1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DefaultJITMemoryManager class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "jit"
15 #include "llvm/ExecutionEngine/JITMemoryManager.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/GlobalValue.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Support/Memory.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/DynamicLibrary.h"
28 #include "llvm/Config/config.h"
29 #include <vector>
30 #include <cassert>
31 #include <climits>
32 #include <cstring>
33
34 #if defined(__linux__)
35 #if defined(HAVE_SYS_STAT_H)
36 #include <sys/stat.h>
37 #endif
38 #include <fcntl.h>
39 #include <unistd.h>
40 #endif
41
42 using namespace llvm;
43
44 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
45
~JITMemoryManager()46 JITMemoryManager::~JITMemoryManager() {}
47
48 //===----------------------------------------------------------------------===//
49 // Memory Block Implementation.
50 //===----------------------------------------------------------------------===//
51
52 namespace {
53 /// MemoryRangeHeader - For a range of memory, this is the header that we put
54 /// on the block of memory. It is carefully crafted to be one word of memory.
55 /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
56 /// which starts with this.
57 struct FreeRangeHeader;
58 struct MemoryRangeHeader {
59 /// ThisAllocated - This is true if this block is currently allocated. If
60 /// not, this can be converted to a FreeRangeHeader.
61 unsigned ThisAllocated : 1;
62
63 /// PrevAllocated - Keep track of whether the block immediately before us is
64 /// allocated. If not, the word immediately before this header is the size
65 /// of the previous block.
66 unsigned PrevAllocated : 1;
67
68 /// BlockSize - This is the size in bytes of this memory block,
69 /// including this header.
70 uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
71
72
73 /// getBlockAfter - Return the memory block immediately after this one.
74 ///
getBlockAfter__anonc4b138420111::MemoryRangeHeader75 MemoryRangeHeader &getBlockAfter() const {
76 return *(MemoryRangeHeader*)((char*)this+BlockSize);
77 }
78
79 /// getFreeBlockBefore - If the block before this one is free, return it,
80 /// otherwise return null.
getFreeBlockBefore__anonc4b138420111::MemoryRangeHeader81 FreeRangeHeader *getFreeBlockBefore() const {
82 if (PrevAllocated) return 0;
83 intptr_t PrevSize = ((intptr_t *)this)[-1];
84 return (FreeRangeHeader*)((char*)this-PrevSize);
85 }
86
87 /// FreeBlock - Turn an allocated block into a free block, adjusting
88 /// bits in the object headers, and adding an end of region memory block.
89 FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
90
91 /// TrimAllocationToSize - If this allocated block is significantly larger
92 /// than NewSize, split it into two pieces (where the former is NewSize
93 /// bytes, including the header), and add the new block to the free list.
94 FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
95 uint64_t NewSize);
96 };
97
98 /// FreeRangeHeader - For a memory block that isn't already allocated, this
99 /// keeps track of the current block and has a pointer to the next free block.
100 /// Free blocks are kept on a circularly linked list.
101 struct FreeRangeHeader : public MemoryRangeHeader {
102 FreeRangeHeader *Prev;
103 FreeRangeHeader *Next;
104
105 /// getMinBlockSize - Get the minimum size for a memory block. Blocks
106 /// smaller than this size cannot be created.
getMinBlockSize__anonc4b138420111::FreeRangeHeader107 static unsigned getMinBlockSize() {
108 return sizeof(FreeRangeHeader)+sizeof(intptr_t);
109 }
110
111 /// SetEndOfBlockSizeMarker - The word at the end of every free block is
112 /// known to be the size of the free block. Set it for this block.
SetEndOfBlockSizeMarker__anonc4b138420111::FreeRangeHeader113 void SetEndOfBlockSizeMarker() {
114 void *EndOfBlock = (char*)this + BlockSize;
115 ((intptr_t *)EndOfBlock)[-1] = BlockSize;
116 }
117
RemoveFromFreeList__anonc4b138420111::FreeRangeHeader118 FreeRangeHeader *RemoveFromFreeList() {
119 assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
120 Next->Prev = Prev;
121 return Prev->Next = Next;
122 }
123
AddToFreeList__anonc4b138420111::FreeRangeHeader124 void AddToFreeList(FreeRangeHeader *FreeList) {
125 Next = FreeList;
126 Prev = FreeList->Prev;
127 Prev->Next = this;
128 Next->Prev = this;
129 }
130
131 /// GrowBlock - The block after this block just got deallocated. Merge it
132 /// into the current block.
133 void GrowBlock(uintptr_t NewSize);
134
135 /// AllocateBlock - Mark this entire block allocated, updating freelists
136 /// etc. This returns a pointer to the circular free-list.
137 FreeRangeHeader *AllocateBlock();
138 };
139 }
140
141
142 /// AllocateBlock - Mark this entire block allocated, updating freelists
143 /// etc. This returns a pointer to the circular free-list.
AllocateBlock()144 FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
145 assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
146 "Cannot allocate an allocated block!");
147 // Mark this block allocated.
148 ThisAllocated = 1;
149 getBlockAfter().PrevAllocated = 1;
150
151 // Remove it from the free list.
152 return RemoveFromFreeList();
153 }
154
155 /// FreeBlock - Turn an allocated block into a free block, adjusting
156 /// bits in the object headers, and adding an end of region memory block.
157 /// If possible, coalesce this block with neighboring blocks. Return the
158 /// FreeRangeHeader to allocate from.
FreeBlock(FreeRangeHeader * FreeList)159 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
160 MemoryRangeHeader *FollowingBlock = &getBlockAfter();
161 assert(ThisAllocated && "This block is already free!");
162 assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
163
164 FreeRangeHeader *FreeListToReturn = FreeList;
165
166 // If the block after this one is free, merge it into this block.
167 if (!FollowingBlock->ThisAllocated) {
168 FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
169 // "FreeList" always needs to be a valid free block. If we're about to
170 // coalesce with it, update our notion of what the free list is.
171 if (&FollowingFreeBlock == FreeList) {
172 FreeList = FollowingFreeBlock.Next;
173 FreeListToReturn = 0;
174 assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
175 }
176 FollowingFreeBlock.RemoveFromFreeList();
177
178 // Include the following block into this one.
179 BlockSize += FollowingFreeBlock.BlockSize;
180 FollowingBlock = &FollowingFreeBlock.getBlockAfter();
181
182 // Tell the block after the block we are coalescing that this block is
183 // allocated.
184 FollowingBlock->PrevAllocated = 1;
185 }
186
187 assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
188
189 if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
190 PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
191 return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
192 }
193
194 // Otherwise, mark this block free.
195 FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
196 FollowingBlock->PrevAllocated = 0;
197 FreeBlock.ThisAllocated = 0;
198
199 // Link this into the linked list of free blocks.
200 FreeBlock.AddToFreeList(FreeList);
201
202 // Add a marker at the end of the block, indicating the size of this free
203 // block.
204 FreeBlock.SetEndOfBlockSizeMarker();
205 return FreeListToReturn ? FreeListToReturn : &FreeBlock;
206 }
207
208 /// GrowBlock - The block after this block just got deallocated. Merge it
209 /// into the current block.
GrowBlock(uintptr_t NewSize)210 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
211 assert(NewSize > BlockSize && "Not growing block?");
212 BlockSize = NewSize;
213 SetEndOfBlockSizeMarker();
214 getBlockAfter().PrevAllocated = 0;
215 }
216
217 /// TrimAllocationToSize - If this allocated block is significantly larger
218 /// than NewSize, split it into two pieces (where the former is NewSize
219 /// bytes, including the header), and add the new block to the free list.
220 FreeRangeHeader *MemoryRangeHeader::
TrimAllocationToSize(FreeRangeHeader * FreeList,uint64_t NewSize)221 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
222 assert(ThisAllocated && getBlockAfter().PrevAllocated &&
223 "Cannot deallocate part of an allocated block!");
224
225 // Don't allow blocks to be trimmed below minimum required size
226 NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
227
228 // Round up size for alignment of header.
229 unsigned HeaderAlign = __alignof(FreeRangeHeader);
230 NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
231
232 // Size is now the size of the block we will remove from the start of the
233 // current block.
234 assert(NewSize <= BlockSize &&
235 "Allocating more space from this block than exists!");
236
237 // If splitting this block will cause the remainder to be too small, do not
238 // split the block.
239 if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
240 return FreeList;
241
242 // Otherwise, we splice the required number of bytes out of this block, form
243 // a new block immediately after it, then mark this block allocated.
244 MemoryRangeHeader &FormerNextBlock = getBlockAfter();
245
246 // Change the size of this block.
247 BlockSize = NewSize;
248
249 // Get the new block we just sliced out and turn it into a free block.
250 FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
251 NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
252 NewNextBlock.ThisAllocated = 0;
253 NewNextBlock.PrevAllocated = 1;
254 NewNextBlock.SetEndOfBlockSizeMarker();
255 FormerNextBlock.PrevAllocated = 0;
256 NewNextBlock.AddToFreeList(FreeList);
257 return &NewNextBlock;
258 }
259
260 //===----------------------------------------------------------------------===//
261 // Memory Block Implementation.
262 //===----------------------------------------------------------------------===//
263
264 namespace {
265
266 class DefaultJITMemoryManager;
267
268 class JITSlabAllocator : public SlabAllocator {
269 DefaultJITMemoryManager &JMM;
270 public:
JITSlabAllocator(DefaultJITMemoryManager & jmm)271 JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
~JITSlabAllocator()272 virtual ~JITSlabAllocator() { }
273 virtual MemSlab *Allocate(size_t Size);
274 virtual void Deallocate(MemSlab *Slab);
275 };
276
277 /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
278 /// This splits a large block of MAP_NORESERVE'd memory into two
279 /// sections, one for function stubs, one for the functions themselves. We
280 /// have to do this because we may need to emit a function stub while in the
281 /// middle of emitting a function, and we don't know how large the function we
282 /// are emitting is.
283 class DefaultJITMemoryManager : public JITMemoryManager {
284
285 // Whether to poison freed memory.
286 bool PoisonMemory;
287
288 /// LastSlab - This points to the last slab allocated and is used as the
289 /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
290 /// stubs, data, and code contiguously in memory. In general, however, this
291 /// is not possible because the NearBlock parameter is ignored on Windows
292 /// platforms and even on Unix it works on a best-effort pasis.
293 sys::MemoryBlock LastSlab;
294
295 // Memory slabs allocated by the JIT. We refer to them as slabs so we don't
296 // confuse them with the blocks of memory described above.
297 std::vector<sys::MemoryBlock> CodeSlabs;
298 JITSlabAllocator BumpSlabAllocator;
299 BumpPtrAllocator StubAllocator;
300 BumpPtrAllocator DataAllocator;
301
302 // Circular list of free blocks.
303 FreeRangeHeader *FreeMemoryList;
304
305 // When emitting code into a memory block, this is the block.
306 MemoryRangeHeader *CurBlock;
307
308 uint8_t *GOTBase; // Target Specific reserved memory
309 public:
310 DefaultJITMemoryManager();
311 ~DefaultJITMemoryManager();
312
313 /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
314 /// last slab it allocated, so that subsequent allocations follow it.
315 sys::MemoryBlock allocateNewSlab(size_t size);
316
317 /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
318 /// least this much unless more is requested.
319 static const size_t DefaultCodeSlabSize;
320
321 /// DefaultSlabSize - Allocate data into slabs of this size unless we get
322 /// an allocation above SizeThreshold.
323 static const size_t DefaultSlabSize;
324
325 /// DefaultSizeThreshold - For any allocation larger than this threshold, we
326 /// should allocate a separate slab.
327 static const size_t DefaultSizeThreshold;
328
329 /// getPointerToNamedFunction - This method returns the address of the
330 /// specified function by using the dlsym function call.
331 virtual void *getPointerToNamedFunction(const std::string &Name,
332 bool AbortOnFailure = true);
333
334 void AllocateGOT();
335
336 // Testing methods.
337 virtual bool CheckInvariants(std::string &ErrorStr);
GetDefaultCodeSlabSize()338 size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
GetDefaultDataSlabSize()339 size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
GetDefaultStubSlabSize()340 size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
GetNumCodeSlabs()341 unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
GetNumDataSlabs()342 unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
GetNumStubSlabs()343 unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
344
345 /// startFunctionBody - When a function starts, allocate a block of free
346 /// executable memory, returning a pointer to it and its actual size.
startFunctionBody(const Function * F,uintptr_t & ActualSize)347 uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
348
349 FreeRangeHeader* candidateBlock = FreeMemoryList;
350 FreeRangeHeader* head = FreeMemoryList;
351 FreeRangeHeader* iter = head->Next;
352
353 uintptr_t largest = candidateBlock->BlockSize;
354
355 // Search for the largest free block
356 while (iter != head) {
357 if (iter->BlockSize > largest) {
358 largest = iter->BlockSize;
359 candidateBlock = iter;
360 }
361 iter = iter->Next;
362 }
363
364 largest = largest - sizeof(MemoryRangeHeader);
365
366 // If this block isn't big enough for the allocation desired, allocate
367 // another block of memory and add it to the free list.
368 if (largest < ActualSize ||
369 largest <= FreeRangeHeader::getMinBlockSize()) {
370 DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
371 candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
372 }
373
374 // Select this candidate block for allocation
375 CurBlock = candidateBlock;
376
377 // Allocate the entire memory block.
378 FreeMemoryList = candidateBlock->AllocateBlock();
379 ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
380 return (uint8_t *)(CurBlock + 1);
381 }
382
383 /// allocateNewCodeSlab - Helper method to allocate a new slab of code
384 /// memory from the OS and add it to the free list. Returns the new
385 /// FreeRangeHeader at the base of the slab.
allocateNewCodeSlab(size_t MinSize)386 FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
387 // If the user needs at least MinSize free memory, then we account for
388 // two MemoryRangeHeaders: the one in the user's block, and the one at the
389 // end of the slab.
390 size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
391 size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
392 sys::MemoryBlock B = allocateNewSlab(SlabSize);
393 CodeSlabs.push_back(B);
394 char *MemBase = (char*)(B.base());
395
396 // Put a tiny allocated block at the end of the memory chunk, so when
397 // FreeBlock calls getBlockAfter it doesn't fall off the end.
398 MemoryRangeHeader *EndBlock =
399 (MemoryRangeHeader*)(MemBase + B.size()) - 1;
400 EndBlock->ThisAllocated = 1;
401 EndBlock->PrevAllocated = 0;
402 EndBlock->BlockSize = sizeof(MemoryRangeHeader);
403
404 // Start out with a vast new block of free memory.
405 FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
406 NewBlock->ThisAllocated = 0;
407 // Make sure getFreeBlockBefore doesn't look into unmapped memory.
408 NewBlock->PrevAllocated = 1;
409 NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
410 NewBlock->SetEndOfBlockSizeMarker();
411 NewBlock->AddToFreeList(FreeMemoryList);
412
413 assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
414 "The block was too small!");
415 return NewBlock;
416 }
417
418 /// endFunctionBody - The function F is now allocated, and takes the memory
419 /// in the range [FunctionStart,FunctionEnd).
endFunctionBody(const Function * F,uint8_t * FunctionStart,uint8_t * FunctionEnd)420 void endFunctionBody(const Function *F, uint8_t *FunctionStart,
421 uint8_t *FunctionEnd) {
422 assert(FunctionEnd > FunctionStart);
423 assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
424 "Mismatched function start/end!");
425
426 uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
427
428 // Release the memory at the end of this block that isn't needed.
429 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
430 }
431
432 /// allocateSpace - Allocate a memory block of the given size. This method
433 /// cannot be called between calls to startFunctionBody and endFunctionBody.
allocateSpace(intptr_t Size,unsigned Alignment)434 uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
435 CurBlock = FreeMemoryList;
436 FreeMemoryList = FreeMemoryList->AllocateBlock();
437
438 uint8_t *result = (uint8_t *)(CurBlock + 1);
439
440 if (Alignment == 0) Alignment = 1;
441 result = (uint8_t*)(((intptr_t)result+Alignment-1) &
442 ~(intptr_t)(Alignment-1));
443
444 uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
445 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
446
447 return result;
448 }
449
450 /// allocateStub - Allocate memory for a function stub.
allocateStub(const GlobalValue * F,unsigned StubSize,unsigned Alignment)451 uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
452 unsigned Alignment) {
453 return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
454 }
455
456 /// allocateGlobal - Allocate memory for a global.
allocateGlobal(uintptr_t Size,unsigned Alignment)457 uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
458 return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
459 }
460
461 /// allocateCodeSection - Allocate memory for a code section.
allocateCodeSection(uintptr_t Size,unsigned Alignment,unsigned SectionID)462 uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
463 unsigned SectionID) {
464 // Grow the required block size to account for the block header
465 Size += sizeof(*CurBlock);
466
467 // FIXME: Alignement handling.
468 FreeRangeHeader* candidateBlock = FreeMemoryList;
469 FreeRangeHeader* head = FreeMemoryList;
470 FreeRangeHeader* iter = head->Next;
471
472 uintptr_t largest = candidateBlock->BlockSize;
473
474 // Search for the largest free block.
475 while (iter != head) {
476 if (iter->BlockSize > largest) {
477 largest = iter->BlockSize;
478 candidateBlock = iter;
479 }
480 iter = iter->Next;
481 }
482
483 largest = largest - sizeof(MemoryRangeHeader);
484
485 // If this block isn't big enough for the allocation desired, allocate
486 // another block of memory and add it to the free list.
487 if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
488 DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
489 candidateBlock = allocateNewCodeSlab((size_t)Size);
490 }
491
492 // Select this candidate block for allocation
493 CurBlock = candidateBlock;
494
495 // Allocate the entire memory block.
496 FreeMemoryList = candidateBlock->AllocateBlock();
497 // Release the memory at the end of this block that isn't needed.
498 FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
499 return (uint8_t *)(CurBlock + 1);
500 }
501
502 /// allocateDataSection - Allocate memory for a data section.
allocateDataSection(uintptr_t Size,unsigned Alignment,unsigned SectionID)503 uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
504 unsigned SectionID) {
505 return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
506 }
507
508 /// startExceptionTable - Use startFunctionBody to allocate memory for the
509 /// function's exception table.
startExceptionTable(const Function * F,uintptr_t & ActualSize)510 uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
511 return startFunctionBody(F, ActualSize);
512 }
513
514 /// endExceptionTable - The exception table of F is now allocated,
515 /// and takes the memory in the range [TableStart,TableEnd).
endExceptionTable(const Function * F,uint8_t * TableStart,uint8_t * TableEnd,uint8_t * FrameRegister)516 void endExceptionTable(const Function *F, uint8_t *TableStart,
517 uint8_t *TableEnd, uint8_t* FrameRegister) {
518 assert(TableEnd > TableStart);
519 assert(TableStart == (uint8_t *)(CurBlock+1) &&
520 "Mismatched table start/end!");
521
522 uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
523
524 // Release the memory at the end of this block that isn't needed.
525 FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
526 }
527
getGOTBase() const528 uint8_t *getGOTBase() const {
529 return GOTBase;
530 }
531
deallocateBlock(void * Block)532 void deallocateBlock(void *Block) {
533 // Find the block that is allocated for this function.
534 MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
535 assert(MemRange->ThisAllocated && "Block isn't allocated!");
536
537 // Fill the buffer with garbage!
538 if (PoisonMemory) {
539 memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
540 }
541
542 // Free the memory.
543 FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
544 }
545
546 /// deallocateFunctionBody - Deallocate all memory for the specified
547 /// function body.
deallocateFunctionBody(void * Body)548 void deallocateFunctionBody(void *Body) {
549 if (Body) deallocateBlock(Body);
550 }
551
552 /// deallocateExceptionTable - Deallocate memory for the specified
553 /// exception table.
deallocateExceptionTable(void * ET)554 void deallocateExceptionTable(void *ET) {
555 if (ET) deallocateBlock(ET);
556 }
557
558 /// setMemoryWritable - When code generation is in progress,
559 /// the code pages may need permissions changed.
setMemoryWritable()560 void setMemoryWritable()
561 {
562 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
563 sys::Memory::setWritable(CodeSlabs[i]);
564 }
565 /// setMemoryExecutable - When code generation is done and we're ready to
566 /// start execution, the code pages may need permissions changed.
setMemoryExecutable()567 void setMemoryExecutable()
568 {
569 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
570 sys::Memory::setExecutable(CodeSlabs[i]);
571 }
572
573 /// setPoisonMemory - Controls whether we write garbage over freed memory.
574 ///
setPoisonMemory(bool poison)575 void setPoisonMemory(bool poison) {
576 PoisonMemory = poison;
577 }
578 };
579 }
580
Allocate(size_t Size)581 MemSlab *JITSlabAllocator::Allocate(size_t Size) {
582 sys::MemoryBlock B = JMM.allocateNewSlab(Size);
583 MemSlab *Slab = (MemSlab*)B.base();
584 Slab->Size = B.size();
585 Slab->NextPtr = 0;
586 return Slab;
587 }
588
Deallocate(MemSlab * Slab)589 void JITSlabAllocator::Deallocate(MemSlab *Slab) {
590 sys::MemoryBlock B(Slab, Slab->Size);
591 sys::Memory::ReleaseRWX(B);
592 }
593
DefaultJITMemoryManager()594 DefaultJITMemoryManager::DefaultJITMemoryManager()
595 :
596 #ifdef NDEBUG
597 PoisonMemory(false),
598 #else
599 PoisonMemory(true),
600 #endif
601 LastSlab(0, 0),
602 BumpSlabAllocator(*this),
603 StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
604 DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
605
606 // Allocate space for code.
607 sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
608 CodeSlabs.push_back(MemBlock);
609 uint8_t *MemBase = (uint8_t*)MemBlock.base();
610
611 // We set up the memory chunk with 4 mem regions, like this:
612 // [ START
613 // [ Free #0 ] -> Large space to allocate functions from.
614 // [ Allocated #1 ] -> Tiny space to separate regions.
615 // [ Free #2 ] -> Tiny space so there is always at least 1 free block.
616 // [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
617 // END ]
618 //
619 // The last three blocks are never deallocated or touched.
620
621 // Add MemoryRangeHeader to the end of the memory region, indicating that
622 // the space after the block of memory is allocated. This is block #3.
623 MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
624 Mem3->ThisAllocated = 1;
625 Mem3->PrevAllocated = 0;
626 Mem3->BlockSize = sizeof(MemoryRangeHeader);
627
628 /// Add a tiny free region so that the free list always has one entry.
629 FreeRangeHeader *Mem2 =
630 (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
631 Mem2->ThisAllocated = 0;
632 Mem2->PrevAllocated = 1;
633 Mem2->BlockSize = FreeRangeHeader::getMinBlockSize();
634 Mem2->SetEndOfBlockSizeMarker();
635 Mem2->Prev = Mem2; // Mem2 *is* the free list for now.
636 Mem2->Next = Mem2;
637
638 /// Add a tiny allocated region so that Mem2 is never coalesced away.
639 MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
640 Mem1->ThisAllocated = 1;
641 Mem1->PrevAllocated = 0;
642 Mem1->BlockSize = sizeof(MemoryRangeHeader);
643
644 // Add a FreeRangeHeader to the start of the function body region, indicating
645 // that the space is free. Mark the previous block allocated so we never look
646 // at it.
647 FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
648 Mem0->ThisAllocated = 0;
649 Mem0->PrevAllocated = 1;
650 Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
651 Mem0->SetEndOfBlockSizeMarker();
652 Mem0->AddToFreeList(Mem2);
653
654 // Start out with the freelist pointing to Mem0.
655 FreeMemoryList = Mem0;
656
657 GOTBase = NULL;
658 }
659
AllocateGOT()660 void DefaultJITMemoryManager::AllocateGOT() {
661 assert(GOTBase == 0 && "Cannot allocate the got multiple times");
662 GOTBase = new uint8_t[sizeof(void*) * 8192];
663 HasGOT = true;
664 }
665
~DefaultJITMemoryManager()666 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
667 for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
668 sys::Memory::ReleaseRWX(CodeSlabs[i]);
669
670 delete[] GOTBase;
671 }
672
allocateNewSlab(size_t size)673 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
674 // Allocate a new block close to the last one.
675 std::string ErrMsg;
676 sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
677 sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
678 if (B.base() == 0) {
679 report_fatal_error("Allocation failed when allocating new memory in the"
680 " JIT\n" + Twine(ErrMsg));
681 }
682 LastSlab = B;
683 ++NumSlabs;
684 // Initialize the slab to garbage when debugging.
685 if (PoisonMemory) {
686 memset(B.base(), 0xCD, B.size());
687 }
688 return B;
689 }
690
691 /// CheckInvariants - For testing only. Return "" if all internal invariants
692 /// are preserved, and a helpful error message otherwise. For free and
693 /// allocated blocks, make sure that adding BlockSize gives a valid block.
694 /// For free blocks, make sure they're in the free list and that their end of
695 /// block size marker is correct. This function should return an error before
696 /// accessing bad memory. This function is defined here instead of in
697 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
698 /// implementation details of DefaultJITMemoryManager.
CheckInvariants(std::string & ErrorStr)699 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
700 raw_string_ostream Err(ErrorStr);
701
702 // Construct a the set of FreeRangeHeader pointers so we can query it
703 // efficiently.
704 llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
705 FreeRangeHeader* FreeHead = FreeMemoryList;
706 FreeRangeHeader* FreeRange = FreeHead;
707
708 do {
709 // Check that the free range pointer is in the blocks we've allocated.
710 bool Found = false;
711 for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
712 E = CodeSlabs.end(); I != E && !Found; ++I) {
713 char *Start = (char*)I->base();
714 char *End = Start + I->size();
715 Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
716 }
717 if (!Found) {
718 Err << "Corrupt free list; points to " << FreeRange;
719 return false;
720 }
721
722 if (FreeRange->Next->Prev != FreeRange) {
723 Err << "Next and Prev pointers do not match.";
724 return false;
725 }
726
727 // Otherwise, add it to the set.
728 FreeHdrSet.insert(FreeRange);
729 FreeRange = FreeRange->Next;
730 } while (FreeRange != FreeHead);
731
732 // Go over each block, and look at each MemoryRangeHeader.
733 for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
734 E = CodeSlabs.end(); I != E; ++I) {
735 char *Start = (char*)I->base();
736 char *End = Start + I->size();
737
738 // Check each memory range.
739 for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
740 Start <= (char*)Hdr && (char*)Hdr < End;
741 Hdr = &Hdr->getBlockAfter()) {
742 if (Hdr->ThisAllocated == 0) {
743 // Check that this range is in the free list.
744 if (!FreeHdrSet.count(Hdr)) {
745 Err << "Found free header at " << Hdr << " that is not in free list.";
746 return false;
747 }
748
749 // Now make sure the size marker at the end of the block is correct.
750 uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
751 if (!(Start <= (char*)Marker && (char*)Marker < End)) {
752 Err << "Block size in header points out of current MemoryBlock.";
753 return false;
754 }
755 if (Hdr->BlockSize != *Marker) {
756 Err << "End of block size marker (" << *Marker << ") "
757 << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
758 return false;
759 }
760 }
761
762 if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
763 Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
764 << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
765 return false;
766 } else if (!LastHdr && !Hdr->PrevAllocated) {
767 Err << "The first header should have PrevAllocated true.";
768 return false;
769 }
770
771 // Remember the last header.
772 LastHdr = Hdr;
773 }
774 }
775
776 // All invariants are preserved.
777 return true;
778 }
779
780 //===----------------------------------------------------------------------===//
781 // getPointerToNamedFunction() implementation.
782 //===----------------------------------------------------------------------===//
783
784 // AtExitHandlers - List of functions to call when the program exits,
785 // registered with the atexit() library function.
786 static std::vector<void (*)()> AtExitHandlers;
787
788 /// runAtExitHandlers - Run any functions registered by the program's
789 /// calls to atexit(3), which we intercept and store in
790 /// AtExitHandlers.
791 ///
runAtExitHandlers()792 static void runAtExitHandlers() {
793 while (!AtExitHandlers.empty()) {
794 void (*Fn)() = AtExitHandlers.back();
795 AtExitHandlers.pop_back();
796 Fn();
797 }
798 }
799
800 //===----------------------------------------------------------------------===//
801 // Function stubs that are invoked instead of certain library calls
802 //
803 // Force the following functions to be linked in to anything that uses the
804 // JIT. This is a hack designed to work around the all-too-clever Glibc
805 // strategy of making these functions work differently when inlined vs. when
806 // not inlined, and hiding their real definitions in a separate archive file
807 // that the dynamic linker can't see. For more info, search for
808 // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
809 #if defined(__linux__)
810 /* stat functions are redirecting to __xstat with a version number. On x86-64
811 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
812 * available as an exported symbol, so we have to add it explicitly.
813 */
814 namespace {
815 class StatSymbols {
816 public:
StatSymbols()817 StatSymbols() {
818 sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
819 sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
820 sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
821 sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
822 sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
823 sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
824 sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
825 sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
826 sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
827 sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
828 sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
829 }
830 };
831 }
832 static StatSymbols initStatSymbols;
833 #endif // __linux__
834
835 // jit_exit - Used to intercept the "exit" library call.
jit_exit(int Status)836 static void jit_exit(int Status) {
837 runAtExitHandlers(); // Run atexit handlers...
838 exit(Status);
839 }
840
841 // jit_atexit - Used to intercept the "atexit" library call.
jit_atexit(void (* Fn)())842 static int jit_atexit(void (*Fn)()) {
843 AtExitHandlers.push_back(Fn); // Take note of atexit handler...
844 return 0; // Always successful
845 }
846
jit_noop()847 static int jit_noop() {
848 return 0;
849 }
850
851 //===----------------------------------------------------------------------===//
852 //
853 /// getPointerToNamedFunction - This method returns the address of the specified
854 /// function by using the dynamic loader interface. As such it is only useful
855 /// for resolving library symbols, not code generated symbols.
856 ///
getPointerToNamedFunction(const std::string & Name,bool AbortOnFailure)857 void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
858 bool AbortOnFailure) {
859 // Check to see if this is one of the functions we want to intercept. Note,
860 // we cast to intptr_t here to silence a -pedantic warning that complains
861 // about casting a function pointer to a normal pointer.
862 if (Name == "exit") return (void*)(intptr_t)&jit_exit;
863 if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
864
865 // We should not invoke parent's ctors/dtors from generated main()!
866 // On Mingw and Cygwin, the symbol __main is resolved to
867 // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
868 // (and register wrong callee's dtors with atexit(3)).
869 // We expect ExecutionEngine::runStaticConstructorsDestructors()
870 // is called before ExecutionEngine::runFunctionAsMain() is called.
871 if (Name == "__main") return (void*)(intptr_t)&jit_noop;
872
873 const char *NameStr = Name.c_str();
874 // If this is an asm specifier, skip the sentinal.
875 if (NameStr[0] == 1) ++NameStr;
876
877 // If it's an external function, look it up in the process image...
878 void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
879 if (Ptr) return Ptr;
880
881 // If it wasn't found and if it starts with an underscore ('_') character,
882 // try again without the underscore.
883 if (NameStr[0] == '_') {
884 Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
885 if (Ptr) return Ptr;
886 }
887
888 // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf. These
889 // are references to hidden visibility symbols that dlsym cannot resolve.
890 // If we have one of these, strip off $LDBLStub and try again.
891 #if defined(__APPLE__) && defined(__ppc__)
892 if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
893 memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
894 // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
895 // This mirrors logic in libSystemStubs.a.
896 std::string Prefix = std::string(Name.begin(), Name.end()-9);
897 if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
898 return Ptr;
899 if (void *Ptr = getPointerToNamedFunction(Prefix, false))
900 return Ptr;
901 }
902 #endif
903
904 if (AbortOnFailure) {
905 report_fatal_error("Program used external function '"+Name+
906 "' which could not be resolved!");
907 }
908 return 0;
909 }
910
911
912
CreateDefaultMemManager()913 JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
914 return new DefaultJITMemoryManager();
915 }
916
917 // Allocate memory for code in 512K slabs.
918 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
919
920 // Allocate globals and stubs in slabs of 64K. (probably 16 pages)
921 const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
922
923 // Waste at most 16K at the end of each bump slab. (probably 4 pages)
924 const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
925