.isFieldDesignator()) {
3598     if (GNUSyntax)
3599       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3600     else
3601       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3602   } else
3603     StartLoc =
3604       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3605   return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3606 }
3607 
getArrayIndex(const Designator & D)3608 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3609   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3610   char* Ptr = static_cast<char*>(static_cast<void *>(this));
3611   Ptr += sizeof(DesignatedInitExpr);
3612   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3613   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3614 }
3615 
getArrayRangeStart(const Designator & D)3616 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3617   assert(D.Kind == Designator::ArrayRangeDesignator &&
3618          "Requires array range designator");
3619   char* Ptr = static_cast<char*>(static_cast<void *>(this));
3620   Ptr += sizeof(DesignatedInitExpr);
3621   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3622   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3623 }
3624 
getArrayRangeEnd(const Designator & D)3625 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3626   assert(D.Kind == Designator::ArrayRangeDesignator &&
3627          "Requires array range designator");
3628   char* Ptr = static_cast<char*>(static_cast<void *>(this));
3629   Ptr += sizeof(DesignatedInitExpr);
3630   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3631   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3632 }
3633 
3634 /// \brief Replaces the designator at index @p Idx with the series
3635 /// of designators in [First, Last).
ExpandDesignator(ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3636 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3637                                           const Designator *First,
3638                                           const Designator *Last) {
3639   unsigned NumNewDesignators = Last - First;
3640   if (NumNewDesignators == 0) {
3641     std::copy_backward(Designators + Idx + 1,
3642                        Designators + NumDesignators,
3643                        Designators + Idx);
3644     --NumNewDesignators;
3645     return;
3646   } else if (NumNewDesignators == 1) {
3647     Designators[Idx] = *First;
3648     return;
3649   }
3650 
3651   Designator *NewDesignators
3652     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3653   std::copy(Designators, Designators + Idx, NewDesignators);
3654   std::copy(First, Last, NewDesignators + Idx);
3655   std::copy(Designators + Idx + 1, Designators + NumDesignators,
3656             NewDesignators + Idx + NumNewDesignators);
3657   Designators = NewDesignators;
3658   NumDesignators = NumDesignators - 1 + NumNewDesignators;
3659 }
3660 
ParenListExpr(ASTContext & C,SourceLocation lparenloc,ArrayRef<Expr * > exprs,SourceLocation rparenloc)3661 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3662                              ArrayRef<Expr*> exprs,
3663                              SourceLocation rparenloc)
3664   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3665          false, false, false, false),
3666     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3667   Exprs = new (C) Stmt*[exprs.size()];
3668   for (unsigned i = 0; i != exprs.size(); ++i) {
3669     if (exprs[i]->isTypeDependent())
3670       ExprBits.TypeDependent = true;
3671     if (exprs[i]->isValueDependent())
3672       ExprBits.ValueDependent = true;
3673     if (exprs[i]->isInstantiationDependent())
3674       ExprBits.InstantiationDependent = true;
3675     if (exprs[i]->containsUnexpandedParameterPack())
3676       ExprBits.ContainsUnexpandedParameterPack = true;
3677 
3678     Exprs[i] = exprs[i];
3679   }
3680 }
3681 
findInCopyConstruct(const Expr * e)3682 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3683   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3684     e = ewc->getSubExpr();
3685   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3686     e = m->GetTemporaryExpr();
3687   e = cast<CXXConstructExpr>(e)->getArg(0);
3688   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3689     e = ice->getSubExpr();
3690   return cast<OpaqueValueExpr>(e);
3691 }
3692 
Create(ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3693 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3694                                            unsigned numSemanticExprs) {
3695   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3696                                     (1 + numSemanticExprs) * sizeof(Expr*),
3697                                   llvm::alignOf<PseudoObjectExpr>());
3698   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3699 }
3700 
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3701 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3702   : Expr(PseudoObjectExprClass, shell) {
3703   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3704 }
3705 
Create(ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3706 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3707                                            ArrayRef<Expr*> semantics,
3708                                            unsigned resultIndex) {
3709   assert(syntax && "no syntactic expression!");
3710   assert(semantics.size() && "no semantic expressions!");
3711 
3712   QualType type;
3713   ExprValueKind VK;
3714   if (resultIndex == NoResult) {
3715     type = C.VoidTy;
3716     VK = VK_RValue;
3717   } else {
3718     assert(resultIndex < semantics.size());
3719     type = semantics[resultIndex]->getType();
3720     VK = semantics[resultIndex]->getValueKind();
3721     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3722   }
3723 
3724   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3725                               (1 + semantics.size()) * sizeof(Expr*),
3726                             llvm::alignOf<PseudoObjectExpr>());
3727   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3728                                       resultIndex);
3729 }
3730 
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3731 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3732                                    Expr *syntax, ArrayRef<Expr*> semantics,
3733                                    unsigned resultIndex)
3734   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3735          /*filled in at end of ctor*/ false, false, false, false) {
3736   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3737   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3738 
3739   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3740     Expr *E = (i == 0 ? syntax : semantics[i-1]);
3741     getSubExprsBuffer()[i] = E;
3742 
3743     if (E->isTypeDependent())
3744       ExprBits.TypeDependent = true;
3745     if (E->isValueDependent())
3746       ExprBits.ValueDependent = true;
3747     if (E->isInstantiationDependent())
3748       ExprBits.InstantiationDependent = true;
3749     if (E->containsUnexpandedParameterPack())
3750       ExprBits.ContainsUnexpandedParameterPack = true;
3751 
3752     if (isa<OpaqueValueExpr>(E))
3753       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3754              "opaque-value semantic expressions for pseudo-object "
3755              "operations must have sources");
3756   }
3757 }
3758 
3759 //===----------------------------------------------------------------------===//
3760 //  ExprIterator.
3761 //===----------------------------------------------------------------------===//
3762 
operator [](size_t idx)3763 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
operator *() const3764 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3765 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
operator [](size_t idx) const3766 const Expr* ConstExprIterator::operator[](size_t idx) const {
3767   return cast<Expr>(I[idx]);
3768 }
operator *() const3769 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3770 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3771 
3772 //===----------------------------------------------------------------------===//
3773 //  Child Iterators for iterating over subexpressions/substatements
3774 //===----------------------------------------------------------------------===//
3775 
3776 // UnaryExprOrTypeTraitExpr
children()3777 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3778   // If this is of a type and the type is a VLA type (and not a typedef), the
3779   // size expression of the VLA needs to be treated as an executable expression.
3780   // Why isn't this weirdness documented better in StmtIterator?
3781   if (isArgumentType()) {
3782     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3783                                    getArgumentType().getTypePtr()))
3784       return child_range(child_iterator(T), child_iterator());
3785     return child_range();
3786   }
3787   return child_range(&Argument.Ex, &Argument.Ex + 1);
3788 }
3789 
3790 // ObjCMessageExpr
children()3791 Stmt::child_range ObjCMessageExpr::children() {
3792   Stmt **begin;
3793   if (getReceiverKind() == Instance)
3794     begin = reinterpret_cast<Stmt **>(this + 1);
3795   else
3796     begin = reinterpret_cast<Stmt **>(getArgs());
3797   return child_range(begin,
3798                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3799 }
3800 
ObjCArrayLiteral(llvm::ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3801 ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3802                                    QualType T, ObjCMethodDecl *Method,
3803                                    SourceRange SR)
3804   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3805          false, false, false, false),
3806     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3807 {
3808   Expr **SaveElements = getElements();
3809   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3810     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3811       ExprBits.ValueDependent = true;
3812     if (Elements[I]->isInstantiationDependent())
3813       ExprBits.InstantiationDependent = true;
3814     if (Elements[I]->containsUnexpandedParameterPack())
3815       ExprBits.ContainsUnexpandedParameterPack = true;
3816 
3817     SaveElements[I] = Elements[I];
3818   }
3819 }
3820 
Create(ASTContext & C,llvm::ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3821 ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3822                                            llvm::ArrayRef<Expr *> Elements,
3823                                            QualType T, ObjCMethodDecl * Method,
3824                                            SourceRange SR) {
3825   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3826                          + Elements.size() * sizeof(Expr *));
3827   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3828 }
3829 
CreateEmpty(ASTContext & C,unsigned NumElements)3830 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3831                                                 unsigned NumElements) {
3832 
3833   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3834                          + NumElements * sizeof(Expr *));
3835   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3836 }
3837 
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3838 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3839                                              ArrayRef<ObjCDictionaryElement> VK,
3840                                              bool HasPackExpansions,
3841                                              QualType T, ObjCMethodDecl *method,
3842                                              SourceRange SR)
3843   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3844          false, false),
3845     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3846     DictWithObjectsMethod(method)
3847 {
3848   KeyValuePair *KeyValues = getKeyValues();
3849   ExpansionData *Expansions = getExpansionData();
3850   for (unsigned I = 0; I < NumElements; I++) {
3851     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3852         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3853       ExprBits.ValueDependent = true;
3854     if (VK[I].Key->isInstantiationDependent() ||
3855         VK[I].Value->isInstantiationDependent())
3856       ExprBits.InstantiationDependent = true;
3857     if (VK[I].EllipsisLoc.isInvalid() &&
3858         (VK[I].Key->containsUnexpandedParameterPack() ||
3859          VK[I].Value->containsUnexpandedParameterPack()))
3860       ExprBits.ContainsUnexpandedParameterPack = true;
3861 
3862     KeyValues[I].Key = VK[I].Key;
3863     KeyValues[I].Value = VK[I].Value;
3864     if (Expansions) {
3865       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3866       if (VK[I].NumExpansions)
3867         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3868       else
3869         Expansions[I].NumExpansionsPlusOne = 0;
3870     }
3871   }
3872 }
3873 
3874 ObjCDictionaryLiteral *
Create(ASTContext & C,ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3875 ObjCDictionaryLiteral::Create(ASTContext &C,
3876                               ArrayRef<ObjCDictionaryElement> VK,
3877                               bool HasPackExpansions,
3878                               QualType T, ObjCMethodDecl *method,
3879                               SourceRange SR) {
3880   unsigned ExpansionsSize = 0;
3881   if (HasPackExpansions)
3882     ExpansionsSize = sizeof(ExpansionData) * VK.size();
3883 
3884   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3885                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3886   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3887 }
3888 
3889 ObjCDictionaryLiteral *
CreateEmpty(ASTContext & C,unsigned NumElements,bool HasPackExpansions)3890 ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3891                                    bool HasPackExpansions) {
3892   unsigned ExpansionsSize = 0;
3893   if (HasPackExpansions)
3894     ExpansionsSize = sizeof(ExpansionData) * NumElements;
3895   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3896                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3897   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3898                                          HasPackExpansions);
3899 }
3900 
Create(ASTContext & C,Expr * base,Expr * key,QualType T,ObjCMethodDecl * getMethod,ObjCMethodDecl * setMethod,SourceLocation RB)3901 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3902                                                    Expr *base,
3903                                                    Expr *key, QualType T,
3904                                                    ObjCMethodDecl *getMethod,
3905                                                    ObjCMethodDecl *setMethod,
3906                                                    SourceLocation RB) {
3907   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3908   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3909                                         OK_ObjCSubscript,
3910                                         getMethod, setMethod, RB);
3911 }
3912 
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)3913 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
3914                        QualType t, AtomicOp op, SourceLocation RP)
3915   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3916          false, false, false, false),
3917     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3918 {
3919   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
3920   for (unsigned i = 0; i != args.size(); i++) {
3921     if (args[i]->isTypeDependent())
3922       ExprBits.TypeDependent = true;
3923     if (args[i]->isValueDependent())
3924       ExprBits.ValueDependent = true;
3925     if (args[i]->isInstantiationDependent())
3926       ExprBits.InstantiationDependent = true;
3927     if (args[i]->containsUnexpandedParameterPack())
3928       ExprBits.ContainsUnexpandedParameterPack = true;
3929 
3930     SubExprs[i] = args[i];
3931   }
3932 }
3933 
getNumSubExprs(AtomicOp Op)3934 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3935   switch (Op) {
3936   case AO__c11_atomic_init:
3937   case AO__c11_atomic_load:
3938   case AO__atomic_load_n:
3939     return 2;
3940 
3941   case AO__c11_atomic_store:
3942   case AO__c11_atomic_exchange:
3943   case AO__atomic_load:
3944   case AO__atomic_store:
3945   case AO__atomic_store_n:
3946   case AO__atomic_exchange_n:
3947   case AO__c11_atomic_fetch_add:
3948   case AO__c11_atomic_fetch_sub:
3949   case AO__c11_atomic_fetch_and:
3950   case AO__c11_atomic_fetch_or:
3951   case AO__c11_atomic_fetch_xor:
3952   case AO__atomic_fetch_add:
3953   case AO__atomic_fetch_sub:
3954   case AO__atomic_fetch_and:
3955   case AO__atomic_fetch_or:
3956   case AO__atomic_fetch_xor:
3957   case AO__atomic_fetch_nand:
3958   case AO__atomic_add_fetch:
3959   case AO__atomic_sub_fetch:
3960   case AO__atomic_and_fetch:
3961   case AO__atomic_or_fetch:
3962   case AO__atomic_xor_fetch:
3963   case AO__atomic_nand_fetch:
3964     return 3;
3965 
3966   case AO__atomic_exchange:
3967     return 4;
3968 
3969   case AO__c11_atomic_compare_exchange_strong:
3970   case AO__c11_atomic_compare_exchange_weak:
3971     return 5;
3972 
3973   case AO__atomic_compare_exchange:
3974   case AO__atomic_compare_exchange_n:
3975     return 6;
3976   }
3977   llvm_unreachable("unknown atomic op");
3978 }
3979